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Networks

1. Percolation on the Cayley tree: In simple models of percolation, elements of a lattice
(sites or bonds) are independently occupied with a probability p. A cluster is defined as a
connected (by neighboring bonds) set of these occupied elements. At small p, only small
clusters exist, and the probability that two sites, separated by a distance r, are connected
to each other decays as exp (—r/£). The correlation length &(p) grows with increasing p,
diverging at the percolation threshold p. as £(p) ~ |p. — p|™. A so-called infinite cluster,
spanning the entire system first appears at the percolation threshold p., covering more and
more sites for p > p.. We can define a probability P(p) that a site belongs to this infinite
cluster which, on approaching p. from above, vanishes as P(p) ~ |p. — p|’.

(a) The Cayley tree is a hierarchical lattice in which each site at one level is connected to
z sites at the level below. Thus the n-th level of the tree has 2" sites. For z = 2, obtain a
recursion relation for the probability P,(p) that the top site of a tree of n levels is connected
to some site at the bottom level.

(b) Find the limiting behavior of P,, = P(p) for infinitely many levels. Give the exponent
f characterizing the vanishing of P(p) at p..

(c) Show that for starting values close to P(p), the recursion relations admit solutions of the
form P, = Pye ¢, Find expressions for & for both p < p. and p > P., and hence obtain
the exponent v for the divergence of £ at the percolation threshold (for z = 2).

(d) Find the value of p. for any branching number z. Do the exponents § and v depend on

z?
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2. Preferential network growth with node removal: Consider the following extension of
network growth by preferential attachment, as explored in C. Moore, G. Ghoshal, and M.E.J.
Newman, Phys. Rev. E T4, 036121 (2006): At each time step a new node is created, its m
links attached preferentially proportional to the number of links already present for a pre-
existing node. However, before the next node is added, a randomly selected node is removed
with probability r.

(a) Show that after many steps t, the average number of nodes and links grow as N(t) =
t(1—r) and L(t) = tm(1 —r)/(1 + 1), respectively.

(b) Write down the recursion relation governing the probability p(k,t) of nodes with k links
at time t.

(c) Show that in steady state p*(k) oc k=7, and find the exponent ~.
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3. ‘Feed-down’ network: Consider a set of non-negative variables {z,(t)} (e.g. chemical
concentrations), evolving in time according to first order differential equations

dz,
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While the equations are quite general, we make the following assumptions:

(i) Each component decays at a rate g, > 0 which only depends on its value z,; g,(z,) is a
monotonically increasing function of x,,, with g,(0) = 0.

(ii) Each component is generated at a rate 0 < f,, < max(g,), which can depend only on
variables numbered higher than n; i.e. f,, does not depend on xy, x5, -+, x,.

(a) By considering eigenvalues of the stability matrix show that these equations admit a
stable fixed point.

(b) If the variables {z,(t)} are made space dependent and allowed to diffuse, such that a
term D, V2z, is added to Oz, /0t, can these equations admit Turing patterns?

(c) If all f,, are monotonically increasing functions of their arguments, show that starting

from {x,(t = 0) = 0}, the variables proceed monotonically to the fixed point values.
Kk H A

4. Hopfield network with correlated states: In a recent work (arXiv:1211.3133) a type of
Hopfield Lyapunov function is used to characterize the epigenetic landscape of cells. The
expression profiles of transcription factors (simplified to a binary code of off or on for roughly
hundred TF's) are specific to each cell type (e.g. liver, skin, heart, ---), and are modeled
as ‘associative memories’ in the parlance of neural networks. An important subtlety is that
unlike typical ‘memories’ stored in a neural net, the expression profiles are highly correlated.
A corresponding variant of the Hopfield model is examined in this problem.

The desired states are characterized by set of binary vectors {g“} for py =1,2,---, M;
each vector has components ! = +1 with ¢ = 1,2,--- | N. We would like to encode these
states into the couplings {.J;;} of a Hopfield network, composed of variables {—1 < z; < +1},

evolving as
dl’i ZT;
7 = —? —+ tanh <h2 -+ gj Jijl’j) .

(a) Compute a Lyapunov function that is minimized by the above dynamics.

(b) For one state vector {, show that the couplings J;; = &¢&;/N (with h; = 0) enable recovery
of the pattern, provided 7 > 7.

(c) Consider a set of M uncorrelated states, corresponding to orthogonal binary vectors such
that >, £'¢/ = Nd,,. Show that multiple states can be encoded via Ji; = >, €Y /N (again
(d) We now relax the condition of orthogonal memories. Show that in this case states can
be encoded through the couplings Ji; = >, [£(C™1),,&7]/N, where C~ is the inverse of

the correlation matrix, whose elements are C,, = >, ¢/ /N.
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