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Networks
1. Percolation on the Cayley tree: In simple models of percolation, elements of a lattice
(sites or bonds) are independently occupied with a probability p. A cluster is defined as a
connected (by neighboring bonds) set of these occupied elements. At small p, only small
clusters exist, and the probability that two sites, separated by a distance r, are connected
to each other decays as exp (−r/ξ). The correlation length ξ(p) grows with increasing p,
diverging at the percolation threshold pc as ξ(p) ∼ |pc − p|−ν . A so-called infinite cluster,
spanning the entire system first appears at the percolation threshold pc, covering more and
more sites for p > pc. We can define a probability P (p) that a site belongs to this infinite
cluster which, on approaching pc from above, vanishes as P (p) ∼ |pc − p|β.

(a) The Cayley tree is a hierarchical lattice in which each site at one level is connected to
z sites at the level below. Thus the n-th level of the tree has zn sites. For z = 2, obtain a
recursion relation for the probability Pn(p) that the top site of a tree of n levels is connected
to some site at the bottom level.

(b) Find the limiting behavior of P∞ ≡ P (p) for infinitely many levels. Give the exponent
β characterizing the vanishing of P (p) at pc.

(c) Show that for starting values close to P (p), the recursion relations admit solutions of the
form Pn = P∞e−n/ξ. Find expressions for ξ for both p < pc and p > Pc, and hence obtain
the exponent ν for the divergence of ξ at the percolation threshold (for z = 2).

(d) Find the value of pc for any branching number z. Do the exponents β and ν depend on
z?

*****

2. Preferential network growth with node removal: Consider the following extension of
network growth by preferential attachment, as explored in C. Moore, G. Ghoshal, and M.E.J.
Newman, Phys. Rev. E 74, 036121 (2006): At each time step a new node is created, its m
links attached preferentially proportional to the number of links already present for a pre-
existing node. However, before the next node is added, a randomly selected node is removed
with probability r.

(a) Show that after many steps t, the average number of nodes and links grow as N(t) =
t(1− r) and L(t) = tm(1 − r)/(1 + r), respectively.

(b) Write down the recursion relation governing the probability p(k, t) of nodes with k links
at time t.

(c) Show that in steady state p∗(k) ∝ k−γ , and find the exponent γ.
*****

3. ‘Feed-down’ network: Consider a set of non-negative variables {xn(t)} (e.g. chemical
concentrations), evolving in time according to first order differential equations

dxn

dt
= fn (xn+1, xn+2, xn+3, · · · )− gn (xn) .
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While the equations are quite general, we make the following assumptions:
(i) Each component decays at a rate gn ≥ 0 which only depends on its value xn; gn(xn) is a
monotonically increasing function of xn, with gn(0) = 0.
(ii) Each component is generated at a rate 0 ≤ fn ≤ max(gn), which can depend only on
variables numbered higher than n; i.e. fn does not depend on x1, x2, · · · , xn.

(a) By considering eigenvalues of the stability matrix show that these equations admit a
stable fixed point.

(b) If the variables {xn(t)} are made space dependent and allowed to diffuse, such that a
term Dn∇

2xn is added to ∂xn/∂t, can these equations admit Turing patterns?

(c) If all fn are monotonically increasing functions of their arguments, show that starting
from {xn(t = 0) = 0}, the variables proceed monotonically to the fixed point values.

*****

4. Hopfield network with correlated states: In a recent work (arXiv:1211.3133) a type of
Hopfield Lyapunov function is used to characterize the epigenetic landscape of cells. The
expression profiles of transcription factors (simplified to a binary code of off or on for roughly
hundred TFs) are specific to each cell type (e.g. liver, skin, heart, · · · ), and are modeled
as ‘associative memories’ in the parlance of neural networks. An important subtlety is that
unlike typical ‘memories’ stored in a neural net, the expression profiles are highly correlated.
A corresponding variant of the Hopfield model is examined in this problem.

The desired states are characterized by set of binary vectors {~ξµ} for µ = 1, 2, · · · ,M ;
each vector has components ξµi = ±1 with i = 1, 2, · · · , N . We would like to encode these
states into the couplings {Jij} of a Hopfield network, composed of variables {−1 ≤ xi ≤ +1},
evolving as

dxi

dt
= −

xi

τ
+ tanh

(

hi +
∑

j

Jijxj

)

.

(a) Compute a Lyapunov function that is minimized by the above dynamics.

(b) For one state vector ~ξ, show that the couplings Jij = ξiξj/N (with hi = 0) enable recovery
of the pattern, provided τ > τc.

(c) Consider a set of M uncorrelated states, corresponding to orthogonal binary vectors such
that

∑

i ξ
µ
i ξ

ν
i = Nδµν . Show that multiple states can be encoded via Jij =

∑

µ ξ
µ
i ξ

µ
j /N (again

with hi = 0).

(d) We now relax the condition of orthogonal memories. Show that in this case states can
be encoded through the couplings Jij =

∑

µν [ξ
µ
i (C

−1)µνξ
ν
j ]/N , where C−1 is the inverse of

the correlation matrix, whose elements are Cµν =
∑

i ξ
µ
i ξ

ν
i /N .
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