
IITS: Statistical Physics in Biology
Assignment # 4 KU Leuven 5/30/2013

Protein, DNA, and RNA

1. Designed Random Energy Model (REM): Consider a protein model in which for a given
sequence and structure, the energy is randomly taken from the Gaussian probability density

p(E) =
1√
2πΣ2

exp

(

− E2

2Σ2

)

.

The total number of structures is Ωstr, while the number of sequences is Ωseq ≫ Ωstr.

(a) A particular sequence has a (unique) native structure of energy EN . Calculate and plot
the energy E(T ) of this sequence as a function of temperature T .

(b) For a particular structure, we attempt to design a good sequence by Monte Carlo sampling
of representative sequences at a ‘temperature’ τ . Calculate and plot the designed native
energies EN (τ) as a function of the design temperature τ .

*****

2. Charged Random Energy Model: Use the random energy model to investigate the freez-
ing of a charged heteropolymer. Assume that there are gN possible globular states of the
polymer, whose energies are randomly selected from a Gaussian distribution of mean zero,
and variance

σ2 = u2N + c2
(

Q2

R

)2

.

The second term in the above formula is a rough estimate of the variations in Coulomb
energy from different ways of distributing a charge Q over a volume of size R.

(a) Find the energy Ec at which the entropy vanishes, and the corresponding freezing tem-
perature Tc.

(b) For compact globular states, how should Q2 scale with N for the freezing temperature
to be asymptotically independent of N?

*****

3. Amino-acid interactions: What can we learn by combining the Random Energy Model
with commonly used interaction potentials between amino acids?

(a) Find a 20 × 20 matrix of interactions U(a, a′) amongst amino acids, and calculate the
mean 〈U〉 and variance 〈U2〉c of its elements. The commonly used Miyazawa–Jernigan (MJ)
interaction matrix can be found in S. Miyazawa and R.L. Jernigen, J. Mol. Biol. 256, 623
(1996). (Table 3 of this publication is available on the web-page for assignments.)

(b) Model the possible configurations of a protein by the ensemble of compact self-avoiding
walks on a cubic lattice. (All lattice sites are visited by compact walks.) Calculate the
number n of non-polymeric nearest neighbor interactions for such configurations on an N =
L× L× L lattice, and deduce the ratio n/N for large N .
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(c) The number of compact walks on a cubic lattice asymptotically grows as gN , with g ≈
1.85. Use this in conjunction with the results from parts (a) and (b) to estimate the folding
temperature Tc of a random sequence of amino-acids, and the corresponding energy Ec.

(d) Select a protein, find its amino-acid sequence and construct a contact matrix correspond-
ing to its structure. Use the interaction matrix from part (a) to estimate the energy of the
native structure, and calculate the ratio EN/Ec.

*****

4. Kinetics of protein folding: [Adapted from Gutin et al., J. Chem. Phys. 108, 6466
(1998).] Assume protein folding proceeds through a folding nucleus which has the free
energy F ‡ = E‡ − kBT logM ‡. The folding nucleus serves as a transition state for the
folding reaction. The typical folding time needed to climb over this free energy barrier is

t = τ0 exp

(

F ‡ − F

kBT

)

,

where T is the temperature, and τ0 is an elementary time step.

(a) Use a random energy model to calculate F as a function of temperature T , and calculate
the folding time t(T ) for two regimes T > Tc and T < Tc. Plot ln t(T ) as a function of 1/T .

(b) Consider a limit of T → ∞ and express the folding time as a function of the total number
of conformations M = g′N and the number of states in the folding nucleus M ‡. Interpret
your result.

(c) Find a temperature Topt, which provides the fastest folding, compare it to Tc. Compare
the optimal folding time with the folding time from “non-designed” REM at Tc. Make
conclusions about folding kinetics for random sequences (REM) and designed sequences
(designed REM).

*****

5. Denaturing DNA by force: Obtain the phase diagram of DNA pulled by a force ~F , by
generalizing the Poland–Scheraga model as follows:

(a) By integrating over the position vectors, show that the (Gibbs) partition function of
DNA of length N can be decomposed into products of contributions from double-stranded
rods and single stranded bubbles, as

Z(N,F ) =
∑

ℓ1,ℓ2,ℓ3,···

R(ℓ1)B(ℓ2)R(ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + · · · = N.

(b) Treat the double stranded segments as rigid rods of fixed length aℓ. By integrating over
all orientations in three dimensions show that

R(ℓ) = wℓ × sinh(βFaℓ)

βFaℓ
,

where w = e−βε, and ε is the energy gain of forming the double strand.
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(c) Treat the double stranded loop as two random walks of length ℓ connected at the two
end points. Integrating over all separations of the two end points show that

B(ℓ) =
s

ℓ3/2

[

g2 exp

(

β2F 2a2

12

)]ℓ

.

(d) Examine the problem in a (grand canonical) ensemble with variable DNA lengths N ,
additionally weighted by a factor of zN . Give the expressions for the (Laplace) transformed
B̃(z) and R̃(z) in this ensemble in terms of the (Bose) sums f+

m(x) =
∑∞

ℓ=1
xℓ/ℓm.

(e) Show that the strands become fully separated at a critical point satisfying R̃ = B̃−1 =
(

sζ3/2
)−1

, where ζ3/2 ≡ f+

3/2(1) ≈ 2.612.

(f) For s = 1, plot the phase diagram of the model in the coordinates (w/g2) and (βFa).
*****

6. Denaturing RNA by force: By pulling on the ends of RNA, the hydrogen bonds can
be broken to yield a stretched polymer. Let us model the partially denatured state as a
sequence of linear segments with no hydrogen bonds and ‘blobs’ which are hydrogen bonded
(opposite to the case of DNA). Assume that the force carrying backbone of the molecule is
made up of the linear segments, and that the RNA blobs carry no force (similar to the loop
in problem 2). After integrating over the position vectors, the (Gibbs) partition function of
an RNA of length N can be written as

Z(N,F ) =
∑

ℓ1,ℓ2,ℓ3,···

P (ℓ1)R(ℓ2)P (ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + · · · = N.

The contributions of linear and blob segments are respectively

P (ℓ) = gℓ exp

(

F 2a2ℓ

6k2BT
2

)

, and R(ℓ) = f ℓ A

ℓ3/2
.

(a) Exploit the mathematical similarity to the Poland–Scheraga model to evaluate the grand
partition function of the model.

(b) Identify the force Fc at which denaturation starts.

(c) Sketch the fraction of denatured sites as a function of force, clearly indicating the nature
of the singularity at Fc.

*****

7. Pulling RNA: The server on http://bioinfo.ucsd.edu/rna/ (or the pulling server at
http://bioserv.mps.ohio-state.edu/rna/) gives force extension curves for RNA based on sec-
ondary structure calculations. Use this server to examine force extension curves for: (a) a
uniform sequence; (b) an alternating sequence of G and C; (c) an alternating sequence of
A and U; (d) an actual RNA sequence. (Choose sequences of roughly the same length.)
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Comment on the general characteristics of these curves. Does any of them resemble the
theoretical result from the previous problem?

*****

8. Analysis of protein structures: Calculate φ and ψ torsion angles in Rasmol for a given
protein (see the commands below). Make (φ, ψ) “Ramachandran” diagrams by plotting φ
along the x and and ψ along the y axis; one (φ, ψ) point for each amino acid.

(a) Do amino acids that are part of different secondary structure elements (helices, sheets)
land in the same or different islands on the (φ, ψ) diagram? You can find secondary structure
elements in fields HELIX and SHEET of the protein structure file (aka PDB file). Explain your
observations.

(b) Find amino acids that have unusual (φ, ψ) angles (i.e. deviate from the many clouds of
points). What types of amino acids tend to have “unusial” (φ, ψ) conformation? Discuss.

(c) Visualize protein structure in Rasmol, following the sequence of commands below, and
select those with “unusual” (φ, ψ) conformation. Do they tend to be close to the ligand?

Some sample proteins to explore (PDB files provided on the Assignment page):
Hemoglobin (alpha chain) 4HHB A.PDB
Immunoglobulin domain 1TEN.PDB

You can use the following sequence of Rasmol commands to generate a good view of a
protein, and the fipsi.dat file of (φ, ψ) angles

set background white

wireframe off

ribbons

color structure

select ligand

cpk

color green

select protein

write RDF fipsi.dat

To select a particular set of amino acids, (e.g. 128 and 156) you can do the following
select 128,156

cpk

color red

*****
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