
1.5 Backward Kolmogorov equation

When mutations are less likely, genetic drift dominates and the steady state distributions are
peaked at x = 0 and 1. In the limit of µ1 = 0 (or µ2 = 0), Eq. (1.68) no longer corresponds
to a well-defined probability distribution, as the 1/x (or 1/(1−x)) divergence close to x = 0
(or x = 1) precludes normalization. This is the mathematical signal that our expression
for the steady state is no longer valid in this limit. Indeed, in the absence of mutations a
homogeneous population (all individuals A1 or A2) cannot change through random mating.
In the parlance of dynamics homogeneous populations correspond to absorbing states, where
transitions are possible into the state but not away from it. In the presence of a single
absorbing state, the steady state probability is one at this state, and zero for all other states.
If there is more than one absorbing state, the steady state probability will be proportioned
(split) among them.

In the absence of mutations, our models of reproducing populations have two absorbing
states at x = 0 and x = 1. At long times, a population of fixed number either evolves to
x = 0 with probability Π0, or to x = 1 with probability Π1 = 1 − Π0. The value of Π0

depends on the initial composition of the population that we shall denote by 0 < y < 1, i.e.
p(x, t = 0) = δ(x − y). Starting from this initial condition, we can follow the probability
distribution p(x, t) via the forward Kolmogorov equation (1.42). For purposes of finding the
long-time behavior with absorbing states it is actually more convenient to express this as
a conditional probability p(x, t|y) that starting from a state y at t = 0, we move to state
x at time t. Note that in any realization the variable x(t) evolves from one time step to
the next following the transition rates, but irrespective of its previous history. This type
of process with no memory is called Markovian, after the Russian mathematician Andrey
Andreyevich Markov (1856-1922). We can use this property to construct evolution equations
for the probability by focusing on the change of position for the last step (as we did before
in deriving Eq. (1.42)), or the first step. From the latter perspective, we can decompose the
conditional probability after a time interval t+ dt as

p(x, t + dt|y) =

∫

dδy R(δy, y)dt× p(x, t|y + δy) +

(

1−

∫

dδy R(δy, y)dt

)

p(x, t|y) , (1.70)

where we employ the same parameterization of the reaction rates as in Eq. (1.37), with δy
denoting the change in position. The above equation merely states that the probability to
arrive at x from y in time t+ dt is the same as that of first moving away from y by δy in the
initial interval of dt, and then proceeding from y + δy to x in the remaining time t [the first
term in Eq. (1.70)]. The second term corresponds to staying in place in the initial interval
dt, and taking a trajectory that arrives at x in the subsequent time interval t. (Naturally we
have to integrate over all allowed intermediate positions.) Expanding left side of Eq. (1.70)
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in dt, and the right side in δy (assuming dominance of local changes), gives

p(x, t|y) + dt
∂p(x, t|y)

∂t
= p(x, t|y) +

(
∫

dδy R(δy, y)dt−

∫

dδy R(δy, y)dt

)

p(x, t|y)

+

(
∫

dδy δyR(δy, y)dt

)

∂p(x, t|y)

∂y

+
1

2

(
∫

dδy δ
2
yR(δy, y)dt

)

∂2p(x, t|y)

∂y2
+ · · · . (1.71)

Using the definitions of drift and diffusion coefficients from Eqs. (1.43) and (1.44), we obtain

∂p(x, t|y)

∂t
= v(y)

∂p

∂y
+D(y)

∂2p

∂y2
, (1.72)

which is known as the backward Kolmogorov equation. If the drift velocity and the diffusion
coefficient are independent of position, the forward and backward equations are the same–
more generally one is the adjoint of the other.

1.5.1 Fixation probability

Let us consider a general system with multiple absorbing states. Denote by Π∗(xa, y), the
probability that a starting composition y is at long time fixed to the absorbing state at xa,
i.e. Π(xa, y) = limt→∞ p(xa, t|y). For the case of two possible alleles, we have two such states
with Π0(y) ≡ Π∗(0, y) and Π1(y) ≡ Π∗(1, y), but we shall keep the more general notation
for the time being. The functions Π∗(xa, y) must correspond to steady state solutions of
Eq. (1.72), and thus obey

v(y)
dΠ∗(y)

dy
+D(y)

d2Π∗(y)

dy2
= 0 . (1.73)

After rearranging the above equation to

Π∗(y)′′

Π∗(y)′
=

d

dy
logΠ∗(y)′ = −

v(y)

D(y)
, (1.74)

we can integrate it to

logΠ∗(y)′ = −

∫ y

dy′
v(y′)

D(y′)
= − ln (D(y′)p∗(y)) , (1.75)

and obtain

Π∗(y)′ ∝ −

∫ y

dy′[D(y′)p∗(y′)]−1 . (1.76)

The result of the above integration is related to an intermediate step in calculation of the
steady state solution p∗ of the forward Kolmogorov equation in (1.65). However, as we
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Figure 1: Fixation probability Π1(y) for different selection parameters s.

noted already, in the context of absorbing states the function p∗ is not normalizable and
thus cannot be regarded as a probability. Nonetheless, we can choose to express the results
in terms of this function. For example, the probability of fixation, i.e. Π1(y) is obtained with
the boundary conditions Π1(0) = 0 and Π1(1) = 1, as

Π1(y) =

∫ y

0
dy′[D(y)p∗(y′)]−1

∫ 1

0
dy′[D(y)p∗(y′)]−1

. (1.77)

When there is selection, but no mutation, Eq. (1.59) implies

logΠ∗(y)′ = −

∫ y

dy′
v(y′)

D(y′)
= −2

∫ y

(Ns) = −2Nsy + constant. (1.78)

Integrating Π∗(y)′ and adjusting the constants of proportionality by the boundary conditions
Π1(0) = 0 and Π1(1) = 1, then leads to the fixation probability of

Π1(y) =
1− e−2Nsy

1− e−2Ns
. (1.79)

The fixation probability of a neutral allele is obtained from the above expression in the limit
of s→ 0 as Π1(y) = y.

When a mutation first appears in a diploid population, it is present in only one copy and
hence y = 1/(2N). The probability that this mutation is fixed is Π1 = 1/(2N) as long as it
is approximately neutral (if 2sN ≪ 1). If it is advantageous (2sN ≫ 1) it will be fixed with
probability Π1 = 1− e−s irrespective of the population size! If it is deleterious (2sN ≪ −1)
it will have a very hard time getting fixed, with a probability that decays with population
size as Π1 = e−(2N−1)|s|. The probability of loss of the mutation is simply Π0 = 1− Π1.
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1.5.2 Mean times to fixation/loss

When there is an absorbing state in the dynamics, we can ask how long it takes for the
process to terminate at such a state. In the context of random walks, this is known as the
first passage time, and can be visualized as the time it takes for a random walker to fall
into a trap. Actually, since the process is stochastic, the time to fixation (or loss) is itself a
random quantity with a probability distribution. Here we shall compute an easier quantity,
the mean of this distribution, as an indicator of a typical time scale for fixation/loss.

Let us consider an absorbing state at xa, and the difference p(xa, t+ dt|y)− p(xa, t|y) =
dt∂p(xa, t|y)/∂t. Clearly the probability to be at xa only changes due to absorption of
particles, and thus ∂p(xa, t|y)/∂t is proportional to the probability density function (PDF)
for fixation at time t. The conditional PDF that the process terminates at xa must be
properly normalized to unity, and must be divided by

∫ ∞

0

dt
∂p(xa, t|y)

∂t
= p(xa,∞|y)− p(xa, 0|y) = Π∗(xa, y)− 0 = Π∗(xa, y) . (1.80)

Thus the properly normalized conditional PDF for fixation at time t at xa is

pa(t|y) =
1

Π∗(xa, y)

∂p(xa, t|y)

∂t
. (1.81)

The mean fixation time is now computed from

〈τ(y)〉a =

∫ ∞

0

dt t pa(t|y) =
1

Π∗(xa, y)

∫ ∞

0

dt t
∂p(xa, t|y)

∂t
. (1.82)

Following Kimura and Ohta (1968)3, we first examine the numerator of the above ex-
pression, defined as

Ta(y) = lim
T→∞

∫ T

0

dt t
∂p(xa, t|y)

∂t
. (1.83)

(Rewriting limT→∞

∫ T

0
rather than simply

∫∞

0
is for later convenience.) We can integrate

this equation by parts to get

Ta(y) = lim
T→∞

[

Tp(xa, T |y)−

∫ T

0

dt p(xa, t|y)

]

= lim
T→∞

TΠ∗(xa, y)−

∫ ∞

0

dt p(xa, t|y) . (1.84)

Let us denote the operations involved on the right-hand side of the backward Kolmogorov
equation by the short-hand By, i.e.

ByF (y) ≡ v(y)
∂F (y)

∂y
+D(y)

∂2F (y)

∂y2
. (1.85)

3M. Kimura and T. Ohta, Genetics 61, 763 (1969).
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Acting with By on both sides of Eq. (1.84), we find

ByTa(y) = lim
T→∞

TByΠ
∗(xa, y)−

∫ ∞

0

dtByp(xa, t|y) . (1.86)

But ByΠ∗(xa, y) = 0 according to Eq. (1.73), while Byp(xa, t|y) = ∂p(xa, t|y)/∂t from
Eq. (1.72). Integrating the latter over time leads to

ByTa(y) = −p(xa,∞|y) = −Π
∗(xa, y) . (1.87)

For example, let us consider a population with no selection (s = 0), for which the
probability to lose a mutation is Π0 = (1− y). In this case, Eq. (1.87) reduces to

y(1− y)

4N

∂2T0

∂y2
= −(1− y), ⇒

∂2T0

∂y2
= −

4N

y
. (1.88)

After two integrations we obtains

T0(y) = −4Ny (ln y − 1) + c1y + c2 = −4Ny ln y , (1.89)

where the constants of integration are set by the boundary conditions T0(0) = T0(1) = 0,
which follow from Eq. (1.83). From Eq. (1.82), we then obtain the mean time to loss of a
mutation as

〈τ(y)〉0 = −4N
y ln y

1− y
. (1.90)

A single mutation appearing in a diploid population corresponds to y = 1/(2N), for which
the mean number of generations to loss is 〈τ(y)〉0 ≈ 2 ln(2N). The mean time to fixation is
obtained simply by replacing y with (1− y) in Eq. (1.90) as

〈τ(y)〉1 = −4N
(1− y) ln(1− y)

y
. (1.91)

The mean time for fixation of a newly appearing mutation (y = 1/(2N)) is thus 〈τ(y)〉1 ≈
(4N).

We can also examine the amount of time that the mutation survives in the population.
The net probability that the mutation is still present at time t is

S(t|y) =

∫ 1−

0+
dxp(x, t|y) , (1.92)

where the integrations exclude the absorbing points at 0 and 1. Conversely, the PDF that
the mutation disappears (by loss or fixation) at time t is

p×(t|y) = −
dS(t|y)

dt
= −

∫ 1−

0+
dx

dp(x, t|y)

dt
. (1.93)
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(Note that the above PDF is properly normalized as S(∞) = 0, while S(0) = 1.) The mean
survival time is thus given by

〈τ(y)〉× = −

∫ ∞

0

dt t

∫ 1−

0+
dx

dp(x, t|y)

dt
=

∫ 1−

0+
dx

∫ ∞

0

dt p(x, t|y) , (1.94)

where we have performed integration by parts and noted that the boundary terms are zero.
Applying the backward Kolmogorov operator to both sides of the above equation gives

By 〈τ(y)〉× =

∫ 1−

0+
dx

∫ ∞

0

dtByp(x, t|y)

=

∫ 1−

0+
dx

∫ ∞

0

dt
dp(x, t|y)

dt

= S(∞|y)− S(0|y) = −1 . (1.95)

In the absence of selection, we obtain

y(1− y)

4N

∂2 〈τ(y)〉×
∂y2

= −1 ⇒
∂2 〈τ(y)〉×

∂y2
= −4N

(

1

y
+

1

1− y

)

. (1.96)

After two integrations we obtains

〈τ(y)〉× = −4N [y ln y + (1− y) ln(1− y)] , (1.97)

where the constants of integration are set by the boundary conditions 〈τ(0)〉× = 〈τ(1)〉× = 0.
Note the interesting relation

〈τ(y)〉× = Π0(y) 〈τ(y)〉0 +Π1(y) 〈τ(y)〉1 , (1.98)

which is easily generalized to any number of absorbing states. By adding and subtracting
the contribution of absorbing sites to the positional integral in Eq. (1.94), we obtain

〈τ(y)〉× = −

∫ ∞

0

dt t

[

∫

dx
dp(x, t|y)

dt
−
∑

a

dp(xa, t|y)

dt

]

. (1.99)

By taking the time derivative over t outside the integration over x, we get

〈τ(y)〉× = −

∫ ∞

0

dt t
∂

∂t

(
∫

dx p(x, t|y)

)

+
∑

a

dp(xa, t|y)

dt
. (1.100)

The first term is zero since the integral over x is always unity, and from Eq. (1.82) we obtain

〈τ(y)〉× =
∑

a

Π∗(xa, y) 〈τ(y)〉a . (1.101)
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1.6 Sequence alignment

The dramatic increase in the number of sequenced genomes and proteomes has lead to
development of quite a few bioinformatic methods and algorithms for extracting information
(data mining) from available databases. Sequence alignment methods (such as BLAST)
are amongst the earliest and most widely used tools, essentially attempting to establish
relations between sequences based on common ancestry, for example as a means of surmising
the function of a sequenced protein.

The explicit inputs are two (or more) sequences (of nucleotides for DNA/RNA, or amino-
acids for proteins)

{a1, a2, . . . , am} and {b1, b2, . . . , bn},

for example, corresponding to a query (newly sequenced gene) and a database. Implicit inputs
are included as part of the scoring procedure, e.g. by assigning a similarity matrix s(a, b)
between pairs of elements, and costs associated with initiating or extending gaps s(a,−).
Global alignments attempt to construct the single best match that spans both sequences,
while local alignments look for (possibly) multiple subsequences that represent good local
matches. In either case, recursive algorithms enable scanning the exponentially large space
of possible matches in polynomial time. Within bioinformatics these methods are referred
to as dynamic programming, in statistical physics they appear as transfer matrices, and have
precedent in early recursive methods such as in the construction of binomial coefficients with
the binomial triangle (below).

In most implementations, the output of the algorithm is an optimal match (or several
such matches), and a corresponding score S. An important question is whether this output is
due to a meaningful relation (homology) between the tagged sequence (e.g. due to common
ancestry, or functional convergence), or simply a matter of chance (e.g. due to the large
size of the database). To rule out the latter, we need to know the probability that a score
S is obtained randomly. This probability can be either obtained numerically by applying
the same algorithm to randomly generated (or shuffled) sequences, or if possible obtained
analytically. Analytical solutions are particularly useful as significant alignment scores are
likely to fall in the tails of the random distribution; a portion that is hard to access by
numerical means.
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1.6.1 Significance of gapless alignments

We can derive some analytic results in the case of alignments that do not permit gaps. We
again begin with two sequences

~a ≡ {a1, a2, . . . , am}, and ~b ≡ {b1, b2, . . . , bn} ,

of lengths m an n respectively. We can define a matrix of alignment scores

Sij ≡ Score of best alignment terminating on ai, bj. (1.102)

For gapless alignments, this matrix can be built up recursively as

Sij = Si−1,j−1 + s(ai, bj), (1.103)

where s(a, b) is the scoring matrix element assigned to a match between a and b. This
alignment algorithm can be made to look somewhat like the binomial triangle if we consider
the following representation: Place the elements of sequence ~a along one edge of a rectangle,
characters of the sequence ~b along the other edge, an rotate the rectangle so that the point
(0, 0) is at the apex, with the sides at ±45◦. The square (i, j) in the rectangle is to be
regarded as the indicator of a match between ai and bj , and a corresponding score s(ai, bj)
is marked along its diagonal.

To build an analogy with a dynamical system, we now introduce new coordinates (x, t)
by

x = j − i, t = i+ j. (1.104)

The recursion relation in Eq. (1.103) is now recast as

S(x, t) = S(x, t− 2) + s(x, t) , (1.105)

describing the ‘time’ evolution of the score at ‘position’ x. In this gapless algorithm, the
columns for different x are clearly evolve independently; as we shall point out later gapped
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alignments include also jumps between columns. For a global (Needleman–Wunsch) align-
ment (including gaps only at beginning or end), the column with the highest score at its
end point is selected, and the two matching sub-sequences are identified by tracing back. If
the two sequences are chosen randomly, the corresponding scores s(x, t) will also be random
variables. The statistics of random (global) alignment is thus quite simple: According to the
central limit theorem the sum of a large number of random variables is Gaussian distributed,
with mean and variances obtained by multiplying the number of terms with the mean and
variance of a single step. By comparison with such a Gaussian PDF, we can determine the
significance of a global gapless alignment score.

The figure below schematically depicts two evolving scores generated by Eq. (1.105). In
one case the mean 〈s〉 of pairwise scores is positive, and the net score has a tendency to
increase, in another 〈s〉 < 0 and S(t) decreases with increasing sequence length. In either
case, the overall trends mask local segments where there can be nicely matched (high scoring)
subsequences.

To identify matching segments shorter than a complete sequence, we can employ the local
(Smith-Waterman) alignment scheme in which negative scores are cut off according to

Sij = max{Si−1,j−1 + s(ai, bj), 0}, (1.106)

or in the notation of x and t,

S(x, t) = max{S(x, t− 2) + s(x, t− 1), 0}. (1.107)

This has little effect if 〈s〉 is larger than 0, but if 〈s〉 < 0, the net result is to create “islands”
of positive S in a sea of zeroes.
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The islands represent potential local matches between corresponding sub-sequences, but
many of them will be due to chance. Let us denote by Hα the peak value of the score on
island α. To find significant alignments we should certainly confine our attention to the few
islands with highest scores. For simplicity, let us assume that there are K islands and we
pick the one with the highest peak, corresponding to a score

S = max
α=1,··· ,K

{Hα}. (1.108)

To assign significance to a match, we need to know how likely it is that a score S is obtained
by mere chance. Of course we are interested in the limit of very long sequences (n,m≫ 1),
in which case it is likely that the number of islands grows proportionately to the area of our
‘ocean’– the rectangle of sides m and n– i.e.

K ∝ mn. (1.109)

Equation (1.108) is an example of extreme value statistics. Let us consider a collection
of random variables {Hα} chosen independently from some PDF p(H), and the extremum

X = max{H1, H2, . . . , HK} . (1.110)

The cumulative probability that X ≤ S is the product of probabilities that any selected Hα

is less than S, and thus given by

PK(X ≤ S) = Prob.(H1 ≤ S)× Prob.(H2 ≤ S)× · · · × Prob.(HK ≤ S)

=

[
∫ S

−∞

dHp(H)

]K

=

[

1−

∫ ∞

S

dHp(H)

]K

. (1.111)

For large K, typical values of S are in the tail of p(H), which implies that the integral is
small, justifying the approximation

PK(S) ≈ exp

[

−K

∫ ∞

S

dHp(H)

]

. (1.112)
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Assume, as we shall demonstrate shortly, that p(H) falls exponentially in its tail, as
ae−λH . We can then write

∫ ∞

S

dHp(H) =

∫ ∞

S

dHae−λH =
a

λ
e−λH . (1.113)

The cumulative probability function PK(S) is therefore

PK(S) = exp

[

−
Ka

λ
e−λS

]

, (1.114)

with a corresponding PDF of

pK(S) =
dPK(S)

dS
= Ka exp

(

−λS −
Ka

λ
e−λS

)

. (1.115)

The exponent

φ(S) ≡ −λS −
Ka

λ
e−λS, (1.116)

has an extremum when
dφ

dS
= −λ +Kae−λS∗

= 0, (1.117)

corresponding to a score of

S∗ =
1

λ
log

(

Ka

λ

)

. (1.118)

Equation (1.118) gives the most probable value for the score, in terms of which we can
re-express the PDF in Eq. (1.115) as

pK(S) = λ exp
[

−λ(S − S∗)− e−λ(S−S∗)
]

. (1.119)

Evidently, once we determine the most likely score S∗, the rest of the probability distribution
is determined by the single parameter λ. The PDF in Eq. (1.119) is known as the Gumbel or
the Fisher-Tippett extreme value distribution (EVD). It is characterized by an exponential
tail above S∗ and a much more rapid decay below S∗. It looks nothing like a Gaussian,
which is important if we are trying to gauge significances by estimating how many standard
deviations a particular score falls above the mean.

Given the shape of the EVD, it is clearly essential to obtain the parameter λ, and indeed
to confirm the assumption in Eq. (1.113) that p(H) decays exponentially at large H . The
height profile of an island (by definition positive) evolves according to Eq. (1.105). For
random variables s, this is clearly a Markov process, with a transition probability ps for a
jump of size s (with the exception of jumps that render S negative). Thus the probability
for a height (island score) h evolves according to

p(h, t) =
∑

s

psp(h− s, t− 2)

=
∑

a,b

papbp[h− s(a, b), t− 2], (1.120)

27



where the second equality is obtained by assuming that the characters are chosen randomly
with frequencies {pa, pb} (e.g. 30% for an A, 30% for a T, and 20% for either G or C in a
particular variety of DNA). To solve the precise steady steady solution p∗(h) for the above
Markov process is somewhat complicated, requiring some care for values of h close to zero
because of the modification of transition probabilities by the constraint h ≥ 0. Fortunately,
we only need the probability p∗(h) for large h (close to the peaks) for which, we can guess
and verify the exponential form

p∗(h) ∝ e−λh. (1.121)

Substituting this ansatz into Eq. (1.120), we obtain

e−λh =
∑

a,b

papbe
−λ(h−s(a,b)). (1.122)

Consistency is verified since we can cancel the h-dependent factor e−λh from both sides of
the equation, leaving us with the implicit equation for λ

∑

a,b

papbe
λs(a,b) = 1. (1.123)

Equation (1.121) shows that the probability distribution for the island heights is exponential
at large h. If we consider the highest peak H of the island, the corresponding distribution
p∗(H) will be somewhat different. However, as indicated by Eq. (1.119) the maximization
will not change the tail of the distribution. Hence the value of λ in Eq. (1.123), along with
S∗ completely characterizes the Gumbel distribution for statistics of random local gapless
alignments. (In addition to the trivial solution λ = 0, Eq. (1.123) has a unique positive
solution.) This expression was first derived in by Karlin and Altschul in 1990.4

1.6.2 Gapped alignments

Comparison of biological sequences indicates that in the process of evolution sequences not
only mutate, but also lose or gain elements. Consequently, useful alignments must allow for

4Methods for assessing the statistical significance of molecular sequence features by using general scoring

schemes, S. Karlin AND S.F. Altschul, Proc. Natl. Acad. Sci. USA 87, 2264-2268 (1990).
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gaps and insertions (more so for further evolutionary divergent sequences). In the scoring
process, it is typical to add a cost that is linear in the size of the gap (and sometimes extra
costs for the end-points of the gap). Dynamic programming algorithms can be constructed
(e.g. below) to deal with gapped alignments, but obtaining analytical results is now much
harder. Empirically, it can be verified that the PDF for the score of random gapped local
alignments is still Gumbel distributed. This result can again be justified by noting that
local alignments rely on selecting the best score amongst a large number. The shape of the
‘islands’ is now somewhat different, and their statistics (alluded to below) is considerably
harder to obtain.

Gaps/insertation can be incorporated in the earlier diagrammatic representation by side-
way steps from one column x to another. The sideway step does not advance along the
coordinate corresponding to the sequence with gap, but progresses over the characters of the
other sequence. As depicted below, these resulting trajectories are still pointed downwards,
but may include transverse excursions. Such directed paths occur in many contexts in physics
from flux lines in superconductors to domain walls in two-dimensional magnets.

In the spirit of statistical physics, we may even introduce a fuzzier version of alignment
corresponding to a finite temperature β−1. We can then regards the scores as (negative) ener-
gies used to construct Boltzmann weights eβS to various paths. Now consider the constrained
partition function

W (x, t) = sum of all paths’ Boltzmann weights from (0, 0) to (x, t). (1.124)

We can use a so-called transfer matrix to recursively compute this quantity by

W (x, t) = eβs(x,y)W (x, t− 2) + e−βg [W (x+ 1, t− 1) +W (x− 1, t− 1)] . (1.125)

The first term is the contribution from the configuration that goes down along the same x,
while the remaining two come from neighboring columns (at a cost g in gap energy).

29



The above transfer matrix is the finite temperature analog of dynamic programming,
and indeed in the limit of β →∞, the sum in Eq. (1.125) is dominated by the largest term,
leading to (W (x, t) = exp [βS(x, t)]), with

S(x, t) = max {S(x, t− 2) + s(x, t), S(x+ 1, t− 1)− g, S(x− 1, t− 1)− g} . (1.126)

This analogy has been used to obtain certain results for gapped alignment, but will not be
pursued further here.
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