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Anomalous dynamics of forced translocation
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We consider the passage of long polymers of lengthN through a hole in a membrane. If the process is slow,
it is in principle possible to focus on the dynamics of the number of monomerss on one side of the membrane,
assuming that the two segments are in equilibrium. The dynamics ofs(t) in such a limit would be diffusive,
with a mean translocation time scaling asN2 in the absence of a force, and proportional toN when a force is
applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers
~more easily when forced!, and provide lower bounds for the translocation time by comparison to unimpeded
motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and
point to anomalous~subdiffusive! character of translocation dynamics. This is explicitly verified by numerical
simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to
strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end
leads to much longer times than when a chemical potential difference is applied across the membrane. The
bounds in these cases grow asN2 andN11n, respectively, wheren is the exponent that relates the scaling of
the radius of gyration toN. Our simulations demonstrate that the actual translocation times scale in the same
manner as the bounds, although influenced by strong finite size effects which persist even for the longest
polymers that we considered (N5512).

DOI: 10.1103/PhysRevE.69.021806 PACS number~s!: 36.20.Ey, 05.40.Fb, 87.15.Aa
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I. INTRODUCTION

Translocation of a polymer through a narrow pore in
membrane is important to many biological processes, suc
the injection of viral DNA into a host, DNA packing into
shell during viral replication, and gene swapping throu
bacterial pili @1#. Translocation also has practical applic
tions in genetics as in cell transformation by DNA electrop
ration @1#, and in gene therapy@2#. This has inspired a num
ber of recentin vitro experiments, including the electri
field-induced migration of DNA through microfabricate
channels@3#, or through ana-hemolysin protein channel in
membrane@4,5#. Experiments are motivated by the possib
ity to ‘‘read off’’ a DNA or RNA sequence by tracking its
passage through a pore@4–6#.

Translocation of a polymer involves both molecular co
siderations, such as the shape of the pore channel an
interactions with DNA, as well as more macroscopic fact
such as the statistics and dynamics of the long polymer.
the universal features of the latter which are the focus of
paper. While worming its way through the hole, the segme
of the polymer on each side of the membrane can ‘‘explo
many possible configurations. The number of allowed c
figurations actually is least when the polymer is halfw
through the hole, presenting an entropic barrier. In this
gard translocation resembles other entropically contro
polymer systems, such as polymer trapping in random e
ronments@7–9#, DNA gel electrophoresis@10# or reptation
@11#, where the geometry of the obstacles constrains the
netics of the polymer.

A number of recent theoretical works have shed light
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the translocation process@4,12–18#, which is schematically
depicted in Fig. 1. A single variables representing the mono
mer number at the pore@12,15,19# indicates how far the
polymer has progressed, and is a natural variable for desc
ing this problem. Due to its resemblance to the ‘‘reacti
coordinate’’ for chemical processes, we calls the transloca-
tion coordinate. Ifs changes very slowly, such that the pol
mer segments on both sides of the membrane have tim
equilibrate, the mean force acting on the monomer in
hole can be determined from a simple calculation of fr
energy, and the translocation problem is then reduced to
escape of a ‘‘particle’’~the translocation coordinate! over a
potential barrier. In the following, we shall refer to this lim
asBrownian translocation, but shall demonstrate that the re
quired equilibration is not tenable for long enough polyme

In many experimental situations the polymers are not v
long and the observed behavior strongly depends on

FIG. 1. Schematic depiction of polymer translocation from t
left side of a membrane to its right side.~Throughout the paper we
shall follow this convention for the direction of transport.! The
numbers of the monomer at the hole is denoted the ‘‘translocat
coordinate.’’
©2004 The American Physical Society06-1
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properties of the polymer and the pore. Thus introduction
some specific features into the channel properties@15,20#, or
into interparticle potential@21,22#, may provide qualitative
explanations of the observed behavior. While the theoret
understanding of the experiments is growing, we are s
quite far from quantitative understanding of many observ
features@23#. In this work, we restrict out attention to qual
tative features of very long polymers that are independen
the details of the pore or intermonomer potentials. Con
quently, we restrict ourselves to simple models. Furtherm
since we are interested in contrasting the behavior of ph
tom polymers, in which the monomers do not interact w
each other, with self-avoiding ones, in which monomers
pel each other at short distances, we perform simulation
two-dimensional~2D! space, where such differences a
more pronounced.

The reduction of the motion of a large molecule to
single-particle problem ignores the fact that the positions
the monomers have strong correlations@11#, leading to non-
trivial dynamical effects@11,24#. In particular, in a dilute
solution of polymers in a good solvent, on time scales sho
than the overall relaxation time of the polymer, the motion
monomers is characterized byanomalousdynamics@25,26#.
Not surprisingly, such effects are also present in translo
tion. In a previous work we demonstrated@27# that the scal-
ing of the translocation times with the number of monom
has a power-law dependence which cannot be derived f
Brownian motion of a particle over a barrier, but rather fo
lows from general scaling considerations. In this work,
focus on consequences of anomalous dynamics in the p
ence of a force.

The rest of this paper is organized as follows. In Sec
we review the limit of very slow translocation, in which ca
the problem can be reduced to the Brownian motion o
single coordinate. We demonstrate that the requiremen
equilibration breaks down for long polymers, especially
the presence of a force pulling the polymer to one side.
also demonstrate the importance of how such a force is
plied to the polymer, contrasting the cases of a polym
pulled by the end, with one forced into a favorable enviro
ment. Lower bounds on the translocation times are obtai
in Sec. III by comparison with the unimpeded motion of
polymer. The long time scale for equilibration of a force
polymer is due to its change of shape, e.g., into a stretc
sequence of blobs when pulled at one end. Exactly how
change of shape is achieved through transmission of
force from one end to another is explicitly shown in Appe
dix A which solves this problem for a 1D phantom polyme
Our other model system, the self-avoiding two-dimensio
polymer, is discussed in Appendix B. The bounds from u
impeded motion serve a convenient reference point for
cussion of anomalous processes that are described in det
Sec. IV. In particular, we find that the actual translocati
times have the same scaling behavior as the lower boun

II. BROWNIAN TRANSLOCATION AND ITS
LIMITATIONS

If the translocation process is sufficiently slow, at ea
stage the statistics of the segments will be governed by
02180
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equilibrium Boltzmann weight. If so, the dynamics is co
strained to reproduce the corresponding statistics. A sim
method to achieve this is to focus on the translocation co
dinates, and to write down a stochastic Langevin equati
for its evolution. This procedure, which we shall refer to
Brownian translocation, is the chief tool employed in mos
analytical studies@12,15,19#, and shall be reviewed in this
section.

A. Unforced motion

In the absence of an external potential, the entropic c
tributions to the free energy of the two polymeric segme
result in a free energyF(s)5gkBTln@(N2s)s# @12,15,19#.
Note that there is a decrease in the number of possible s
as the polymer threads the hole, which can be regarded a
entropic barrier. For phantom polymers~random walks! g is
equal to 1/2, while for self-avoiding polymers it depends
the dimensionality of space. From this free energy, we
construct a Langevin equationṡ52m]F/]s1h(t), where
m is a mobility coefficient indicating how easily the polyme
is pulled through the hole. To obtain the correct Boltzma
statistics, the noiseh(t) has to be uncorrelated at differen
times, with a variance equal tomkBT.

As demonstrated in Ref.@27#, the corresponding Fokker
Planck equation for the probabilityp(s,t) can be madein-
dependentof N by a simple change of variabless→sN and
t→t/N2. Consequently, the average translocation timet
~and its fluctuations! must scale asN2 for any g. In fact, a
very similar distribution for the transit time is obtained b
ignoring the potential barrier completely~settingg50). In
this limit the translocation coordinate simply undergoes d
fusion, i.e., at time scales much shorter than typical tran
cation times we expect̂@s(t8)2s(t)#2&}ut2t8u.

B. Pulling on the ends

The advent of optical tweezers has made it possible
manipulate single macromolecules. A common procedur
to attach latex balls to the end~s! of a polymer ~such as
DNA!, and then to manipulate the balls by optical tweez
@28,29#. While this is not the method commonly used in th
translocation experiments, it motivates an interesting ext
sion of the previous calculation. Let us imagine that throu
an optical tweezer setup forcesF1 andF2 are applied to the
two ends of the polymer~perpendicular to the wall!, as in
Fig. 1.

A polymer configuration in which the ends are separa
by a distancerW gets an additional Boltzmann weight o
exp(FW•rW/kBT). For a Gaussian polymer of lengthN, integra-
tion over all locations rW leads to a contribution of
exp@N(Fa/kBT)2# to the partition function (a is a microscopic
length scale!. Restricting the integration overrW only to half
space~as appropriate for the translocation problem! does not
change the qualitative form, i.e., in the presence of the fo
the free energy acquires a term proportional
kBTN(Fa/kBT)2.

The above argument can be generalized to a self-avoid
polymer by noting that due to dimensional consideration
6-2
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ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E69, 021806 ~2004!
force F should always appear in the combinationFR/kBT,
whereR is a characteristic size of the polymer, such as
radius of gyrationRg . Quite generallyR;aNn, with n
51/2 for a phantom~non-self-interacting! polymer, andn
53/4 and 0.59 for self-avoiding polymers in space dime
sionsd52 and 3, respectively@30#. The contribution of the
force to the free energy can thus be written
kBTF(FaNn/kBT). When the force is sufficiently strong t
deform the polymer into a sequence of blobs~we shall argue
later that this is the relevant regime for translocation!, the
free energy is expected to be linear inN, necessitating
F(x);x1/n. Such considerations thus imply a free ener
contribution of NkBT(Fa/kBT)1/n. In the specific case o
translocation, adding up the contributions from the two s
ments leads to

F~s!;kBTFsS F1a

kBT D1/n

1~N2s!S F2a

kBT D 1/nG . ~1!

The corresponding Langevin equation for the translo
tion coordinate is now

ṡ5l~F1
1/n2F2

1/n!1h~ t !, ~2!

where we have absorbed various coefficients into the par
eterl. Note that the average velocity has a nonlinear dep
dence on the forces; in the case ofF250 growing asF1

1/n .
Consequently, the translocation time in such a setup sh
decrease with the applied force ast}N/F1

1/n . Note that this
expression breaks down forsmall forces, where the typical
translocation time is controlled by the diffusive fluctuation
The distinction between weak and strong force regimes h
specific meaning in the context of polymers, and quantifi
through the scaling combinationf̃ [FaNn/kBT. For weak
forces this combination is small, and the equilibrium po
mer shape is not changed. For strong forcesf̃ @1, and the
polymer becomes stretched. The same division applie
forces that are strong enough to overcome the diffusive c
acter of the translocation coordinate.

C. Chemical potential difference

A more common situation for translocation is when t
environments separated by the membrane are not equiva
so that the polymer encounters a chemical potential dif
ence between the two sides. In this case, the leading co
bution to the free energy isF(s)5m1s1(N2s)m2 , and
the Langevin equation takes the form

ṡ5l8Dm1h~ t !, ~3!

with Dm[(m22m1).0. In this case the average transl
cation velocity is predicted to be proportional toDm, leading
to typical exit times that scale asN/Dm for largeDm. It is
possible to envision situations in which the polymer is forc
~or hindered! by a combination of both a chemical potenti
difference and forces applied to the two ends. For the co
sponding Langevin equation, we merely need to add
force contributions in Eqs.~2! and ~3!.
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In the experiments of Melleret al. @5#, translocation is
driven by an electric potential difference between the t
sides of an artificial membrane suspended in a liquid. I
commonly assumed that since the conductivity of the liq
is significantly higher than the conductivity of the mem
brane, the liquid on each side of the membrane is an equ
tential. The voltage drop then occurs only across the me
brane, and is experienced only by the~charged! monomers
moving through the pore@23#. If so, the voltage difference is
equivalent to the chemical potential difference discus
above. However, the previous results with force acting o
on the end monomers serve as a warning that the results
quite sensitive to where the force is applied to the polyme
would thus be reassuring to carry out a more precise ca
lation of the electric field in the vicinity of the pore, and ho
it acts upon the monomers.

D. Limitations

The analytical procedure outlined in this section rests
the assumption that the two polymeric segments have c
to equilibrium, so that the corresponding free energy can
used to construct a Langevin equation. The minimal requ
ment is that the typical translocation timet should exceed
the equilibration timetequil of a polymer. For a chain of finite
size, it is always possible to achieve this by designing
pore to have a large friction coefficient. In Ref.@15#, it is
argued that this is the case applicable to the experiment
Ref. @5#. However, the equilibration time of a polymer de
pends strongly on its length, scaling astequil(N)}Nzn. As
discussed in the following section, the exponentzn is typi-
cally larger than 2 for Brownian dynamics of self-avoidin
polymers~and equal to 2 for a phantom polymer!.

Since typical transit times for unforced translocation sc
asN2, it is possible to imagine that the formalism may app
to phantom polymers. Indeed there is some evidence of
from numerical simulations@31#, although with an inexplica-
bly large friction coefficient. The situation becomes worse
the presence of a force~either imposed by pulling or a
chemical potential difference!, in which case typical translo
cation times are predicted to be proportional toN. In the
latter case, the range of applicability of Brownian transloc
tion is even further limited.

III. UNIMPEDED MOTION OF A POLYMER

Since the collective dynamics of the passage of polym
through the pore is hard to treat analytically, as a first step
shall derivelower boundson the characteristic time scale
The key observation is that the restriction that the monom
should sequentially pass through a hole in a membrane
only impede the motion of the polymer. Hence the time sc
for the polymer to travel the same distance in the absenc
the wall should be a generous lower bound to its translo
tion time. In this section we shall thus explore the time sc
for unimpeded motion of the polymer in the circumstances
interest.
6-3
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A. Unforced diffusion

In the unforced limit, the translocating polymer simp
goes from one side of the membrane to the other by ‘‘dif
sion.’’ In the process, the center of mass of the polym
moves a distance of the order of a typical size, say the g
tion radius ofRg . How long does it take for a polymer t
move a similar distance without the constraints imposed
the pore and the wall? In the absence of hydrodynamic
teractions, the diffusion constantD of a polymer is related to
the diffusion constantD0 of a single monomer byD
5D0 /N. Consequently, the time that a polymer needs
diffuse its own radius of gyration scales asN112n @11#. ~This
is also the relaxation time of the slowest internal mode o
polymer@11#, and is called the Rouse equilibration time.! For
self-avoiding polymersn.1/2, and the equilibration time is
clearly longer than that obtained for translocation thoug
hole in the wall assuming Brownian translocation. T
Rouse time scale ofN112n should thus be a lower bound t
the correct translocation time.

B. Pulling on the end

Now consider a polymer that is being pulled by one e
The regime of interest to us is when the force is stro
enough to deform the shape of the polymer. The equilibri
shape of the polymer is then a stretched sequence of ‘‘blo
@11#. The number of monomers per blobNB is such that
force acting on it is marginally strong, and obtained fro
FaNB

n ;kBT. The typical size of each blob is thusRB

;aNB
n ;kBT/F, while the number of blobs isN/NB

;N(Fa/kBT)1/n. The overall length of the stretched chain
now R(F);RB(N/NB);aN(Fa/kBT)1/n21. The mobility
of the center of the mass of a polymer of lengthN is propor-
tional to 1/N, and since there is only a force applied to o
monomer, its net velocity scales asF/N. The characteristic
relaxation time is the same as the time scale of the poly
moving a distance of order of its size, and hence behave

tequil~F !;
R~F !

v~F !
}N2F2211/n. ~4!

~The same conclusion is obtained if we start with a globu
polymer and then apply the force to one end, and wait u
the other end feels the force.!

Note that upon approaching the boundary between w
and strong forces atF}N2n, we regain the equilibration
time N112n for unforced polymers. However, the result
Eq. ~4! is only valid for N2n<Fa/kBT<1, since for stron-
ger forces, as we shall see in the specific models describe
the following section, the velocity of the monomer~and
hence of the entire chain! saturates.

Unimpeded motion of the pulled polymer thus places
lower bound ofN2 on the translocation time, far exceedin
the time scale (}N) calculated in the preceding section.
may not be readily apparent how the force applied to one
of the polymer is transmitted to the other end, and why
qualitative picture of blobs presented above is valid. Ther
actually one limit in which the problem of pulling a polyme
by the end can be solved analytically, and that is for a
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phantom polymer. In Appendix A this model and the corr
sponding analysis are presented in some detail.

C. Mimicking a chemical potential difference

It is difficult to come up with an unhindered situation th
best resembles the case of a chemical potential differe
across a membrane. Absent the restrictions imposed by
membrane, there is now a force that is applied to a sin
monomer, at the spatial position where the membrane wo
reside. Unlike the previous case, the monomer to which
force is applied now changes constantly. There is thus
incentive for a drastic change in the shape of polymer, a
we assume that the scaling of the size remains the same
R;aNn, independent ofDm. At each moment there is a
force of Dm/a applied to the entire polymer, as a cons
quence of which its center of mass should move with a
locity v}Dm/N. We thus conclude that the time for suc
unhindered motion scales as

t~Dm!;
R

v
}

N11n

Dm
. ~5!

Note that to recover the equilibration time of the unforc
polymer we have to setDm}N2n in the above equation
While this is the same scaling form as that of a force appl
to the end, it is different from the weak/strong criterion th
would have been deduced on the basis of energetics (DmN
;kBT). This is a reflection of the manner in which we in
troduced the unimpeded version~as a force, rather than
chemical potential difference!. Nonetheless, we still expec
the velocity and hence the time scale in Eq.~5! to saturate for
Dm;kBT, as explicitly demonstrated for the models cons
ered in the following section.

IV. ANOMALOUS TRANSLOCATION

Having established some~presumably generous! lower
bounds, we now would like to focus on the true asympto
dynamics of translocation. Given the limitations of analytic
studies, the chief tool employed in this section is numeri
simulations. Interestingly, we find that the lower bounds o
tained in the preceding section are actually quite restricti

A. Subdiffusive behavior of unforced motion

In a previous work@27#, we made a detailed study of th
N dependence of the mean translocation time. One of
central conclusions was that in the case of Brownian dyna
ics of a self-avoiding polymer, the translocation time sca
as

t;N112n. ~6!

This is of the same order as the equilibration time of a po
mer of lengthN, and also demonstrates that the actual e
time scales in the same manner as the bound establishe
the preceding section.

The aboveN dependence oft is inconsistent with simple
diffusion of the translocation coordinates(t), reflecting the
constraints imposed by the collective motion of the ent
6-4
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ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E69, 021806 ~2004!
polymer. A related situation occurs for the fluctuations o
labeled monomer in space, which are also anomalous
subdiffusive@25# on time scales shorter than the equilibrati
time. Following this analogy, we suggested@27# that the
short time fluctuations ofs(t) follow the anomalous diffu-
sion relation

^Ds2~ t !&;t2z. ~7!

For Eqs.~6! and ~7! to be consistent, we must obtainDs of
orderN, whent of ordert, leading to the exponent relatio
z51/(112n). Note that for a phantom polymern5z
51/2, i.e., the anomaly disappears in this limit, and the p
cess becomes diffusive.~This differs from the correspondin
motion of a labeled monomer@25,26#, which remains
anomalous even for a phantom polymer.! This is consistent
with a detailed study of a three-dimensional phantom po
mer by Chernet al. @31# which concluded that the result
may be interpreted in terms of diffusive motion of the tran
location coordinate over a barrier. Such correspondenc
likely a fortuitous coincidence for phantom polymers, a
even in this case, the value of the effective diffusion const
could not be obtained from the geometrical features of
model @31#.

To establish the anomalous nature of~unforced! translo-
cation dynamics, we carried out Monte Carlo~MC! simula-
tions on a model oftwo-dimensional self-avoidingpolymers
@32#, described in Appendix B. Simulations in two~rather
than three! dimensions have the advantage of relative ea
and stronger differences from phantom polymers. We
lowed the dynamics ofs(t), focusing on the quantityDs2

[@s(t81t)2s(t8)#2. This correlation function is depicted i
Fig. 2, and was obtained by averaging overt8 of over 1000
independent simulations forN58, 16, 32, 64, and 128. Two
cautionary points must be made in considering this data:
first is that we have noa priori assurance that this process
stationary; the results may depend on botht and t8, and

FIG. 2. Temporal fluctuations of the monomer numbers located
at the hole, averaged over the initial timet8 and over 1000 inde-
pendent simulations, for polymers of lengthsN58, 16, 32, 64, and
128.
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consequently influenced by the averaging overt8. ~For ex-
ample, choosing a short averaging range may increase
effect of the initial conditions. We performed averaging ov
shorter ranges oft8 and did not see significant differences
the correlation functions.! Second, for each value oft, we
can only include processes whose translocation time exc
t; consequently, the size of the ensemble decreases with
creasingt. ~However, this effect is insignificant fort several
times shorter than the mean translocation time.! In Fig. 2 all
availablet8 are included, i.e., for each polymer the statist
was collected up to the moment that the translocation w
completed.

Since the values ofs cannot exceedN, as the time differ-
encet becomes of the order oft, Ds2 saturates, as is appa
ent in the case ofN58 in Fig. 2. However, for times shorte
than t(N), the results for different lengths seem to form
single curve. This instills confidence in the quasistation
character of translocation on time scales shorter thant. On
the logarithmic scale the graph seems to have curvature
t,1000. This is probably a consequence of discretenes
the model, since corresponding differences ins are smaller
than 5. For larger times the slope of the curve approac
0.80, which clearly indicates the presence of anomalous
fusion, and is consistent with the expected value 2
12n), with n53/4 for 2D self-avoiding walks@30#. Thus,
despite its finite duration, the translocation process at s
scales resembles a stationary process~at leastDs2 is insen-
sitive to t8) which exhibits anomalous dynamics.

B. Pulling on the end

As discussed in Sec. II, the polymer pulled by a forceF1

is relatively undistorted as long asf̃ [F1aNn/kBT!1, and
the corresponding translocation times are not very differ
to those in the absence of force. Increasing polymer lengt
fixed F1 ultimately leads to a regime withf̃ @1, in which
the polymer is expected to be stretched into a sequenc
blobs. It is the latter regime which is of interest to us, a
which shall be explored by examining the one- and tw
dimensional polymer models introduced earlier.

1. One-dimensional phantom polymer

Simulations are carried out with the model 1D phanto
polymer presented in Appendix A, starting with a polym
that is equilibrated on one~say, left! side of the ‘‘membrane’’
~a point on a 1D lattice! with one end point held at the
membrane@32#. The ‘‘narrow opening’’ is implemented by
allowing only sequential passageof the monomers acros
the membrane, i.e., thenth monomer can move from the le
to the right only if (n21)th monomer is already on the righ
side. Conversely, thenth monomer may diffuse from the
right side to the left, only if the (n11)th monomer is on the
left side. The first monomer of the chain is restricted to
main on the right throughout the process. We study the
namics of translocation as a function of the forceF applied
to the first monomer. However, the results become indep
dent ofF when the reduced forcef [Fa/kBT exceeds unity,
since it becomes very unlikely for the first monomer to mo
backwards.
6-5
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Figure 3 depicts a sequence of ‘‘snapshots’’ of a 12
monomer polymer going across the membrane. Since
maximal separation between adjacent monomers is two
tice spacings, the slopes of the curves are limited by 2. N
that for x.0 the polymer is almost maximally stretche
while the x,0 configurations resemble the initial rando
walk state. There is also much similarity between the pro
of the polymer forx.0, and the steady-state configuratio
of a polymer moving in the absence of the membrane,
depicted in Fig. 14 of Appendix A.

The results of averaging the translocation time~over 1000
realizations! are indicated by the circles in Fig. 4. The poin
appear to fall on a straight line in this logarithmic plot, wi
the slope of 1.9360.01 from a least-squares fit. There is
slight upwards curvature, and the effective slope varies fr
1.84 for points withN<128 to 1.93 for all the points, indi
cating potential crossover effects persisting even forN
5512. From this data by itself it is difficult to determine th
ultimate slope. However, we can compare the results with
times required to cross an imaginary membrane~i.e., unim-
peded diffusion!. This lower bound which was described
the preceding section~and discussed in detail in Appendix A!
leads to the mean passage times depicted by the squar
Fig. 4. The extrapolated slope for this unimpeded motion
indeed 2.00. Since the unimpeded crossing times are ind
shorter, the asymptotic exponent in the presence of the m
brane has to be larger than or equal to 2.~Otherwise, for
sufficiently largeN the curves will intersect causing longe
times for passage if the membrane is absent.! We therefore
conclude that the translocation of a phantom polymer in
should asymptotically scale asN2, saturating the bound ob
tained previously.

2. Two-dimensional self-avoiding polymer

We next study the translocation of a self-avoiding po
mer in 2D as a function of the forceF applied to the first

FIG. 3. ‘‘Snapshots’’ of a 128-monomer phantom polymer pa
ing through a membrane in one dimension. Each line depicts
position x ~in lattice units! of the nth monomer at a fixed time
Different lines correspond to times when the 20th, 40th, . . . , 120th
~bottom-left to top-right! monomer crosses the membrane~the thick
line at x50).
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monomer. Figure 5 depicts the distribution of translocat
times for a 128-monomer polymer at three values off
5Fa/kBT. As f increases from 0.25 tò , the mean translo-
cation time drops by less than one order of magnitude,
the relative width of the distribution decreases somewh
Note that oncef @1, the first monomer always moves in th
forward direction, and the results become independent of.

Figure 6 summarizes the results obtained for polym
lengthsN ranging from 8 to 128, and for a variety of force
Each point corresponds to an average over 1000 realizati
The figure depicts the scaled inverse translocation time
function of the dimensionless forcef 5Fa/kBT. The vertical
scale has been multiplied byN1.87 to produce moderate col

-
e FIG. 4. Logarithmic plot of the mean translocation time as
function of length for a one-dimensional phantom polymer with
infinite force applied to one end. The circles represent pass
through an opening, while the squares represent motion in the
sence of a membrane. Each data point represents an average
1000 processes.

FIG. 5. The distribution of translocation times for a 2D polym
with N5128. Each histogram represents results from 250 indep
dent translocations for forcesFa/kBT50.25, 1, and̀ ~from right
to left! applied to one end.~The horizontal axis is logarithmic.!
6-6
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ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E69, 021806 ~2004!
lapse of data for differentN’s, although as explained furthe
on, we do not believe this to be the correct scaling facto
the asymptotic regime. As expected, the curves satu
when f significantly exceeds unity.

Note that all the points in Fig. 6 belong to the regim
where f̃ @1, i.e., when the shape of the polymer is expec
to be different from equilibrium, and stretched. This is co
firmed in Fig. 7, which depicts configurations of the polym
in the process of translocation under the action of aninfinite
force. The front end of the polymer is quite stretched, som
what resembling adirected random walk, suggesting tha
self-avoiding interactions play a secondary role in this lim
If the front part of the polymer controls the translocati
time, it should have the same scaling withN as the corre-
sponding time for a phantom polymer, i.e., we expect
}N2. Figure 8 depicts the dependence oft on N; the effec-
tive exponent in this range is 1.87560.005. Although
smaller than 2, it is close to the value of the effective exp
nent of a phantom polymer in this range of lengthsN. Given
the bound presented earlier, it is reasonable to exp

FIG. 6. Scaled inverse translocation time as a function of
reduced forceFa/kBT applied to the end monomer, forN58,
16, . . . ,128.

FIG. 7. Configurations of a polymer of lengthN5128, pulled
through a hole by an infinite force applied to its first monomer. T
circles, diamonds, and triangles represent the initial configurat
and at timest560 000 and 120 000 Monte Carlo time steps.
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asymptotic convergence to this value. However, as far as
can judge by analogy to phantom polymers, we needN to be
much larger than 1000 to see an exponent of 2.

C. Chemical potential difference

When the environments on the two sides of the membr
are different, the monomer at the pore experiences a fo
pushing it to the more favorable side. As explained pre
ously, this form of forcing leads to yet a different form o
asymptotic behavior which is once more explored using
two numerical models.

1. One-dimensional phantom polymer

Figure 9 depicts theN dependence of the translocatio
time t for a 1D phantom polymer under the influence of
infinite potential difference, i.e., when the monomer at t
pore can only move to one side. The data on the logarith
plot are fitted to a straight line with exponent 1.4560.01,
although there is a slight upward curvature even forN
5512. Note that in the limit of large chemical potential di
ference, the monomers that have already crossed to the
side no longer play any role in the translocation proce
which is thus constrained by the dynamics of the monom
remaining on the left side. In Sec. III we argued that t
translocation time of anunimpededphantom polymer should
scale asN3/2, since the leftmost monomer must travel a d
tance of orderN1/2 with a velocity of order 1/N. Thus 3/2
should be a lower bound for the exponent characterizing
scaling of the translocation time withN. By comparing this
limit with our numerical results, we conclude 3/2 to be t
true asymptotic form describing our simulations.

2. Two-dimensional self-avoiding polymer

Figure 10 presents the distribution of translocation tim
for a polymer withN564 at several values of the dimensio

e

e
n,

FIG. 8. Logarithmic plot of the dependence of the translocat
time t on polymer lengthN, when an infinite force is applied to th
end monomer. The line is a fit to a power-law dependence w
exponent 1.875.
6-7
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Y. KANTOR AND M. KARDAR PHYSICAL REVIEW E 69, 021806 ~2004!
less chemical potential differenceDm/kBT. These distribu-
tions are quite wide—although they become~relatively! nar-
rower with increasingDm, the width of the distribution is of
the same order as the average even in the limit of an infi
Dm. As expected, the average translocation times decr
and saturate whenDm/kBT exceeds unity. The results fo
different values ofDm/kBT andN can be approximately col
lapsed by scalingt with N1.45, as shown in Fig. 11~where
each point represents an average over 1000 indepen
runs!. The quality of the collapse is very poor, and we sh
argue thatN1.45 is not the expected asymptotic power.

Since~with the exception ofDm50) the points in Fig. 11
correspond to a strong force at the pore, we expect the

FIG. 9. Logarithmic plot of the mean translocation time as
function of polymer length for a one-dimensional phantom polym
subject to an infinite chemical potential difference. The solid line
a fit to a power law with exponent 1.45.

FIG. 10. Distribution of translocation times of a 64-monom
polymer subject to chemical potential differences ofDm/kBT50,
0.25, 0.75, and 2~right to left!. ~The horizontal axis is logarithmic.!
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figurations of the translocating polymer to be different fro
those of a polymer in equilibrium. To explore this differenc
in Fig. 12 we show a pair of configurations for an infini
chemical potential difference. We see that fast transloca
results in a higher density of monomers immediately to
right of the pore, which may in principal slow down th
process.~Recall that in the case of phantom polymers t
monomers that have passed through the hole have no fu
influence.! Nevertheless, the whole process should still
bounded by the corresponding time for passage of an un
peded polymer, as discussed in Sec. III. For consideration
this bound, the relevant time corresponded to motion of

r
s

FIG. 11. Scaled inverse mean translocation time as a functio
reduced chemical potential differenceDm/kBT, for N58, 16, 32,
64, and 128.

FIG. 12. Configurations of a polymer of lengthN564 crossing
a membrane from left to right under an infinite chemical poten
difference. Full and open symbols represent times oft510 000 and
25 000 Monte Carlo steps, respectively.
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ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E69, 021806 ~2004!
leftmost monomer over a distance of sizeR}Nn, leading to
a time scale growing asN to a power of 11n which in 2D is
1.75.

The optimal data collapse of the inverse translocat
times for N<128 leads to an exponent 1.45~with a rather
poor data collapse!. Therefore, we extended our simulatio
for the case of the infiniteDm to larger values ofN. Figure
13 represents the dependence of mean translocation tim
N, for polymer lengths up to 512. Data points withN<128
correspond to averages over 1000 independent simulat
while N5256 and 512 include 300 and 130 runs, resp
tively. The effective slope of the fit for data points belo
N5128 is 1.4560.01, while all the data points produce a
effective slope of 1.5360.01. Also by directly measuring th
effective slopes between successive pairs of points we d
nitely see an increase, with the last pair of points giving
slope of 1.6060.03. However, the increase is very slow, a
the uncertainties are too large to enable a reliable extrap
tion to largeN. By comparing the results to data obtained
the simulations of phantom polymers we believe that ev
tually the exponent will reach 1.75; however, this will pro
ably happen only forN significantly larger that 1000.

V. DISCUSSION

Translocation of a polymer through a pore is intrinsica
a many body problem involving collective and cooperat
motion of monomers crossing a membrane. If the proces
sufficiently slow, it is possible for the segments on the t
sides to come to equilibrium, in which case the dynamics
the translocation coordinate~the number of monomers o
one side! is similar to Brownian motion of a single particle
However, the assumption of equilibrium must necessa

FIG. 13. Logarithmic plot of the dependence of the translocat
time t on polymer lengthN, for an infinite chemical potential dif-
ference. The solid line is a fit to a power-law dependence w
exponent 1.53.
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break down for long enough polymers; even more drastic
when the polymer is pulled to one side by a force. We argu
previously@27# that the collective motion of the whole poly
mer slows down the translocation to the extent that the c
responding dynamics is anomalous and subdiffusive. Thi
explicitly verified in this paper by quantifying the tempor
correlations of the fluctuating translocation coordinate.
note that there is a general theoretical framework@33# for
anomalous dynamics of a single variable, which may
profitably applied to this problem.

One of the objectives of this paper was to find how d
namical anomalies affect the motion of the polymer und
the action of a force. With this in mind, we also emphasiz
that the method by which the polymer is forced is qu
important. In particular, pulling the polymer by one end lea
to stretched configurations, and slower overall dynam
compared to applying a chemical potential difference~which
can modify the densities on the two sides!. While pulling the
polymer by optical tweezers is not the currently favor
method for artificial translocation of biopolymers, for pote
tial applications such as decoding the sequence, it sho
offer a better controlled procedure~whether by itself or in
conjunction with a voltage difference!.

To understand the time scales involved in forced trans
cation, we initially provided what at first glance appear to
quite loose lower bounds by analogy tounimpeded motionof
a polymer, i.e., neglecting the constraints imposed by p
sage of the polymer through a hole in a wall. We then p
formed numerical simulations on two model systems: a
phantom polymer, and a self-avoiding polymer in 2D. Dire
interpretation of the numerical results was made difficult
very large crossover effects which persist in the length sc
of 100–1000 monomers accessible to numerical stu
Nonetheless, by appealing to the lower bounds found ear
we concluded that~rather surprisingly! the actual transloca
tion times scale in the same way as in the limit of unimped
motion. Thus the constraints from the collective motion

FIG. 14. Five profiles of a 1D phantom polymer of lengthN
5128, with an infinite force applied to one end in steady-st
motion. The curves are displaced along the vertical axis such
the position of the first monomer is atx50.n

h
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Y. KANTOR AND M. KARDAR PHYSICAL REVIEW E 69, 021806 ~2004!
the whole polymer turn out to be at least as important
those imposed by the requirement of passage through a

The experiments of Ref.@5# suggest that in the range o
10–100 base pairs, the pulling velocity of single-strand
DNA through a nanopore is independent ofN, but with a
nonlinear dependence on the applied force. In Ref.@27#, we
briefly speculated whether such behavior may be consis
with anomalies associated with polymeric constraints.
demonstrated in this paper, such constraints result in t
scales~and hence pulling velocities! which must depend on
N for large enoughN. The only case where we observe
nonlinear force-velocity relation which is independent ofN
is when short~hence equilibrated! polymers are pulled by a
force applied to one end.

We hope that these results encourage further experime
and analytical studies of forced translocation. In particula
would be interesting to better characterize the manne
which external forces act on the polymer, even in the cas
a voltage difference across the membrane. Hydrodyna
effects, not considered in this paper, are also likely to play
important role. Some of these effects can be included
more realistic numerical simulations, although in that ca
one should keep in mind the rather long crossover times
appear to be intrinsic to this process.
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APPENDIX A: THE ONE-DIMENSIONAL PHANTOM
POLYMER MODEL

Self-avoiding interactions are integral to understand
the statics and dynamics of real polymers. Nevertheless,
useful to study one-dimensionalphantompolymers, with no
interactions between monomers which are not adjacent a

FIG. 15. Scaled coordinatex of the first monomer as a functio
of scaled timet, for N58, 16, . . . , 512~right to left!, in the ab-
sence of a membrane.
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the chain. Independently of the details of the interactions
adjacent monomers, long phantom polymers areharmonic
@11#, in the sense that the probability distribution of the d
tanceur i2r j u between monomersi andj approaches a Gauss
ian for large u i 2 j u. In practice, such behavior already a
pears foru i 2 j u'10, and on such a ‘‘coarse-grained’’ leve
one can view the polymer as consisting of monomers c
nected by springs whose energy is proportional tor i
2r j )

2. In this limit, certain aspects of phantom polymer d
namics can be analyzed analytically, and we can compare
expected asymptotic behavior with the numerically obser
dynamics. Such treatment provides both a better view
crossover effects, and produces some insights into the
namics of more realistic~self-avoiding! models.

We employ a phantom polymer model in which the mon
mers are restricted to sites of a 1D lattice with spacinga. The
polymer connectivity is implemented by requiring the d
tance between adjacent monomers not to exceed two la
constants. An elementary MC step consists of random
picking a monomer and attempting to move it in a random
selected direction. If an external forceF is applied to the first
monomer of the chain, then the probability to make a step
the direction opposite to the force is proportional
exp(2aF/kBT). A MC time unit corresponds toN attempts to
move monomers@32#.

We first performed simulations of polymer motion whe
F→`, in the absence of a membrane. Figure 14 dep
several examples of spatial configurations in steady st
i.e., when the initial spatial configuration has been forgott
The resulting profiles can be explained analytically by not
that in the Gaussian limit the equation of motion of a 1
phantom polymer is given by

]2x

]n2
5

]x

]t
, ~A1!

where we have used dimensionless units@distance in lattice
constants, and time in MC units, which leads to a~monomer!

FIG. 16. Scaled coordinatex of the first monomer of a translo
cating phantom 1D polymer, as a function of the scaled timet, for
N58, 16, . . . , 512~right to left!.
6-10
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ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E69, 021806 ~2004!
diffusion constant of order 1#, and omitted prefactors of or
der unity. The model used in the MC simulations has a fin
stretchability, while a Gaussian chain can be stretched ind
nitely. However, once the scaled forcef [Fa/kBT becomes
significantly larger than unity, the dynamics becomes ess
tially independent ofF, as a backwards step of the end po
has negligible probability. Thus, instead of usingF→`, we
can get setf 51, which leads to the boundary conditio
]x/]n521 at the beginning of the chain. For such a boun
ary condition we can easily find a stationary solution of E
~A1! as

x~n!5vt1
v
2

~n2N!2, ~A2!

wherev51/N. Simulations of our model polymer in the ab
sence of a membrane indeed confirm that the stationary
velocity is proportional to 1/N. Moreover, the actual shape o
the polymer in steady state, as depicted in Fig. 14, is sim
on average to Eq.~A2!.

The solution in Eq.~A1! can also be used to understa
the crossover to stationary motion, starting from a relax
initial state. It is easy to see that the initial velocity of a po
to which the force is applied is of order unity. As tim
progresses, this velocity decays ast21/2, until after timet
'N2 it reaches its final~stationary! value of order 1/N. The
monomer at the opposite end does not feel the external f
in the beginning, and starts moving with velocity of ord
1/N after timet. We also performed simulations of unim
peded polymer motion mimicking the translocation setup,
considering an imaginary membrane located at positiox
50 which has no effect on the motion of monomers. T
initial configuration was chosen by equilibrating the polym
on one side (x,0), with the first monomer fixed tox50.
Then an infinite force was applied to the first monomer, a
its positionx was tracked as a function of time, until all th
monomers crossed tox.0. For everyN, the results were
averaged over 1000 independent runs. In these simulat
the end point only needs to move a distance of orderRg
;N1/2 to cross tox.0. Moving at a steady velocity of 1/N,
this would take a time of orderN3/2, which is significantly
shorter thant. Thus the time;N2 required for the last
monomer to start feeling the force sets the time scale fo
polymer with a large force applied to its first monomer,
move a distance of order of its radius of gyration. The m
suredN dependence of the translocation time is depicted
squares in Fig. 4. There is a slight curvature in the logar
mic plot and the slope approaches 2.0060.01, confirming
t;N2.
nd

e
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The above arguments suggest that (x/N)2 should be a
linear function oft/N2. Thus appropriately scaled plots o
the motion of the first coordinates should collapse for diff
ent values ofN. The actual picture appearing in Fig. 15
more complicated: while we see an approach to a sin
curve for the largestN, there are very strong finite size e
fects for moderate values ofN. The results for crossing the
imaginary wall are surprisingly similar to those for transl
cation of the phantom polymer through a hole~as described
in Sec. IV!, as depicted in Fig. 16.~Both plots are obtained
by averaging 1000 translocation processes.! The linear be-
havior of these curves close to the origin confirms our
pectation that at short times the velocity is proportional
t21/2. However, for scaled variables around 0.5 the line ha
slight curvature, which distorts the apparent scaling relatio
and creates the illusion of slightly different exponents.

APPENDIX B: THE TWO-DIMENSIONAL SELF-AVOIDING
POLYMER MODEL

We used a 2D lattice fluctuating bond polymer model@26#
for MC simulations of a self-avoiding polymer@32#. The
monomers are placed on the sites of a square lattice, with
bonds between adjacent monomers restricted not to ex
A10 lattice constants. The excluded volume between mo
mers is implemented by requiring that no two monomers
approach closer than two lattice constants. The membr
with a hole is constructed from a row of immobile monome
arranged in a straight line, with a three lattice constant g
representing the hole. Such a hole is small enough to al
only a single monomer to pass through, thus enablin
unique identification of the monomers which separates the
polymer into two segments on different sides of the me
brane. An elementary MC move consists of randomly sele
ing a monomer and attempting to move it onto an adjac
lattice site ~in a randomly selected direction!. If the new
position does not violate the excluded-volume or maxim
bond-length restrictions, the move is performed.N elemen-
tary moves form one MC time unit. The first monomer is n
allowed to withdraw to the opposite side of the membra
Since we are investigating a nonequilibrium process, the
tial conditions may play an important role. We chose an i
tial state in which the first monomer was fixed inside t
hole, and the remaining polymer was equilibrated for mo
than the Rouse relaxation time@11#. After such equilibration,
the first monomer was released, and that moment was de
nated ast50.
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@7# A. Baumgärtner and M. Muthukumar, J. Chem. Phys.87, 3082
~1987!.

@8# M. Muthukumar and A. Baumga¨rtner, Macromolecules22,
1937 ~1989!; 22, 1941~1989!.

@9# G.W. Slater and S.Y. Wu, Phys. Rev. Lett.75, 164 ~1995!.
@10# E. Arvanitidou and D. Hoagland, Phys. Rev. Lett.67, 1464

~1991!; D.A. Hoagland and M. Muthukumar, Macromolecule
25, 6696~1992!; P. Mayer, G.W. Slater, and G. Drouin, App
Theor Electrophor3, 147 ~1993!; N.A. Rotstein and T.P.
Lodge, Macromolecules25, 1316~1992!; I. Szabo, G. Bathori,
F. Tombola, M. Brini, A. Coppola, and M. Zoratti, J. Bio
Chem.272, 25275~1997!.

@11# P.-G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, 1979!.

@12# M. Muthukumar, J. Chem. Phys.111, 10 371~1999!.
@13# M. Muthukumar, Phys. Rev. Lett.86, 3188~2001!.
@14# P.G. de Gennes, Physica A274, 1 ~1999!.
@15# D.K. Lubensky and D.R. Nelson, Biophys. J.77, 1824~1999!.
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