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Active systems are driven out of equilibrium by exchanging energy and momentum with their
environment. This endows them with anomalous mechanical properties that are reviewed in this
Colloquium. The case of dry scalar active matter is considered, which encompasses systems whose
large-scale behaviors are entirely captured by their density—a scalar field. Arguably the simplest of
active-matter systems, they have attracted considerable attention due to their unusual properties when
put in contact with boundaries, inclusions, tracers, or disordered potentials. Indeed, studies of the
mechanical pressure of active fluids and of the dynamics of passive tracers have shown that active
systems impact their environment in nontrivial ways, for example, by propelling and rotating
anisotropic inclusions. Conversely, the long-range density and current modulations induced by
localized obstacles show how the environment can have a far-reaching impact on active fluids. This is
best exemplified by the propensity of bulk and boundary disorder to destroy bulk phase separation in
active matter, thereby showing active systems to be much more sensitive to their surroundings than
passive ones. This Colloquium aims to provide a unifying perspective on the rich interplay between
active systems and their environments.
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I. INTRODUCTION

Active matter comprises entities that dissipate energy to
exert propelling forces on their environment (Ramaswamy,
2010; Marchetti et al., 2013; Bechinger et al., 2016; Fodor
and Marchetti, 2018; Chaté, 2020; Tailleur et al., 2022). From
molecular motors to bacteria and large groups of animals,
active systems are ubiquitous in biology. Furthermore, over
the past two decades, physicists and chemists have devised
active particles in the lab, paving the way toward engineering
synthetic active materials using Janus colloids (Paxton et al.,
2004; Howse et al., 2007; Palacci et al., 2010, 2013;
Nishiguchi and Sano, 2015; Yan et al., 2016), vibrated grains
(Narayan, Ramaswamy, and Menon, 2007; Deseigne,
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Dauchot, and Chaté, 2010), Quincke rollers (Bricard et al.,
2013; Liu et al., 2021), or self-propelled droplets
(Herminghaus et al., 2014; Izzet et al., 2020). The non-
equilibrium drive at the microscopic scale endows active
materials with a plethora of collective behaviors that are
unmatched in equilibrium physics. The rich contrast with
equilibrium has germinated considerable experimental and
theoretical research on the subject, which has turned active
matter into a central field of condensed matter physics.
One of the most striking differences between active and

passive systems lies in their manifestations of force and work,
which runs counter to intuition from equilibrium thermody-
namics. While in some aspects bulk fluids of active particles
resemble equilibrium matter, the forces exerted on their
confining vessels (Takatori, Yan, and Brady, 2014; Yang,
Manning, and Marchetti, 2014; Solon, Fily et al., 2015; Junot
et al., 2017; Zakine et al., 2020) display a host of unusual
phenomena. Examples range from ratchet currents (Di
Leonardo et al., 2010; Sokolov et al., 2010; Reichhardt
and Reichhardt, 2017) to anisotropic pressure (Solon, Fily
et al., 2015) and long-range density modulations induced by
inclusions (Galajda et al., 2007; Tailleur and Cates, 2009;
Angelani, Costanzo, and Di Leonardo, 2011; Baek et al.,
2018; Rodenburg et al., 2018). More recently it became clear
that the set of results pertaining to boundaries, inclusions, and
tracers, and to the forces exerted on them, have a much
broader impact in the context of disordered active materials
(Morin et al., 2017; Toner, Guttenberg, and Tu, 2018a;
Chardac et al., 2021; Duan et al., 2021). In particular, disorder
has been shown to play a fundamentally different role for
active systems than for equilibrium ones (Ben Dor et al., 2019;
Ro et al., 2021; Ben Dor, Ro et al., 2022).
In this Colloquium, we review recent results on scalar

active matter in the presence of boundaries, inclusions,
tracers, and disorder, for which we try to offer a coherent
physical picture. Scalar systems correspond to “dry” active
matter whose only hydrodynamic mode is the conserved
density field. It offers the simplest-yet-not-too-simple frame-
work to study the interplay between activity and mechanical
forces. The insights gained from studying these systems can
then be used in other situations, such as “wet” active matter,
where the presence of a momentum-conserving solvent plays
an important role. Similarly, the interplay between activity
and mechanics in polar or nematic active fluids forms a
current frontier of the field that is beyond the scope of this
Colloquium.
We first introduce scalar active matter in Sec. II, starting at

the single-particle level and progressing to collective behav-
iors. In Sec. III, we discuss the anomalous properties of the
forces that active fluids exert on confining boundaries. In
Sec. IV, we turn to obstacles and tracers immersed in active
baths. The results presented in these sections finally allow us
to discuss the effect of bulk and boundary disorder on active
fluids in Secs. V and VI, respectively.

II. SCALAR ACTIVE MATTER

To introduce scalar active matter at the microscopic scale,
we first review the standard models of active particles in
Sec. II.A. We then discuss in Sec. II.B the different

interactions between particles that have been considered,
and the conditions under which the resulting large-scale
physics reduces to a dynamics that can be written solely in
terms of a density field. Finally, we describe the collective
behaviors encountered in scalar active systems in Sec. II.C,
focusing on motility-induced phase separation (MIPS), and
we review the corresponding hydrodynamic description in
Appendix A.1.

A. Noninteracting active particles

A large diversity of active particles, each capable of
dissipating energy to self-propel, exists across scales in
nature, from molecular motors at the nanoscale to cells and
macroscopic animals. In addition, many types of artificial self-
propelled particles are now engineered, with examples includ-
ing chemically powered Janus colloids (Howse et al., 2007),
colloidal rollers (Bricard et al., 2013), vibrated grains
(Deseigne, Dauchot, and Chaté, 2010), self-propelled
droplets (Thutupalli, Seemann, and Herminghaus, 2011),
and “hexbug” toy robots (Li and Zhang, 2013). Although
they vary greatly in their details, these active particles share the
feature of being persistent random walkers. Compared to a
passive randomwalker, this introduces a typical scale separating
ballistic motion at a small scale from a diffusive behavior on
large scales. This scale is quantified by the persistence time τ and
the average distance traveled during this time, which is called the
persistence length lp. Three types of active particles have been
most commonly used in theoretical and numerical studies of
active matter: active Brownian particles (ABPs) (Fily and
Marchetti, 2012), run-and-tumble particles (RTPs) (Schnitzer,
1993), and active Ornstein-Uhlenbeck particles (AOUPs)
(Hänggi and Jung, 1994; Sepúlveda et al., 2013; Szamel, 2014).
ABPs and RTPs propel at a constant speed vp ¼ μfp, where

μ is the particle mobility and fp is the constant magnitude of
the self-propelling force. The orientations of ABPs change
continuously due to rotational diffusion, characterized by a
rotational diffusivity Dr. By contrast, RTPs randomize their
directions of motion instantaneously during “tumbles” that
occur at a constant rate α. ABPs are a good model for self-
propelled colloids (Howse et al., 2007; Ginot et al., 2018),
while RTPs have been used to model the dynamics of
swimming bacteria like E. coli (Berg, 2004). The spatial
dynamics of RTPs and ABPs, in their simplest form, read

ṙðtÞ ¼ μfpðtÞ; ð1Þ

where the self-propulsion force fpðtÞ can be seen as a non-
Gaussian noise of fixed magnitude fp. The persistence time of
an ABP in d space dimensions is τ ¼ ½ðd − 1ÞDr�−1, while
τ ¼ α−1 for RTPs. The corresponding persistence length is
given by lp ¼ μfpτ.
AOUPs have been introduced to model active particles

whose propulsion forces have fluctuating norms. In this
model, the active force evolves according to the following
Ornstein-Uhlenbeck process:

τḟp ¼ −fp þ
ffiffiffiffiffiffiffiffiffiffiffi
2Deff

p
μ

η: ð2Þ
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In Eq. (2), ηðtÞ is a centered Gaussian white noise of unit
amplitude and independent components. This model was first
studied long before active matter existed as a field, as one of
the simplest models of diffusion with colored noise (Hänggi
and Jung, 1994). In the context of active matter, AOUPs were
independently introduced to model the dynamics of crawling
cells (Sepúlveda et al., 2013) and as a simplified model for
which analytical progress is tractable (Szamel, 2014).1 The
Gaussian nature of the self-propelled force has indeed allowed
a variety of problems to be analytically studied (Maggi,
Marconi et al., 2015; Fodor et al., 2016; Berthier, Flenner,
and Szamel, 2017; Wittmann, Maggi et al., 2017; Wittmann,
Marconi et al., 2017; Woillez, Kafri, and Gov, 2020; Woillez,
Kafri, and Lecomte, 2020; Martin et al., 2021). For AOUPs,
the persistence time is given by τ, while the typical propulsion
force can be defined from f2p ¼ hf2pi ¼ dDeff=ðμ2τÞ, where h·i
is an average over histories. The persistence length can then be
computed as

lp≡
�
½rðtÞ− rð0Þ� · fpð0Þjfpð0Þj

�
∼

t→∞
μτhjfpð0Þji¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Deffτ

π

r
:

Despite their different dynamics, ABPs, RTPs, and AOUPs
all lead to force autocorrelation functions that decay expo-
nentially in time,

hfp;iðtÞfp;jð0Þi ¼ δij
f2p
d
e−t=τ; ð3Þ

with fp;k denoting the spatial components of fp. At large
scales, all lead to diffusive dynamics with an effective
diffusion coefficient Deff ¼ μ2f2pτ=d. For ABPs and RTPs,
this can be written asDeff ¼ l2

p=ðdτÞ. For AOUPs, the scale of
the active force is proportional to the number of space
dimensions and the fluctuations of fp lead to an extra
contribution to the diffusivity such that Deff ¼ πl2

p=ð2τÞ.
Typical trajectories for the three types of particles are shown

in Fig. 1 (top sketches), which highlights their differences on
short length scales. While these differences are irrelevant at
the scale of diffusive dynamics, they play an important role in
the presence of external potentials. For example, in the large
persistence regime it was predicted that RTPs (Tailleur and
Cates, 2008, 2009; Basu et al., 2020; Smith et al., 2022) and
ABPs (Hennes, Wolff, and Stark, 2014; Solon, Cates, and
Tailleur, 2015; Malakar et al., 2020) will accumulate away
from the center of a confining harmonic well, and such an
accumulation has indeed been observed experimentally
(Takatori et al., 2016; Schmidt et al., 2021). On the contrary,
in a harmonic potential AOUPs always have a steady state
given by a centered Gaussian distribution (Szamel, 2014) and,
somewhat surprisingly, their dynamics obey detailed balance
(Fodor et al., 2016).

B. Interacting scalar active matter

In this Colloquium, we focus on scalar active matter, i.e., on
active systems whose long-time and large-scale behaviors are
entirely captured by the stochastic dynamics of a density field.
All dilute dry active systems fall into this class, as do a wealth
of interacting ones.
A scalar theory generically describes systems where the

interactions depend on and impact only the particle positions.
For instance, this is the case for attractive or repulsive pairwise
forces that play an important role in dense active systems (Fily
and Marchetti, 2012; Redner, Hagan, and Baskaran, 2013;
Stenhammar et al., 2014, 2015; Wysocki, Winkler, and
Gompper, 2014). It also applies to interactions that act only
on the magnitude of the self-propulsion velocity and not on its
direction (Liu et al., 2011; D’Alessandro et al., 2017). For
instance, such interactions can be mediated by chemical
signals as encountered in assemblies of cells interacting
via “quorum sensing” (QS). This is depicted in Fig. 1
(bottom left panel), where the cells adapt their behavior to
the concentration of diffusing signaling molecules. QS is
generic in nature (Miller and Bassler, 2001) and plays an
important role in diverse biological functions ranging from
bioluminescence (Nealson, Platt, and Hastings, 1970;
Engebrecht and Silverman, 1984; Fuqua, Winans, and
Greenberg, 1994; Verma and Miyashiro, 2013) and virulence
(Tsou and Zhu, 2010) to biofilm formation and swarming

FIG. 1. Top sketches: representative trajectories for the three
types of active particles described in Sec. II.A, all with the same
persistence time τ ¼ 1, total duration T ¼ 20, and effective
diffusion coefficient Deff ¼ 1. For ABP and RTP, this corre-
sponds to vp ¼

ffiffiffi
2

p
and a persistence length lp ¼

ffiffiffi
2

p
that is

indicated as a scale bar. For AOUP, it corresponds to a smaller
lp ¼

ffiffiffiffiffiffiffiffi
2=π

p
. The dark blue and light green dots indicate the

starting and finishing positions, respectively. Bottom panels: sche-
matic representation of mediated and contact interactions occur-
ring between active particles.

1Other models of active particles have also been considered in the
literature, for example, by considering underdamped Langevin
equations with nonlinear friction (Romanczuk et al., 2012). In some
limits, they yield the standard ABP and RTP models.
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(Hammer and Bassler, 2003; Daniels, Vanderleyden, and
Michiels, 2004). It can also be engineered by genetic
manipulation of bacteria (Liu et al., 2011; Curatolo et al.,
2020) or using light-controlled colloids (Bäuerle et al., 2018;
Massana-Cid et al., 2022). Integrating out the dynamics of
the mediating chemical field, particles interacting via QS can
be modeled by motility parameters that depend on the
density field, for example, through a self-propulsion
force fpðr; ½ρ�Þ that is both a function of the position r
and a functional of the density field ρðrÞ (Cates and
Tailleur, 2015).
Note that many active systems also experience inter-

actions that require more complex effective (“hydrody-
namic”) descriptions. For example, this is the case when
the rotational symmetry of the system is spontaneously
broken. The prototypical example is that of the Vicsek
model (Vicsek et al., 1995), where strong-enough aligning
torques between the particles lead to the emergence of an
ordered polar phase in dense systems (Marchetti et al.,
2013; Chaté, 2020). A proper hydrodynamic description of
the corresponding flocking phase then requires the inclu-
sion of the orientation field (Toner, Tu, and Ramaswamy,
2005). A wealth of other interactions may impact the
particle’s orientations, like chemotaxis (Berg, 2004), which
preferably makes cells move up or down chemical gra-
dients, or contact inhibition of locomotion (Stramer and
Mayor, 2017) that may lead to cells reverting their direc-
tions of motion upon encounters. We stress that the
disordered phases of all such systems nevertheless remain
part of scalar active matter and already exhibit nontrivial
collective behaviors; see Brenner, Levitov, and Budrene
(1998), Saha, Golestanian, and Ramaswamy (2014), and
O’Byrne and Tailleur (2020) for discussions of chemotactic
interactions, see Sesé-Sansa, Pagonabarraga, and Levis
(2018) for a discussion of polar alignment, and see Spera
et al. (2023) for a discussion of nematic alignment.

C. Collective behavior in scalar active matter

In this section, we turn to the collective behaviors that are
typically encountered in scalar active matter. When one
considers systems whose large-scale behaviors are character-
ized by the conserved dynamics of a density field, the simplest
possible phase transition corresponds to condensation and the
breaking of translational uniformity.
In many active particle contexts, condensation has been

theoretically predicted to arise from the interplay among
attractive, repulsive, and propulsion forces (Fily and
Marchetti, 2012; Mognetti et al., 2013; Redner, Baskaran,
and Hagan, 2013; Redner, Hagan, and Baskaran, 2013;
Stenhammar et al., 2014; Paliwal et al., 2018; Spera et al.,
2023), and consistent behaviors have been experimentally
reported using Janus self-propelled colloids (Theurkauff
et al., 2012; Buttinoni et al., 2013; Palacci et al., 2013;
Liu et al., 2019; van der Linden et al., 2019). When self-
propulsion is weak, attractive forces between the particles
can easily overcome activity, and the expected equilibrium
phase transitions typically survive. This is illustrated in
Fig. 2 through numerical simulations of self-propelled
ABPs in the presence of a translational noise and

Lennard-Jones interactions. At fp ¼ 0, the system undergoes
equilibrium liquid-gas phase separation. As fp increases, the
phase-separated region shrinks until activity overcomes the
attractive forces, and the system turns into a homogeneous
fluid. Surprisingly, at even larger propulsion forces a
reentrant phase transition into a phase-separated region is
observed (Redner, Baskaran, and Hagan, 2013; Spera
et al., 2023).
The mechanism underlying this reentrant phase transition is

MIPS, which is distinct from equilibrium phase separation and
does not require attraction between the particles. Instead,
MIPS results from the interplay between the tendency of
active particles to accumulate where they move slower and
their slowdown at high density due to collisions and repulsive
forces (Cates and Tailleur, 2015).
MIPS has been reported in a wealth of active systems and

can arise from a variety of interactions.
• Quorum sensing, when the self-propulsion speed de-
creases fast enough as the local density increases
(Tailleur and Cates, 2008; Liu et al., 2011; Cates and
Tailleur, 2013; Bäuerle et al., 2018; Curatolo
et al., 2020).

• Pairwise forces, as head-on collisions effectively reduce
the particle self-propulsion speed (Fily and Marchetti,
2012; Redner, Hagan, and Baskaran, 2013; Stenhammar
et al., 2014; Wysocki, Winkler, and Gompper, 2014).

• Chemotaxis, in which the particles either slow down as
they swim in the direction of decreasing density gra-
dients or turn preferentially to face denser regions
(O’Byrne and Tailleur, 2020; Zhang et al., 2021; Zhao,
Košmrlj, and Datta, 2023).

• Steric hindrance on lattice models (Thompson et al.,
2011; Whitelam, Klymko, and Mandal, 2018; Adachi
and Kawaguchi, 2020; Shi et al., 2020), where exact
hydrodynamics equations (Kourbane-Houssene et al.,
2018), fluctuating hydrodynamics (Agranov et al.,
2021), and critical properties (Partridge and Lee,

FIG. 2. Simulations of ABPs interacting via a Lennard-Jones
potential: VðrÞ¼4ϵ½ðσ=rÞ12− ðσ=rÞ6� for r < 2.7σ, and VðrÞ ¼ 0
otherwise. (a) Phase diagram obtained by varying fp and the
average density ρ0. (b) Representative snapshot of the system in
the MIPS region (fp ¼ 42 and ρ0 ¼ 0.9). (c) Representative
snapshot of the system in the passivelike phase separation
(fp ¼ 0.4 and ρ0 ¼ 0.5). The parameters are μ ¼ 1; translational
diffusivity Dt ¼ 0.4, rotational diffusivity Dr ¼ 2, and σ ¼ 0.89;
and system size 300 × 300. Data courtesy of Gianmarco Spera.
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2019; Dittrich, Speck, and Virnau, 2021; Maggi et al.,
2021) are more easily derived or characterized.

Much progress has been made in understanding and character-
izing the emergence of MIPS using either direct coarse
graining of microscopic models or phenomenological field
theories, and many reviews on the topic exist in the literature
(Cates and Tailleur, 2015; Fodor and Marchetti, 2018;
Stenhammar, 2021; O’Byrne et al., 2023). For completeness,
the interested reader can find a discussion of the correspond-
ing material as well as an overview of MIPS-related phenom-
ena in the Appendix.
Thus far most results on the collective behaviors of scalar

active matter have been established in idealized systems,
invariant by translation and endowed with periodic boundary
conditions. In equilibrium, when the correlation length is
finite, obstacles and boundaries alter the system only in their
immediate vicinity, which legitimates this approach. As we
see in Sec. VI, the situation is much different for active
systems, where boundaries may have a far-reaching influence
on bulk behaviors. Before we discuss this case, we first review
the anomalous mechanical forces exerted by active systems on
boundaries and inclusions, which are at the root of this
important difference between active and passive systems.

III. MECHANICAL FORCES ON CONFINING
BOUNDARIES

In recent years, it has become evident that active systems
display many anomalous properties when they interact with
boundaries. Arguably the simplest demonstration of this is
obtained by placing an asymmetric mobile partition in a cavity
comprising a homogeneous gas of self-propelled ellipses. One
then observes a spontaneous compression of one side of the
system that is in apparent violation of the second law of
thermodynamics2; see Fig. 3. By now it has become clear that
such phenomena can be rationalized in terms of the anomalous
mechanical properties of active fluids, which we review in this
section.

A. Mechanical pressure on flat confining boundaries

Consider the simplest case of a two-dimensional gas of
noninteracting active particles confined by a vertical flat wall
localized at x ¼ xw, which we model using a repulsive
potential VwðxÞ that vanishes for x < xw and diverges at
larger values of x. The pressure exerted by the gas on the wall
can be computed as

P ¼
Z

∞

xb

dx ρðx; ybÞ∂xVwðxÞ; ð4Þ

where ðxb; ybÞ≡ rb corresponds to a point deep in the bulk of
the active fluid, xb ≪ xw, and ρðr; tÞ ¼ hPiδ½r − riðtÞ�i is the
average number density; see Fig. 4. To determine P, we start
from the dynamics of particle i, which reads

ṙi ¼ μfip − μ∇VwðriÞ þ
ffiffiffiffiffiffiffiffi
2Dt

p
ηi; ð5Þ

where fip ≡ fpuðθiÞ is the particle propulsion force, μ is its
mobility, Dt is a translational diffusivity, and ηi is a centered
Gaussian white noise of unit variance. The evolution of ρ then
satisfies a conservation law

∂tρðr; tÞ ¼ −∇ · Jðr; tÞ; ð6Þ

where the current J is given by

J ¼ μFaðrÞ − μρðrÞ∇VwðrÞ −Dt∇ρðrÞ ð7Þ

and Fa ≡ hPif
i
pδðr − riÞi is the active-force density. In the

steady state, the confinement by a wall and the translational
symmetry along the wall imply a vanishing current J ¼ 0.
Using Eqs. (4) and (7), one can then write the pressure as

P ¼ Dt

μ
ρðrbÞ þ

Z
∞

xb

dxFaðx; ybÞ: ð8Þ

The pressure exerted by the system on the wall is thus the sum
of the passive ideal-gas pressure and a contribution stemming
from the active-force density, which is typically nonzero close
to confining walls; see Fig. 4(d).
Before considering the case of self-propelled ellipses

shown in Fig. 3, we start with the simpler case of ABPs that
undergo isotropic rotational diffusion everywhere in space:
θ̇i ¼

ffiffiffiffiffiffiffiffi
2Dr

p
ηri, where η

r
i is a centered Gaussian white noise of

unit variance. To make progress, it is useful to introduce the
active impulse of particle i, which is the average momentum
the particle will receive in the future from the substrate on
which it is pushing. For a circular ABP whose orientation is
u½θiðtÞ� at time t, the active impulse can be computed as

Δpa
i ≡

Z
∞

t
ds fpu½θiðsÞ� ¼

fp
Dr

u½θiðtÞ�; ð9Þ

FIG. 3. Top sketch: a mobile partition that is stiffer on one side
divides the system into two compartments, each initially with
equal density. Since the pressure depends on the wall’s stiffness
through Eq. (20), each side of the partition experiences a different
force from the active particles. As a result, the mobile partition
moves until the forces on both sides balance. From Tailleur et al.,
2022. Bottom panels: numerical simulations corresponding to the
setup described in the top panel using either circular ABPs (left
panel) or elliptical ABPs (right panel). The absence of an
equation of state (EOS) in the latter case is apparent from the
spontaneous compression of one-half of the system. From Solon,
Fily et al., 2015.

2This apparent violation of the second law is possible only because
we describe here simply the active subsystem and not a closed system
that would also include the energy source powering the active
motion.
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where the overline denotes an average over future
histories, i.e., over ηriðs ≥ tÞ, and we have used u½θiðsÞ� ¼
u½θiðtÞ� exp½−Drðs − tÞ�. Even though the particle is under-
going a random walk so that its average active force is zero,
the active impulse at time t is nonzero because of persistence;
see Fig. 4(c). Direct aglebra then shows that the time evolution
of the active impulse field ΔpaðrÞ≡ hPi Δpa

i δðr − riÞi is
given by

∂tΔpaðrÞ ¼ −FaðrÞ þ ∇ · σaðrÞ; ð10Þ

where

−σa ≡
�X

i

ṙi ⊗ Δpa
i δðr − riÞ

�
−Dt∇ ⊗ ΔpaðrÞ ð11Þ

is a tensor that measures the flux of active impulse. In the
homogeneous isotropic bulk of the system, a direct compu-
tation shows that σa ¼ −½ρbμf2p=ð2DrÞ�Id, where Id is the
identity tensor. In the steady state, Eq. (10) shows that the
density of active forces is the divergence of the “active stress
tensor” σa,

FaðrÞ ¼ ∇ · σaðrÞ: ð12Þ

Equation (12) has a simple interpretation: the active impulse
acts as a “momentum reservoir” for the particle. To produce a
nonzero density of active force in a region of space, incoming
and outgoing fluxes of active impulse have to differ. Finally,
the pressure takes the ideal-gas law form

P ¼ ρðrbÞ
Dt

μ
− x̂ · σaðrbÞ · x̂ ¼ ρbTeff ; ð13Þ

where ρb ≡ ρðrbÞ, Deff ¼ Dt þ ðμfpÞ2=ð2DrÞ is the large-
scale diffusivity of the particle, Teff ≡Deff=μ is an effective
temperature,3 and x̂ is a unit vector in the x direction. The
pressure can thus be written as the sum of a passive and
an active stress, which is notable due to the absence of
momentum conservation in the system. Since ∂thri ⊗ uii ¼
hṙi ⊗ uii −Drhri ⊗ uii, one finds that in a homogeneous
bulk the active stress tensor can be rewritten as

σa ¼ −
�X

i

ri ⊗ fipδðr − riÞ
�
: ð14Þ

Equation (14) was introduced by Takatori, Yan, and Brady
(2014), who called it the swim pressure. It can also be
obtained using methods developed by Irving and Kirkwood
(Yang, Manning, and Marchetti, 2014) or using a generalized
virial theorem (Winkler, Wysocki, and Gompper, 2015;
Falasco et al., 2016).
Note that when the active-force density satisfies Eq. (12)

there is a relation in the steady state between the total current
Jtot flowing through the system and the total force Ftot exerted
by the particles on the boundary. To see this, integrate Eq. (7)
over space so that the total current Jtot ≡ R

d2rJðrÞ satisfies

Jtot ¼ −μ
Z

d2r ρðrÞ∇VwðrÞ≡ −μFtot; ð15Þ

where we use
R
d2rFaðrÞ ¼ 0 due to Eq. (12). A more

intuitive derivation of this result can be obtained by summing
Eq. (5) over all particles and averaging over the steady-state
distribution. One then gets

Jtot ¼
�X

i

ṙi

�
¼ −μ

�X
i

∇VwðriÞ
�

¼ −μFtot; ð16Þ

where the sum of the active forces has vanished since the
dynamics of the orientations are isotropic random walks
decoupled from riðtÞ [which, as later elucidated, is the reason
why Eq. (12) holds]. In flux-free systems, Eq. (16) thus
implies that boundaries cannot exert any net total force on an
active bath.
We note that Eq. (13) shows that the pressure is independent

of the wall potential. This is noteworthy since FaðrÞ depends
on the choice of confining potential VwðrÞ; see Fig. 4(d).
The underlying reason for this is that, since the dynamics of
the particle orientation is independent from all other degrees
of freedom, the total active impulse that the particle can
transfer to the wall does not depend on the wall potential. The
existence of an equation of state for the pressure can be
generalized to ABPs interacting via pairwise forces and can
be used to derive a mechanical theory for MIPS in such
systems (Takatori, Yan, and Brady, 2014; Solon, Stenhammar

FIG. 4. (a) A simple setup to compute the pressure exerted by an
active gas on confining walls consists of a 2D box with periodic
boundaries along y and a confining potential along x. (b) Sche-
matic representation of the density of active particles and of the
confining wall potential shown in (a). (c) Despite the fact that the
active force is doing an isotropic random walk, it will transmit a
nonzero average momentum to the active particle between any
time s ¼ t and s ¼ þ∞. The corresponding “active” impulse
Δpa

i ðtÞ (thicker arrow) is therefore nonzero. (d) The active-force
densities measured for three different confining potentials are
nonzero close to a confining wall. A clear dependence on the wall
potential is shown. In the presence of an EOS, the areas under the
three curves are the same.

3We note that, beyond the analogy with the ideal-gas law, Teff does
not generally play a thermodynamic role in active systems.
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et al., 2015; Solon et al., 2018a, 2018b; Speck, 2021; Omar
et al., 2023).
We note, however, that the derivation of Eq. (13) does not

account for the simulations reported in Fig. 3. One thus needs
to go one step further and account for the ellipsoidal particle
shapes by considering the torques Γ exerted by the walls on
the particles: θ̇i ¼ Γðri; θiÞ þ

ffiffiffiffiffiffiffiffi
2Dr

p
ηri. In this case, the time

evolution of the active-force density FaðrÞ is given by

∂tFaðrÞ ¼
�X

i

fpΓðri; θiÞu⊥ðθiÞδðr − riÞ
�
−DrFaðrÞ

−∇ ·

��X
i

ṙi ⊗ fipδðr − riÞ
��

; ð17Þ

where u⊥ðθÞ ¼ ∂θuðθÞ. In the steady state, one finds that

FaðrÞ ¼ ∇ · σtfa þ
�X

i

fp
Dr

Γðri; θiÞu⊥ðθiÞδðr − riÞ
�
; ð18Þ

where σtfa ¼ −hPiṙi ⊗ ðfip=DrÞδðr − riÞi is the flux of active
impulse in the absence of torques. Equation (18) thus splits the
contribution to the density of active forces between conserved
and nonconserved parts, hence showing that wall-induced
torques can be seen as sources or sinks of active impulse.
When ψðr; θÞ ¼ hPiδðr − riÞδðθ − θiÞi is introduced, the
pressure can be written as

P ¼ ρbTeff þ ΔPw; ð19Þ

where ΔPw is a wall-dependent contribution given by

ΔPw ¼ μfp
Dr

Z
dθ

Z
∞

xb

dxψðx; yb; θÞΓðx; yb; θÞ sin θ: ð20Þ

Note that the pressure is no longer independent of the wall,
which explains the spontaneous compression of the asym-
metric piston shown in Fig. 3. Indeed, the piston is stalled

when the pressures on both sides are equal, which requires
ΔPwL

ðρLÞ ¼ ΔPwR
ðρRÞ. When the left and right walls of the

piston are different, this equality requires different densities on
the two sides of the piston.
The previous discussion can be understood by thinking

about the most commonly encountered active particles around
us: pedestrians. Think about a small child running toward you.
Stopping the child requires one to make its translational speed
vanish, hence bringing the corresponding incoming momen-
tum flux to zero. This corresponds to the drop of the passive
momentum (ρDt=μ in the case of an ideal gas). If the child
keeps running while you are holding them, you have to absorb
an additional momentum flux that the child is transferring
from the ground onto you, which corresponds to the con-
tribution of the active force in Eq. (8). Because many different
strategies can be employed to stop the child from running, the
active pressure will generically depend on the restraining
adult, hence leading to the lack of an equation of state. This is
how torques lead to a lack of equation of state, as illustrated in
Fig. 5. For torque-free ABPs, because the dynamics of the
active force is independent of all other degrees of freedom, the
momentum flux they transfer to the wall through their active
force before running away is always given by μf2p=ð2DrÞ,
which leads to an equation of state. We note that this is an
idealized limit and that, for dry active systems, the lack of an
equation of state is expected to be generic, a fact that has been
confirmed experimentally (Junot et al., 2017) for self-pro-
pelled disks; see Fig. 6. We stress that the lack of an equation
of state is not necessarily related to torques induced by
confining walls. Aligning interactions and motility regulation
have, for instance, also been shown to prevent the existence of
an equation of state for the pressure (Solon, Fily et al., 2015).

B. Curved and flexible boundaries

The anomalous mechanical properties of dry active systems
are not restricted to the lack of an equation of state for flat
walls. Indeed, even in cases where an equation of state exists,

FIG. 5. Schematic representation of an elliptic active particle
hitting a wall. Depending on the aspect ratio, the collision rotates
the particle in opposite directions, making it face parallel or
toward the wall. Right panel: mechanical pressure measured on
the wall for noninteracting ABPs with an aspect-ratio parameter
κ ¼ ja2 − b2j=8, where a and b are the axis lengths of the ellipse.
The wall is a confining harmonic potential of stiffness λ. The
parameters are fp ¼ μ ¼ 1, Dr ¼ 0.5, λ ¼ 1, bulk density ρ ¼ 1,
and system size 20 × 2. As suggested by the left panel, the
pressure exerted by long particles (a > b) is decreased by the wall
torques, whereas that exerted by wide particles (a < b) is
enhanced.
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FIG. 6. (a) A flexible chain separates a system of vibrated grains
into two cavities. The chain curvature is used to measure the
pressure exerted by the particles confined in the left cavity, which
can be either isotropic passivelike disks or anisotropic active
disks. (b) PressureΠmeasured as the packing fraction ϕ is varied.
For isotropic disks (blue, close to solid lines), Π is in agreement
with the equilibrium equation of states for hard disks (plain lines).
For active disks (red, close to dashed lines), two types of chains
made with links of different sizes measure different pressures
(squares and circles), signaling the absence of an equation of state
for the pressure. The dot-dashed lines denote positions where
active and passive disks are in equilibrium at different densities,
as shown in (c). From Junot et al., 2017.
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the local pressure exerted by active fluids on confining walls
generically depends on the boundary shape (Fily, Baskaran,
and Hagan, 2014; Mallory, Valeriani, and Cacciuto, 2014;
Fily, Baskaran, and Hagan, 2015; Yan and Brady, 2015;
Nikola et al., 2016). This can be traced back to the fact that,
after colliding with a wall, active particles glide along it and
accumulate in regions with higher curvatures (Fily, Baskaran,
and Hagan, 2014; Mallory, Valeriani, and Cacciuto, 2014) in a
manner that depends on their size and shape (Wysocki, Elgeti,
and Gompper, 2015). This leads to nontrivial density mod-
ulations and currents near the wall (Fily, Baskaran, and Hagan,
2014, 2015; Mallory, Valeriani, and Cacciuto, 2014; Yan and
Brady, 2015) that are illustrated in Fig. 7 using numerical
simulations of ABPs interacting with a periodic soft-wall
potential that vanishes for x < xw and is otherwise given by

VðrÞ ¼ k
2
½x − xwðyÞ�2; ð21Þ

with xwðyÞ ¼ x0 þ A sinð2πy=LpÞ and Lp the period. Note
that Fig. 7(d) shows that the pressure, measured as the force
normal to the wall, depends on the exact location along
the wall.
The difference between the point of highest pressure and

lowest pressure δP is found numerically to be proportional to
the curvature 1=R at the tips of the sinusoidal wall; see Fig. 8.
This is consistent with measurements of the pressure exerted
by an active ideal gas on a 2D circular cavity of radius R
(Mallory et al., 2014; Smallenburg and Löwen, 2015; Yan and
Brady, 2015; Sandford, Grosberg, and Joanny, 2017).
Moreover, recently the corresponding finite-size correction
was computed analytically and shown to be given by (Zakine
et al., 2020)

PðRÞ ¼ Pb −
γ

R
þ oðR−1Þ; ð22Þ

where Pb ¼ ρbTeff is the pressure in an infinite system at
density ρb and γ is the fluid-solid surface tension. The latter
can be computed as an integral over the density profile ρðrÞ
normal to the curved interface4

γ ≡
Z

R

0

dr
μ

2
f2pτρb −

Z
∞

0

dr
μ

2
f2pτρðrÞ: ð23Þ

Equation (23), which generalizes Laplace’s law to active
fluids, directly suggests that δP ≃ 2γ=R. On dimensional
grounds, one can estimate the surface tension as γ≃−Pblp,
with lp the persistence length. This agrees semiquantitatively
with the measurements shown in Fig. 8. As shown in Eq. (23),
the negative sign of γ is due to the tendency of active particles
to accumulate at the wall. It is consistent with the overall sign
of δP, which can also be understood heuristically, as the active
particles accumulate at concave regions of the wall. Note that
the sign of δP shows that active particles tend to exert forces
on curved boundaries that would amplify the deformation of a
flexible boundary, as later discussed.
For walls that are not reflection symmetric, a net shearing

force develops parallel to the wall (Nikola et al., 2016). This
can be understood as a consequence of the ratchet effect
(Angelani, Costanzo, and Di Leonardo, 2011; Reichhardt and
Reichhardt, 2013; Ai and Wu, 2014): The breaking of time-
reversal symmetry by the active particles coupled to a
breaking of an inversion symmetry leads to a steady-state
current along the wall; see Reichhardt and Reichhardt (2017)
for a review. In turn, Eq. (7) tells us that such a current will
generically be associated with a force tangential to the wall.

FIG. 7. (a) Density and (b) current of noninteracting ABPs near
the right edge of the system with the curved-wall potential given
in Eq. (21). The parameters are fp ¼ Dr ¼ 24,Dt ¼ 0, Lp ¼ 0.5,
A ¼ 0.5, k ¼ 103, x0 ¼ 3, and μ ¼ 1. The dashed red curve
corresponds to xwðyÞ. (c) Cross sections of the particle density
taken at the three horizontal dashed lines in (a). The vertical lines
correspond to xwðyÞ. (d) Pressure normal to the wall, normalized
by Eq. (13), as a function of y in the hard-wall limit. From Nikola
et al., 2016.

FIG. 8. Difference δP between the pressure at the concave and
convex apices of the curved-wall potential given in Eq. (21), as
the radius of curvature R ¼ Lp=ð4π2AÞ is varied. The red line is a
linear fit of the data leading to a slope ∼1.3. Numerical data
were obtained using simulations of ABPs with fp ¼ 0.75 and
μ ¼ Dr ¼ 1. Wall parameters in the ranges A∈ ½3.1 × 10−3; 3.3 ×
10−2� and Lp ∈ ½3.6; 5.5� were used, with k ¼ 2 × 104. Assuming
γ ≃ −P=lp on dimensional ground and using the generalized
Laplace law predicts a slope of 2. From Nikola et al., 2016.

4Note that, for an equilibrium passive ideal gas at temperature T,
the fluid-solid surface tension is also given by Eq. (23) upon
replacing ðμ=2Þf2pτ with kBT (Zakine et al., 2020).
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This explains the spontaneous rotation of microscopic gears
observed in simulations (Angelani, Di Leonardo, and Ruocco,
2009) and experiments (Di Leonardo et al., 2010; Sokolov
et al., 2010).
The dependence of the active pressure on the boundary

shape is exemplified by considering the behavior of flexible
elastic objects inside an active fluid. For concreteness, first
consider a flexible partition whose ends are held at walls at the
top and bottom of a container filled with active particles. Once
a fluctuation creates a local deformation in the filament,
Eq. (22) suggests that a finite pressure difference ΔP ≃ 2γ=R
develops between its two sides, with R the radius of curvature
at the apex of the deformation. This tends to increase the
deformation and is opposed by the elasticity of the flexible
partition. The outcome of this competition can be understood
by considering the linearized dynamics of the partition, which
are characterized by a Monge representation hðx; tÞ. Because
the accumulation of active particles is proportional to the
curvature of the confining interface (Fily, Baskaran, and
Hagan, 2014; Nikola et al., 2016), one expects ΔP ∝ ∇2h,
leading to (Nikola et al., 2016)

∂thðx; tÞ ¼ ðT − 2γÞ∇2hðx; tÞ − κb∇4hðx; tÞ; ð24Þ

where T and κb are the line tension and bending rigidity,
respectively. Equation (24) shows that, for large activity when
2γ > T, a horizontal filament is unstable to fluctuations above
a characteristic length λ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κb=ð2γ − TÞp

. For short filaments,
one thus expects the rigidity to keep the filament straight,
whereas long filaments are expected to be unstable. This has
indeed been observed in both simulations and experiments
(Nikola et al., 2016; Junot et al., 2017), where the instability
has been shown to coarsen and lead to a deformation of the
filament with a wavelength set by the system size. For an
unpinned passive flexible filament in an active medium, an
even richer scenario has been reported in both simulations and
experiments (Nikola et al., 2016; Anderson et al., 2022); see
Fig. 9. As the length of the filament increases, the previously

discussed instability first leads to a left-right asymmetry and
the spontaneous formation of a parachutelike structure
(Harder, Valeriani, and Cacciuto, 2014; Shin et al., 2015)
that is somewhat reminiscent of a sail blowing in the
wind, except with the wind itself generated by the curving
filament. The pressure difference on the two sides of
the filament then generates a net propelling force and turns
the filament into an emergent active particle. Upon a further
increase in length, a full period of the unstable mode develops,
leading to short-lived spontaneous rotors. Finally, long fila-
ments are found to lead to folded structures.

C. Summary

In this section, we have seen how the pressure of scalar
active fluids exhibits markedly different properties from that
of passive ones. The generic lack of an equation of state is
probably the most striking difference. It leads to atypical
behaviors such as the spontaneous compression of an asym-
metric piston inserted into a uniform fluid. Predicted using
idealized models of active particles, this lack of an equation of
state has been confirmed experimentally using vibrated disks.
We have shown how the lack of an equation of state can be
related to a history-dependent average active force experi-
enced by the particles. On the contrary, when the active-force
dynamics is independent from the other degrees of freedom,
an equation of state is recovered. Even in this case, a rich
physics is reported in the presence of curved or flexible
boundaries.

IV. OBSTACLES AND LOCALIZED INCLUSIONS

An even richer physics has been reported when considering
the mechanical interplay between active particles and
obstacles immersed in active fluids. Arguably the first
observation of this was the experimental study of asymmetric
obstacles by Galajda et al. (2007), who demonstrated that an
array of V-shaped obstacles placed in a bacterial bath leads to
the accumulation of bacteria on one side of the array; see
Fig. 10. In this section, we discuss how a mechanical
perspective accounts for the induced organization of the
bacterial fluid and how to account for more general situations.
In particular, we focus on the universal aspects of the large-
scale density modulation and current induced by obstacles,
and not on the rich physics that can be observed in the near
field, at distancesOðlpÞ from the obstacle, which has attracted
significant attention (Kaiser, Wensink, and Löwen, 2012;
Potiguar, Farias, and Ferreira, 2014; Ni, Cohen Stuart, and
Bolhuis, 2015; Zaeifi Yamchi and Naji, 2017; Yan and Brady,
2018; Wysocki and Rieger, 2020; Speck and Jayaram, 2021)
and has already been reviewed (Bechinger et al., 2016).
We start with the case of a single obstacle immersed in an

infinite active fluid and show how a multipole expansion
allows one to predict the far-field structure of density and
current fields. A simple picture emerges in which the local
asymmetry of the obstacle induces a ratchet current that mass
conservation turns into long-range density and current mod-
ulations. Mathematically the relation between the force
monopole exerted by the obstacle on the active fluid and
the induced current flow is identical to that between

FIG. 9. Typical configurations of semiflexible filaments of
length Lf in a bath of active Brownian particles. An instability
develops for long enough filaments. Adapted from Nikola
et al., 2016.
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electrostatic dipoles and fields. Next we turn to consider the
effect of boundary conditions and show how an image
theorem allows the results to be generalized to simple cases
like periodic or closed boundary conditions. We then discuss
how this leads to long-range nonreciprocal interactions
between inclusions in an active fluid. Finally, we discuss
the case of mobile inclusions and review recent work on
passive tracers and the possible dynamics arising from
interactions mediated by active baths.

A. A single obstacle in an infinite system

We consider N noninteracting ABPs in the presence of an
obstacle modeled by an external potential VðrÞ that is localized
on a compact support near r ¼ 0. In d space dimensions, the

average number density of particles Pðr;uÞ at position r with
an orientation u evolves according to

∂tPðr;uÞ ¼ −∇ · ½μfpuP − μP∇V −Dt∇P� þDrΔuP;

ð25Þ

where Δu is the spherical Laplacian. Integrating over the
orientation u leads to Eqs. (6) and (7), with Vw replaced by V.
Far from the obstacle, i.e., when jrj ≫ lp, the active

dynamics is diffusive at large scales such that J ≃ JD ≡
−Deff∇ρ, where Deff¼DtþðμfpÞ2=ðdDrÞ (Cates and
Tailleur, 2013). In the steady state, one has ∇ · J ¼ 0 ≃ ∇ ·
JD so that the density profile solves the source-free Poisson
equationDeff∇2ρ ¼ 0. This is valid only far from the obstacle,
where J ≃ JD. On the contrary, close to the obstacle the current
deviates from its diffusive approximation and we thus
introduce

δJ≡ J − JD ¼ μFa − μρ∇V þ ðDeff −DtÞ∇ρ ð26Þ
to measure the difference between J and JD. To quantify
the impact of the obstacle on the equation for ρ, we note
that the steady-state equation ∇ · J ¼ 0, can be exactly
rewritten as

Deff∇2ρ ¼ ∇ · δJðrÞ: ð27Þ
As stated, δJ vanishes far from the obstacle and one recovers a
source-free Poisson equation in the bulk. Equation (27) then
shows that the obstacle simply leads to a source term ∇ · δJðrÞ
localized in its vicinity. When the boundary condition at
infinity is ρðrÞ ¼ ρb, its solution is

ρðrÞ ¼ ρb þ
1

Deff

Z
ddr0Gðr; r0Þ∇ · δJðr0Þ; ð28Þ

where Gðr; r0Þ is the Green’s function of the Laplacian in d
space dimensions.
To proceed, we use Eq. (26) to determine the leading

contribution in δJðr0Þ to the density profile. To do so, we
employ a multipole expansion of Eq. (28) in the far-field limit
jrj ≫ lp. Using Eqs. (12) and (26), one sees that the leading-
order contribution is given by δJðr0Þ ≃ −μρðr0Þ∇Vðr0Þ.
Introducing the force monopole

p ¼ −
Z

ddr0 ρðr0Þ∇Vðr0Þ ð29Þ

and explicitly carrying out the multipole expansion of
Eq. (28), one then finds that the leading-order far-field density
and current are given by

ρðrÞ ¼ ρb þ
βeff
Sd

r · p
rd

þOðr−dÞ; ð30Þ

JðrÞ ¼ μ

Sd

dðr̂ · pÞr̂ − p
rd

þOðr−ðdþ1ÞÞ; ð31Þ

where βeff ≡ 1=Teff ¼ μ=Deff and Sd ¼ 2πd=2=Γðd=2Þ. As
usual with multipole expansions, Eq. (30) is the solution of

FIG. 10. A uniform density of bacteria at the beginning of the
experiment (a) becomes inhomogeneous at late times (b) in a 2D
microfluidic chamber split into two compartments by an array of
asymmetric obstacles, as schematically depicted in (c). (d) Ratio
between the densities of bacteria in the right (ρ2) and left (ρ1)
sides of the cavity shown in (c) measured using numerical
simulations of RTPs whose self-propulsion speed v is varied.
All dimensions match the experiment: the enclosures dimensions
are L ×H ¼ 400 × 400 μm2, the arms of the funnels are 27 μm
long and their apex angle is π=3, and the funnels are separated by
gaps that are 3.8 μmwide. The tumbling rate of the RTPs is set to
α ¼ 1 s−1. The overlapping red, blue, green, and cyan symbols
marking ρ2=ρ1 > 1 are obtained by varying H and the left and
right chamber widths LL and LR, respectively, with ðLR; LL;
HÞ ∈ fð200; 200; 400Þ; ð400; 400; 400Þ; ð200; 200; 800Þ; ð400;
200; 400Þg. The vertical density of obstacles is kept constant. The
rectification of bacterial density is thus independent of finite-size
effects. In all simulations, RTPs align with the walls upon
collision [the solid line inside the inset of (c)]. When the RTPs
instead experience specular reflection upon collision, as shown
by the dashed line inside the inset of (c), a uniform density field is
measured (the magenta symbols at ρ2=ρ1 ≃ 1). This is consistent
with the fact that collisions are the sole irreversible process in
these simulations. (a),(b) From Galajda et al., 2007. (c),(d) From
Tailleur and Cates, 2009.

Granek et al.: Colloquium: Inclusions, boundaries, and disorder …

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 031003-10



Deff∇2ρ ¼ ∇ · ½μpδðrÞ�: ð32Þ

We note that Eqs. (30) and (31) predict a universal density
modulation and current induced by an obstacle that exerts a
nonvanishing force monopole p on the active fluid. The
determination of p, however, depends on the details of the
problem and requires an explicit derivation of the microscopic
structure of ρðrÞ in the vicinity of the obstacle. This is in
general a difficult problem with few exact results (Arnoulx de
Pirey and van Wijland, 2023). We note that if p ¼ 0, higher
orders in the multipole expansion have to be considered (Baek
et al., 2018). When the obstacle is spherical, the density
modulation and current vanish at all orders in the multipole
expansion.
The aforementioned derivation shows how forces exerted

by obstacles lead to large-scale ratchet currents. Note that,
independently of the previously presented multipole expan-
sion, we can derive an exact relation between the total current
flowing through the system and the net force p exerted by the
obstacle. Integrating the exact microscopic expression of the
current field [Eq. (7)] over the full space indeed leads to

Jtot ≡
Z

ddr JðrÞ ¼ μp; ð33Þ

wherewehave usedFaðrÞ ¼ ∇ · σa since the pressure admits an
equation of state, and the active-force density can thus bewritten
as the divergence of a local stress tensor. We note that all exact
gradients entering the expression of J vanish upon integration
due to the divergence theorem. This result is the direct
counterpart to Eq. (16) for the case of an isolated obstacle.
While this formulation pertained to noninteracting ABPs,

the result generalizes to homogeneous active fluids with
pairwise interparticle forces (Granek et al., 2020).

B. Finite systems and boundary conditions

Thus far we have considered the case of an isolated object
in an infinite system and have shown that asymmetric
obstacles induce long-range density modulations and currents.
In turn, this implies that some care has to be taken when finite
systems of linear size L are considered, even when L ≫ lp.
We now discuss several such scenarios that have been
explored in the literature.
For periodic boundary conditions, when L ≫ lp one can

show that the system is equivalent to an infinite periodic lattice
of obstacles (Granek et al., 2020). The density and current
fields, as well as the value of the force monopole p, differ
between infinite and periodic systems by corrections of the
order of OðL−ðdþ2ÞÞ (Speck and Jayaram, 2021). For L≲ lp,
the far-field expansion is naturally invalid. Numerical simu-
lations and a scaling argument reveal that for d ¼ 2 the force
monopole p grows as ∼L2 until it saturates at an asymptotic
value for L ≫ lp (Speck and Jayaram, 2021).
Another scenario that was considered is the effect of

confining flat hard walls. The derivation of Sec. IV.A can
be extended to this case (despite nontrivial boundary con-
ditions) and, for a single obstacle displaced byX ¼ Xx̂ from a
hard wall at x ¼ 0, Eq. (28) still holds in the far field of

both the obstacle and the wall (Ben Dor, Kafri et al., 2022).
The Green’s function G is, however, replaced by that of
the Laplacian in a half plane. To leading order in the limit
jr −Xj ≫ lp and X ≫ lp, the solution is given by

ρðrÞ ¼ ρb þ
βeff
Sd

�ðr −XÞ · p
jr −Xjd þ ðr −X�Þ · p�

jr −X�jd
�

þOðjr −Xj−d; X−dÞ; ð34Þ

where p� andX� are the images of p andXwith respect to the
wall, respectively. Note that Eq. (34) holds with the force
monopole p given by its infinite-system value. Indeed, the
corrections to p due to the image obstacle enter at order
OðX−ðd−1ÞÞ. Equation (34) was also shown to hold when the
obstacle was on the wall so that X ¼ 0, with p parallel to the
wall (Ben Dor, Ro et al., 2022). Finally, the derivation was
also carried out for a circular cavity, as discussed in Sec. IV.E.

C. Nonreciprocal mediated interactions

Since isolated obstacles create long-range density modu-
lations, it is natural to expect that several obstacles immersed
in the same active fluid will experience long-range mediated
interactions. These turn out to be nonreciprocal and can be
derived as follows. Consider two obstaclesOð1Þ andOð2Þ fixed
at positions Xð1Þ and Xð2Þ, respectively, and denote by r12
their separation; see Fig. 11. The effect of Oð1Þ on Oð2Þ can be
quantified by an emergent interaction force F12, which can be
identified as the net residual force exerted on Oð2Þ due to the
introduction of Oð1Þ into the bath,

F12 ≡ p0
2 − p2; ð35Þ

FIG. 11. Schematic diagram of two interacting asymmetric
passive obstacles in two dimensions. Obstacle Oð1Þ (orange,
bottom right) is placed at X1, obstacle Oð2Þ (blue, center) is
placed at X2, and we denote their separation by r12. The color
map, which has negative values on the convex part of the
obstacles and positive values on the concave part, shows the
superposed far-field single-body density modulations δρ1 þ δρ2,
with δρn ¼ βeffðr −XnÞ · pn=ð2πjr −Xnj2Þ. The corresponding
currents J1 þ J2 and Jn ¼ −Deff∇δρn are shown as gray stream-
lines. The parameters are Deff ¼ βeff ¼ 1, X1 ¼ ð4; −4Þ,
X2 ¼ ð0; 0Þ, p1 ¼ 0.5( cosð11π=10Þ; sinð11π=10Þ), and p2 ¼
ð−0.5; 0Þ. From Granek et al., 2020.
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where −pk ≡ R
ddr ρðrÞ∇Vkðr −XðkÞÞ is the net force exerted

by the active bath on OðkÞ and p0
2 ¼ p2jV1¼0 is the force on

Oð2Þ in the absence of Oð1Þ. Inspection of Eq. (29) shows that
F12 is directly connected to the density modulation induced by
Oð1Þ in the vicinity of Oð2Þ. For large separations r12, the
leading-order contribution of this modulation is a local shift of
the average density,

δρ1ðX2Þ ¼
βeff
Sd

r12 · p1

rd12
þOðr−d12 Þ: ð36Þ

Owing to the linearity of Eq. (28), the force monopole exerted
by Oð2Þ is modified as

p2 ¼
ρb þ δρ1ðX2Þ

ρb
p0
2: ð37Þ

Inserting Eq. (37) into Eq. (35) results in

F12 ¼ −
βeff
Sd

r12 · p0
1

ρbrd12
p0
2 þOðr−d12 Þ; ð38Þ

where pk ¼ p0
k þOðr−ðd−1Þ12 Þ and p0

1 ¼ p1jV2¼0. We can
obtain F21 by exchanging the indices 1 ↔ 2 in Eq. (38).
The equation implies that F21 ≠ −F12 and thus violates
Newton’s third law. Such interactions have attracted a lot
of attention recently and are often referred to as nonreciprocal.
Note that the leading-order interactions require both

obstacles to be asymmetric so that p0
k ≠ 0. Nonetheless, when

Oð2Þ is symmetric, it still experiences a force from an
asymmetric Oð1Þ because the latter induces a density gradient
in the vicinity ofOð2Þ (Baek et al., 2018). Finally, we note that,
while two isotropic obstacles experience only short-range
interactions, long-range interactions can also emerge even if
all p0

k vanish. For example, rods generate density modulations
at order r−d12 (Baek et al., 2018).
We have considered dilute active fluids, but these deriva-

tions extend to the case of active bath particles subject to
pairwise interactions (Granek et al., 2020). Furthermore, a
similar expansion has been derived for the interaction torque
n12 between the obstacles (Baek et al., 2018). The results also
extend to multiple obstacles, yielding additive interactions to
leading order in the far field.

D. Mobile obstacles and dynamics

Thus far we have discussed the case in which obstacles are
fixed in space. However, there is also considerable interest in
the dynamics of mobile obstacles, referred to as passive tracers
in active baths. While a body of work focused on the effect of
long-range hydrodynamic interactions in wet active baths
[see, for example, Chen et al. (2007), Leptos et al. (2009),
Kurtuldu et al. (2011), Zaid, Dunkel, and Yeomans (2011),
Thiffeault (2015), Kurihara et al. (2017), and Kanazawa et al.
(2020)], here we focus on dry scalar active matter with at most
short-range interactions.
To write the emerging equations of motion of a tracer, we

invoke an adiabatic limit where the motion of the tracer is so

slow that the statistics of the forces exerted by the bath are
indistinguishable from those exerted on a fixed tracer. In the
overdamped limit, the dynamics of the tracer can then be
described using a generalized Langevin equation (Steffenoni,
Kroy, and Falasco, 2016; Maes, 2020; Reichert, Granz, and
Voigtmann, 2021; Reichert and Voigtmann, 2021; Granek,
Kafri, and Tailleur, 2022; Shea, Jung, and Schmid, 2022; Feng
and Hou, 2023),

Z
t

0

dt0 γijðt − t0ÞẊjðt0Þ ¼ fiðtÞ; ð39Þ

where γijðtÞ is a memory kernel, fiðtÞ is a fluctuating force,
and summation over j is implied. The left-hand side of
Eq. (39) is the friction force exerted by the bath, i.e., the
average contribution to the force due to the motion of the
tracer, while the right-hand side contains both the net force
exerted on a fixed tracer and the fluctuations of the force
exerted by bath particles. Unlike in equilibrium, hfðtÞi is
generically nonzero for asymmetric tracers.
Within a systematic adiabatic expansion (D’Alessio, Kafri,

and Polkovnikov, 2016), the memory kernel γijðtÞ is given by
an Agarwal-Kubo-type formula

γijðtÞ ¼ hfiðtÞ∂Xj
logPs(frkð0Þ −X;ukg)jX¼0isc; ð40Þ

where rk and uk are the positions and orientations of the
bath particles, Psðfrk −X;ukgÞ is their many-body steady-
state distribution, and h·is denotes an average with respect to
an ensemble in which the tracer is held fixed. The subscript c
indicates a connected correlation function, i.e., hABic ¼
hABi − hAihBi.
Likewise, the statistics of the fluctuating force fðtÞ are

given by those of
P

k∇Vðrk −XÞ computed with the
tracer held fixed, and where V is the interaction potential
between the tracer and the active particles. For passive baths,

the Boltzmann distribution Psðfrk −X;ukgÞ ∝ e−β
P

kVðrk−XÞ

recovers from Eq. (40) the fluctuation-dissipation relation
γijðtÞ ¼ βhfiðtÞfjð0Þi. Out of equilibrium, this relation is
generically broken, with interesting exceptions (Chun, Gao,
and Horowitz, 2021; Han et al., 2021).

1. Phenomenological description of symmetric tracers

For isotropic tracers, it is common to use a heuristic
suggestion by Wu and Libchaber (2000) to describe their
experiments on passive tracers; see also Fig. 12(a).
They postulated γij¼2ΓTδðt−t0Þδij and hfiðtÞfjð0Þic ¼
ðDTΓ2

Te
−t=τ1=τ1Þδij, with τ1 a characteristic relaxation time

andDT a diffusion coefficient (Maggi et al., 2017). Namely, the
motion of the tracer behaves as an active particle with a mean-
square displacement hX2ðtÞic given by

hX2ðtÞic ¼ 2dDT½t − τ1ð1 − e−t=τ1Þ�: ð41Þ

Equation (41) describes a crossover between a short-time
ballistic motion (∼t2) and a long-time diffusive motion (∼t)
that is illustrated in Fig. 12(c). In the long-time limit, the
particle diffuses as hX2ðtÞic ∼ 2dDTt.
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2. The Markovian approximation

The long-time behavior can be obtained through more
systematic methods, starting with microscopic models and
using Taylor’s dispersion theory (Burkholder and Brady,
2017, 2019; Peng and Brady, 2022) or singular perturbation
methods (Solon and Horowitz, 2022; Jayaram and Speck,
2023). Assuming that γij and hfiðtÞfjð0Þic decay exponen-
tially in time, this leads to a Markovian approximation of
Eq. (39) of the form

0 ¼ −ΓijẊjðtÞ þ ξiðtÞ: ð42Þ

In Eq. (42) ξðtÞ is a Gaussian white noise that satisfies
hξiðtÞξjð0Þic ¼ 2IijδðtÞ, while the friction coefficient Γij and
noise intensity Iij are given by the Green-Kubo relations

Γij ¼
Z

∞

0

dt γijðtÞ; ð43Þ

Iij ¼
Z

∞

0

dt hfiðtÞfjð0Þisc: ð44Þ

This recovers the long-time diffusive behavior postulated by
Wu and Libchaber.
Within the Markovian approximation and in the isotropic

case where Iij ¼ Iδij and Γij ¼ ΓTδij, one can identify an
effective tracer temperature by TT ¼ I=ΓT ¼ DTΓT. For hard-
core tracers, the interpretation of TT extends to an effective
fluctuation-dissipation relation γijðtÞ ≃ T−1

T hfiðtÞfjð0Þic
despite the system being out of equilibrium at the microscopic
scale (Solon and Horowitz, 2022). We note, however, that, in
contrast to equilibrium systems, the effective temperature
depends on the properties of the tracer.
Note that, to model a tracer that is also in contact with a

passive Markovian bath, one adds a thermostat −ΓthẊiðtÞ þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓthT th

p
ηiðtÞ to Eqs. (39) and (42). The effective temperature

then straightforwardly modifies to (Granek, Kafri, and
Tailleur, 2022; Solon and Horowitz, 2022)

TT ¼ I þ ΓthT th

ΓT þ Γth
¼ ΓT

ΓT þ Γth
Ta þ

Γth

ΓT þ Γth
T th; ð45Þ

where Ta ≡ I=ΓT is the active contribution. Note that two
different tracers put in the same bath generically experience
two different temperatures, in contrast with the case of a
passive bath.
The case of a soft tracer brings in interesting differences, as

was recently shown in d ¼ 1 (Granek, Kafri, and Tailleur,
2022). To begin, the fluctuation-dissipation relation survives
only in the limit of a shallow wide tracer, for which the system
converges to an equilibrium distribution ρðrÞ ∝ e−VðrÞ=Teff

such that Ta ¼ Teff ¼ Deff=μ. For small tracers, the local
structure of the active bath around the tracer may enhance its
motion and lead to an effective negative friction coefficient ΓT
(Granek, Kafri, and Tailleur, 2022). Microscopic simulations
and a self-consistent calculation of the nonlinear tracer
response reveal that the negative friction induces a sponta-
neous symmetry breaking and a nonzero average velocity in
the limit ρb → ∞ (Kim, Choe, and Baek, 2023). We note that,
for hard tracers in d > 1, a related effect [called swim thinning
(Burkholder and Brady, 2019)] was reported. The friction
experienced by the tracer is reduced by the active bath
(Burkholder and Brady, 2019; Knežević, Avilés Podgurski,
and Stark, 2021; Peng and Brady, 2022; Jayaram and Speck,
2023), but negative frictions have not yet been reported in this
case. The emergence of a negative friction out of equilibrium
has recently attracted interest. For instance, in addition to the
previously discussed case of a passive tracer in an active bath,
a negative friction is also observed in the converse case, where
an active tracer is pulled through a passive bath (Rizkallah
et al., 2023).

3. Beyond the Markovian approximation

It is well known that some care has to be taken when using a
Markovian description to describe the long-time behavior of
passive tracers. In particular, conservation laws lead to power-
law decaying time correlation functions, which might cause
the integrals [Eqs. (43) and (44)] to diverge (van Beijeren,
1982). For dry scalar active systems, the conserved density
ρðr; tÞ is diffusive and gives rise to slow hydrodynamic
relaxation modes. For a system of size L ≫ lp, the relaxation

FIG. 12. (a) Passive polystyrene tracers immersed in a quasi-
two-dimensional bacterial bath. Adapted fromWu and Libchaber,
2000. (b) Simulation snapshot of a V-shaped passive tracer in a
two-dimensional active bath. Holding the tracer orientation fixed
leads to an average directed motion to the right with velocity
∝−p. From Angelani and Di Leonardo, 2010. (c) Mean-square
displacement for an adiabatic passive tracer in a one-dimensional
active bath (microscopic simulations). The symmetric tracer (the
darker orange symbols) shows a transition from short-time
ballistic to long-time diffusive motion. The dot-dashed red line
depicts the Wu-Libchaber model [Eq. (41)], with the exact
calculation of the diffusivity DT from the adiabatic theory (see
the text) and a fit leading to τ1 ¼ 0.41. The asymmetric tracer (the
lighter blue symbols) shows a long-time superdiffusion. The
dashed black line represents the prediction [Eq. (48)] (no fitting
parameters). All bath parameters are set to unity. From Granek,
Kafri, and Tailleur, 2022.
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time grows as ∼L2. For an infinite system and a fully
symmetric tracer, the long-time tails of the force autocorre-
lation function and of γij have been derived and shown to
decay as ∼t−ðd=2þ1Þ (Granek, Kafri, and Tailleur, 2022; Solon
and Horowitz, 2022; Feng and Hou, 2023), which is identical
to the case of a tracer in a passive diffusive bath (Spohn, 1980;
Hanna, Hess, and Klein, 1981; van Beijeren, 1982). The
Green-Kubo integrals in Eqs. (43) and (44) then converge in
any dimension, and the long-time diffusive behavior is
unaffected.
Real tracers, however, always carry some degree of asym-

metry, which leads to much different behaviors. The under-
lying reason is that the fluctuating force fðtÞ is nonzero on
average, as discussed in Sec. IV.A. Indeed, in the adiabatic
limit hfðtÞi ¼ −p, which endows the tracer with an effective
self-propulsion. Such dynamical rectification of random
motion was first observed numerically by Angelani and Di
Leonardo (2010) [see Fig. 12(b)] and later observed exper-
imentally [in a wet system] (Kaiser et al., 2014). Recently
progress has been made in modeling the motion of asymmetric
tracers (Knežević and Stark, 2020; Granek, Kafri, and
Tailleur, 2022).
The asymmetric tracer’s dynamics has been derived from

first principles in d ¼ 1 (Granek, Kafri, and Tailleur, 2022),
where Eq. (39) continues to hold within an adiabatic expan-
sion. Contrary to the case of the symmetric tracer, where the
long-time tails ∼t−3=2 lead to finite Green-Kubo integrals and
effective long-time diffusion, the asymmetry shifts the decay
to (Granek, Kafri, and Tailleur, 2022; Granek, 2023)

hfðtÞfð0Þic ¼
p2

ρbð4πDefftÞ1=2
þOðt−3=2Þ; ð46Þ

γðtÞ ¼ βeffhfðtÞfð0Þic þOðt−3=2Þ; ð47Þ

rendering the Green-Kubo integrals infinite in d ¼ 1. As long
as the adiabatic approximation holds, one then predicts a
superdiffusive behavior with

hX2ðtÞic ∼
4p2

3ρbΓ2
th

ffiffiffiffiffiffiffiffiffiffiffi
πDeff

p t3=2; ð48Þ

which is illustrated in Fig. 12(c). Likewise, the divergence in
Eq. (43) is manifested in an apparent growth of the friction
coefficient, measured from the average force required to tow
the tracer at a constant velocity, as

ΓðtÞ ∼ μp2

ρbDeff

�
t

πDeff

�
1=2

: ð49Þ

These anomalous properties demonstrate that ratchet effects
may induce a shift in the dynamical exponents caused by
hydrodynamic modes.
Despite the theoretical advancement in the understanding of

passive tracer dynamics, various questions remain open. For
instance, the long-time tails in Eqs. (46) and (47) are expected
to yield logarithmic corrections to the diffusion of an
asymmetric tracer in d ¼ 2, a phenomenon that is yet to be
confirmed. Most importantly, exploring the dynamics in a

controlled setting beyond the adiabatic limit remains an
outstanding technical challenge.

E. Coupled dynamics of passive tracers: Nonreciprocal
interactions and localization

When several mobile tracers are embedded in an active
bath, their long-range interactions, described in Sec. IV.C, lead
to interesting dynamical effects. Here we show how the
nonreciprocal interactions between the tracers lead to phase
transitions and how the interaction between a tracer and its
boundary-induced image leads to a localization transition.
Consider pinned asymmetric objects, each free to rotate

along a fixed axis; see Fig. 11. The density and current
modulations induced by the obstacles generate torques on
each other, leading to a Kuramoto-like dynamics of their
orientations (Baek et al., 2018). Analysis of this dynamics has
shown a transition between a phase where the obstacles’
orientations are locked and one in which they rotate in
synchrony. While for the two-obstacle case studied by
Baek et al. (2018) one observes a smooth crossover between
these regimes, the many-body generalization studied by
Fruchart et al. (2021) leads to bona fide phase transitions;
see Fig. 13(a). Unpinning the two rotors was also shown to
generate traveling bound states (Baek et al., 2018). Similar
bound states were subsequently found for active particles in
passive mass-conserving baths (Dolai, Krekels, and Maes,
2022). It remains an interesting open question whether the
many-body generalization of such states can lead to flocking
or antiflocking, as was predicted via a nonreciprocal Vicsek
model (Fruchart et al., 2021) and a nonreciprocal active Ising
model (Martin et al., 2023).
Another interesting consequence of the nonreciprocal

mediated interaction can be observed for a single asymmetric
tracer in a spherical cavity; see Figs. 13(b) and 13(c). In this
case, the generalized method of images described in Sec. IV.B
determines the density and current modulations as the sum of
contributions from the original tracer and its image upon a
spherical inversion (Ben Dor, Kafri et al., 2022). The
nonreciprocal interactions between the object and its image
lead to a transition from a steady-state distribution localized at
the cavity wall to a distribution localized at its center. We
stress that such a phenomenon is yet another signature of how
different passive and active fluids are. In a dilute passive
diffusive fluid, an object cannot experience any net force in a
homogeneous system. To linear order, the sole force f it can
experience is indeed proportional to ∇ρ. Consequently, in the
steady state ∇ · f ∝ ∇2ρ ¼ 0 since the fluid is diffusive. In
analogy with Earnshaw’s theorem in electrostatics, this rules
out the possibility of a stable equilibrium for an object
immersed in a passive diffusive fluid (Rohwer, Kardar, and
Krüger, 2020; Ben Dor, Kafri et al., 2022). Again, activity
thus leads to a completely different physics.

F. Summary

In this section, we discussed the far-field density and
current modulations induced by asymmetric obstacles and
inclusions in scalar active fluids. This behavior is markedly
different from that of equilibrium systems, where the
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disturbances decay exponentially beyond the correlation
length. Indeed, the power-law decay of density and current
modulations reported for scalar active fluids lead to a rich
dynamics of tracer particles and mobile obstacles. In particu-
lar, we discussed the emergence of nonreciprocal interactions
between inclusions inserted in passive fluids and the phase
transitions that they may generate.

V. BULK DISORDER

As discussed in Sec. IV, localized obstacles have a far-
reaching impact on the properties of active fluids. When
organized coherently, they can, for instance, act as pumps and
generate large-scale flows or density gradients; see Fig. 10.
This raises the question as to whether disordered assemblies of
obstacles can also impact the properties of active fluids. In this
Colloquium, we discuss the case of a quenched potential
disorder, which corresponds to the evolution of a system under
a fixed realization of a random potential. Experimentally,
disorder is expected to be relevant in a range of situations:
bacteria swim in soft disordered agar gel (Berg, 2004) or in a
porous medium (Bhattacharjee and Datta, 2019), while active
colloids (Howse et al., 2007; Bricard et al., 2013; Nishiguchi

and Sano, 2015) or vibrated grains (Narayan, Ramaswamy,
and Menon, 2007; Deseigne, Dauchot, and Chaté, 2010) can
be placed next to rough surfaces.
For equilibrium systems, this question has attracted con-

siderable interest, and many studies have been dedicated to the
static and dynamical properties of passive systems in the
presence of random potentials (Aharony, Imry, and Ma, 1976;
Belanger et al., 1983; Fisher, Fröhlich, and Spencer, 1984;
Imbrie, 1984, 1985; Glaus, 1986; Bricmont and Kupiainen,
1987). We first review the results obtained in the passive case
before turning to recent work on disordered scalar active
matter. To characterize the impact of disorder on a scalar
system, it is natural to consider density-density correlations,
which are encoded in the structure factor. In experiments, the
structure factor can be measured using scattering probes. For a
system defined on a lattice of N sites, the structure factor is
computed as

SðqÞ≡ 1

N

X
r

hϕðrÞϕð0Þi eiq·r; ð50Þ

where ϕðrÞ≡ ρðrÞ − ρ0 measures the density fluctuations, the
brackets stand for steady-state averages in a particular
realization of disorder, and the overline represents an average
over disorder realizations. In the “high-temperature” homo-
geneous phase, the impact of disorder can be computed using
a Landau-Ginzburg field theory, which leads to the addition of
a squared-Lorentzian form to the result in the absence of
disorder (Glaus, 1986; Kardar, 2007),

SðqÞ ∝ 1

ðq2 þ l−2
c Þ2 ; ð51Þ

where lc is the correlation length of the density field. A
natural question is then whether impurities can impact the
existence of the ordered state and the nature of the phase
transition. The first question was addressed some 50 years ago
by Imry and Ma (1975), who showed that the lower critical
dimension below which the system does not admit an ordered
phase is dc ¼ 2. Moreover, Aizenman and Wehr (1989)
showed that the system is also disordered at the marginal
dimension of d¼ 2. This is illustrated in Figs. 14(a) and 14(b),
where the ordered phase is destroyed by impurities and
exhibits short-range correlations.
The active case is markedly distinct: In the homogeneous

phase, the disorder leads to a scale-free steady state with a
structure factor that diverges as (Ro et al., 2021)

SðqÞ ∝
q→0

1

q2
: ð52Þ

As shown in Fig. 15, fluctuations at small q are strongly
enhanced compared to the passive case: The correlation
length is infinite and density-density correlations decay as
hϕðrÞϕð0Þi ∝ r2−d for d > 2 and decay logarithmically
in d ¼ 2.
Beyond creating a long-range correlated fluid, disorder also

has a strong impact on the existence of a long-range ordered
phase. For a system undergoing MIPS, disorder prevents

FIG. 13. (a) Nonreciprocal phase transitions. The nonreciprocal
torque n12 ¼ n12ẑ leads to an effective Kuramoto coupling
j12ϵ12 ∝ n12, where ϵij is the Levi-Civita symbol. The coupling
asymmetry j12 − j21 determines the steady-state frequency Ω and
relative phase of N ≫ 1 identical copies of rotors 1 and 2. When
Ω ≠ 0, parity-time symmetry is spontaneously broken. From
Fruchart et al., 2021. (b),(c) Localization transition of an
asymmetric obstacle in a spherical cavity. The probability density
and typical trajectories of a passive tracer in the active bath are
displayed. The rotational friction is set to (b) Γr ¼ 10−2 and
(c) Γr ¼ 10−5. The particle speed is v ¼ 10−2. All other param-
eters are set to unity. From Ben Dor, Kafri et al., 2022.
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phase separation in both two and three dimensions. Compared
to the passive case, the lower critical dimension is increased
from dc ¼ 2 to dc ¼ 4. As shown in Figs. 14(c) and 14(d), the
phase-separated state is replaced by a frozen scale-free
distribution with large-amplitude density fluctuations.

A. A simple physical picture

To understand the difference between the active and passive
cases, we first recall the results of Sec. IV. At the microscopic
scale, a random potential is generically asymmetric and thus,
acting as a pump, it generates a ratchet current. As we now
argue, the net effect of a dilute collection of randomly placed
pumps is to generate density-density fluctuations consistent
with Eq. (52), as depicted in Fig. 16.
To see this explicitly, consider a dilute distribution of

pumps whose force density we denote by fðrÞ. Each pump
acts as a current source that modifies the density according to
Eq. (32). The contributions from the pumps add up inde-
pendently, resulting in the overall density modulation given by

hϕðrÞi ¼ βeff

Z
ddr0 fðr0Þ · ∇rGðr − r0Þ; ð53Þ

where Gðr − r0Þ ¼ Gðr; r0Þ is the Green’s function of the
Laplacian. Note that for a single pump fðrÞ ¼ pδdðr − r0Þ,
Eq. (53) returns the solution Eq. (30) derived in Sec. IV.A for
an isolated asymmetric inclusion. In Fourier space, the
convolution in Eq. (53) takes the form5

hϕðqÞi ¼ βeffLd=2iq · fðqÞGðqÞ;

where GðqÞ ¼ −L−d=2q−2, q ¼ jqj, and L is the system size.
Assuming Gaussian-distributed uncorrelated pumps with a
typical strength χ, fðqÞ is entirely characterized by

fiðqÞ ¼ 0;

fiðqÞfjðq0Þ ¼ χ2δijδq;−q0 :

For noninteracting particles, the structure factor satisfies
hϕðqÞϕð−qÞi ¼ hϕðqÞihϕð−qÞi such that

FIG. 16. Schematic depiction of disorder acting as a random
array of pumps for active particles leading to a dipolar flow field.

FIG. 14. Comparison between equilibrium and active systems undergoing phase separation. (a) A passive lattice gas with attractive
interaction and (c) an active lattice gas with repulsive interactions may both experience bulk phase separation. (b) When a random
potential is added to the passive system, the phase separation is suppressed, leading to a homogeneous phase with short-range
correlations. (d) In the active case, a scale-free distribution of particles replaces the bulk phase separation. Color encodes density. From
Ro et al., 2021.

FIG. 15. Noninteracting active particles in the presence of a
disordered potential. (a) Snapshot of the density field normalized
by its average value ρðrÞ=ρ0. (b) Structure factor (symbols)
compared to q−2 (red line), as predicted in Eq. (52). The results
are obtained with RTPs on lattices with v ¼ 4 and α ¼ 1, and the
disorder potential is constructed by filling the space with square
ramps with the size l ¼ 5 and the height ΔV ¼ 3.8 in random
locations and orientations.

5In what follows we use the Fourier convention fðqÞ ¼
L−d=2

R
ddr e−iq·rfðrÞ and fðrÞ ¼ L−d=2P

qe
iq·rfðqÞ.
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hϕðqÞϕð−qÞi ¼ β2eff
q4

Xd
i;j¼1

qiqjfiðqÞfjð−qÞ ¼
β2effχ

2

q2
; ð54Þ

which is indeed compatible with the 2D structure factor
presented in Fig. 15.

B. Field-theoretical description

To account for the effects of interactions between the
particles, it is useful to introduce a field-theoretical description
by building upon the insights of the previous section. Since
the quenched random potential translates, through the ratchet
effect, into a quenched random forcing, one can start with a
simple linear field theory of the form

∂

∂t
ϕðr; tÞ ¼ −∇ · jðr; tÞ; ð55Þ

jðr; tÞ ¼ −∇u½ϕ� þ fðrÞ þ
ffiffiffiffiffiffiffi
2D

p
ηðr; tÞ; ð56Þ

where ϕðr; tÞ describes the coarse-grained density fluctua-
tions, jðr; tÞ is the associated current, and ηðr; tÞ is a centered
Gaussian white noise field such that hηiðr; tÞηjðr0; t0Þi ¼
δijδðt − t0Þδðr − r0Þ. The mobility is set to 1 and, as in the

previous section, the force density satisfies fiðrÞ ¼ 0 and
fiðrÞfjðr0Þ ¼ σ2δijδ

dðr − r0Þ. At a linear level in ϕ and to
leading order in a gradient expansion, the effective chemical
potential u is of the form

u½ϕðr; tÞ� ¼ uϕðr; tÞ − K∇2ϕðr; tÞ; ð57Þ

with u; K > 0 to ensure stability.
Before proceeding, we highlight the difference between the

current induced by the force density fðrÞ and the Brownian
noise ηðr; tÞ. To do so, we consider the time-averaged total
current, denoted as

J ¼ 1

Δt

Z
Δt

0

dt
Z

ddr jðr; tÞ; ð58Þ

flowing through the entire system during the time interval Δt
in the presence of disorder and periodic boundary conditions.
The magnitude of J can be characterized by averaging J 2

over both noise and disorder. Direct algebra shows that this
second moment is given by

hJ 2i ¼ dσ2Ld þ 2dDLdΔt−1: ð59Þ

Equation (59) demonstrates that, although the scaling with the
system size is the same for both the random force and noise-
induced terms, the scaling with the time interval is drastically
different. The quenched random force induces a net stationary
current, which remains finite as Δt → ∞. By contrast, the
current fluctuations induced by the Brownian noise decay as
Δt−1 once averaged over the time interval Δt. To verify this
prediction, we measure J by simulating RTPs with and
without disorder, subject to periodic boundary conditions.
The scaling of the second moment with the system size shown

in Fig. 17(a) indeed confirms Eq. (59). In Fig. 17(b), we show
how the second moment scales with the observation time
interval, both with and without disorder. In the absence of
disorder, J is dominated by the time-dependent noise, and its

second moment indeed shows a diffusive scaling hJ 2i ∝ Δt−1
(the red symbols). In the presence of disorder, the ballistic
contribution of the random force dominates the long-time
scaling, as confirmed by our simulation (the blue symbols).
We now turn to the discussion of the density-density

correlations. A direct computation using Eqs. (55)–(57) shows
that the structure factor of the linearized theory is given by

SðqÞ ¼ σ2

q2ðuþ Kq2Þ2 þ
D

ðuþ Kq2Þ : ð60Þ

We note that Eqs. (60) and (54) predict the same small-q
behavior upon identifying σ=u with χβeff . To check the
relevance of nonlinearities, terms of the form sϕnðr; tÞ can
be added to the effective chemical potential u, and their
relevance can be accessed under diffusive scaling r → br and
t → b2t in Eqs. (55) and (56). Since the structure factor
satisfies ϕðqÞϕðq0Þ ∝ q−2δdðqþ q0Þ, the density modulations
in real space are first rescaled as ϕ → b1−d=2ϕ. Accordingly,
any nonlinear term transforms as ϕn → bnð1−d=2Þϕn, and they
are irrelevant for d > 2. The case d ¼ 2 is marginal, and Ro
et al. (2021) showed that the theory is self-consistent up to
length scales such that l ≪ l� with l� ≡ a expðπu2ρ2b=σ2Þ.
Beyond such length scales, which have never been explored
numerically, a different behavior for SðqÞ may emerge.
We now discuss how a generalization of the Imry-Ma

argument predicts the destruction of an ordered phase in
dimensions below the lower critical dimension of dc ¼ 4. To
begin, using a Helmholtz-Hodge decomposition, we write the
random force field as6

fðrÞ ¼ −∇UðrÞ þ ΞðrÞ; ð61Þ

FIG. 17. Scaling of the time-averaged total current with respect
to (a) the system size and (b) the measurement time interval. The
second moment hJ 2i measured in simulation (symbols) is
compared to the scaling trends predicted in Eq. (59) (solid lines).
The parameters are d ¼ 2, particle speed v ¼ 4, the amplitude of
the random potential ΔV ¼ 3.8, Δt ¼ 4000 in (a), L ¼ 800 in
(b), and averaged over 50 realizations of disorder.

6In the reported simulations, periodic boundary conditions were
employed and the Helmholtz-Hodge decomposition also includes
harmonic functions that are linear combinations of constant flows
along the system axes. They do not impact the discussion of the
generalized Imry-Ma argument.
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where UðrÞ is an effective potential that differs from VðrÞ and
the vector field ΞðrÞ satisfies ∇ · ΞðrÞ ¼ 0. We note that Ξ
impacts the current but not the dynamics of the density field or
its distribution. The statistics of fðrÞ imply that

UðqÞUðq0Þ ¼ σ2q−2δdq;−q0 ; ð62Þ

ΞiðqÞΞjðq0Þ ¼ σ2ðδij − qiq0j=q
2Þδdq;−q0 ; ð63Þ

UðqÞΞðq0Þ ¼ 0: ð64Þ

Because we are considering a linear theory and Ξ is diver-
gence free, the dynamics of the density field is equivalent to an
equilibrium dynamics in a potential UðrÞ (Ao, 2004; Kwon,
Ao, and Thouless, 2005). Inspection of Eq. (62) shows that
UðrÞ behaves like a Gaussian free field that is equivalent to a
random surface in d ¼ 2. Its deep and scale-free minima
account for the long-range correlations experienced by the
density field. Furthermore, we can now predict the lower
critical dimension by applying the standard Imry-Ma argu-
ment to an equilibrium dynamics in the presence of the
potential UðrÞ (Imry and Ma, 1975; Aharony, Imry, and Ma,
1976). This entails comparing the surface energy cost of
overturning an ordered domain of linear size l (given by
γld−1, with γ a surface-tension-like coefficient) to the bulk
energy gain of the domain due to a locally favorable disorder
potential. The latter, given by EðlÞ ¼ R

ld ddr0ρ0Uðr0Þ, has a
typical value of EðlÞ ∝ σρ0l1þd=2 that is estimated by noting

that the variance satisfies EðlÞ2 ¼ σ2ρ20l
dþ2. For d < 4, the

surface energy cost is negligible on large enough length
scales, and the system cannot phase separate into macroscopic
domains.
We note that the field theory studied in Eqs. (53)–(56) is

equivalent to that describing passive particles in a random
force field. At the single-particle level, this system has
attracted some attention in the past (Derrida and Pomeau,
1982; Derrida, 1983; Sinai, 1983; Fisher, 1984; Bouchaud
et al., 1990), and the previous analysis extends this work to the
many-body case. We note that, for active particles in a random
potential, the one-dimensional dynamics can be shown to be
equivalent to a Sinai random walk (Ben Dor et al., 2019). In
higher dimensions, the dynamics remains to be studied.

VI. BOUNDARY DISORDER

In equilibrium, boundaries and boundary conditions generi-
cally do not alter bulk phase behaviors, due to the subexten-
sive nature of their contributions to the free energy. This is
illustrated in Fig. 18, where replacing flat confining walls with
rough ones has no impact on bulk phase separation. An
important consequence is that, in simulations or theoretical
analysis, convenient boundary conditions (open or periodic)
are often used to study bulk properties in equilibrium
statistical mechanics.
Boundary disorder can be implemented by confining active

particles using rough boundaries. This can be easily engi-
neered for macroscopic vibrated grains by adapting the setup
of Deseigne, Dauchot, and Chaté (2010). On the microscopic
scale, rough walls can be engineered using microlithography

and reactive ion etching by following Galajda et al. (2007). On
the theoretical side, the disordered boundary can be modeled
using a wall potential Vðx; rkÞ, where x is the coordinate
normal to the wall and rk is a (d − 1)-dimensional vector
parallel to the wall. For example, Vðx; rkÞ can be modeled by
setting Vðx < 0; rkÞ ¼ ∞ and placing wedge-shaped asym-
metric obstacles along the wall whose orientations are chosen
randomly; see Figs. 18(b) and 19(b) for qualitative illustra-
tions. The obstacles then have a finite extent xw in the x̂
direction.
Figure 19 then shows a striking difference with the passive

case: the rough “disordered” walls destroy bulk phase sep-
aration, leading to a nontrivial density distribution. This was
shown to hold even in the macroscopic limit where the
boundaries are sent to infinity. It shows that, even in the

FIG. 19. Impact of (a) flat and (b) disordered walls on phase
separation in active systems. In contrast to the passive case shown
in Fig. 18, (d) simulations of an active lattice gas show that (c) the
disordered boundary destroys the phase separation observed in
the presence of a flat wall, leading to a scale-free distribution of
particles. Color encodes density. From Ben Dor, Ro et al., 2022.

FIG. 18. The impact of (a) flat and (b) disordered walls on phase
separation in passive systems. (c),(d) In the presence of attractive
interactions between particles, simulations of a passive lattice gas
at low temperature show phase separation in both settings. Color
and brightness encode density. From Ben Dor, Ro et al., 2022.
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thermodynamic limit, the bulk behaviors of active systems
with closed or periodic boundary conditions can be markedly
different (Ben Dor, Ro et al., 2022), in stark contrast with
passive systems (away from critical points). As we now
discuss, the far-field density modulations and currents induced
by such a disordered wall and their effects on the bulk
behavior can be computed by modeling the disordered wall
as a collection of force monopoles randomly placed at x ¼ 0

and oriented along the rk surface.

A. A simple physical picture

Again we start by considering the dilute case and describe
the force monopoles using a quenched Gaussian random force
density fðrk; xÞ whose statistics satisfy

fiðrk; xÞ ¼ 0;

fiðrk; xÞfjðr0k; x0Þ ¼ 2χ2δkijδðxÞδðx0Þδðd−1Þðrk − r0kÞ; ð65Þ

where χ sets the scale of the force density, δkij ¼ 1 if i ¼ j ≠ x

and δkij ¼ 0 otherwise. As in the bulk disorder case, the
density modulations in the system satisfy

hϕðrÞi ¼ βeff

Z
ddr0 fðr0Þ · ∇rGwðr; r0Þ; ð66Þ

but this time Gwðr; r0Þ is the Green’s function associated with
a Poisson equation in a half-infinite system with Neumann
boundary conditions at x ¼ 0; see Sec. IV.B. Using this,
one finds that the two-point correlation function satisfies
(Ben Dor, Ro et al., 2022)

hϕðx; rkÞϕðx0; r0kÞi ¼
2βeffχðxþ x0Þ

Sd½ðxþ x0Þ2 þ jΔrkj2�d=2
; ð67Þ

with Sd the d-dimensional solid angle and Δrk ¼ rk − r0k.
Equation (67) shows that there are large-scale density mod-
ulations that decay in amplitude but increase in range as one
looks further from the wall.
The heuristic prediction [Eq. (67)] is verified numerically in

Fig. 20 using microscopic simulations of noninteracting
particles in two space dimensions. To do so, the prediction
Eq. (67) for x ¼ x0 can be rewritten as

hϕðx; yÞϕðx; yþ ΔyÞi
hϕðx; yÞϕðx; yÞi ¼ 1

1þ ½Δy=ð2xÞ�2 ≡ S
�
Δy
x

�
; ð68Þ

which highlights that the correlations along y increase linearly
with the distance x to the wall.
An illuminating way to understand these results is to

consider the currents generated in the system: the ratchet
mechanism generates local currents in the active fluid next to
the wall. Since the number of particles is conserved, this
microscopic stirring develops into large-scale eddies in the
bulk. In fact, on large scales the current can be estimated as
Jðx; rkÞ ≈ −Deff∇ϕðx; rkÞ, which leads to

hJðx;qkÞ · J�ðx;kkÞi
¼ 2ddðμχÞ2jqkj2e−2jqkjx × πd−1δðd−1Þðqk þ kkÞ: ð69Þ

The current-current correlations first increase for small jqkj
and then are exponentially suppressed for jqkj > x−1. Like the
density-density correlations, the eddies have a transverse
extent that grows linearly with the distance x to the wall,
as verified in Fig. 21 using a scaling form similar to that
of Eq. (68).

B. Linear field theory

To account for interactions, we follow Sec. V.B and use the
linear field theory equations (55) and (56) to describe the
evolution of the density fluctuations ϕðr; tÞ. This time, how-
ever, the statistics of the random force field fðrÞ satisfy

FIG. 20. Disorder-averaged two-point density correlation func-
tion of noninteracting RTPs in two dimensions in the presence of
a disordered wall at x ¼ 0. (a) The two-point correlation function
as x and Δy are varied, calculated from simulations, is indicated
by the color map (the darker color nearby the origin indicates
large correlation). The value of Aρ ≡ lpS−1d ð2βeffχÞ2 is obtained
from a fit of the data to Eq. (67). The theoretical prediction of
Eq. (67) is then used to produce dashed contour lines that match
the levels of the color bar. Both theory and simulations are
normalized by Aρ. (b) Averification of the scaling form [Eq. (68)]
for the density-density correlation function. The data shown in (a)
for four different distances x from the wall are collapsed onto a
single curve, as predicted. From Ben Dor, Ro et al., 2022.
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fxðx; rkÞ ¼ 0; ð70Þ

fiðx; rkÞ ¼ 0;

fiðx; rkÞfjðx0; r0kÞ ¼ 2σ2δijδðxÞδðx0Þδðd−1Þðrk − r0kÞ; ð71Þ

where i and j label directions parallel to thewall. The amplitude
σ of the random force density depends on the average bulk
density ρb but is, to leading order, independent of ϕ. Direct
algebra shows that this linear field theory predicts density
modulations and currents compatible with the prediction
[Eqs. (68) and (69)] on large length scales upon identify-
ing 2χβeff ¼ σ=u.
The self-consistency of the linear theory can be checked

using a scaling argument similar to what was employed for the
bulk disorder in Sec. V.B. This time, nonlinearities are found
to be irrelevant for d > 1. We now discuss how the field theory
allows the impact of boundary disorder on bulk phase
separation in active fluids to be estimated.

C. The effect of disordered boundaries on MIPS

Again, one uses the Helmholtz-Hodge decomposition (61)
of the random forcing to identify an effective potential UðrÞ.
Since the effective potential satisfies ∇2UðrÞ ¼ −∇ · fðrÞ,
Eqs. (70) and (71) imply that the statistics of U obey

UðrÞ ¼ 0; ð72Þ

UðrÞUðr0Þ ¼ σ2

Sd

xþ x0

½ðxþ x0Þ2 þ jΔrkj2�d=2
: ð73Þ

This can then be used to compare the surface energy γld−1 of
an ordered droplet of linear size l to its bulk energyR
ld d

drUðrÞ. Using Eq. (73), one can estimate the latter to
scale as lðdþ1Þ=2 so that the surface energy is unable to
stabilize a macroscopic droplet below a lower critical

dimension dc ¼ 3. As shown in Fig. 19, the phase-separated
state is indeed replaced by scale-free density modulations in
d ¼ 2. This result highlights how boundaries can play a much
more important role in active systems than in their passive
counterparts.

VII. CONCLUSION AND PERSPECTIVES

In this Colloquium, we have reviewed the anomalous
mechanical properties of dry scalar active systems that have
recently attracted significant attention. We have shown how
the emergence of ratchet currents and the lack of conservation
of momentum lead to a wide variety of phenomena, from the
lack of an equation of state for pressure to the destruction of
bulk phase separation by boundary disorder, all of which can
be captured within a unifying perspective. These phenomena
endow active systems with properties that are strikingly
different from those of passive matter, whose consequences
are only starting to be explored. Many open challenges now
need to be addressed.
• While the physics of pressure starts to be well under-
stood, surface tension remains an elusive concept in
active-matter systems. Its definition remains under de-
bate (Bialké et al., 2015; Bettolo Marconi Marini,
Maggi, and Melchionna, 2016; Paliwal et al., 2017;
Hermann, de las Heras, and Schmidt, 2019; Omar,
Wang, and Brady, 2020; Fausti et al., 2021; Lauersdorf
et al., 2021) to the extent that there is not even an
agreement on the sign of the liquid-gas surface tension
experienced by an interface in a system undergoing
MIPS. Beyond the sole concept of surface tension,
the entire question of wetting in active matter is
largely uncharted territory (Sepúlveda and Soto,
2018; Pérez-González et al., 2019; Turci, Wilding,
and Jack, 2024; Zhao et al., 2024).

• From a broader perspective, the fate of most thermody-
namic state functions in active systems remains to be
explored. We do not understand either the fate of, say, the
chemical potential in active systems or what the new
state functions are, if any, when there is no equation of
state for pressure. This discussion is particularly relevant
when one tries to put active matter to work, say, to build
active engines. This is a topic that has attracted sub-
stantial interest lately, at both the theoretical (Zakine
et al., 2017; Pietzonka et al., 2019; Ekeh, Cates, and
Fodor, 2020; Holubec and Marathe, 2020; Fodor and
Cates, 2021; Datta, Pietzonka, and Barato, 2022; Speck,
2022b) and experimental levels (Di Leonardo et al.,
2010; Sokolov et al., 2010; Maggi, Saglimbeni
et al., 2015).

• Beyond the desire to extract work from active-matter
systems, the question of their control has also attracted
significant attention. This is true at the macroscopic
scale, with the challenging issues involved in controlling
drone and robot swarms (Vásárhelyi et al., 2018;
Ben Zion et al., 2023), but also at the microscopic
one, where active particles have been suggested as a
possible way to implement targeted delivery at the
micrometer scale (Koumakis et al., 2013).

FIG. 21. Fourier transform along the ŷ direction of the current-
current correlation function measured at a distance x from the
wall and averaged over disorder. The data are obtained for three
values of x and normalized by a factor AJ ≡ 2dð2πÞd−1ðμχÞ2. As
predicted by the theory, the data can be collapsed onto a single
curve corresponding to Eq. (69) by properly scaling the abscissa
and the ordinates. From Ben Dor, Ro et al., 2022.
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• All the phenomena discussed in this Colloquium are
addressed in the limit where boundaries and inclusions
are either immobile or move on timescales much longer
than the relaxation time of the active bath. The response
of active systems to time-dependent perturbations, how-
ever, has been only lightly studied (Sándor et al., 2017;
Frangipane et al., 2018; Maggi et al., 2018; Rohwer
et al., 2018; Rohwer, Kardar, and Krüger, 2020).

• Furthermore, in this Colloquium we have focused on dry
scalar active matter to single out the interesting phenom-
ena that are due solely to the interplay between activity
and mechanical forces. Other situations, where more
hydrodynamic fields are relevant, are bound to lead to an
even richer physics. In particular, the role of obstacles,
boundaries, and disorder in wet active matter is a current
frontier in the field (Lauga and Powers, 2009; Takagi
et al., 2014; Sipos et al., 2015; Spagnolie et al., 2015;
Elgeti and Gompper, 2016; Creppy et al., 2019; Maitra,
2023; de Pirey, Kafri, and Ramaswamy, 2024). Given the
rich behaviors already observed in scalar active systems,
it is also natural to expect aligning active matter to lead to
an even richer physics. The responses of polar systems
to perturbations (Codina et al., 2022), fluctuations
(Benvegnen et al., 2023), and disorder (Peruani and
Aranson, 2018; Toner, Guttenberg, and Tu, 2018b;
Chardac et al., 2021; Duan et al., 2021) have indeed
attracted substantial attention, but our understanding of
this case is much less advanced than in the simpler
setting discussed in this Colloquium.

Finally, much of the research thus far has been based on
theoretical studies of minimal models. Beyond the previ-
ously discussed questions, how the anomalous mechanical
properties can be measured or harnessed in experimental
active-matter systems is an interesting research direction
(Junot et al., 2017). Similarly, the far-field density and
current modulations induced by localized obstacles, as well
as the scale-free state induced by bulk and boundary
disorder, are within reach of modern experimental active-
matter systems (Bhattacharjee and Datta, 2019; Chardac
et al., 2021; Takaha and Nishiguchi, 2023). Their measure-
ment is an ongoing challenge.
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APPENDIX: MOTILITY-INDUCED PHASE SEPARATION

In this appendix, we provide an overview of the hydro-
dynamic description of MIPS in Sec. A.1, which legitimates
the linear field theory employed in Secs. Vand VI. We discuss
in Sec. A.2 the richer physics encountered in a variety of
MIPS-related phenomena. The impact of bulk and boundary
disorders in such systems remains uncharted territory.

1. A minimal hydrodynamic description of MIPS

MIPS was first observed in collections of RTPs interacting
via quorum sensing, which belong to the class of quorum-
sensing active particles (QSAPs) [see Fig. 22(a)] whose self-
propulsion speed vp ¼ μfp decreases rapidly enough as the
local density increases (Tailleur and Cates, 2008). For this
system, it is possible to derive a fluctuating hydrodynamics for
the density field as

∂tρ̂ ¼ ∇ · ½ρ̂Deff∇uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ̂Deff

p
Λ�: ðA1Þ

In Eq. (A1), the density field is constructed from theN particle
positions as

ρ̂ðr; tÞ≡XN
i¼1

δ½r − riðtÞ�; ðA2Þ

Deffðr; ½ρ̂�Þ ¼ v2ðr; ½ρ̂�Þτ=d is the large-scale diffusivity,
uðr; ½ρ̂�Þ ¼ log [ρ̂ðrÞvðr; ½ρ̂�Þ] is a nonequilibrium chemical
potential, and Λ is a centered Gaussian white noise of unit
variance and delta correlated in space. The derivation of

FIG. 22. (a) MIPS in ABPs interacting via quorum sensing
showing a liquid-gas phase separation. From Solon, Cates, and
Tailleur, 2015. (b) MIPS in ABPs interacting via a stiff repulsion
showing a mosaic of hexatic domains and gas inclusions in the
dense phase. The color and brightness indicate the direction of the
hexatic order. From Caporusso et al., 2020. (c) MIPS in ABPs
interacting via harmonic repulsion showing a distribution of gas
bubbles in the dense phase. The midregion (warmer colors) has a
higher density. From Shi et al., 2020. (d) MIPS in a mixture of
ABPs and passive Brownian particles showing propagating
interfaces in the direction indicated by the black arrows. From
Wysocki, Winkler, and Gompper, 2016.
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Eq. (A1) relies on a diffusive approximation of the micro-
scopic run-and-tumble dynamics (Tailleur and Cates, 2008;
Cates and Tailleur, 2013; Solon, Cates, and Tailleur, 2015) and
on stochastic calculus (Dean, 1996; Solon, Cates, and
Tailleur, 2015).
In a system with a homogeneous density ρ0, the chemical

potential can be written as u ¼ log [ρ0vðr; ½ρ0�Þ]≡ f0ðρ0Þ,
where fðρ0Þ is a Landau-like free energy density. For all
density values such that f00ðρ0Þ < 0, a homogeneous system
is linearly unstable and separates into liquid and gas phases.
This instability defines a spinodal region. To predict the
coexisting “binodal” densities and the phase diagram of the
system, one needs to consider inhomogeneous density
profiles. The mapping onto an equilibrium theory then
breaks down because u generally cannot be written as the
functional derivative of a free energy F ½ρ�. To leading order
in a gradient expansion, however, a predictive theory can be
formulated to determine the phase diagram (Solon et al.,
2018a, 2018b).
Active particles interacting via pairwise forces (PFAPs)

provide another system for which an explicit coarse graining
of the microscopic dynamics is possible. In the presence of
repulsive interactions, it has led to a predictive theory for
MIPS. This case is significantly more involved than QSAPs,
but a series of articles have led to an understanding of the
spinodal instability, first, and more recently to the prediction
of the binodals (Fily and Marchetti, 2012; Redner, Hagan, and
Baskaran, 2013; Stenhammar et al., 2014; Solon, Stenhammar
et al., 2015; Takatori and Brady, 2015; Solon et al., 2018a,
2018b; Speck, 2021).
An alternative route to account for MIPS is to follow

phenomenological approaches and construct a hydrodynamic
description for a fluctuating coarse-grained density field ρ that
includes all terms allowed by symmetry (Wittkowski et al.,
2014). At the fourth order in a gradient expansion, one obtains
active model Bþ dynamics (Tjhung, Nardini, and Cates,
2018),

∂tρ ¼ −∇ · ½Jþ
ffiffiffiffiffiffiffiffiffiffiffi
2DM

p
Λ�; ðA3Þ

J=M ¼ −∇
�
δF
δρ

þ λj∇ρj2
�
þ ζð∇2ρÞ∇ρ; ðA4Þ

where F ¼ R
ddr½fðρÞ þ κj∇ρj2� and fðρÞ again plays the

role of a Landau free energy density. All coefficients D, M,
κ, λ, and ζ depend in principle on ρ. The λ and ζ terms both
break time-reversal symmetry (Nardini et al., 2017; Tjhung,
Nardini, and Cates, 2018), and the dynamics in Eqs. (A3)
and (A4) cannot be derived from a free energy as in regular
model B. Active model Bþ is thus a generalization of
Eq. (A1), which accounts for MIPS in a broader set of
systems. Using the methods developed by Solon et al.
(2018a, 2018b), it is again possible to predict the coexist-
ing densities of a fully phase-separated system. An inter-
esting difference from equilibrium physics is that the
interfacial terms contribute to the results (Wittkowski et al.,
2014).

2. Beyond the simple MIPS scenario

Equations (A3) and (A4) predict a richer physics than the
previously discussed simple MIPS scenario: for large values
of jζj, one observes a reversed Ostwald ripening whereby
small droplets grow at the expense of larger ones (Tjhung,
Nardini, and Cates, 2018). In the phase coexistence regime,
this leads to a dense phase that contains droplets of the dilute
phase evolving with complex dynamics. This is reminiscent of
what has been observed in simulations of PFAPs, where the
droplet sizes are found to be algebraically distributed, leading
to the critical dense phase (Caporusso et al., 2020; Shi et al.,
2020) shown in Fig. 22(c).
Besides the nature of the phase-separated state, the critical

properties of MIPS have also attracted attention. Conflicting
results have been reported regarding the critical point (Speck,
2022a). It has been measured and argued to have exponents in
either the Ising universality class (Partridge and Lee, 2019;
Maggi et al., 2021, 2022) or another one (Caballero, Nardini,
and Cates, 2018; Siebert et al., 2018), and the effect, or
absence thereof, of bubbles on the critical point remains
unclear (Caballero, Nardini, and Cates, 2018).
The previously described microscopic systems display

interesting properties beyond those captured solely by the
dynamics of their density field, and thus fall outside the
scope of this Colloquium. For instance, the dense phases
observed in d ¼ 2 simulations of PFAPs have revealed a rich
structure: they are found either in a disordered liquid form
(Fily and Marchetti, 2012) for soft repulsive potentials or as a
mosaic of hexatic domains with different orientations for
stiffer ones; see Redner, Hagan, and Baskaran (2013) and
Digregorio et al. (2018) and Fig. 22(b). Furthermore, the
hexatic phase observed in the passive limit of this system
survives the addition of activity (Digregorio et al., 2018) and
has recently attracted substantial attention (Digregorio et al.,
2019). At high density, active systems exhibit a glassy
dynamics that has been observed experimentally (Angelini
et al., 2011; Garcia et al., 2015; Klongvessa et al., 2019)
and numerically (Levis and Berthier, 2015; Berthier, Flenner,
and Szamel, 2017; Berthier, Flenner, and Szamel, 2019;
Klongvessa et al., 2019).
Finally, rich physical phenomena occur in mixtures of

scalar active systems. For example, mixtures of active and
passive particles interacting via pairwise repulsion can demix
(Weber, Weber, and Frey, 2016; Ilker and Joanny, 2020) or
jointly undergo MIPS (Stenhammar et al., 2015), while mixed
species of QSAPs can either segregate or colocalize (Curatolo
et al., 2020). Out of equilibrium, one would generically expect
the interactions between two species to be nonreciprocal.
Even for PFAPs, which obey Newton’s third law of action and
reaction microscopically, the large-scale description of a
mixture of active and passive particles features nonreciprocal
couplings (Wittkowski, Stenhammar, and Cates, 2017). When
strong enough, the nonreciprocity gives rise to propagating
patterns, as shown using a phenomenological theory (Saha,
Agudo-Canalejo, and Golestanian, 2020; You, Baskaran, and
Marchetti, 2020) and observed in mixtures of active and
passive ABPs (Wysocki, Winkler, and Gompper, 2016) [see
Fig. 22(d)], as well as for mixtures of QSAPs (Dinelli
et al., 2022).
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Vibrated Polar Disks,” Phys. Rev. Lett. 105, 098001.

Digregorio, P., D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella,
and I. Pagonabarraga, 2018, “Full Phase Diagram of Active
Brownian Disks: From Melting to Motility-Induced Phase
Separation,” Phys. Rev. Lett. 121, 098003.

Digregorio, P., D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella,
and I. Pagonabarraga, 2019, “2D melting and motility induced
phase separation in active Brownian hard disks and dumbbells,”
J. Phys. Conf. Ser. 1163, 012073.

Di Leonardo, R., L. Angelani, D. Dell’Arciprete, G. Ruocco, V.
Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Angelis, and E.
Di Fabrizio, 2010, “Bacterial ratchet motors,” Proc. Natl. Acad. Sci.
U.S.A. 107, 9541–9545.

Dinelli, A., J. O’Byrne, A. Curatolo, Y. Zhao, P. Sollich, and J.
Tailleur, 2022, “Non-reciprocity across scales in active mixtures,”
arXiv:2203.07757.

Dittrich, F., T. Speck, and P. Virnau, 2021, “Critical behavior in active
lattice models of motility-induced phase separation,” Eur. Phys. J. E
44, 53.

Dolai, P., S. Krekels, and C. Maes, 2022, “Inducing a bound state
between active particles,” Phys. Rev. E 105, 044605.

Duan, Y., B. Mahault, Y. Ma, X. Shi, and H. Chaté, 2021, “Break-
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“Activity waves and freestanding vortices in populations of
subcritical Quincke rollers,” Proc. Natl. Acad. Sci. U.S.A. 118,
e2104724118.

Maes, C., 2020, “Fluctuating Motion in an Active Environment,”
Phys. Rev. Lett. 125, 208001.

Maggi, C., L. Angelani, G. Frangipane, and R. Di Leonardo, 2018,
“Currents and flux-inversion in photokinetic active particles,”
Soft Matter 14, 4958–4962.

Maggi, C., N. Gnan, M. Paoluzzi, E. Zaccarelli, and A. Crisanti,
2022, “Critical active dynamics is captured by a colored-noise
driven field theory,” Commun. Phys. 5, 55.

Maggi, C., U. M. B. Marconi, N. Gnan, and R. Di Leonardo, 2015,
“Multidimensional stationary probability distribution for interact-
ing active particles,” Sci. Rep. 5, 10742.

Maggi, C., M. Paoluzzi, L. Angelani, and R. Di Leonardo, 2017,
“Memory-less response and violation of the fluctuation-dissipation
theorem in colloids suspended in an active bath,” Sci. Rep. 7,
17588.

Maggi, C., M. Paoluzzi, A. Crisanti, E. Zaccarelli, and N. Gnan,
2021, “Universality class of the motility-induced critical point in
large scale off-lattice simulations of active particles,” Soft Matter
17, 3807–3812.

Maggi, C., F. Saglimbeni, M. Dipalo, F. De Angelis, and
R. Di Leonardo, 2015, “Micromotors with asymmetric shape that
efficiently convert light into work by thermocapillary effects,”
Nat. Commun. 6, 7855.

Granek et al.: Colloquium: Inclusions, boundaries, and disorder …

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 031003-25

https://doi.org/10.1002/SERIES2007
https://doi.org/10.1088/0305-4470/14/12/004
https://doi.org/10.1103/PhysRevE.90.062312
https://doi.org/10.1103/PhysRevE.90.062312
https://doi.org/10.1103/PhysRevLett.112.238104
https://doi.org/10.1103/PhysRevLett.112.238104
https://doi.org/10.1103/PhysRevLett.123.268002
https://doi.org/10.1039/C4SM00550C
https://doi.org/10.1103/PhysRevE.102.060101
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1103/PhysRevResearch.2.023200
https://doi.org/10.1103/PhysRevResearch.2.023200
https://doi.org/10.1103/PhysRevLett.53.1747
https://doi.org/10.1007/BF01220505
https://doi.org/10.1103/PhysRevLett.35.1399
https://doi.org/10.1103/PhysRevX.10.021035
https://doi.org/10.1209/0295-5075/acdf1a
https://doi.org/10.1103/PhysRevLett.119.028002
https://doi.org/10.1103/PhysRevLett.119.028002
https://doi.org/10.1103/PhysRevLett.112.158101
https://doi.org/10.1103/PhysRevLett.108.268307
https://doi.org/10.1038/s41586-020-2086-2
https://doi.org/10.1038/s41586-020-2086-2
https://arXiv.org/abs/2304.01645
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1088/1367-2630/abc91e
https://doi.org/10.1038/s41598-021-02103-7
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1103/PhysRevE.95.030601
https://doi.org/10.1073/pnas.1107046108
https://doi.org/10.1073/pnas.1107046108
https://doi.org/10.1073/pnas.0506347102
https://doi.org/10.1073/pnas.0506347102
https://doi.org/10.1039/D1SM00350J
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1103/PhysRevLett.103.198103
https://doi.org/10.1103/PhysRevLett.103.198103
https://doi.org/10.1209/0295-5075/111/60006
https://doi.org/10.1209/0295-5075/102/50007
https://doi.org/10.1126/science.1209042
https://doi.org/10.1103/PhysRevLett.122.248102
https://doi.org/10.1073/pnas.2104724118
https://doi.org/10.1073/pnas.2104724118
https://doi.org/10.1103/PhysRevLett.125.208001
https://doi.org/10.1039/C8SM00788H
https://doi.org/10.1038/s42005-022-00830-5
https://doi.org/10.1038/srep10742
https://doi.org/10.1038/s41598-017-17900-2
https://doi.org/10.1038/s41598-017-17900-2
https://doi.org/10.1039/D0SM02162H
https://doi.org/10.1039/D0SM02162H
https://doi.org/10.1038/ncomms8855


Maitra, A., 2023, “Two-dimensional long-range uniaxial order in
three-dimensional active fluids,” Nat. Phys. 19, 733–740.

Malakar, K., A. Das, A. Kundu, K. V. Kumar, and A. Dhar, 2020,
“Steady state of an active Brownian particle in a two-dimensional
harmonic trap,” Phys. Rev. E 101, 022610.

Mallory, S. A., A. Šarić, C. Valeriani, and A. Cacciuto, 2014,
“Anomalous thermomechanical properties of a self-propelled
colloidal fluid,” Phys. Rev. E 89, 052303.

Mallory, S. A., C. Valeriani, and A. Cacciuto, 2014, “Curvature-
induced activation of a passive tracer in an active bath,” Phys. Rev.
E 90, 032309.

Marchetti, M. C., J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J.
Prost, M. Rao, and R. A. Simha, 2013, “Hydrodynamics of soft
active matter,” Rev. Mod. Phys. 85, 1143–1189.

Martin, D., J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini, J. Tailleur,
and F. vanWijland, 2021, “Statistical mechanics of active Ornstein-
Uhlenbeck particles,” Phys. Rev. E 103, 032607.

Martin, D., D. Seara, Y. Avni, M. Fruchart, and V. Vitelli, 2023, “An
exact model for the transition to collective motion in nonreciprocal
active matter,” arXiv:2307.08251.

Massana-Cid, H., C. Maggi, G. Frangipane, and R. Di Leonardo,
2022, “Rectification and confinement of photokinetic bacteria in an
optical feedback loop,” Nat. Commun. 13, 2740.

Miller, M. B., and B. L. Bassler, 2001, “Quorum sensing in bacteria,”
Annu. Rev. Microbiol. 55, 165–199.

Mognetti, B. M., A. Šarić, S. Angioletti-Uberti, A. Cacciuto, C.
Valeriani, and D. Frenkel, 2013, “Living Clusters and Crystals from
Low-Density Suspensions of Active Colloids,” Phys. Rev. Lett.
111, 245702.

Morin, A., N. Desreumaux, J. Caussin, and D. Bartolo, 2017,
“Distortion and destruction of colloidal flocks in disordered
environments,” Nat. Phys. 13, 63–67.

Narayan, V., S. Ramaswamy, and N. Menon, 2007, “Long-lived giant
number fluctuations in a swarming granular nematic,” Science 317,
105–108.

Nardini, C., É. Fodor, E. Tjhung, F. van Wijland, J. Tailleur,
and M. E. Cates, 2017, “Entropy Production in Field Theories
without Time-Reversal Symmetry: Quantifying the Non-
Equilibrium Character of Active Matter,” Phys. Rev. X 7,
021007.

Nealson, K. H., T. Platt, and J. W. Hastings, 1970, “Cellular control
of the synthesis and activity of the bacterial luminescent system,”
J. Bacteriol. 104, 313–322.

Ni, R., M. A. Cohen Stuart, and P. G. Bolhuis, 2015, “Tunable Long
Range Forces Mediated by Self-Propelled Colloidal Hard Spheres,”
Phys. Rev. Lett. 114, 018302.

Nikola, N., A. P. Solon, Y. Kafri, M. Kardar, J. Tailleur, and R.
Voituriez, 2016, “Active Particles with Soft and Curved Walls:
Equation of State, Ratchets, and Instabilities,” Phys. Rev. Lett. 117,
098001.

Nishiguchi, D., and M. Sano, 2015, “Mesoscopic turbulence and
local order in Janus particles self-propelling under an ac electric
field,” Phys. Rev. E 92, 052309.

O’Byrne, J., A. Solon, J. Tailleur, and Y. Zhao, 2023, “An
introduction to motility-induced phase separation,” in Out-of-
Equilibrium Soft Matter: Active Fluids, Soft Matter Series, edited
by Christina Kurzthaler, Luigi Gentile, and Howard A. Stone
(Royal Society of Chemistry, London), Chap. 4.

O’Byrne, J., and J. Tailleur, 2020, “Lamellar to Micellar Phases
and Beyond: When Tactic Active Systems Admit Free Energy
Functionals,” Phys. Rev. Lett. 125, 208003.

Omar, A. K., H. Row, S. A. Mallory, and J. F. Brady, 2023,
“Mechanical theory of nonequilibrium coexistence and

motility-induced phase separation,” Proc. Natl. Acad. Sci. U.S.A.
120, e2219900120.

Omar, A. K., Z. Wang, and J. F. Brady, 2020, “Microscopic origins of
the swim pressure and the anomalous surface tension of active
matter,” Phys. Rev. E 101, 012604.

Palacci, J., C. Cottin-Bizonne, C. Ybert, and L. Bocquet, 2010,
“Sedimentation and Effective Temperature of Active Colloidal
Suspensions,” Phys. Rev. Lett. 105, 088304.

Palacci, J., S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin,
2013, “Living crystals of light-activated colloidal surfers,” Science
339, 936–940.

Paliwal, S., V. Prymidis, L. Filion, and M. Dijkstra, 2017, “Non-
equilibrium surface tension of the vapour-liquid interface of active
Lennard-Jones particles,” J. Chem. Phys. 147, 84902.

Paliwal, S., J. Rodenburg, R. van Roij, and M. Dijkstra, 2018,
“Chemical potential in active systems: Predicting phase equilib-
rium from bulk equations of state?,” New J. Phys. 20, 015003.

Partridge, B., and C. F. Lee, 2019, “Critical Motility-Induced Phase
Separation Belongs to the Ising Universality Class,” Phys. Rev.
Lett. 123, 068002.

Paxton, W. F., K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo,
Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, 2004,
“Catalytic nanomotors: autonomous movement of striped nano-
rods,” J. Am. Chem. Soc. 126, 13424–13431.

Peng, Z., and J. F. Brady, 2022, “Forced microrheology of active
colloids,” J. Rheol. 66, 955–972.
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