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The distribution and heritability of many traits depends on numerous loci in the genome. In general,

the astronomical number of possible genotypes makes the system with large numbers of loci

difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection

and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE)

in which the dynamics of the full genotype distribution, including correlations between alleles at

different loci, can be parametrized by the allele frequencies. This review provides a simplified

exposition of the concept and mathematics of QLE which is central to the statistical description of

genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s

‘‘fundamental theorem,’’ along with Wright’s adaptive landscape, are shown to emerge within QLE

from the dynamics of the genotype distribution. This is followed by a discussion under what

circumstances QLE is applicable, and what the breakdown of QLE implies for the population

structure and the dynamics of selection. Understanding the fundamental aspects of multilocus

evolution obtained through simplified models may be helpful in providing conceptual and computa-

tional tools to address the challenges arising in the studies of complex quantitative phenotypes of

practical interest.
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I. INTRODUCTION

R.A. Fisher’s celebrated ‘‘fundamental theorem of natural
selection,’’ relating the rate of change in the average fitness to
the genetic variance in fitness, occupies a place in population
genetics similar to Newton’s F ¼ ma in physics. Yet con-
ceptually Fisher’s law and the whole subject of ‘‘quantitative
genetics’’ (QG) (Falconer and Mackay, 1996; Lynch and
Walsh, 1998), which studies the response of quantitative traits
to selection, is closer to thermodynamics. Thermodynamics is
a phenomenological description of readily measurable physi-
cal properties (e.g., average energy or pressure) of a large
ensemble of molecules. Quantitative genetics is a phenome-
nological description of readily observable phenotypic traits
of a population. Thermodynamics takes macroscopic aver-
ages over the random motion of individual molecules in
thermal equilibrium. Quantitative genetics similarly focuses
on the behavior of population-wide averages (and variances)
over many genetically diverse individuals. The genetic com-
position of the population is governed by natural selection
and random drift along with recombination and mutation, all
acting on individuals. The phenotype distribution is related to
the genotype distribution by the largely unknown genotype-
to-phenotype map, which is further obscured by environmen-
tal effects which can cause phenotypic variation even be-
tween genetically identical individuals. Yet deterministic
laws of thermodynamics emerge despite the complexity and
chaos of molecular motion. In fact, they emerge thanks to the
microscopic complexity and chaos and are made possible by
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the extensive self-averaging that dominates macroscopic be-
havior of physical matter. Similarly, simple laws of quantita-
tive population genetics emerge when phenotypic traits
depend on large numbers of polymorphic genetic loci.

While the analogy between QG and thermodynamics is
most appealing and has been noted by many including R. A.
Fisher himself (Fisher, 1930), see Iwasa (1988), Sella and
Hirsh (2005), and Barton and Vladar (2009) for recent work,
fundamental issues such as the lack of an energylike con-
served quantity in population genetics impede direct tran-
scription of thermodynamic laws to QG. Instead, the analogy
must be pursued as an approach to the construction of a
coarse-grained phenomenological theory bridging the gap
between ensemble averaged (read population averaged) ob-
servables and the hidden microscale (read individual geno-
type) dynamics. One must be careful to define an averaging
ensemble that equilibrates on the time scale of the observa-
tion, e.g., the response to selection in QG. In particular, as we
illustrate in Fig. 1, dynamics in sexually reproducing popu-
lations are characterized by two widely different time scales:
(1) mating and recombination reshuffle the polymorphic loci,

allowing exploration of the space of genotypes on a short time

scale; and (2) mutation and population drift control genetic

variation on much longer time scales, often long enough to

render the ensemble meaningless.
The bridge between the dynamics of the genotype distri-

bution and the coarse-grained, QG-type description is built on

understanding multilocus evolution. Our review focuses on

the intermediate time scale in the above-mentioned hierarchy.

We show how the genotype distribution Pðg; tÞ can be pa-

rametrized by slowly varying allele frequencies, while mating

and recombination lead to rapid equilibration of Pðg; tÞ given
a set of allele frequencies. In this ensemble trait distributions

are determined by allele frequencies and the dynamics of trait

averages can be expressed in terms of the dynamics of allele

frequencies. This in turn gives rise to the familiar laws of

quantitative genetics in terms of additive variances and co-

variances. In this sense, a statistical multilocus theory plays

the role of statistical mechanics, which explains how the

deterministic laws of thermodynamics emerge from the er-

ratic motion of many microscopic particles. Hence the subject

of this review should be thought of as ‘‘statistical genetics,’’ a

term introduced in a closely related context by Wright (1942).
Classical quantitative genetics (Falconer and Mackay,

1996) is based on the assumption that genotypes are random

reassortments of alleles, each occurring with a certain fre-

quency. This absence of correlations between alleles at differ-

ent loci is termed ‘‘linkage equilibrium,’’ (LE) implying that

recombination (breaking linkage) has relaxed correlations

between loci. This drastic simplification has earned QG a

derogatory epithet of ‘‘beanbag genetics’’ from the pen of

Ernst Mayr (1963) [see, however, Haldane (1964) in defense

of beanbag genetics]. Yet in this review we see that the key

phenomenological laws of QG extend beyond the assumption

of linkage equilibrium. This understanding emerges from the

studies of multilocus selection which began with two alleles

and/or two loci systems (Kimura, 1956; Lewontin and

Kojima, 1960; Karlin and Feldman, 1969). Kimura (1965)

showed that a two-locus system tends toward a state where

allele frequencies change slowly and correlations are small

and steady. He termed this state quasilinkage equilibrium

(QLE), which is the subject of this review. Subsequently,

several comprehensive treatments of multilocus evolution

were developed (Christiansen, 1990; Barton and Turelli,

1991; Bürger, 1991; Nagylaki, 1993; Prügel-Bennett and

Shapiro, 1994; Baake, 2001) [for a monograph see Bürger

(2000)] with Barton and Turelli (1991) and Nagylaki (1993),

in particular, generalizing and justifying the QLE approxi-

mation in multilocus systems.
In addition to studying the generic behavior of systems

with a very large number of loci, explicit multilocus modeling

of smaller systems has been used to study the evolution of

recombination (Barton, 1995a; Roze and Barton, 2006) and

patterns of genetic variation produced by positive selection

(Stephan, Song, and Langley, 2006). Recent work produced

interesting examples (Weinreich et al., 2006; de Visser, Park,

and Krug, 2009) of empirically determined fitness landscapes

with five or more loci. The dynamics of populations on these

landscapes can be studied in laboratory experiments and com-

parison to theoretical models is possible (de Visser, Park,

and Krug, 2009). Quantitative understanding of multilocus

FIG. 1 (color online). Time scales in sexual populations. A popu-

lation is described by the distribution of 2L genotypes, on which

selection, recombination, and mutation acts. In sexual populations,

mating and recombination is the fastest process, so that different

loci are only weakly correlated (close to linkage equilibrium) and its

dynamics can be approximately described via L allele frequencies, a

number much smaller than the 2L possible genotypes that would

have to be tracked otherwise. Allele frequencies change slowly and

means of quantitative traits follow the laws of quantitative genetics.

Over the much longer time scale of ��1, allele frequencies them-

selves tend to an equilibrium between selection, mutation, and

genetic drift (assuming a constant environment).
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evolution is also essential when studying the emergence of
drug resistance in HIV, which often depends on several
interacting loci in a recombining population (Kellam et al.,
1994; Bretscher et al., 2004; Nora et al., 2007).

Our discussion of the multilocus selection problem will
follow the Barton-Turelli course of making and keeping it
simple (Barton and Turelli, 1991; Turelli and Barton, 1994),
by attempting to make it simpler still. We define a streamlined
conceptual and analytic framework which will not only re-
produce classic results, but also readily generate some new
extensions. To accomplish this we formulate and analyze a
‘‘minimal model’’ of multilocus evolution: continuous time
selection in a haploid model with a general (epistatic) fitness
function of L loci. We show how the generalized Fisher
theorem and other results of quantitative genetics follow
from a straightforward cumulant perturbation theory similar
to that used extensively (for high-temperature expansions) in
statistical physics (McQuarrie, 1973). The perturbative re-
gime corresponds to Kimura’s QLE. Using this formulation
of QLE, we present systematic generalizations of QG results
and of Kimura’s diffusion theory, typically formulated in
complete linkage equilibrium, to include weak correlations
between loci. We also discuss how QLE breaks down when
the ratio of characteristic strength of selection to the rate of
recombination exceeds a critical value that depends on the
strength of epistasis. While the QLE regime corresponds to
the selection of individual alleles based on their effect on
fitness averaged over genetic backgrounds, the breakdown of
QLE follows the appearance of strong correlations between
alleles at different loci and represents a transition to the
effective selection of genotypes. In Sec. VIII we connect
the transition from the ‘‘allele’’ selection to the ‘‘genotype’’
selection to the closely related spin-glass transition (modeling
the behavior of disordered magnets) studied in statistical
physics (Mezard, Parisi, and Virasoro, 1987). We also discuss
its implications for quantitative genetics.

II. RELATING QUANTITATIVE TRAITS AND GENOTYPES

We focus on the fitness which is the most important
‘‘quantitative trait,’’ although everything we say about ‘‘fit-
ness landscapes’’ in this section applies directly to any quan-
titative phenotype. A fitness landscape is a metaphor for a
map from the high dimensional space of genotypes to ex-
pected reproductive success. While the map itself is unam-
biguous, several different ways of parametrizing fitness
landscapes with alleles and groups of alleles have been
proposed (Barton and Turelli, 1991; Weinberger, 1991;
Hansen and Wagner, 2001; Hansen, 2006).

Consider a haploid genome of L loci with two alleles each,
such that a genotype is uniquely characterized by L binary
variables g ¼ fs1; . . . ; sLg. We choose si 2 f�1; 1g, i ¼
1; . . . ; L instead of si 2 f0; 1g (more commonly used in
population genetics literature), since the symmetric choice
simplifies the algebra below. (The relation between represen-
tations can be found in Appendix A.) Functions of the
genotype, e.g., as the population distribution, fitness, or any
other quantitative trait, live therefore on an L-dimensional
hypercube. Any such function on the hypercube can be
decomposed into a sum of monomials in si:

FðgÞ¼ �FþX
i

fisiþ
X
i<j

fijsisjþ
X

i<j<k

fijksisjskþ��� ;

(1)

where the first sum represents independent contributions of L
single loci, the second sum which runs over all LðL� 1Þ=2
pairs of loci represents contributions of pairs, and the higher
order terms account for the effect of each and every possible
subgroup of loci. The first order contribution fi defines the
additive effect of locus i which is independent of all other loci
considered. Higher order terms which include locus i define
the genetic background dependence of the effect of the si
allele. Collectively terms of order higher than 1 represent
genetic interactions also known as ‘‘epistasis.’’ The contribu-
tion of each locus or subgroup of loci is determined by
unbiased (i.e., each genotype enters with weight 2�L) averag-
ing over the remainder of the genome: thus the coefficients are
given by

�F ¼ 2�L
X
g

FðgÞ; fi ¼ 2�L
X
g

siFðgÞ;

fij ¼ 2�L
X
g

sisjFðgÞ :
(2)

One easily convinces oneself that plugging Eq. (1) into
Eq. (2) reduces to the desired coefficients. In total, there are

2L coefficients fðkÞi1;...;ik
, as it has to be for an exact representa-

tion of a function on a hypercube. In fact, the coefficient of the
expansion of FðgÞ into monomials is nothing but the Fourier
transform of the original function on the hypercube, which
was used in the context of genotype-fitness maps by Hordijk
et al. (1998), Stadler and Wagner (1998), and Weinberger
(1991). In addition to this genetic contribution to the trait,
the trait value of a given individual will also depend on
environmental (and epigenetic) factors which are not modeled
here.

It proves useful to define a ‘‘density of states’’ �ðFÞ ¼
2�L

P
g�ðF� FðgÞÞ, where �ðFÞ is a Dirac delta function.

The fraction of genotypes with fitness in the interval ½F; Fþ
�F� is then given by RFþ�F

F dF0�ðF0Þ. Provided FðgÞ receives
contributions of many terms of similar magnitude in Eq. (1),
the central limit theorem will apply making the density of
states approximately Gaussian in shape. The width of this
Gaussian is given by the (square root of the) variance of FðgÞ
over the hypercube:

��2 ¼ 2�L
X
g

ðFðgÞ � �FÞ2

¼ X
i

f2i þ
X
i<j

f2ij þ
X

i<j<k

f2ijk þ � � � : (3)

This simple decomposition of variance is the equivalent of
Parseval’s theorem for the Fourier transform. Note that this
variance is an intrinsic property of the fitness landscape
completely independent of any population that may be evolv-
ing on it. It should not be confused with the population
variance that we discuss later. We use �� as a measure of
selection strength.

The sums in Eq. (3) for �� can be interpreted as the power
spectrum of the FðgÞ. A falling or rising power spectrum
gives rise to qualitatively different landscapes: If most of the
variation of the fitness function were captured by the first
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order terms, the landscape would be smooth and simple. If
higher order terms dominate the fitness variance, the land-
scape is multipeaked and rugged. The properties of smooth
versus rugged landscapes [parametrized in the manner of
Eq. (1)] has been a subject of extensive study in statistical
physics as it relates to the theory of spin glasses (Mezard,
Parisi, and Virasoro, 1987). It is known that the key conse-
quences of complexity of the general landscape appear
already in the class of functions involving only pairwise
interactions [also known as the Sherrington-Kirkpatrick
model (Sherrington and Kirkpatrick, 1975)] (Mezard,
Parisi, and Virasoro, 1987). Here for simplicity we consider
only pairwise interactions. [An alternative instructive simpli-
fication would be to consider FðgÞ defined by a fixed random
function on the hypercube, known in population genetics
as the ‘‘house-of-cards’’ model (Kingman, 1978) or NK
models (Kauffman and Weinberger, 1989) and in physics as
a ‘‘random energy’’ model (Derrida, 1981).]

Before moving on to population dynamics, it is instructive
to discuss the implication of the combinatorial explosion of
higher order interactions: In principle there are ðLkÞ interac-
tions of order k, a number which increases with L as Lk.
Hence increasing the number of loci without changing the
statistics of the coefficients would shift the power spectrum
toward higher order, making the function more rugged. It
seems more likely that the interactions are sparse with the
number of ‘‘partners’’ of a typical locus not growing in
proportion to the total number of loci: In particular, one
may posit that each locus interacts with a finite number of
other loci, independent of L and set all other coefficients to
zero. Unfortunately, despite some recent progress (Brem and
Kruglyak, 2005; Ehrenreich et al., 2010), we still know little
about the generic structure of genotype-phenotype maps. One
must also be aware of the fact that, because of selection,
statistics of genetic interactions observed among cosegregat-
ing polymorphisms within a breeding population may be
quite different from that for a random set of loci or for
polymorphisms created by crossing two isolated populations
(Jinks et al., 1966). Indeed, most immediate evidence for
epistasis is provided by the ‘‘outcrossing depression’’: sup-
pression in the fitness of progeny issuing from a cross of
diverged strains (Jinks et al., 1966; Seidel, Rockman, and
Kruglyak, 2008).

III. DYNAMICS OF THE GENOTYPE DISTRIBUTION

Selection, mutation, and recombination operate on indi-
viduals and change the distribution of genotypes Pðg; tÞ in the
population. The fitness FðgÞ of a genotype g is defined as
the expected reproductive success, i.e., the rate at which the
proportion of a genotype increases or shrinks in the popula-
tion due to (natural or artificial) selection. During the time
interval �t, selection changes the distribution of genotypes
according to

Pðg; tþ �tÞ ¼ e�tFðgÞ

he�tFi Pðg; tÞ; (4)

where he�tFi ¼ P
ge

�tFðgÞPðg; tÞ denotes the population av-

erage. The genetic diversity that selection acts upon is due to
mutations, which change the genotype distribution as follows:

Pðg;tþ�tÞ¼Pðg;tÞþ�t�
XL
i¼1

½PðMig;tÞ�Pðg;tÞ�: (5)

Here Mig is shorthand for genotype g with si replaced by
�si. Despite the importance of mutations for generating
polymorphisms and maintaining genetic diversity in the
long run, the effect of mutation on the dynamics of signifi-
cantly polymorphic sites can be neglected if mutation rates
are much smaller than selection coefficients.

In addition to selection and mutation, the dynamics of the
genotype distribution in sexual populations are driven by
mating and recombination. Gametes are formed during meio-
sis crossing over homologous parental chromosomes.
Assuming random pairing of gametes and outcrossing with
rate r, the genotype distribution changes during recombina-
tion as follows:

Pðg;tþ�tÞ¼ ð1��trÞPðg;tÞ
þ�tr

X
f�igfs0ig

Cðf�gÞPðgðmÞ;tÞPðgðfÞ;tÞ: (6)

The first term accounts for those individuals that did not
outcross during the �t time interval. In the event of out-
crossing, a new genotype is formed from genetic material of
the mother with genotype gðmÞ and a father with genotype gðfÞ.
The novel recombinant genotype g inherits a subset of his loci
from the mother and the complement from the father, which
in Eq. (6) is described by the set of random variables f�ig. If
�i ¼ 1, gene i is inherited from the mother, if �i ¼ 0 from the

father. Using this notation, the maternal genotype is sðmÞ
i ¼

�isi þ ð1� �iÞs0i and equivalently the paternal genotype is

sðfÞi ¼ ð1� �iÞsi þ �is
0
i. The part of the maternal and paternal

genome which is not passed on to the offspring fs0ig is summed

over. Each particular realization of f�ig, i.e., a pattern of
crossovers, has probability Cðf�gÞ, which depends on the
crossover rates between different loci. In addition to the
summation over all fs0ig, we have to sum over possible cross-

over patterns f�ig. A similar notation was used by Christiansen
(1990). While our presentation so far is completely general,
dealing with diploid genomes inflates the required bookkeep-
ing as we proceed with the analysis. Since our goal is to
present the key effects and ideas in the simplest possible form,
we from here on restrict to considering only haploids, two of
which recombine upon mating producing a haploid offspring.
Although this model is chosen for simplicity, it is sufficient to
describe diploids in the absence of dominance. It also de-
scribes haploid yeast going through a mating-sporulation-
germination cycle or the population genetics of many RNA
viruses such as HIV and influenza.

Provided selection is weak [�tFðgÞ � 1], we can use a
continuous time description of the dynamics,

d

dt
Pðg;tÞ¼ ½FðgÞ�hFi�Pðg;tÞþ�

XL
i¼1

½PðMigÞ�PðgÞ�

þr
X

f�igfs0ig
Cðf�gÞ½PðgðmÞ;tÞPðgðfÞ;tÞ

�Pðg0;tÞPðg;tÞ�: (7)

This equation describes the dynamics of the genotype distri-
bution in the limit N ! 1, where each genotype is sampled
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by enough individuals to neglect sampling noise which arises
during reproduction. This stochastic component to the dy-
namics of the genotype distribution is known as ‘‘random
genetic drift.’’ We discuss random drift in Sec. VI. Our focus
here will be on the interplay between selection and recombi-
nation, which dominates the behavior of Eq. (7).

Instead of specifying Pðg; tÞ for every g, Pðg; tÞ can be
parametrized by its cumulants. The cumulants of first and
second order are defined as �i ¼ hsii and �ij ¼ hsisji �
hsiihsji, which are related to allele frequencies and pairwise

linkage disequilibria (LD) (see Table I). In total there are
2L � 1 cumulants, with higher order ones �ij���k more easily

defined via the cumulant generating function (McQuarrie,
1973). However, only the first and second order cumulants
will be needed in the present context.

To obtain dynamical equations for �i, we multiply Eq. (7)
by si and sum over all possible genotypes. One finds

_�i ¼ hsi½FðgÞ � hFi�i � 2�hsii; (8)

where we used Misi ¼ �si and the notation _�i for total
derivative with respect to time. The dynamics of �i do not
depend explicitly on the recombination rate, which is intui-
tive since recombination does not create or destroy alleles. In
order to evaluate hsiFðgÞi in Eq. (8) we need to know higher
order cumulants, i.e., we are faced with a hierarchy of
cumulant equations.

In contrast to first order cumulants, the dynamics of higher
order cumulants depend explicitly on recombination, which
has the tendency to destroy associations between alleles and
drives higher order cumulants to zero. To write down an
equation for the dynamics of the second order cumulants,
�ij ¼ hsisji � �i�j, we have to evaluate dhsisji=dt, which
explicitly depends on recombination. Evaluating the recom-
bination term only, we find

r
X
f�ig

Cðf�gÞX
g;g0

sisj½PðgðmÞ; tÞPðgðfÞ; tÞ

� Pðg0; tÞPðg; tÞ� ¼ �rcij�ij; (9)

where cij is the probability that loci i and j derive fromdifferent

parents: cij¼
P

f�gCðf�gÞ½�ið1��jÞþð1��iÞ�j�. To arrive

at this result, we substituted si¼�is
ðmÞ
i þð1��iÞsðfÞi (analo-

gously for sj), and averaged over the maternal and paternal

genomes. The second term evaluates simply to rhsisji. This
result holds more generally for central moments of the geno-
type distribution (Barton and Turelli, 1991). Together with
selection and mutation, we find (for i � j)

_�ij ¼ hðsi � �iÞðsj � �jÞ½FðgÞ � hFi�i
� 4��ij � rcij�ij: (10)

We see that selection drives �ij away from zero, while �ij

relaxes through mutation and recombination. In the absence of
selection Pðg; tÞ tends to a steady state of LE with vanishing
cumulants �ij (for i � j) implying complete decorrelation of

alleles at different loci corresponding to factorization of the
genotype distribution: P0ðgÞ ¼ Q

L
i¼1 piðsiÞ. It is easy to see

that the recombination term in Eq. (7) vanishes whenever
PðgÞ ¼ P0ðgÞ. In Sec. V, we, starting from P0ðgÞ, develop the
QLE approximation by systematically accounting for small
linkage disequilibria (�ij).

IV. TRAIT DISTRIBUTIONS AND THE DYNAMICS OF

POPULATION AVERAGES

In most cases, Pðg; tÞ cannot be observed directly. Instead,
the subject of quantitative genetics are distributions of traits
in the population. Trait distributions can be obtained from
genotype distributions by projection. The probability of find-
ing in the population an individual with fitness (or any other
trait) in the interval ½F;Fþ �F� defines the density

pðF; tÞ ¼ X
g

�ðF� FðgÞÞPðg; tÞ; (11)

where �ðFÞ is the Dirac delta function [
R
dF�ðFÞ ¼ 1].

Applying this projection to Eq. (7) yields an equation for
the dynamics of the trait distribution. Before addressing the
dynamics of traits in sexual populations, it is instructive to
consider the dynamics of the fitness distribution pðF; tÞ in the
absence of mutation and recombination, in which case one
obtains simply

d

dt
pðF; tÞ ¼ ½F� hFi�pðF; tÞ; (12)

where hFi ¼ R
dFFpðF; tÞ. Multiplying this equation by F

and integrating over F (i.e., the first moment of this equation)
yields Fisher’s fundamental theorem in the asexual case,

d

dt
hFi ¼ h½F� hFi�2i ¼ �2: (13)

Evidently this is just the first in the hierarchy of infinitely
many moment equations that characterize the dynamics of
pðF; tÞ given explicitly by Eq. (12). The second moment
expresses the dynamics of �2 in terms of the third moment,
etc. This hierarchy of equations is not closed, yet under
certain conditions higher moments may be suppressed, mak-
ing the �2 a slowly varying function of time. One notes that
Eq. (12) has a Gaussian traveling wave solution pðF; tÞ ¼
C exp½�ðF� vtÞ2=2v� with an arbitrary constant variance
�2 ¼ v setting the rate of fitness growth dhFi=dt ¼ v in
agreement with Eq. (13). A traveling wave with constant
speed requires that genotypes with arbitrarily high fitness
are populated with at least one individual, which requires
an infinitely large population with infinitely many polymor-
phic loci with limits taken in this order. Otherwise genetic
diversity disappears and adaptation stalls. The evolution of
the shape of the fitness distribution in finite populations
has been studied in the context of genetic algorithms by

TABLE I. Population genetic quantities in our notation.

Quantity Our notation

Allele at locus i, fai; Aig si 2 f�1; 1g
Allele frequency �i �i ¼ ð1þ �iÞ=2, where �i ¼ hsii
Linkage disequilibrium
Dij (i � j)

4Dij ¼ �ij ¼ hsisji � hsiihsji
Heterozygocity
Hi ¼ 2�ið1� �iÞ

2Hi ¼ �ii ¼ 1� �2
i
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Prügel-Bennett and Shapiro (1994). Prügel-Bennett and
Shapiro studied the effect of selection and recombination
on the cumulants of the fitness distribution and observed
how the fitness variation vanishes as the population condenses
into a local fitness maximum. To prevent this condensation,
new variation has to be constantly supplied by mutation.
Quite generally � is determined by the balance generation
of genetic variation through mutations or recombination and
its removal by selection and drift, which requires careful
stochastic treatment (Tsimring, Levine, and Kessler, 1996;
Rouzine, Wakeley, and Coffin, 2003; Rouzine and Coffin,
2005; Desai and Fisher, 2007; Neher, Shraiman, and Fisher,
2010; Hallatschek, 2011).

One can also consider the dynamics of an arbitrary trait
GðgÞ different from fitness. In analogy to Eq. (11), we can
study the joint distribution pðF;G; tÞ of this trait with fitness.
The population average of the trait obeys

d

dt
hGi ¼ hGFi � hGihFi ¼ CovðF;GÞPðgÞ; (14)

i.e., its rate of change is given by its covariance with fitness
(Price, 1970). This statement is also known as the ‘‘secondary
theorem’’ of natural selection (Robertson, 1966).

With mutation and recombination, the dynamics of trait
means are no longer that simple. To evaluate the mutation and
recombination terms, we utilize the orthogonal expansion of
the fitness function in Eq. (1). Restricting ourselves to pair-
wise interactions, we use Eqs. (8) and (9) to obtain

d

dt
hFi ¼ �2 ���� � r

X
i<j

cijfij�ij; (15)

where �� is the average loss in fitness due to mutation. The

latter can be calculated by observing that each moment
decays through mutation with rate 2�k, where k is the order
of the moment,

�� ¼ �

�
2
X
i

fi�i þ 4
X
i<j

fijð�i�j þ �ijÞ þ � � �
�
: (16)

Higher moments decay faster because they have a greater
mutation target. The second term in Eq. (15) is the loss in
fitness through recombination, which reflects the tendency of
recombination to factorize the genotype distribution such
that contributions similar to fij�ij to hFi decay with rate

rcij. Later we will see that the previous form of Fisher’s

theorem can be recovered by a suitable definition of an
additive fitness variance. To do so, however, we have to
understand how the genotype distribution evolves under se-
lection and recombination.

V. BEYOND LINKAGE EQUILIBRIUM: QUASILINKAGE

EQUILIBRIUM

We have already seen that without selection or epistasis,
PðgÞ will relax to a product of independent distributions at
different loci: the linkage equilibrium state. Next we account
for the correlations between loci induced by selection. For
simplicity we omit the mutational contribution, which we will
restore once we understand the basis of QLE.

A. QLE: A perturbation expansion at high recombination rates

If selection on the time scale of recombination is weak, i.e.,
�� � r, the induced correlation is also weak and can be
calculated using perturbation theory (Kimura, 1965; Barton
and Turelli, 1991). To this end, we parametrize the genotype
distribution as follows:

logPðg; tÞ ¼ �ðtÞ þX
i

�iðtÞsi þ
X
i<j

�ijðtÞsisj; (17)

which is the already familiar Fourier representation of func-
tions on the genotype space. The factorized distribution P0ðgÞ
corresponds to the coefficients �ij of all multilocus contri-

butions being zero. The second order terms capture (to lead-
ing order) the correlations induced by selection and (in the
limit under consideration) are assumed to be small. The
genotype independent term�ðtÞ is fixed by the normalization
of the probability distribution,

e��ðf�gÞ ¼ X
g

exp

�X
i

�isi þ
X
i<j

�ijsisj þ � � �
�

(18)

and acts as the generator of the cumulants via

�i ¼ � @�

@�i

; �ij ¼ � @2�

@�i@�j

: (19)

The generating function � is evaluated perturbatively for
small �ij in Appendix B yielding

�i � tanhð�iÞ þ
X
j�i

�ij½1� tanh2ð�iÞ� tanhð�jÞ; (20)

�ij � ð1� �2
i Þð1� �2

j Þ�ij for i � j; (21)

�ii ¼ 1� �2
i ; (22)

which is correct to the leading order in j�ijj. The distribution
given by Eq. (17) may be thought of as a maximum entropy
distribution constrained to have certain first and second order
cumulants: Parameters �i and �ij are the Lagrange multi-

pliers that impose the constraints.
We rewrite Eq. (7) as an equation for the dynamics of

logPðgÞ which yields

_�þX
i

_�isiþ
X
i<j

_�ijsisj

¼FðgÞ�hFiþr
X

f�igfs0ig
Cðf�gÞPðg0Þ

�
PðgðmÞÞPðgðfÞÞ
PðgÞPðg0Þ �1

�

� �F�hFiþX
i

fisiþ
X
i<j

fijsisj

þr
X
i<j

cij�ij½ðsihsjiþhsiisjÞ�ðsisjþhsisjiÞ�; (23)

where the recombination part has been evaluated approxi-
mately by expanding the exponential that defines PðgÞ (see
Appendix B). We now collect terms with the same monomials
in si to obtain the equations governing the time evolution of
�i and �ij:

_�i ¼ fi þ r
X
j�i

cij�ijhsji; (24)
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_�ij ¼ fij � rcij�ij: (25)

At large crossover rates rcij, the �ij rapidly approach a

steady state �ij ¼ fij=rcij. This has to be contrasted with

the behavior in the absence of recombination, in which case
�ij grows linearly as fijt. Recombination prevents effective

selection on interactions. Instead, the higher order contribu-
tions to fitness affect the dynamics of �i after averaging over
possible genetic backgrounds: Substituting the steady-state
relation into the equation for �i yields

_�i ¼ fi þ
X
j�i

fij�j ¼ f̂i; (26)

where we defined f̂i ¼ fi þ
P

jfij�j, which is the effective

strength of selection acting on locus i in linkage equilibrium.
It is obtained from the general expression for FðgÞ in Eq. (1)
by replacing sj ! �j and differentiating with respect to �i

(and is truncated here at second order because we assumed,
for simplicity, that genetic interactions are limited to that
order).

Converting �’s to �’s using Eq. (20), we find _�i ¼
ð1� �2

i Þ _�i, correct to the leading order. For the discussion

below, it is useful to derive equations for �i and �ij also to the

subleading order

_�i¼
X
j

�ij½f̂j��ifij�þ ��Oð ��2=r2Þ;

�ij¼
ð1��2

i Þð1��2
j Þfij

2f̂i�iþ2f̂j�jþrcij
þOð ��2=r2Þ for i� j:

(27)

In QLE, correlations �ij between loci (i � j) are determined

by the balance between epistatic selection and recombination.
(Note, in contrast, the diagonal elements �ii ¼ hs2i i � hsii2 ¼
1� �2

i are determined by the allele frequencies.)

Wright (1931) showed that in linkage equilibrium the
dynamics of allele frequencies are driven by the gradient in
mean fitness. The result can be generalized to include
correlations between loci arising in QLE. Starting with the
exact equation for the allele frequency dynamics and
using our parametrization of PðgÞ via the ‘‘fields’’ �i given
in Eq. (17), we find

_�i ¼ hsiFi � �ihFi ¼ @�i
hFi � X

j

@�i
�j@�j

hFi

¼ X
j

�ij@�j
hFi; (28)

where we used the chain rule of differentiation and the fact
that @�j=@�i ¼ �ij following directly from Eq. (19). The

correlation matrix �ij acts as a mobility matrix for allele

frequencies. The nondiagonal entries of order ��=r imply that
selection on locus j, via the correlation with locus i, affects
the rate of change of �i. Equation (28) describes the dynam-
ics of allele frequencies as the population ascends Wright’s
‘‘adaptive landscape.’’ While allele frequencies still evolve to
maximize hFi, their dynamics now are coupled by correla-
tions captured in the off-diagonal terms of �ij.

The key point emerging from the analysis of the weak
selection and rapid recombination limit is the remarkable
simplicity ofmultilocus dynamics: The 2L ordinary differential

equations for all cumulants or equivalently for all genotypes are
reduced to L differential equations describing the dynamics of
allele frequencies. Higher order cumulants are slaved to allele
frequencies and can be obtained by solving algebraic equations
defining the L dimensional quasi-linkage-equilibrium mani-
fold. The distribution of genotypes in the population can there-
fore be parametrized by time-dependent allele frequencies,
with all other features of the distribution constrained by the
QLE equations. In mathematical terms, the dynamics of gen-
otype distribution are approximately reducible to the dynamics
on the ‘‘center manifold’’ formed by the set of allele frequen-
cies (Guckenheimer and Holmes, 1997). Within the QLE
approximation, population averages of any trait GðgÞ can be
parametrized by f�1ðtÞ; . . . ; �LðtÞg and the time derivative of
the trait mean is therefore given by

d

dt
hGi � X

i

@�i
hGi@t�iðtÞ

¼ X
ij

�ij@�i
hGi@�j

hFi � 2�
X
i

�i@�i
hGi; (29)

where we have restored the contribution of mutations through
its effect on allele frequencies as it appeared in Eq. (8). This
result has a simple interpretation: The rate of change of the trait
mean is the product of the rate of change of allele frequencies
through selection and the susceptibility of the trait mean to the
allele frequency. The second term accounts for the effect of
mutation on the trait mean. Since the first term is the additive
covariance between fitness and the trait G, this equation is the
analog of Eq. (14) in a recombining population. The QLE
approximation breaks down when recombination is not suffi-
ciently rapid to confine the genotype distribution to the L
dimensional manifold defined by quasisteady correlations be-
tween loci. This breakdown will be discussed in more detail
below.

B. Additive genetic variance and Fisher’s theorem in QLE

Fisher’s theorem in sexual populations posits that the rate
of mean fitness increase is equal to the additive variance. We
now discuss how Fisher’s theorem emerges from Eq. (15) and
how it compares with Eq. (29) which obviously can be used to
calculate dhFi=dt. Additive variance is typically defined as
the variance captured by a linear model of the form

FAðgÞ ¼ a0 þ
X
i

aisi; (30)

where the coefficients are determined by minimizing

�2
I ¼

X
g

½FAðgÞ � FðgÞ�2Pðg; tÞ: (31)

The remaining variance �2
I is commonly called epistatic or

interaction variance. Minimization yields a0 ¼ hFi �P
iai�i

with ai determined by the linear equationX
j

�ijaj ¼ hsiFi � �ihFi ¼ @�i
hFi: (32)

We have seen the right-hand side (rhs) of this equation al-
ready in Eq. (28): It is the contribution of selection to _�i. In
the high recombination limit, @�i

hFi � P
j�ij@�j

hFi. Hence
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the additive fitness coefficients (defined by linear regression)
are ai ¼ @�i

hFi, which is accurate to order ��=r. The additive

variance therefore is

�2
A¼

X
ij

ai�ijaj�
X
ij

�ij@�i
hFi@�j

hFiþ ��2Oð ��2=r2Þ:

(33)

Recalling the QLE equation for mean trait dynamics,
Eq. (29), and using fitness as a trait, we have

d

dt
hFi � X

ij

�ij@�i
hFi@�j

hFi � 2�
X
i

�i@�i
hFi; (34)

and comparing to the definition of �2
A we arrive at the

generalized Fisher’s fundamental theorem

d

dt
hFi ¼ �2

A ���� þOð ��4=r2Þ; (35)

which limits growth of fitness to the additive variance.
Comparing to the general expression for mean fitness given
before in Eq. (15) we see that the loss in fitness due to
disruption of favorable combinations of alleles through re-
combination exactly cancels the epistatic �2

I ¼ �2 � �2
A part

of total variance. In other words, in a sexually reproducing
species the uncertainty in the phenotype of the offspring in
relation to that of its parents limits the effect of selection to
the additive component of variance. The latter is that genetic
component of the trait that ‘‘survives’’ reshuffling of genes by
reassortment and recombination which depends on the ge-
netic distance to the mate. Hence, this decomposition of
genetic variation in additive and nonadditive components is
explicitly population dependent.

One must, of course, remember that the generalized
Fisher’s law as stated only holds in this rapid recombination
and weak selection limit and only after correlations have
relaxed to their steady QLE values. During the initial tran-
sient toward QLE or at low recombination rates the mean
fitness can exhibit very different dynamics. The meaning of
Fisher’s theorem has been subject to extensive discussion in
the literature (Feldman and Crow, 1970; Price, 1972; Ewens,
1989; Frank and Slatkin, 1992; Edwards, 1994) caused by
Fisher’s insistence that his statement was exact. Price (1972),
in particular, suggested that Fisher’s intention was to describe
not the total rate of change of mean fitness, but only the
‘‘partial rate’’ due to a change in allele frequencies: i.e., just
the first term on the rhs of Eq. (29). The ‘‘theorem’’ would in
that case become an exact statement, but not a very useful
one. Following Kimura (1958) and Nagylaki (1993) our
Eq. (35) sticks to dhFi=dt so that the generalized Fisher’s
theorem is an unambiguous, but approximate statement. The
above analysis assumed that the population is subject to a
constant fitness function and the mean fitness provides a
useful measure of adaptation. If the fitness function itself
depends on time, the increase in mean fitness due to adapta-
tion of the population is superimposed with the dynamics of
the fitness function. In the latter case, an unambiguous mea-
sure of adaptation, the fitness flux, can be defined in analogy
to fluctuation theorems of nonequilibrium statistical mechan-
ics (Mustonen and Lässig, 2010).

The off-diagonal terms in the additive variance ai�ijaj
have interesting implications for the evolution of recombina-
tion: If two alleles that are selected with the same sign
(aiaj > 0) are anticorrelated (�ij < 0), the rate of adaptation

is smaller than it would be in linkage equilibrium. This is the
basis for the often made statement that recombination accel-
erates adaptation by reducing negative linkage disequilibria
and thereby increasing the additive variance (Barton and
Otto, 2005). There is, however, an additional effect of recom-
bination on adaptation that is not captured by deterministic
multilocus dynamics and is likely to be more important:
Recombination greatly increases the likelihood that a novel
beneficial mutation establishes and ultimately fixates in the
population (Fisher, 1930; Muller, 1932; Barton, 1995b;
Neher, Shraiman, and Fisher, 2010). Thereby the number of
simultaneously polymorphic loci is increased, which in turn
increases the fitness variance and speeds up adaptation. The
reason for this is again that recombination breaks down
negative linkage disequilibria (a tendency of beneficial alleles
to be anticorrelated), which are generated by chance and
amplified by selection (Barton and Otto, 2005). Analysis of
this phenomenon requires going beyond QLE (see below).

VI. FINITE POPULATION DRIFT AND WRIGHT’S

MUTATION, SELECTION, AND DRIFT EQUILIBRIUM

So far our formulation of the genotype dynamics Eq. (7)
and the dynamics of allele frequencies Eq. (27) was determi-
nistic, i.e., we neglected random drift. Random drift is a
consequence of the stochastic nature of birth and death in a
finite population of size N. In the simplest models of sto-
chastic population genetics, called Fisher-Wright models,
stochasticity is introduced by resampling the population
from a multinomial distribution parametrized with the current
genotype (or gamete) frequencies of each generation.

We have seen that the genotype frequency distribution can
be parametrized by allele frequencies when recombination is
rapid, and we now discuss how resampling of genotypes leads
to stochastic contributions to the dynamics of allele frequen-
cies and cumulants. For alleles that are present in large
numbers, the relative sizes of fluctuations due to resampling
are small and random drift can be accurately described by a
diffusion approximation (Kimura, 1964). To derive a diffu-
sion equation for allele frequencies, we generalize the ordi-
nary differential equations (27) to stochastic differential
equations [Langevin equations (Gardiner, 2004)]. For a finite
time step �t, one has

�iðtþ �tÞ ¼ �iðtÞ þ �t

�X
j

�ij@�j
hFi � 2��i

�

þ
ffiffiffiffiffiffi
�t

p
	iðtÞ; (36)

�ijðtþ�tÞ ¼ �ijðtÞ þ�t½ð1��2
i Þð1��2

j Þfij � rcij��ij

þ
ffiffiffiffiffiffi
�t

p
	ijðtÞ; (37)

where we neglected terms much smaller than rcij in the

relaxation rate of �ij. 	iðtÞ and 	ijðtÞ are white noise terms

with zero mean and a covariance matrix determined by the
multinomial sampling of the genotypes. One finds
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h	iðtÞ	jðt0Þi ¼
�ij

N
�ðt� t0Þ; (38)

h	ijðtÞ	ijðt0Þi �
ð1� �2

i Þð1� �2
j Þ

N
�ðt� t0Þ; (39)

while other covariances are of order ��=Nr or smaller; see
Appendix C. The leading order presented in Eq. (39) will be
sufficient for the analysis below. The joint stochastic dynam-
ics of allele frequencies and the correlation between loci has
been studied by Ohta and Kimura (1969) using a two-locus
model. Here we study a multilocus model making the sim-
plifying assumption that the recombination is faster than all
other processes.

In this case, the second order cumulants relax much faster
than allele frequencies changeandwecan solve the equation for
�ij assuming fixed �i. The solution can be decomposed into a

deterministic component due to the competition between epis-
tatic selection and recombination and a stochastic component:

�ijðtÞ ¼
fijð1� �2

i Þð1� �2
j Þ

rcij
þ ��ij: (40)

The deterministic component is the familiar QLE value from
Eq. (27), while the stochastic component ��ij has an autocor-

relation

h��ijðtÞ��ijðtþ�tÞi ¼ ð1� �2
i Þð1� �2

j Þ
2Nrcij

e�rcij�t;

see Appendix C. We now use this result to study the Langevin
equation for �i. We have to distinguish the case where the
deterministic component to �ij dominates over the stochastic

term or vice versa. In order to compare the stochastic to the
deterministic term, we have to average the former over the time

scale of the dynamics of�i given by the inverse of @hFi=@�i �
f̂i. Recalling that in equilibrium �i � 1��=f̂i, we find that
the deterministic contribution to�ij dominates ifN� � 1 and

fij � �. In the opposite limit, the stochastic contribution ��ij

affects the dynamics of�i more strongly than the deterministic
one. We now show how the equilibrium distribution of allele
frequencies is affected by correlation between loci in these two
cases.

A. Wright’s equilibrium in the QLE approximation

Assuming we can neglect the stochastic contribution to �ij,

the Langevin equation for the �i (interpreted in the Îto sense)
corresponds to the following forward Kolmogorov equation
for the dynamics of the probability distribution of allele
frequencies denoted by Qðf�ig; tÞ (Gardiner, 2004):

@tQðf�ig;tÞ¼
X
i

@�i

�
1

2N

X
j

@�j
ð�ijQðf�ig;tÞÞ

þQðf�ig;tÞ
�
2��i�

X
j

�ij@�j
hFi

��
: (41)

This multilocus version of the diffusion equation for allele
frequencies in linkage equilibrium (no correlations) appears
already in Kimura (1955). It has a steady solution where all
probability flux vanishes, i.e., where the term in brackets is
zero for each i. In complete linkage equilibrium, the matrix

�ij is diagonal and different allele frequencies decouple. One

obtains the equilibrium distribution

Qðf�igÞ ¼ Ce2NFðf�igÞ
Y
i

ð1� �2
i Þ2N��1; (42)

where Fðf�igÞ is the mean fitness evaluated in linkage equi-
librium obtained by replacing each si by its moment �i in
Eq. (1). The term e2NFðf�igÞ is analogous to the contribution of
energy to a Gibbs measure, while

Q
ið1� �2

i Þ2N��1 plays the

role of an entropy. Note that for 2N�< 1, the distribution is
singular at j�ij ¼ 1. In the opposite case 2N�> 1, Qðf�igÞ
vanishes if any of the j�ij ¼ 1. Instead Qðf�igÞ has a maxi-
mum in the interior of the hypercube defined by j�ij< 1.

The corresponding solution for QLE, where �ij has small

but steady off-diagonal entries, is derived in Appendix C with
the result,

Qðf�igÞ¼Ce
2NhFiþ4N�

P
i<j

fij�i�j=rcijYL
i¼1

ð1��2
i Þ2N��1:

(43)

The genotype distribution assumes this exponential
(Boltzmann) form �eNhFi since the mobility matrix �ij is

proportional to the autocorrelation of the genetic drift.
Equation (43) provides a systematic extension of Wright’s
equilibrium to QLE, which appears to be a new result.

B. Wright’s equilibrium with stochastic linkage disequilibrium

In the absence of epistasis or in cases where selection is
weak or comparable to the strength of genetic drift (diffusion
constant), the deterministic expectation for �ij is small com-

pared to its fluctuations. The coupling between different
allele frequencies in Eq. (36) has, therefore, a fluctuating
sign and acts as an additional noise source with autocorrela-
tion time ðrcijÞ�1 (for derivation see Appendix C.2). Such an

increased noise level increases the diffusion constant in the
Fokker-Planck equation for each of the �i by a factor

N

Ne

¼ 1þ 1

2

X
i�j

ð1� �2
j Þ
�

1

rcij

@hFi
@�j

�
2
: (44)

This increase in diffusion constant is often phrased as a
reduction in effective population size Ne and is known as a
manifestation of the Hill-Robertson effect (Hill and
Robertson, 1966). Note that the correction has the structure
of the additive variance in fitness where each term is com-
pared to the square of the recombination rate between the loci
i and j. This result was derived in the context of fixation
probabilities of novel mutations by Barton (1995b). It has
been shown that this effective increase in the diffusion con-
stant through stochastic correlations of loci can select for
increased recombination rates (Barton and Otto, 2005).

C. Equilibration toward a steady state

The approach to the equilibrium distribution is governed
by the smallest nonzero eigenvalue of Eq. (41). For 2N�> 1
and smooth fitness landscapes, this relaxation rate is governed
by the larger of� and the scale of selection on individual loci.
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The corresponding time scales can be very long. Furthermore,
if different parts of sequence space are separated by fitness
valleys (‘‘energy barriers’’), relaxation to the steady state can
take exponentially long (Weissman, Feldman, and Fisher,
2010).

Similar equations for the distribution of allele frequencies
apply in the context of spatially structured populations, in
which case the role of mutation is played by migration of
individuals. The latter problem was the subject of work by
Wright (1932). Migration rates and the associated influx of
foreign alleles are often much larger than mutation rates and
rapid equilibration is plausible.

VII. BREAKDOWN OF QLE

QLE greatly simplifies the dynamics of the genotype
distribution, but its perturbation theory nature leaves one
with the question about the range of its validity. In particular,
we know from statistical physics that Gibbs measures of the
form of Eq. (17) can lead to a so-called glass transition where
the structure of the distribution changes qualitatively. Below
the glass transition, different realizations of the system have a
nonvanishing probability to be (largely) identical, which is
quantified by the overlap distribution (Parisi order parameter)
(Mézard and Montanari, 2009). A related transition in which
the population condenses into a small number of genotypes is
driven by the competition between epistasis and recombina-
tion. It occurs already in the deterministic mean-field setting
and is discussed in Sec. VII.A. QLE can also become unstable
at low recombination rates even in the absence of epistasis
because of the discreteness of contributions of individual loci
in a finite genome. The instability in that case is driven by
fluctuations due to finite population size and is discussed in
Sec. VII.B.

A. Infinite N and L limit: Alleles versus genotypes

To gain some heuristic insight into the range of validity of
the perturbation expansion in ��=r, it is useful to study the
following coarse-grained quantitative genetic version of QLE
which yields an explicit criterion for the validity of QLE
(Neher and Shraiman, 2009). Instead of following the entire
genotype distribution, consider the joint distribution
PðA; E; tÞ of additive A and epistatic E contributions to fitness
defined via A ¼ FAðgÞ [cf. Eq. (30)] and E ¼ F� A. Hence
additive and epistatic contributions are defined with reference
to the current distribution of genotypes. The joint distribution
of A and E evolves according to

@tPðA;E;tÞ¼ ðAþE�hAi�hEiÞPðA;E;tÞ
þr

�
�ðEÞ

Z
dE0PðA;E0;tÞ�PðA;E;tÞ

�
;

(45)

where hAi and hEi are the mean additive and epistatic fitness
in the population. Here we have assumed that the epistatic
fitness of novel recombinants is independent of its parents and
given by a random sample from the density of possible
epistatic fitness values �ðEÞ [the house-of-cards model
(Kingman, 1978)]. We assume �ðEÞ to be a Gaussian with

the variance equal to �2
I—the epistatic component of fitness

variance defined in Eq. (31). Additive fitness of recombinants
is a random sample from the current distribution of additive
fitness in the population, i.e., the marginal

R
dE0PðA; E0; tÞ.

The model does not include finite population size effects and
assumes that both A and E are from a continuous distribution.
The latter implies that the number of loci L that contribute to
fitness is very large, while the individual contributions of loci
are small (cf. Sec. II). In this sense, it is a deterministic mean-
field model.

Equation (45) has a factorized solution PðA; E; tÞ ¼

ðA; tÞ!ðEÞ with


ðA; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

A

q e�ðA�hAiÞ2=2�2
A ; where

d

dt
hAi ¼�2

A;

!ðEÞ ¼ r�ðEÞ
rþhEi�E

; where hEi ¼
Z

dEE!ðEÞ:
(46)

The mean epistatic fitness is determined by enforcing the
normalization of !ðEÞ, i.e., R dE!ðEÞ ¼ 1. Note that this

solution is a QLE solution: Fitness increases with a rate given
by the additive variance, while the epistatic contribution to
fitness is steady with a magnitude controlled by recombina-
tion. Unlike Eq. (27), Eq. (46) implies a condition on r and
the density of states: �ðEÞ has to vanish for E � rþ hEi.
Otherwise, ! is not normalizable. The density of states �ðEÞ
is typically of Gaussian form, and given 2L states has its
maximum at Emax � �2

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L log2

p
, however, for N � 2L, as

will be generically the case, Emax � �2
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

p
. Hence QLE

is expected to break down at rc � Emax � hEi � Emax.
The dynamics of the distribution PðA; EÞ change dramati-

cally as r falls below rc. For r > rc, no genotypes with E �
rþ hEi exist. Hence, all genotypes are destroyed by recom-
bination and are short lived. At r < rc, however, many gen-
otypes with E � rþ hEi exist which can outrun
recombination and grow exponentially. The genotype distri-
bution is no longer a product of additive and epistatic parts,
but contains clones which are populated by many individuals.
Selection now operates on the entire genotype over many
generations and the relevant dynamical quantities are now
clone sizes rather than allele frequencies, which are slaved to
the performance of the clones. The alleles that make up the
most successful genotype will fixate, not necessarily those
with the most favorable additive effect. The transition line
between the two regimes is sketched in Fig. 2 with the ratio of
recombination to selection on the x axis and the ‘‘heritabil-
ity,’’ the ratio of the additive variance to the total variance
h2 ¼ �2

A=ð�2
A þ �2

I Þ, on the y axis. [Note that heritability

also measures the correlation between fitness of a recombi-
nant offspring and parental mean (Lynch and Walsh, 1998).]
At low recombination rates and strong epistatic interactions,
selection operates on genotypes while at high recombination
rates, or in absence of epistasis, selection operates on the
additive effects of alleles. The distinction between genotype
and allele selection regimes goes back to Franklin and
Lewontin (1970) and Slatkin (1972), who showed that a
related transition occurs in models with a strong heterozygote
advantage. The regimes of allele and genotype selection are
summarized in Fig. 2. In absence of epistatic interactions or
heterozygote advantage, a similar condensation phenomenon
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occurs only at very low outcrossing rates r ¼ OðN�1Þ
(Rouzine and Coffin, 2005).

The condensation of genotypes goes along with a dramatic
speedup of the allele frequency dynamics: In QLE (allele
selection) each allele frequency is driven by an effective
additive coefficient ai � ��=

ffiffiffiffi
L

p
(each ai accounts for �L�1

of the additive variance �2
A). When selection operates on

genotypes, the time scale of selection is driven by fitness
differences between individuals, which are of order ��. The
rate of change of allele frequencies is therefore greater by a
factor

ffiffiffiffi
L

p
which could be a large effect (Neher and Shraiman,

2009). We emphasize that the stationarity of the distribution
of the epistatic component of fitness !ðEÞ holds only on
time scales short compared to that of the allele frequency
dynamics.

The simple picture of the transition in a facultatively out-
crossing species can also apply to blocks of chromosome in
obligate sexuals. Consider a block that harbors l loci spread
over a map distance c (on average c recombination events
within the block per generation). If epistatic fitness within the
block exceeds c, QLE will break down since individual
haplotypes will be amplified by selection above less fit
recombinants. Whether such local breakdown of QLE will
occur depends on how fitness variance and recombination rate
depend on the block size. The recombination rate is propor-
tional to the block size, and, assuming constant density of
polymorphism, will be proportional to the number l of poly-
morphic loci. Similarly, the additive variance is proportional

to l and the rms is therefore � ffiffi
l

p
. The epistatic variance

within the block scales with the number of interactions
between loci within the block, as illustrated in Fig. 2(b).
Any given locus will interact only with a fraction of all other
loci, i.e., fij is sparse, and the number of interactions between

loci within a block depends on whether these sparse inter-
actions tend to be local or not. If any two loci are equally
likely to interact, the number of interactions within the block
is �l2, so that rms epistatic fitness is �l� c. Hence the ratio
of recombination within the block and the epistatic fitness are
independent of the block size and QLE is either globally
stable or unstable. A different conclusion is reached if

interactions are local and each locus interacts with k nearby

other loci. As before additive fitness � ffiffi
l

p
, but the number of

interactions within the block is �lk. Hence the typical epis-

tatic fitness is � ffiffiffiffiffi
lk

p
, which decreases less fast than c as the

block length is decreased. We therefore expect that QLE is

unstable on scales below a critical block size lc, where local

epistasis overwhelms rare recombination. This local selection

on coadapted haplotypes can coexist with the establishment

of QLE on longer genomic scales (Neher and Shraiman,

2009). We return to the recombination and selection on

different chromosomal scales in Sec. VIII.

B. Validity of QLE for finite N and L

The above discussion of the breakdown of QLE focused on

the competition between genetic interactions driving and

recombination destroying correlations in the limit where

fluctuations are negligible and contributions of individual

loci are small. We now discuss how the discrete contributions

of individual loci and the number fluctuations in finite pop-

ulations can drive populations off the QLE manifold. This

problem has a long history in population genetics and was

mainly discussed for scenarios without genetic interactions,

i.e., on the line where the heritability equals 1 in Fig. 2(a). In

this case the only source of correlations are the initial condi-

tion or fluctuations. Maynard Smith (1968) showed that

without genetic interactions, and with no correlations in the

initial condition, correlations do not develop in an infinite

population at any recombination rate, in accordance with

Fig. 2(a). However, novel mutations arise in single copies

on random genomes, giving rise to correlations: QLE has to

be stable with respect to these perturbations.
The hallmark of the QLE approximation are slowly chang-

ing allele frequencies and steady and perturbative correlations

between loci. The latter will be true only if the correlations

relax, i.e., are governed by an equation of the form _�ij ¼
�� �ij with  ¼ 2ðf̂i�i þ f̂j�jÞ þ rcij > 0 (ignoring

mutations). Hence the QLE state is unstable if �2ðf̂i�i þ
f̂j�jÞ> rcij. In that case any small deviation from �ij ¼ 0,

FIG. 2. Genetic interactions and the breakdown of QLE. (A) The range of validity of QLE as a function of ��=r and the heritability, i.e., the

ratio of additive variance to the total fitness variance. Below the transition line, strong linkage equilibrium is expected and selection operates

on genotypes rather than alleles. (B) An illustration of a possible ‘‘interaction graph’’ of polymorphisms on a block of chromosome. Loci

interact with nearby loci, as well as with distant loci outside the block. The epistatic fitness variance solely within the block, i.e., averaged

over the rest of chromosome, is proportional to the number of interaction terms (arcs in the figure).
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which could be due to stochastic fluctuations, will grow. This
effect has important implications for the evolution of recom-
bination: Consider two closely linked loci at which beneficial
mutations happen. Both novel mutations exists initially as a
single copy (�i � �1) and will most likely reside in different
individuals, i.e., are anticorrelated or in negative linkage
disequilibrium. Selection will now amplify the initial �ij if

2f̂i þ 2f̂j > rcij, generating predominantly negative linkage

disequilibrium. This growth of correlations due to selection
on individual loci slows down adaptation and can result in the
loss of beneficial alleles. This phenomenon is known as the
Hill-Robertson interference and it contributes to potential
benefits of sexual reproduction (Hill and Robertson, 1966;
Barton, 1995b; Barton and Otto, 2005). While this cumulant
based approach to interference between sweeping loci is
tractable for a few loci, it becomes intractable in populations
in which many sweeping loci are tightly linked (Cohen,
Kessler, and Levine, 2005; Rouzine and Coffin, 2005;
Neher, Shraiman, and Fisher, 2010).

C. Cumulant analysis beyond QLE

Even though the QLE approximation breaks down when
correlations are no longer slaved variables, the cumulant
expansion can be useful to study the short term dynamics
of systems with a small number of loci, in particular, if the
initial conditions are such that higher order cumulants are
small. Furthermore, if only a few isolated pairs of tightly
linked loci are present, cumulants between these pairs can be
treated as dynamical variables, while all other pairs for which
the �ij are stable are treated in QLE. Such an analysis has, for

example, been performed by Stephan, Song, and Langley
(2006) to study linkage disequilibrium patterns between neu-
tral markers following a selective sweep.

Explicit modeling of stochastic multilocus systems typi-
cally requires computer simulations, which are computation-
ally expensive when the number of loci or the population size
is large. However, making use of the fast-Fourier transforma-
tion (FFT) on the 2L dimensional genotype space, one can
speed up such simulation from a run time that scales as 8L to
3L. The FFT allows one to calculate and reuse the frequency
of subsets of loci from which the distribution of recombinant
genomes can be assembled. An efficient implementation of
multilocus evolution for arbitrary fitness functions and ge-
netic maps is available from the author’s Web site. Cumulant
equations to higher order involve ‘‘bookkeeping’’ of many
terms and is best done with computer algebra systems. A
package for MATHEMATICA has been developed by
Kirkpatrick, Johnson, and Barton (2002). A implementation
for MAPLE is available from the authors.

VIII. DISCUSSION

We have presented a review of the dynamics of multilocus
genotype distributions and the resulting dynamics of quanti-
tative traits. We focused, in particular, on how the distribution
of genotypes can be parametrized by allele frequencies in the
weak selection and fast recombination limit. This description
extends beyond beanbag genetics allowing also for weak
correlation (i.e., linkage disequilibrium) between loci. The

central element is the quasi-linkage-equilibrium approxima-

tion pioneered by Kimura. QLE emerges as a perturbation

expansion in the weak selection and rapid recombination

limit similar to high-temperature expansion in statistical

physics. In a suitably defined system, the population genetics

can be classified by the ratio of the strength of selection and

the rate of recombination and the degree to which the fitness

variation is additive or epistatic; see Fig. 2. At high recom-

bination and additivity, QLE is an accurate approximation.

This regime is separated from a regime at low recombination

and strong epistasis, where QLE breaks down and the popu-

lation condenses into a few fit genotypes.
Our exposition assumes a panmictic, random mating and

haploid population. While the former are common assump-

tions, assuming haploidy in recombining population might

raise objections. Our aim was to discuss the interplay be-

tween selection, genetic interactions, and recombination in

multilocus systems. Dominance is a special kind of genetic

interaction, where a locus interacts with itself, giving rise to

additional nonlinearities. These nonlinearities can stabilize

loci at intermediate allele frequencies, a process not possible

in haploid populations. The effects of dominance, however,

are well understood at the single locus level, as well as when

many loci with a heterozygote advantage are close to each

other (Franklin and Lewontin, 1970). Within QLE, the dy-

namics of allele frequencies in diploid populations is still

relaxational and maximizes the mean diploid fitness. A full

parametrization of the diploid populations and diploid fitness

requires a straightforward, if somewhat tedious, generaliza-

tion: To represent diploids one should (i) double the number

of loci, (ii) define a genetic ‘‘transfer function’’ Cðf�gÞ that
represents meiotic crossover of the parental genomes, and

(iii) extend the fitness function FðgÞ to 2L hypercube to

parametrize the 3L states (homozygocity and heterozygocity

at L loci). Another simplification of our exposition was the

use of the continuous time description, in contrast to the

more common discrete generation formulations of popula-

tion genetics. Continuous time formulations assume that

the population changes little in one generation. If this is

the case, the results are completely equivalent and one can

make use of calculus instead of recursions and difference

equations.
The QLE approximation will often be appropriate for

panmictic populations where genetic variation is replenished

by de novo mutations. In this scenario, novel mutations

establish if they blend in well with the genetic makeup of

the population. This is manifest in the QLE equation (27)

where alleles are selected on the basis of their additive effect,

i.e., their effect on fitness marginalized over the distribution

alleles at other loci in the population. The fitness of individual

genotypes is not relevant to the evolutionary dynamics, since

genotype frequencies are determined by allele frequencies

(and sampling noise in finite populations). This issue was

recently discussed by Livnat et al. (2008).
A very different evolutionary dynamics follows a hybrid-

ization event (Orr, 1995; Barton, 2001; Nolte and Tautz,

2010), i.e., a situation when two strains of one species that

have been evolving in isolation for some time come in contact

again. The two strains differ at many loci and these differ-

ences have never been tested for compatibility. Crossing two
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such diverged strains can result in a phenotypically diverse
population from which novel hybrid species can emerge
(Nolte and Tautz, 2010). Such speciation after hybridization
is similar to the clonal population structure observed in
theoretical models of the selection dynamics after hybridiza-
tion (Neher and Shraiman, 2009). In this regime of clonal
competition, the allele frequencies are slaved to the dynamics
of the clones and the average effect of an individual mutation
affects the fate of a clone only very mildly. The lucky
accident that produced through recombination a very fit
genotype that contains the allele determines whether the
allele can fixate or not. The possibility of a sharp transition
between mixing and not mixing of two populations in a
hybrid zone has been described by Barton (1983), who used
a model of hybrid inferiority. In the limit of a large number of
contributing loci, there exists a critical ratio of recombination
rate and selection against hybrids, which separates the re-
gimes of mixing and nonmixing. Similar transitions are ex-
pected if the reason for outbreeding depression is epistasis
rather than dominance.

The qualitative differences between the genotype and al-
lele selection regimes also sheds light on the importance of
stochasticity (genetic drift). Allele frequencies are well
sampled by OðNÞ copies, unless the allele is very young (or
about to become extinct). Stochasticity therefore matters only
during the establishment phase of the allele. As soon as the

frequency exceeds ðNf̂iÞ�1 � ffiffiffiffi
L

p
=N ��, selection dominates.

In the genotype selection phase, however, the founding of
each genotype can, if it is exceptionally fit, change the fate of
the population dramatically.

The transition to genotype selection driven by epistatic
interaction is related to spin-glass transition in models for
disordered physical systems and magnets. Within these mod-
els, the probability of finding the system in a particular state
fsig is given by

PðfsigÞ�e�H ðfsigÞ=kT ¼e
�ð1=kTÞ½P

i

hisiþ
P
ij

Jijsisjþ����
; (47)

and hence completely analogous to Eq. (17). Such a system
generically resides in one of three states: paramagnetic,
ferromagnetic, or glassy. In the paramagnetic state at high
temperature different parts of the system are uncorrelated,
which is analogous to QLE. The perturbation expansion in
��=r is very similar to a high-temperature expansion in sta-
tistical physics. At low temperature, the behavior depends on
the structure of the Hamiltonian H ðfsigÞ. If most of the Jij
have the same sign, the system will go to an energetically
favored ordered state where spins are aligned, giving rise to a
ferromagnet. In this case H ðfsigÞ has one heavily preferred
energy minimum, corresponding to a fit genotype.

A different low-temperature behavior is found when the Jij
have erratic sign. In that case, not all interactions can be in
their favorable state simultaneously and the resulting land-
scape has many minima and maxima. At low temperature, the
system condenses into one of the minima. This spin-glass
phase is characterized by a nontrivial overlap distribution:
Different realizations of the system, drawn from the ensemble
defined by Eq. (47), will fall into clusters of different
degrees of similarity (measured by the Hamming distance).
The clusters themselves have subclusters, giving rise to a

hierarchical ultrametric structure (Mezard, Parisi, and

Virasoro, 1987). This is in contrast to the high-temperature

phase, where the overlap distribution is Gaussian. These

qualitatively different overlap distributions above and below

the spin-glass transition have a direct analogy to population

structure and heterozygosity: In the high recombination limit,

genotypes in the population are assembled from the available

alleles more or less at random such that any two individuals

differ at about 2
P

L
i¼1 �ið1� �iÞ sites (�i being the allele

frequency at locus i). At low recombination (or substantial

inbreeding), the population will condense into fit genotypes

(or inbred groups) that are much more similar to each other

than to members of the general population.
Figure 2(b) illustrates pairwise interaction between poly-

morphic loci along the chromosome. In general, we expect a

complex and possibly hierarchical pattern of interactions: A

given pair of distant genes will have only a low probability to

interact substantially, while polymorphisms within one gene

and its regulatory elements are much more likely to strongly

interact. Nearby polymorphisms in a protein (Callahan et al.,

2011) will still be more likely to interact. In obligate sexuals,

the sparse long range interactions rarely suffice to produce

appreciable correlations between loci. Within small stretches

of chromosomes, however, recombination rates are low and if

the strength of interactions within this stretch is sufficiently

high, QLE will locally break down. Consider, for example, a

1 centimorgan long region, which in humans corresponds to

about 1 mega base and harbors around 1000 polymorphisms.

If the typical epistatic contribution fitness of this stretch of

chromosome were on the order of 1%, we expect a runaway

selection on coadapted haplotypes and strong correlations.

Since distant parts of the genome are in QLE, one expects a

‘‘module’’ selection regime, where loosely linked and weakly

interacting modules are in QLE, but strong interactions and

infrequent recombination has led locally to condensation into

coadapted haplotypes (Neher and Shraiman, 2009). [An ex-

cellent early discussion of such epistasis driven ‘‘coagula-

tion’’ in the ‘‘soup’’ of genes is found in Turner (1967).]

Stated another way, we can view such a system as consisting

of weakly interacting mesoscopic loci, at which several

superalleles segregate. These superalleles are ‘‘destructible,’’

in the sense that recombination within leads to reduced fitness

and purging by selection. However, since recombination

within these alleles is rare, quantitative traits would be highly

heritable on short time scales and quantitative genetics would

work as usual.
Our discussion of the multilocus theory and QLE was

guided by ideas of statistical physics. The explicit form of

the (approximate) genotype distribution function PðgÞ pa-

rametrized by instantaneous allele frequencies is the central

pillar connecting the dynamics of population average traits,

the subject of QG, to the individual-based evolutionary pro-

cess. It is essential that the QLE distribution is reached on a

relatively fast time scale of mating and recombination. Allele

frequencies are well defined and vary slowly on this time

scale. The QLE ensemble should not be confused with a very

different mutation, selection, or drift ensemble, which could

be rightfully termed the ‘‘Wright equilibrium’’ [Eq. (42)],

which is often invoked as a link between evolutionary dy-

namics and statistical physics. The Wright equilibrium gives
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a stationary distribution of allele frequencies which would be
established in a finite population (N playing the role of
inverse temperature) on a time scale longer than the inverse
mutation rate �, provided stationary selection pressures.
Ruggedness of the fitness landscape could further increase
this equilibration time scale exponentially (Weissman,
Feldman, and Fisher, 2010). Clearly, this type of equilibrium
applies on a very different time scale than the phenomena
addressed in the present work. Related ideas were developed
in the context of quasispecies theory to study the conditions
under which hereditary information can be maintained over
long times (Eigen, 1971; Franz and Peliti, 1997). The focus of
these studies was prebiotic evolution, where fidelity of repli-
cation was most likely low and stability of genomic informa-
tion can be sensibly studied using a simple equilibrium
model. Equilibrium arguments were also applied to the evo-
lution of the codon bias (Iwasa, 1988) and the evolution of
transcription factor binding sites (Mustonen and Lassig,
2005). In the latter two cases, an ensemble can be constructed
by combining many instances of the same sequence motive
which was under constant selection pressure for a very long
time (conserved transcription factor binding motive or con-
served preference of certain codons over others). In many
cases, however, the equilibrium state is of little relevance.

In conclusion, in this review we provided a derivation of
the genotype distribution in the QLE approximation, provid-
ing a systematic generalization of Fisher’s theorem, Kimura’s
diffusion theory, and Wright’s equilibrium from LE to QLE,
which includes the effect of (weak) correlations between loci.
We also discussed the limitation of the QLE approximation
and the structure of the genotype distribution at low recom-
bination rates.

It is our hope that better understanding of the QLE ap-
proximation will promote progress in understanding the ef-
fects associated with its breakdown, whether due to strong
epistasis or strong physical linkage, such as, for example, the
Hill-Roberson effects (hitchhiking and background selection)
which still await comprehensive treatment.

GLOSSARY

Allele State of a locus, for example, the base A,
C, G, or T at a certain position

Crossover rate In meiosis, parental chromosomes are
paired up and crossed over. The density
of crossovers on the chromosome is
called the crossover rate.

Dominance Interaction of the two alleles at the same
locus in diploid organisms

Epistasis Genetic interactions between alleles at
different loci, i.e., a dependence of the
effect of an allele at one locus on the
remainder of the genome.

Fitness Expected reproductive success of an or-
ganism. For modeling purposes, this is
often equated with the growth rate
(Malthusian or log fitness) or the aver-
age number of offspring in the subse-
quent generation (absolute fitness).

Gametes Egg and sperm.
Genetic drift Sampling fluctuations of genotype or

allele frequencies. Genetic drift enters
as the diffusion term in the Fokker-
Planck equation for the dynamics of
the distribution of allele frequencies.

Genetic map The cumulative crossover rate along the
chromosome. The average number of
crossover events per chromosome is the
map length.

Genotype State of the genome, i.e., the set of
alleles an individual carries.

Haplotype Alleles inherited from one parent. In dip-
loids, twohaplotypesmakeonegenotype.

Heritability Broad sense heritability is the genetic
component of traits, i.e., the concord-
ance of traits between monozygotic
twins. Narrow sense heritability refers
to the genetic component of traits that is
inherited in sexual reproduction, i.e., the
correlation between trait values of pa-
rents and children.

Heterozygosity Fraction individuals in a diploid popula-
tion that carry distinct alleles at a locus.

Homozygosity The complement of heterozygosity.
Linkage Loci on the same chromosome are

linked and share history until crossover
events separate them.

Linkage
(dis)equilibrium

Absence (presence) of correlations be-
tween loci, often abbreviated LE and LD.

Locus Locationon the chromosome, e.g., a gene.
Mean fitness To preserve overall population size, fit-

ness is often measured with respect to
the mean fitness of the population.

Meiosis Division of a diploid cell to produce
haploid gametes.

Panmictic A population is panmictic if each individ-
ual is equally likely to compete and inter-
act with any other individual. In practice,
this requires that dispersal is fast com-
pared to population genetic time scales.

Polymorphism A locus with variation, i.e., the popula-
tion contains several alleles at this locus.

Random mating Simplifying assumption that mating is
independent of genotype, phenotype,
and environment.

Recombination Process of reshuffling of the genetic
material in sexual reproduction.

Outcrossing Fertilization with sperm or pollen from a
different individual.

Selfing Many plants and other organisms have
female and male sexual organs and can
self-fertilize or self-pollinate.

LIST OF SYMBOLS AND ABBREVIATIONS

g Haploid genotype: g ¼ fs1; . . . ; sLg.
Pðg; tÞ Genotype distribution in the population.
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h� � �i Population average.
FðgÞ Fitness (growth rate) of genotype g.
fi1���ik Contribution to fitness of the i1 � � � ik set of

loci.
ai Additive effect of locus i.
�2, �2

A,

�2
I

Total, additive, and epistatic variance in
fitness.

�i 2 f0; 1g Origin of locus i, i.e., maternal or paternal.
Cðf�igÞ Probability of the recombination pattern f�ig.
cij Probability that loci i and j derive from differ-

ent parents.
�, r Mutation and outcrossing rate.
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APPENDIX A: NOTATION

The specification of genotypes and parametrization of
genotype-phenotype maps is not unique and our notation
differs from the traditional population genetics choice.
Conventionally, one chooses one ‘‘wild-type’’ reference ge-
nome ð0; 0; . . . ; 0Þ and enumerates deviations from this refer-
ence. This is useful when a well-defined wild-type genotype
exists. In diverse populations, for example, the progeny of
cross between diverged strains, the reference free parametri-
zation we are using here is more natural. The allelic state at
each locus is denoted symmetrically by 	1, e.g., whether an
allele comes from one or the other strain. The two different
parametrizations are completely equivalent and related to
each other by a simple linear transformation (see Table I).
In the present context the reference free notation simplifies
the algebra since the si ¼ 	1 basis is orthogonal when
averaging over the genotype space. The relation to the
Fourier transform allows an unambiguous decomposition of

the fitness function into additive parts and epistatic compo-
nents of different order (Parceval’s theorem), while in the
reference based parametrization of fitness functions, more
akin to a Taylor expansion, coefficients depend explicitly
on the choice of reference. We also deviated from the tradi-
tional Dij notation for linkage disequilibrium because we

want to use the diagonal �ii ¼ 1� �2
i components of the

cumulant matrix (2 times the heterozygosity at locus i) on the
same footing as the off-diagonal ones.

APPENDIX B: QLE IN TERMS OF EFFECTIVE FIELDS

In this Appendix, we discuss how the fields �i and �ij

introduced to parametrize the genotype distribution Pðg; tÞ in
Eq. (17) are related to the cumulants of Pðg; tÞ. We also detail
how the recombination term in Eq. (7) can be evaluated
explicitly within the QLE perturbation theory. We parame-
trized the genotype distribution via

logPðg; tÞ ¼ �ðtÞ þX
i

�iðtÞsi þ
X
i<j

�ijðtÞsisj: (B1)

The constant term is determined by the normalization of the
distribution, the coefficients �iðtÞ are related to frequencies,
and the second order coefficients �ijðtÞ to the connected

correlation between loci. In the limit under consideration,
the second order contributions are small and we evaluate the
coefficients to leading order in �ijðtÞ,

e�� ¼ X
g

e

P
i

�isiþ
P
i<j

�ijsisj � X
g

e

P
i

�isi
�
1þX

i<j

�ijsisj

�

¼ 2L
�
1þ X

k<j

�kj tanhð�kÞ tanhð�jÞ
�YL
i¼1

coshð�iÞ:

(B2)

The relations between �i, �ij and �i, �ij given in Eq. (20)

follow by differentiation.
To arrive at the equations for the time evolution of the

fields �i and �ij [Eq. (24)], we have to evaluate the recom-

bination term in Eq. (23). This is done below. The terms
proportional to �iðtÞ cancel exactly between numerator and
denominator and we are left with

X
f�igfs0ig

Cðf�gÞPðg0Þ
�
PðgðmÞÞPðgðfÞÞ
PðgÞPðg0Þ � 1

�
¼ X

f�igfs0ig
Cðf�gÞPðg0Þ½e

P
i<j

�ij½ð�isiþ ��is
0
iÞð�jsjþ ��js

0
jÞþð ��isiþ�is

0
iÞð ��isiþ�js

0
jÞ�sisj�s0is

0
j� � 1�

¼ X
f�igfs0ig

Cðf�gÞPðg0Þ½e
P
i<j

�ij½ð�i�jþ ��i
��j�1Þðsisjþs0is

0
jÞþð�i

��jþ ��i�jÞðsis0jþs0isjÞ� � 1�: (B3)

In the limit under consideration, the second order contributions have to be small enough that the entire exponent is small. In
this case, the exponential can be expanded and the different terms averaged individually,

X
f�igfs0ig

Cðf�gÞPðg0Þ
�
PðgðmÞÞPðgðfÞÞ
PðgÞPðg0Þ �1

�
�X

f�ig
Cðf�gÞX

i<j

�ij½ð�i�jþ ��i
��j�1ÞðsisjþhsisjiÞþð�i

��jþ ��i�jÞðsihsjiþhsiisjÞ�

¼X
i<j

cij�ij½ðsihsjiþhsiisjÞ�ðsisjþhsisjiÞ�; (B4)

where cij is the probability that an odd number of crossovers happened between loci i and j.
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APPENDIX C: DIFFUSION THEORY AND WRIGHT’S

EQUILIBRIUM

In this Appendix, we detail intermediate steps to arrive at
the diffusion equation for the allele frequencies in QLE
and the generalized Wright equilibrium. The noise terms in
the Langevin equation (36) stem from the multinomial sam-
pling of the genotypes or gametes. From the covariance
of the multinomial distribution, we can therefore determine
the covariance of the noise terms 	i for �i and 	ij for �ij. The

covariance of the changes in �i and �j, for example, can be

calculated as follows:

h��i��ji ¼
�X

g

si�PðgÞ
X
g

s0j�Pðg0Þ
�

¼ X
gg0

sis
0
jh�PðgÞ�Pðg0Þi

¼ 1

N

�X
g

sisjPðgÞ½1� PðgÞ�

� X
g�g0

sis
0
jPðgÞPðg0Þ

�

¼ �ij

N
: (C1)

The other covariance terms can be calculated analogously. In
particular, one finds h��2

iji � N�1�ii�jj ¼ N�1ð1� �2
i Þ


ð1� �2
j Þ.

1. The effect of deterministic correlations

If deterministic correlations dominate over the fluctuations
in �ij the forward Kolmogorov equation for the distribution

of the �i is given by

@tQðf�ig;tÞ¼
X
i

@�i

�
1

2N

X
j

@�j
ð�ijQðf�ig;tÞÞ

þQðf�ig;tÞ
�
2��i�

X
j

�ij@�j
hFi

��
: (C2)

In the steady state, all probability fluxes vanish. The i com-
ponent of the probability flux is precisely the expression in
brackets above and hence has to be equal to zero. Multiplying
the bracket with 2N��1

ki and summing over i (��1
ki is the ki

element of the matrix inverse of �ij), we have

@�k
Qðf�igÞ ¼ Qðf�igÞ

�
�X

ij

��1
ki @�j

�ij

� 4N�
X
i

��1
ki �i þ 2N@�k

hFi
�
: (C3)

Next, we use the fact that the off-diagonal elements of �ij are

small and �ij ¼ �ijð1� �2
i Þð1� �2

j Þ, while �ii ¼ 1� �2
i .

To first order in the off-diagonal elements, the inverse is
given by ��1

ii ¼ ð1� �2
i Þ�1 and off-diagonal elements

��1
ij ¼ ��ijð1� �2

j Þ�1ð1� �2
i Þ�1 ¼ ��ij. Going over the

terms in Eq. (C3) one by one, we have

X
ij

��1
ki @�j

�ij ¼
X
i

��1
ki

X
j�i

@�j
�ij þ

X
i

��1
ki @�i

�ii

¼ X
i

��1
ki �ij

X
j�i

@�j
logð1� �2

j Þ

þX
i

��1
ki �ii@�i

logð1� �2
i Þ

¼ @�k
logð1� �2

kÞ: (C4)

The mutation term can be evaluated as follows:

4N�
X
i

��1
ki �i ¼ �2N�@�k

logð1� �2
kÞ � 4N�

X
i�k

�ik�i

¼ �2N�@�k
logð1� �2

kÞ
� 4N�@�k

X
i�k

�ik�i�k: (C5)

Substituting these terms into Eq. (C3) and �ij ¼ fij=rcij, we

have

@kQðf�igÞ ¼ Qðf�igÞ@�k

�
ð2N�� 1Þ logð1� �2

kÞ

þ 2N

�
hFi þ 2�

X
i�k

fik�i�k

rcik

��
; (C6)

which is straightforwardly integrated to

Qðf�igÞ ¼ Ce
2NhFiþ4N�

P
i<k

fik�i�k=rcik YL
i¼1

ð1� �2
i Þ2N��1:

(C7)

2. The effect of fluctuating correlations between loci

Even when associations between loci are zero on average,
fluctuations of �ij can affect the allele frequency dynamics.

The coupling between different loci acts as an additional
noise source on the dynamics of allele frequencies.
Grouping deterministic and stochastic forces, the correspond-
ing Langevin equation for �i is given by

�iðtþ �tÞ � �iðtÞ
¼ �t½�ii@�i

hFi � 2��i�
þ

Z tþ�t

t
dt0

�X
j�i

�ijðt0Þ@�j
hFi þ 	i

�
; (C8)

where the integral constitutes the fluctuating noise term.
Solving the Langevin equation for �ijðtÞ assuming constant

�i and �j, one finds

h�ijðtÞ�ijðtþ �tÞi ¼ ð1� �2
i Þð1� �2

j Þe�rcij�t

2Nrcij
: (C9)

Averaging the square of the noise term in Eq. (C8), we find
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�Z tþ�t

t
dt0

Z tþ�t

t
dt00

�X
j�i

�ij@�j
hFiþ	i

�



�X
k�i

�ik@�j
hFiþ	i

��

��ii�T

N

�
1þ1

2

X
j�i

�jj

�
1

rcij

@hFi
@�j

�
2
�
: (C10)

The cross term is of order N�3=2 and can be neglected.
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