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Detection of different extracellular stimuli leading to functionally
distinct outcomes is ubiquitous in cell biology, and is often medi-
ated by differential regulation of positive and negative feedback
loops that are a part of the signaling network. In some instances,
these cellular responses are stimulated by small numbers of mol-
ecules, and so stochastic effects could be important. Therefore, we
studied the influence of stochastic fluctuations on a simple signal-
ing model with dueling positive and negative feedback loops. The
class of models we have studied is characterized by single deter-
ministic steady states for all parameter values, but the stochastic
response is bimodal; a behavior that is distinctly different from
models studied in the context of gene regulation. For example,
when positive and negative regulation is roughly balanced, a
unique deterministic steady state with an intermediate value for
the amount of a downstream signaling product is found. However,
for small numbers of signaling molecules, stochastic effects result
in a bimodal distribution for this quantity, with neither mode
corresponding to the deterministic solution; i.e., cells are in ‘‘on’’ or
‘‘off’’ states, not in some intermediate state. For a large number of
molecules, the stochastic solution converges to the mean-field
result. When fluctuations are important, we find that signal output
scales with control parameters ‘‘anomalously’’ compared with
mean-field predictions. The necessary and sufficient conditions for
the phenomenon we report are quite common. So, our findings are
expected to be of broad relevance, and suggest that stochastic
effects can enable binary cellular decisions.

bimodality � fluctuations

The detection of external stimuli by receptors on a cell
membrane followed by intracellular signaling, gene tran-

scription, and effector functions is ubiquitous, and necessary for
life. The regulatory processes involved in gene transcription are
often mediated by small numbers of molecules. This makes
stochastic effects important and, in recent years, many interest-
ing consequences of such fluctuations have been elucidated
theoretically and observed in experiments (e.g., refs. 1–4). The
importance of stochastic effects on enzymatic reactions in the
zero order ultrasensitivity regime has also been described (5, 6).
Less attention has been devoted to the effects of stochastic
f luctuations on cell signaling dynamics. However, many such
processes involve small numbers of molecules. One important
example is provided by T lymphocytes (T cells), the orchestrators
of the adaptive immune response. T cell signaling and activation
can be stimulated by as few as three molecules that represent
signatures of pathogens (called agonists) (7–12). The small
numbers of molecules involved can make stochastic effects
important for membrane-proximal signaling in T cells. Here, we
study simple and general models inspired by recent descriptions
of membrane-proximal signaling in T cells, and find an inter-
esting consequence of stochastic f luctuations. An essential fea-
ture of the model, dueling positive and negative feedback loops,
is ubiquitous, and so our findings may be of broad relevance in
cell biology.

Many examples (particularly models of gene regulation) have
been studied wherein a deterministic treatment of the kinetic
scheme describing the relevant processes has two stable steady

states in a certain parameter regime (1–3, 13, 14). In such
systems, stochastic effects can lead to bimodality (e.g., populated
‘‘on’’ and ‘‘off’’ states) in the parameter range where bistability
is predicted by the deterministic equations as well as outside this
range where there is a single stable steady state (1–3, 13, 14). The
latter phenomenon is a consequence of stochastic f luctuations
enabling the system to sample parameters (e.g., rate constants)
that effectively fall within the range where two deterministically
stable fixed points are present. In these examples, the existence
of bistability in the deterministic analysis in some parameter
range underlies the observation of bimodal behavior in the
stochastic treatment.

The model we study exhibits a different feature. The deter-
ministic dynamical equations yield a single steady state in all
parameter ranges; i.e., there is no bistability. Yet, stochastic
f luctuations result in a bimodal long-time response with neither
mode corresponding to the steady state obtained deterministi-
cally. Upon increasing the copy numbers of molecules, the
stochastic description ultimately converges to the deterministic
behavior. Thus, we find a purely stochastically driven instability
when none exists in the deterministic treatment in any parameter
range. When fluctuations are important, we find that average
quantities scale with parameters ‘‘anomalously’’ compared with
the corresponding mean-field behavior. Our analyses suggest
that the necessary and sufficient conditions for this phenomenon
to occur are quite common.

Signaling Model
Our simple (‘‘toy’’) model is inspired by ideas proposed recently
to describe T cell responses to diverse stimuli (7–9, 15–17). T cell
receptor (TCR) molecules expressed on the surface of T cells can
bind complexes of peptides (p) bound to MHC proteins on the
surface of antigen-presenting cells (APCs). TCR can potentially
bind strongly to pMHC molecules where the peptide is derived
from a pathogen’s proteins (agonists). In contrast, thymic se-
lection ensures that TCR bind weakly to ‘‘self’’ or endogenous
pMHC molecules that are also expressed on APCs (18). The
binding of TCRs to pMHC molecules can initiate signaling
cascades that result in T cell activation and an immune response.
T cells are as good a sensory apparatus as any in biology, and can
detect as few as three agonists in a sea of tens of thousands of
endogenous pMHC molecules, and it has been suggested that
this extraordinary sensitivity is mediated by cooperative inter-
actions between self pMHC and agonists (7–10, 19).

Another interesting response of T cells to pMHC molecules is
called antagonism (15, 20). Antagonists are pMHC molecules
obtained by mutating agonist peptide residues. When present on
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APC surfaces in sufficient numbers, they can shut down intra-
cellular signaling stimulated in response to agonists. Recent
experimental results (15) have suggested that this phenomenon
may be mediated by dueling positive and negative feedback loops
(Fig. 1). One of the earliest steps in downstream signaling
initiated by the binding of the TCR to pMHC molecules is the
phosphorylation of cytoplasmic domains of the TCR complex by
a kinase called Lck. It has been proposed that Lck also activates
its own inhibitor, a phosphatase called Shp (negative feedback).
This inhibitory interaction is prevented by a product (ERK) of
signaling downstream of phosphorylation of the TCR complex
that protects Lck by phosphorylating one of its sites (positive
feedback). It has been proposed, and supported by detailed
calculations (16, 17), that the positive feedback is dominant when
T cells are stimulated by agonists (and synergistic endogenous
ligands), and negative feedback shuts down signaling when
sufficient numbers of antagonists are present.

Although the specific molecular identity of positive and
negative regulators involved in T cell signaling is still debated
(21), the idea that dueling positive and negative feedback loops
play a role in determining whether signaling is shut off (antag-
onism) or sustained/amplified (agonism) is of general signifi-
cance to cellular decisions that lead to distinct outcomes. Fur-
thermore, such processes are often mediated by small numbers
of molecules. Therefore, we set out to study the effects of
stochastic f luctuations on the following simple and general
model with dueling positive and negative feedback regulation

A1O¡
k1

E � A1 [1]

A2O¡
k2

S � A2 [2]

E � A1O¡
k3

E � A1
PROT [3]

A1
PROTO¡

k4

E � A1
PROT [4]

S � A1O¡
k5

S � A1
INACTIV [5]

SO¡
kD

�, EO¡
kD

�. [6]

Although this model is general, seeing how it relates to T cell
signaling makes clear that it is relevant to situations where cells
make distinct decisions (e.g., agonism and antagonism in Fig. 1).
Reaction 1 mimics the production of the positive regulator ERK
(E) upon agonist (A1) binding to TCR. Thus, it subsumes a large
number of steps in the actual signaling cascade into one. Of
course, agonists also lead to production of the negative regulator
Shp (S), but this is ignored in this general model. Similarly, some
production of E by antagonist (A2) binding to the receptor is
ignored, and reaction 2 mimics the production of the negative
regulator. Reaction 3 represents positive feedback and mimics
protection of Lck from the action of Shp, in that the interac-
tion of E with A1 protects it (by forming A1

PROT) from the
inhibitory action of S (reaction 5). Protected A1 species can
generate positive regulators E (reaction 4), and both positive and
negative regulators can be inactivated (reaction 6).

Results
The mean-field deterministic equations corresponding to the
model described by Eqs. 1–6 can be written down following mass
action kinetics [supporting information (SI) Text, SI Table 1, and
SI Figs. 6–9], and yield the following solution for the steady state:

A1
�SS� � 0, A1

PROT �SS� � A1,
1NACTIV(SS) � A1,initial,

E �SS� �
k4

kD
A1

PROT �SS�, S �SS� �
k2

kD
A2. [7]

At steady state, the number of A1 molecules equals zero, the
number of S molecules is a function of the number of A2
molecules, the number of E molecules depends on the number
of protected A1 molecules, and all solutions that satisfy the
constraint that the sum of the number of A1

PROT species and
A1

INACT species sum to the initial number of A1 are allowed. Thus,
unique steady states cannot be obtained from Eqs. 7 without
knowledge of the initial conditions. Rather, there is a line of
possible steady states. Stability analysis shows that all, but one,
eigenvalues of the Jacobian matrix are negative. The only
nonnegative eigenvalue is zero, and corresponds to sliding
along the line of possible steady states, A1

PROT(SS) �
A1

1,INACTIV(SS) � A1,initial, with corresponding change in the
steady-state value of E. Solving the dynamical equations with
specific initial conditions and taking the long-time limit ob-
tains a unique point on this fixed line. Thus, the deterministic
solutions of the model are a set of unique steady-states for all
parameter values.

Although we have studied different parameter ranges for a
stochastic description of this model (SI Text), let us first consider
situations that are inspired by T cell signaling. Reactions 1, 2, and
4 represent multistep processes (22). Reactions 3 and 5, the
dueling feedback loops, are thought to represent one-step phos-
phorylation or deactivation steps (15). So, we study situations
where k3 and k5 are much larger than k1, k2, and k4; i.e., both
positive and negative feedback loops are strong. Recent studies
(9, 17) with detailed models of membrane-proximal signaling in
T cells suggests that k4 could be larger than k1, but we have taken
them to be equal (k4 � k1 is considered in the SI Text). Changing
the relative values of k1 and k2 would simply modify the specific
value of the ratio of initial numbers of A1 and A2 molecules that
would result in a transition from ‘‘agonism’’ to ‘‘antagonism.’’

Fig. 1. A schematic representation of dueling positive and negative feed-
back loops stimulated upon receptor binding to stimulatory or inhibitory
ligands. The negative regulator can shut off signaling by inactivating the
receptor-associated signaling complex (negative feedback), whereas the pos-
itive regulator could prevent this inhibitory interaction and increase or con-
tinue production of downstream signaling products (positive feedback).
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Fig. 2 shows results of spatially homogeneous stochastic
simulations with discrete number of molecules [using the
Gillespie algorithm (23)] of the model represented by Eqs. 1–6.
When there are only a few molecules of A1 and A2, essentially all
of the stochastic trajectories commit to one of two final states:
all of the A1 molecules are converted to the protected species,
A1

PROT, or are annihilated and signaling stops. This bimodality is
in striking contrast to the mean-field solution that does not
exhibit bistability for any parameter values. The qualitative
phenomenon of finding a bimodal stochastic solution when the
deterministic solution is unique for all parameter values is
preserved as long as the positive and negative feedback loops are
sufficiently strong (SI Text).

The mechanism underlying this result is as follows. The species
A1 is converted to either A1

PROT or A1
INACT. The effective rates of

production of these species can be obtained from the determin-
istic equations. Both rates equal zero initially and at long times,
and exhibit a maximum (SI Fig. 9). The initial rise and ampli-
tudes of the maxima depend on the values of the initial number
of A1 and A2 molecules, and are very different if one of these
quantities is much larger than the other. In these circumstances,
either agonism or antagonism dominates in the deterministic
and stochastic solutions. The more interesting cases are ones
where the generation of positive and negative regulations is
roughly balanced (Fig. 2) because it could result in a transition
from agonism to antagonism. Now, the rates at short times and
amplitudes of the maxima for the production of A1

PROT and

A1
INACT are comparable in the mean-field sense, and the deter-

ministic equations yield a single steady state solution with an
intermediate value of A1

PROT. However, stochastically, one of two
reactions 1 and 2 occurs first. There is a stochastic delay, �, before
the other reaction occurs, and for this duration, the reaction
propensities are effectively as in cases where A1 �� A2, or vice
versa. For small numbers of A1 and A2 molecules, � can be long.
If � is longer than the intrinsic time scale associated with the
feedback reaction corresponding to the reaction that occurred
first (e.g., reaction 3 if 1 occurred first), then the small number
of A1 molecules will all be converted to either A1

PROT or be
annihilated, depending upon whether reaction 1 or 2 occurred
first. So, the stochastic trajectories partition into two classes
(those that end with all A1 molecules annihilated or protected),
and the stochastic solution is bimodal.

The time delay (�) becomes smaller as the number of mole-
cules of A1 and A2 increases. This observations suggests that, for
a sufficiently large number of particles, it will not be longer than
the intrinsic time scale associated with the feedback loops and
the stochastic solution will not be bimodal. Rather, it will be
distributed around the mean-field solution. Fig. 3 shows results
of simulations that demonstrate this unequivocally. Thus, for the
same parameter values, as the number of molecules decreases
past a threshold, the stochastic solution exhibits an instability
from one solution to bimodality. This transition from unimodal
to bimodal solutions is driven by stochastic effects, and occurs in
the absence of any underlying deterministic bistability.

The qualitative differences between the stochastic and deter-
ministic descriptions due to the dominance of fluctuation effects
suggests that the manner in which the response scales with
different control parameters may be different. For example, we
expect the steady state amount of A1

PROT to scale with k1A1/k2A2
for the stochastic simulations. This is because the probability of
conversion to A1

PROT is essentially equal to the probability that
reaction 1 occurs first, which is given by k1A1/(k1A1 � k2A2).
Conversely, probability of annihilating all A1 molecules is equal
to k2A2/(k1A1 � k2A2) (equal to probability that reaction 2 occurs
first). Both expressions depend only on the combination k1A1/
k2A2. This implies, for example, that the amount of A1

PROT scales
linearly with k1 (a measure of how effective the agonist is in
stimulating signaling). The deterministic solution, on the other
hand, is not expected to obey this linear scaling. Indeed, numer-
ical solutions support these expectations (SI Fig. 8).

The complexity of the model described by Eqs. 1–6, however,
makes it difficult to explore these differences in scaling behavior
precisely. The complexity also prevents us from analyzing the
necessary and sufficient conditions for purely stochastic insta-
bilities (results in Figs. 2 and 3) in cell signaling dynamics.
Therefore, we formulated a simpler model that enabled explo-
ration of these issues.

This minimal model, which can be solved exactly, includes the
following features: irreversibility, branching, and feedback. The

Fig. 2. Bimodal stochastic solutions distinct from the unique deterministic
solution. Histogram showing the bimodal distribution of the protected ago-
nists at steady state (red) for a situation when there are 10 agonist (A1) and 10
antagonists (A2). The corresponding single steady state solution of the deter-
ministic ODEs (blue) is also shown. The other parameter values are: k1 � 1, k2 �
1, k3 � 100, k4 � 1, k5 � 100, kD � 1 (all s�1), and statistics were collected over
5,000 trajectories obtained by using the Gillespie algorithm. The result is
robust to variations in the parameter values as long as there is strong
feedback.

Fig. 3. A purely stochastically driven transition. Histograms showing the distribution of the protected agonists at steady state (red) and corresponding steady
state solution of deterministic ODEs (blue) for different amounts of agonist and antagonist. All other parameters are identical to that in Fig. 2.
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model is described in terms of the three coupled reactions shown
below:

Z � YO¡
k1

X � Y, Z � X � YO¡
k2

2X � Y, YO¡
k3

A. [8]

The deterministic equations corresponding to these reactions
can be written down (SI Text) following the mass action kinetics.
Let us denote the numbers of x, y,and z species at time t by Nx(t),
Ny(t), and Nz(t), respectively. At t � 0, only Z and Y species are
present; i.e., Nx (0) � 0, Ny (0) � N, and Nz (0) � M. As for the
more complex model, the steady state values of the numbers of
each species cannot be determined by setting the right sides of
the above rate equations to zero; i.e., only a line of possible
steady states can be obtained. Linear stability analysis of the
steady state solutions shows that there is a neutral mode (with
an eigenvalue 0) corresponding to sliding along the line of
possible steady states, and stable modes along the directions �Nx

� (k2Nx
s � k1)(M � Nx

s)/k3�Ny and �Ny, respectively, which span
the plane of the steady states. It is easy to solve the time
dependent equations and take the t 3 � limit to obtain the
unique steady-state solution for given initial conditions. The
time-dependent solution to the deterministic equations describ-
ing system (8) is:

Nx�t� �
k1M�F�t� � 1�

Mk2 � k1F�t�
, Ny�t� � Ne�k3t, Nz�t� � M � Nx�t�,

[9]

where F(t) � exp[(Mk2 � k1)N(1 � e�k3t)/k3]. At long times (t ��
k3

�1), the steady state particle numbers are

Nx�t ¡ �� � Nx
s �

k1M�exp�N�Mk2 � k1��k3	 � 1�

Mk2 � k1 exp�N�Mk2 � k1��k3	
[10]

Ny�t ¡ �� � Ny
s � 0, N

z
�t ¡ �� � Nz

s � M � Nx�t ¡ ��. [11]

Given initial conditions, these equations determine a unique
steady state, a behavior identical to that exhibited by the model
described by Eqs. 1–6. Unlike the more complex model, the
deterministic scaling behavior can be determined, and is given by
Nx

s(k1, k2, k3, N, M) � Mf(Mk2k1
�1, Nk1k3

�1).
The following Master Equation describes the stochastic time

evolution of the reactions shown in (8)

�P�nx, ny, nz, t�
�t

� �k2�nx � 1�ny�nz � 1� � k1ny�nz � 1�	

P�nx � 1, ny, nz � 1, t� � k3�ny � 1�P�nx, ny � 1, nz, t�

� �k2nxnynz � k1nynz � k3ny�P�nx, ny, nz, t�. [12]

P(nx, ny, nz, t) denotes the probability of having nx, ny, and nz

particles at time t. The probability distribution at t � 0 is given
by P(nx, ny, nz, t � 0) � �nx,0�ny,N�nz,M. Note that, at steady state
(or in the limit, t 3 �), there will be no y species present, and
therefore, P(nx, ny, nz, t3 �) � �(nx, nz)�ny,0. However, any form
of �(nx, nz) will make the right hand side of Eq. 12 vanish.
Therefore, as for the deterministic equations, irreversibility
makes it necessary to solve the time-dependent Master equation
for a particular initial condition to obtain the steady-state
solution.

Using the method of generating functions (24), Eq. 12 can be
solved exactly (SI Text) to obtain:

P�nx, ny, nz, t� � �nx�nz, M �
r�nz

M

�rpnz r

NCny� k3

Ar � k3
�1 � exp���Ar � k3� t�� N�ny

exp��ny�Ar � k3� t� ,

[13]

where Ar � r((M � r)k2 � k1) and pnzr � rCnz
(�1)nz 
(M � k1/k2 �

1 � r)
(M � k1/k2 � nz)/
(M � k1/k2 � 1 � nz � r)
(M � k1/k2).
{�r} are determined from the equations

�
r�n

M

�rpnr � 0 for n 	 M

� 1 for n � M .

[14]

At long times (t 3 �), the above probability distribution takes
the form,

P�nx, ny, nz, t 3 ��

� �nx�nz, M�ny, 0 �
r�nz

M

�rpnzr� k3

�r�M � r�k2 � rk1� � k3
�N

. [15]

Note that this solution to the Master equation indicates the
appearance of a spectrum of time scales (indexed by r and ny),
which is presumably related to stochastic delays.

Eq. 15 results in a steady state probability distribution that is
bimodal for small numbers of molecules (SI Fig. 11a) when the
deterministic solution does not exhibit bistability in any param-
eter range. In the more complex model that we studied (Eqs.
1–6), mean-field behavior was obtained as the numbers of A1 and
A2 molecules increased past a threshold value even though their
relative numbers were kept constant. The corresponding limit
for the minimal model is k33 �, N3 �, with the ratio N/k3 (or
the dimensionless, Nk1/k3) remaining constant. This is because a
large value of N corresponds to a large amount of the source of
a positive regulator (A1 in Eqs. 1–6) and a large value of k3

corresponds to greater annihilation or a big source (A2 in Eqs.
1–6) of negative regulation. SI Fig. 11b shows that, like the more
complex model, there is a purely stochastic transition as the
stochastic solution is unimodal and distributed around the
deterministic solution above a threshold value of N and k3. So,
these results establish that the sufficient conditions for the
phenomena we report are: irreversibility, branching, and feed-
back loops. But, are these also necessary conditions?

The possibility of two different outcomes is obviously neces-
sary, and branching is ubiquitous in cell signaling processes that
lead to functional decisions. We have also found that removing
irreversibility abolishes the phenomenon (data not shown).
Ultimately, all reactions are, in principle, reversible. However, in
the time scales of interest to signal propagation in cells, many
steps are effectively irreversible.

Feedback regulation is also necessary as the bimodal stochas-
tic solution does not exist if k2 in the minimal model tends to zero
(SI Fig. 15). Insight into the kind of feedback regulation that is
necessary can be obtained by contrasting our studies of dueling
feedback loops in cell signaling to a model for binary drift in
population genetics (25, 26). Consider a population of hetero-
zygote individuals with two forms, B1 and B2, for a particular
allele. In the absence of mutations, the number of each type of
allele can change from generation to generation, even in a
population of fixed size, due to mating. The effects of binary
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selection on the numbers of B1 and B2 forms can be roughly
represented as follows (25, 26):

B1 � B2O¡
k

B1 � B1, B1 � B2O¡
k�

B2 � B2, [16]

with k and k� related to the relative fitness of each phenotype.
The model described by Eq. 16 also contains branching and

irreversibility. There is also an effective feedback, but unlike
Eqs. 1–6 or 8, there is no separate intrinsic time scale associated
with the feedback loops. A special case of this model (with no
selection), k � k�, shares some features with the systems we are
considering. The deterministic changes in this limit are trivially
zero, and any initial condition (along the fixed line of B1 � B2 �
population size) remains fixed. These deterministic steady states
are unique, but the stochastic solutions yield a bimodal distri-
bution. This is because the stochastic trajectories are divided
into two classes: ones that terminate when the number of B1
particles vanishes and those that terminate when the number of
B2 reaches zero.

There is an important difference, however, between the model
for binary drift with k � k� and the class of cell signaling models
we have been considering. The stochastic solution of the model
represented by Eq. 16 does not converge to the deterministic
solution when the number of particles becomes large. The
stochastic solution at t 3 � is always bimodal. The stochastic
trajectories cease to evolve when either B1 or B2 become zero
because only then is the effective rate of conversion between
these species equal to zero. The deterministic rates of formation
of B1 and B2 equal the same constant for all times. Increasing the
numbers of molecules does not eliminate this difference between
the deterministic and stochastic cases. As the number of particles
increases, the stochastically determined time (��) required for B1
or B2 to equal zero increases, but ultimately it always happens.
There is no separate intrinsic time scale that can compete with
increasing values of �� as the number of particles increases and
prevent this from happening (i.e., a bimodal solution). Recall
that, for the signaling models that we focused on, the relative
values of the stochastic delay, �, and the separate time scale
associated with feedback loops determined the stochastically
driven transition when the number of molecules was lowered
(Fig. 3 and SI Fig. 11b). The absence of such an interplay
prevents a purely stochastic instability in the binary drift model
as the number of particles decreases. Correspondingly, if the rate
coefficients in the model represented by Eq. 16 were time
dependent with an intrinsic time scale, the phenomenon of a
purely stochastic instability would be recovered.

The analyses presented above suggest that the necessary and
sufficient conditions for a purely stochastic bimodality in the
absence of any deterministic bistabilities are: (i) irreversibility,
(ii) branching, and (iii) feedback regulation with an associated
distinct and fast time scale.

The analytical solution for the probability distribution (Eq. 15)
obtained for the minimal model of cell signaling that satisfies
these conditions enables us to calculate average properties, such
as the average number of molecules of the product, �x�. This
allows us to examine whether �x� scales with parameter values in
the same way as Nx determined from the mean-field equations
(see above). The average value, �x�, is

�x � �
n�0

M �
r�n

M

�rpnr�M � n�� k3

r��M � r�k2 � k1� � k3
	N

. [17]

So, in general, there is no simple scaling law, such as Nx scaling
with Nk1/k3, as in the deterministic limit. Does this ‘‘anomalous’’
scaling, originating from the importance of stochastic f luctua-

tions, revert to mean-field scaling behavior in the limit corre-
sponding to a large numbers of particles?

To answer this question, as shown above, we need to consider
the value of �x� in the limit of large values of N, M, and k3.
Consider first the limit of large values of N and k3 for a fixed
value of Nk1/k3. Simple algebra yields the value of �x� in this limit
to be

Lt
N¡�
k3¡�

k3/N fixed
�x

� �
n�0

M �
r�n

M

�r pnr�M � n�exp��r��M � r�k2/k1 � 1�Nk1�k3� .

[18]

So, the deterministic scaling with Nk1/k3 (Eq. 10) is recovered in
the appropriate limit. Similarly, mean-field scaling is recovered
in the limit of large values of N and M (SI Text).

The general solution (Eq. 18) for �x� does not allow us to
explicate the non-mean-field scaling when fluctuations are im-
portant. This can be obtained analytically only in special limits.
For example, consider the limit of infinitely strong feedback
(k2 3 �). In this limit, �x� takes the following form (SI Text)

Fig. 4. Results from the minimal model. Non-mean-field scaling in the limit
of large positive feedback (k2 3 �): The average values of X species, �x�, at
steady state obtained from Gillespie simulations scale with (1/log(1 � Mk1/k3))
instead of the mean field scaling variable Nk1/k3. The values of the parameter
k2 is 100 s�1 (i.e., a large value). k1 � 0.0012 s�1 and M � 20 are held fixed as
k3 and N are varied. The solid line is a plot of the scaling function shown in
Eq. 19.

Fig. 5. Stochastic fluctuations can enable cellular decisions. Schematic rep-
resentation showing that irreversibility, branching, and dueling feedback
loops associated with intrinsic time scales, when combined with stochastic
effects, can result in distinct functional decisions for each cell. A deterministic
treatment would mask this ability of cells to make decisions.
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�x � M�1 � � k3

Mk1 � k3
	N	 � M�1 � e�N ln�1�Mk1�k3��. [19]

Fig. 4 shows that �x� obtained from numerical solutions of the
Master equation (Eq. 8) for different values of N and k3 collapse
to one master curve when scaled according to Eq. 19, a scaling
that is distinctly different from the mean-field scaling with
Nk1/k3. We have not been able to determine whether these
specific differences in scaling laws between the deterministic and
biologically relevant stochastic solutions are universal to all
models which satisfy the necessary and sufficient conditions
(identified earlier) for a purely stochastic instability.

Discussion
Dueling positive and negative feedback loops are ubiquitous in
biology. In many instances, these processes involve small num-
bers of the pertinent molecules, and hence stochastic f luctua-
tions can be important. We report a striking result for such
systems. The models we have studied correspond to unique
deterministic steady states for all parameter values, and do not
exhibit bistability. Yet, when there are a small number of
molecules, stochastic effects result in a bimodal solution with
neither solution corresponding to the mean-field result. Our
analyses suggest that the necessary and sufficient conditions for
this phenomenon are irreversibility, branching, and the existence
of an intrinsic and relatively fast time scale associated with
feedback regulation. Our studies show that for specific examples
of such systems, near the transition from one phenotype to
another (e.g., agonism to antagonism), mean-field scaling does
not apply to the stochastic solutions. Whether the specific
differences in scaling between mean-field and stochastic solu-
tions that we report are universal for the class of models that
exhibit the phenomenon revealed by our studies remains an open
question.

There is a key difference between models of gene regulation
and cell signaling where bimodality has been observed in sto-
chastic limits under conditions where the deterministic equa-
tions yield monostable solutions and our results. In the former
examples (double negative feedback, dimer mediated gene reg-
ulation, etc., e.g. refs. 1 and 27–32), bistable deterministic
solutions exist in some other parameter regime. Stochastic
bimodality displayed by binary drift models in population ge-
netics are also different from the phenomena we report in that

the stochastic solutions are always bimodal, regardless of the
number of particles; i.e., there is no stochastically driven tran-
sition from a single solution to bistable solutions.

The necessary and sufficient conditions for the phenomenon
that we report (branching, irreversibility, and feedback loops
with distinct time scales) are quite common in cell biology. Our
results suggest that these features, when combined with stochas-
tic f luctuations, can enable cells to make binary decisions,
whereas this would not be possible in a deterministic world. For
instance, if gene transcription and effector function required
greater than a threshold value of a downstream signaling prod-
uct, in a mean-field world, cells would be unable to make
decisions with a distinct functional outcome (Fig. 5). Under the
same conditions, stochastic effects would result in cells being
either ‘‘on’’ or ‘‘off’’ (Fig. 5), as observed in experimental studies
in diverse contexts.

For example, a recent study of HIV latency by Weinberger et
al. (4) showed a ‘‘temporary’’ bimodal cell population in a time
window when there is no instability in the set of rate equations
used to describe the signaling events. The main difference
between this study and the results we have discussed is that, in
ref. 4, the observed bimodality disappears at long times. Another
example is provided by T cell signaling. It has been proposed that
dueling feedback regulation could underlie how antagonists shut
off signaling in T cells. Experiments show a bimodal response for
a downstream signaling product (Erk), with the proportion of
‘‘off’’ cells increasing as the number of antagonists becomes
larger (15, 16). Stochastic simulations of a model of the T cell
signaling network are in accord with these experimental obser-
vations (SI Text); i.e., bimodal distributions are the norm because
of fluctuations, whereas the deterministic equations do not
exhibit bistability in any parameter regime. However, we em-
phasize that a bimodal or ‘‘digital’’ ERK response in T cells could
also result from important contributions from other molecular
mechanisms (33).

We hope that the possibility of purely stochastic instabilities
that lead to distinct cellular decisions will be broadly explored in
the context of cell signaling processes by carrying out single cell
assays for systems where the necessary and sufficient conditions
we have described are naturally present or are engineered.
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