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Casimir Forces, Surface Fluctuations, and Thinning of Superfluid Film
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Recent experiments on the wetting of 4He have shown that the film becomes thinner at the �
transition and in the superfluid phase. The difference in thickness above and below the transition has
been attributed to a Casimir interaction which is a consequence of a broken continuous symmetry in the
bulk superfluid. However, the observed thinning of the film is larger than can be accounted by this
Casimir force. We show that surface fluctuations give rise to an additional force, similar in form but
larger in magnitude, which may explain the observations.
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FIG. 1 (color online). The thinning of the helium film �d
versus temperature, based on the data reported in Ref. [9]. The
dotted line illustrates the expected thinning of the film due to a
Casimir force resulting from bulk Goldstone modes. It also
coincides with the magnitude of the thinning of the film at the
transition temperature as determined in Ref. [7]. The dashed
line shows the expected change in thickness due to both bulk
Goldstone modes and surface fluctuations.
Quantum fluctuations of the electromagnetic field be-
tween two conducting plates in vacuum result in long-
ranged attractive interactions. This effect was first pre-
dicted by Casimir in 1948 [1], and only recently experi-
mentally verified by high precision measurements [2]. In
1978, Fisher and de Gennes noted that the confinement of
thermal fluctuations in fluids leads to similar long-ranged
forces [3]. Quite generally, geometric restrictions on a
fluctuating field constrain its normal modes and result
in fluctuation-induced or Casimir forces. The range of
these forces is set by correlations in the fluid: when the
correlations are long-ranged, corresponding to massless
fields, Casimir forces decay with distance as a simple
power law [4–8]. The overall strength of a Casimir inter-
action is typically universal. That is, it depends on sym-
metries of the fluctuating field and on boundary
conditions, but not on microscopic details.

An important example of a Casimir force associated
with thermal fluctuations in a condensed matter system is
found in 4He films at and near the superfluid phase
transition [9]. The finite thickness, d, of the film con-
strains the fluctuations of the superfluid order parameter,
which then mediate a Casimir force. Experimental dem-
onstration of this force was reported recently by Garcia
and Chan [9] (GC). To produce films of various thick-
nesses, a stack of copper electrodes was suspended at
different heights above bulk liquid helium. The thickness
of the wetting layer on each electrode as a function of
temperature was monitored to gauge the strength of in-
teractions with the substrate. Figure 1 shows the change in
the film thickness �d � d� d0, as a function of reduced
temperature t � T � T�, near the superfluid transition
point for the capacitor labeled ‘‘Cap 1’’ in Ref. [9]. The
quantity d0 is the thickness of the film well above the �
point. As shown in the figure, there is a perceptible
decrease in the thickness of the film at the transition point
t � 0, followed by a substantial drop below the transition.
The thinning of the film for t � 0 quantitatively confirms
the theoretical predictions of attractive Casimir interac-
tions between parallel surfaces in the presence of
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Dirichelet boundary conditions [7]. At this point, no
theoretical explanation has been put forth for the rela-
tively substantial dip in the film thickness at temperatures
close to and below the bulk transition temperature. In
fact, the theoretical magnitude of the Casimir force at t �
0 is 50 times less than required to give rise to the observed
maximum thinning [10].

Further below the transition point, the superfluid film
partially recovers its thickness but still remains notice-
ably thinner than in the normal fluid. The superfluid state,
in which a continuous symmetry is broken, supports
Goldstone modes that are not present in the normal phase.
It is thus reasonable to expect that these long wavelength
modes are responsible for the differences in thickness on
the two sides of the transition point. However, the mag-
nitude of the fluctuation-induced force associated with
the Goldstone modes in the bulk of the film is too small to
account for the observed reduction in thickness in the
superfluid region [10,11] (away from criticality). The dot-
ted line in Fig. 1 indicates the expected thinning of the
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film due to the Casimir force resulting from the bulk
Goldstone modes.

Here, we explore the role of surface fluctuations on the
thinning of a superfluid film. In particular, we investigate
the fluctuation-induced force generated by the flow field
in a superfluid film that accompanies undulations in the
fluid-vapor interface. While it may initially appear that
surface effects should be subdominant to those from the
bulk, the flow fields (and hence kinetic energy) associated
with surface deformations are actually quite constrained
by the film thickness, d. The dependence of undulation
energies on thickness leads to a contribution to the free
energy that is proportional to 1=d2. This leads to a force
favoring thinner films [12], with the same form as that
arising from the bulk Goldstone modes, and an amplitude
that is almost twice as large. The dashed line in Fig. 1
shows the expected change in the thickness of the film
due to the combined influences of surface and bulk
fluctuation-induced forces for a film of thickness 423 Å.
As is clear from the figure, the net effect of ‘‘bulk’’
Goldstone modes and surface capillary modes is suffi-
cient to explain the diminished breadth of films in the
superfluid phase [14].

We would like to emphasize that a theoretical calcu-
lation of forces induced by surface fluctuations in liquid
films is not without precedent [4,15]. However, we are
unaware of any instance in which such interactions have
been detected prior to the experiments of Garcia and
Chan. The key point is that in most cases, fluctuation-
induced interactions (due to bulk phonons or surface
modes) appear only as a small correction to the larger
van der Waals forces. Traversing the superfluid transition,
however, provides an instance in which the dominant
atomic forces are unchanged, while the long wavelength
modes due to continuous symmetry breaking can be
switched on or off. Thus, the change in thickness of the
wetting film provides an ideal probe of the interactions
generated by the Goldstone modes.

Deep in the superfluid state, the magnitude of the
complex order parameter is fixed, but its phase � can
vary with relatively small energy cost. Spatial variations
of � are accompanied by the flow of the superfluid
component. For our purposes, we decompose the varia-
tions of � into components arising from bulk and surface
modes. In terms of the wave vector k � �kx; ky; kz �
n=d�, the bulk modes have the form

�b�k� � Ake
ikxx�ikyy cos

�
nz
d

�
: (1)

The cosine in Eq. (1) guarantees that @�=@z is equal to
zero at z � 0 and z � d, so that the flow field associated
with phase fluctuations does not cause a displacement of
either of the two interfaces. The above mode is accom-
panied by a superfluid velocity vs � �hr�b=m, and a
corresponding kinetic energy ��s=2�

R
d3xv2

s � � �h2�sV=
155302-2
4m2�k2jAkj
2, where �s is the superfluid density and m is

the mass of a helium atom.
Integrating over all decompositions of the phase �

according to Eq. (1), we obtain the free energy associated
with this set of bulk Goldstone modes as
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kBT
2
A
Z d2q
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�
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�
n
d

�
2
�
�F 0: (2)

Here, A is the total area of the film and F 0 corresponds to
contributions that do not generate a nontrivial dependence
on d. Indeed, the sum over n can be performed by stan-
dard contour integration techniques; while the dominant
term is an extensive contribution to the free energy, there
is an important correction that scales as 1=d2. The latter
is the fluctuation-induced interaction, which leads to a
Casimir force per unit area, of [6]

Fbulk � �
kBT
8

��3�

d3 : (3)

The thickness of the adsorbed helium film is deter-
mined by the competition of several factors, notably the
loss of gravitational potential energy, and attractions to
the substrate. The former can be calculated simply from
the height difference H between the adsorbing plate and
the bulk liquid, while the latter is due to the van der Waals
interactions with the substrate [9,16]. Fluctuation-
induced forces, as in Eq. (3), provide an additional com-
ponent. The film thickness d is thus determined by the
force balance equation

�

d3

�
1 �

d
d1=2

�
�1

�
kBTv

d3 # � mgH: (4)

The first term on the left-hand side is the van der Waals
interaction, with a leading behavior of �=d3 with � �

2600 K �A3 for a film of 4He on Cu. Retardation effects due
to the finite speed of light are significant for d of the order
of d1=2 � 193 �A, necessitating the inclusion of the cor-
rection term. The second term on the left-hand side is the
Casimir force, which has the same leading behavior as
the van der Waals term, with a magnitude set by v �

45:81 �A3=atom and the dimensionless amplitude # [17].
Unlike the van der Waals interaction, the parameter #

is expected to change rapidly at the superfluid transition.
It is zero in the normal phase, while fluctuations of the
superfluid order parameter lead to an interaction that is
‘‘attractive’’ in the sense of favoring a thinner film. On
approaching the transition from the normal liquid, the
amplitude # is a scaling function of d�T � T��

" (" is the
exponent for the divergence of the correlation length)
which was obtained in a two-loop renormalization group
calculation by Krech [8]. The predicted thinning of the
nearly superfluid film closely tracks the observations, e.g.,
as in the portion of Fig. 1 for T � T�. Currently, there are
no calculations that reproduce the large dip in thickness
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for T � T�[19]. Well below the transition, in the super-
fluid phase, # is expected to be a universal constant, such
as in Eq. (3). The maximum amplitude calculated by
Krech [7] is coincidentally rather close to the value given
in Eq. (3) coming from the Goldstone modes in the bulk
of the film. (Monte Carlo simulations with periodic
boundary conditions in three dimensions yield a value
of the critical amplitude which is roughly twice larger
[21].) Thus, if these modes were the only cause for the
thinning of the film in the superfluid phase, the height of
the film would be roughly the same at the critical point
and well below the � point. As indicated in Fig. 1, this is
not the case.

To resolve the discrepancy with the experimental ob-
servation, we now resort to the effect of surface fluctua-
tions in the superfluid [17]. According to Dzyalo-
shinkskii, Lifshitz, and Pitaevskii (DLP), surface fluctu-
ations in fluids also act as a source for Casimir forces [4].
However, in the case of thin liquid films, viscous damping
effectively clamps the fluid, and there is no indication that
such forces play any role in the thinning of the helium
films.

But when the film is in the superfluid state, there
is no viscosity opposing the flow fields that accompany
surface deformations. To quantify the effect of surface
fluctuations, we consider a film of thickness d� ~R; t� �

d� h~q�t�ei
~q� ~R, where ~q � x̂qx � ŷqy is the two-

dimensional wave vector of the surface distortion, and
~R is a two-dimensional position vector. This deformation

is accompanied by a distortion in the phase of the super-
fluid order parameter of

�s� ~q� �
m
�h

_h~q
cosh�qz�
q sinh�qd�

ei ~q� ~R: (5)

The form of �s is chosen such that the vertical velocity
vz � � �h=m�@z�s is zero at the substrate (z � 0), and
coincides with the motion of the liquid-vapor interface
at z � d. Variations of �s along the z direction are

exponential in qz, with q � 
�����������������
q2
x � q2

y

q
. This choice

ensures that r2�s � 0, such that the kinetic energy is
minimal, and that there are no couplings to the bulk
modes considered earlier. (We note that the velocity po-
tential in Eq. (5) reproduces the flow field associated with
the third sound mode [22].)

The kinetic energy in the flow set up by �s is

�s
2

Z
d3x

�
�h
m
r�s

�
2
� A

�s
2
j _h~qj2

coth�qd�
q

: (6)

Surface deformations are also accompanied by a potential
energy and surface tension cost. Including these contri-
butions, and summing over all surface modes, leads to a
Hamiltonian
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In Eq. (7), we have introduced the conjugate momentum

~q �
�s

q tanhqd
_h~q; (8)

in the potential energy part � is the mass density, & is the
surface tension, and f is the net force on the surface
particles.

The classical partition function associated with the
surface modes is easily obtained by integrating over ~q

and h~q, leading to a contribution to the free energy of the
film of

F s �
1

2
kBT

X
~q

�
ln
�
q tanh�qd�

�s

�
� ln��f� &q2�

�
: (9)

Note that the contribution from the potential energy (the
integral over h~q) is present both above and below the
transition, while the kinetic-energy term (from integra-
tion over ~q) exists only in the superfluid phase. In fact, it
is only the latter that explicitly depends on the thickness
of the film through the factor of tanh�qd�: the d depen-
dence of the free energy comes entirely from
�kBT=2�

P
~q ln�tanh�qd��, and is independent of various

material dependent parameters appearing in Eq. (9)
[23]. Taking a derivative with respect to d, we obtain
the Casimir force resulting from the superfluid flow field
induced by surface fluctuations. The force is in the form
an integral over wave vectors q with an effective upper
bound proportional to the inverse of the film thickness.
The thickness dependence resulting from this cutoff is
contained in the universal result [24]

Fsurface � �
7

4

kBT
8

��3�

d3 ; (10)

which is nearly twice as large as the bulk Goldstone mode
force in Eq. (3) [25]. The total Casimir force per unit area
due to the surface fluctuations and Goldstone modes is

Fcasimir � �
11

4

kBT
8

��3�

d3 � �0:15
kBT

d3 : (11)

Using Eqs. (4) and (11), we find �d � 2:2 �A at tempera-
tures slightly below T� for a film whose thickness above
the transition is d � 423 �A. The dashed line in Fig. 1
illustrates this expected change in thickness of the film,
which is very close to that observed in the experiments of
GC. It is important to keep in mind that the interpretation
of wetting experiments on 4He is complicated by the
presence of microscopic scratches, dust particles, and
surface roughness. All of these have a noticeable effect
on the estimation of the thickness of the film [7,9].

In conclusion, experiments on helium films adsorbed
on copper surfaces provide a powerful tool for probing
fluctuation-induced forces, as the effects due to the su-
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perfluid order parameter are turned on at the transition
temperature, while the atomic forces are essentially un-
changed. Fluctuations in the phase of the order parameter
are an evident candidate, but can only partially account
for the observed thinning of the superfluid film. We sug-
gest that surface fluctuations provide additional interac-
tions. In particular, in the superfluid phase, the motion of
the liquid-vapor interface sets up a superfluid velocity
field that extends throughout the film. The corresponding
fluctuation-induced force has exactly the same (material
independent) form as that from the bulk phase fluctua-
tions, but with an amplitude that is nearly twice as large.
Considering the statistical and systematic errors in the
experiments, and based on the data fit, it is reasonable to
conclude that the combination of the bulk and surface
fluctuation-induced forces explains the excess thinning of
the film in the superfluid region. The relatively large error
bars on the helium wetting experiments [9,10,26] do not
mitigate our results, which relate to the difference in film
thickness above and below the � transition.
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