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Due to their collective nature Casimir forces can strongly depend on the geometrical shape of the interacting
objects. We study the effect ofstrongperiodic shape deformations of two ideal metal plates on their quantum
interaction. A nonperturbative approach which is based on a path-integral quantization of the electromagnetic
field is presented in detail. Using this approach, we compute the force for the specific case of a flat plate and
a plate with a rectangular corrugation. We obtain complementary analytical and numerical results which allow
us to identify two different scaling regimes for the force as a function of the mean plate distance, corrugation
amplitude, and wavelength. Qualitative distinctions between transversal electric and magnetic modes are re-
vealed. Our results demonstrate the importance of a careful consideration of the nonadditivity of Casimir
forces, especially in strongly nonplanar geometries. Nonperturbative effects due to surface edges are found.
Strong deviations from the commonly used proximity force approximation emerge over a wide range of
corrugation wavelengths, even though the surface is composed only of flat segments. We compare our results
to that of a perturbative approach and a classical optics approximation.
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I. INTRODUCTION

Casimir interactions[1–5] are a fundamental property of
the vacuum. They are commonly related to quantum electro-
dynamics but fluctuation-induced interactions are of interest
in a wide variety of other fields like in condensed-matter
systems such as liquid crystals and superfluids[6,7], in cos-
mological models[8], in particle physics[9,10], and in bio-
logical systems such as proteins on membranes. The guiding
mechanism behind all these phenomena is that a quantum or
thermal field is constrained by boundary conditions on sur-
faces so that the energy is modified, and effective interac-
tions between the surfaces occur. For quantum fields the Ca-
simir interaction is given by thechangein the ground-state
energyE0= 1

2on "vn due to the presence of boundary condi-
tions. Even for noninteracting fields like the photon gauge
field it is difficult to obtain the Casimir interaction since the
eigenfrequenciesvn can depend strongly on the confining
geometry. Thus it is not unexpected that exact analytical re-
sults for Casimir interactions between macroscopic objects
are not known even if the geometry has high symmetry.

Most of the recent high-precision experiments aim at the
measurement of the Casimir force in geometries which are
closely related to the standard case of two parallel plates
[11–14]. To the latter case applies Casimir’s seminal predic-
tion [1]

Fflat

A
= −

p2

240

"c

H4 s1d

for the force between two ideal metallic and parallel plane
plates of areaA and distanceH at zero temperature. For
technical reasons, usually a plate-sphere geometry is used in
experiments. Even for this case only approximative methods
such as the proximity force or Derjaguin approximation[15]
can be applied and the exact result is not known. There exists
geometries for which there is even little intuition as to
whether the interaction is attractive or repulsive. A striking

example is Boyer’s result that the Casimir energy of a con-
ducting sphere ispositive [16]. This observation has trig-
gered a search for repulsive configurations[17,18]. Such ef-
fects can be even of direct practical relevance in
nanotechnology where “sticking” of mobile components in
micromachines might be caused by Casimir forces[19].

The advances in experimental techniques have stimulated
the measurement of the shape dependence of Casimir forces
in specially designed geometries(as opposed to inevitable
geometrical effects such as surface roughness). Mohideen
and co-workers were able to measure the Casimir force be-
tween a sphere of large curvature radius and a corrugated
plate [20,21]. Although the corrugation length was larger
than the studied range of separations between the surfaces,
their results showed a clear deviation from predictions of the
proximity force approximation. While it has been suggested
[22] that lateral surface displacements caused this discrep-
ancy, there is no reason to believe in the validity of the
proximity approximation if the corrugation length is de-
creased.

Because of the wide range of realizations of Casimir
forces, improved experimental techniques, and the increasing
importance of nanostructures, it is interesting to develop ap-
proaches for computing such interactions. In the limit of
slight surface deformations a path-integral quantization sub-
ject to boundary conditions allows for a perturbative calcu-
lation of the interaction[23,24], showing strong corrections
to the proximity approximation[25,26]. Another perturbative
approach, based on a multiple-scattering expansion, has been
applied to the limit of large surface separations[27]. Very
recently, an alternative approximation scheme based on geo-
metric optics has been proposed for geometries where the
Casimir interaction is mostly caused by short wavelengths
[28]. A characterization of Casimir interactions between
spherical conductors in terms of classical optics properties of
the geometry was also obtained within a semiclassical treat-
ment[29]. However, to date no systematic method is known
for estimating interactions of strongly deformed objects, in-
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cluding large curvature or even sharp edges. In this paper we
present a nonperturbative method to compute electrodynamic
Casimir interactions between uniaxially and periodically de-
formed surfaces. It is based on a path-integral approach for
Casimir forces[30,31]. The approach is not restricted to
small deformations or small surface curvature but it also al-
lows us to study strong deformations and edges. We develop
a numerical implementation of the approach which allows
for a precise computation of the interaction without any ap-
proximations. As an example we consider a geometry con-
sisting of a flat and a rectangular corrugated plate, see Fig. 2.
For this geometry we obtain the Casimir force over a wide
range of surface separations and corrugation lengths. We find
that the edges of the corrugated surface cause strong devia-
tions from the proximity approximation, which agrees rea-
sonably with our results only if the corrugation length is
much larger than both the surface distance and the corruga-
tion amplitude. We show that the qualitative effect of edges
on the interaction can be understood in the limit of large
corrugation lengths in terms of classical ray optics. A brief
account of our method and its application to scalar fields
subject to Dirichlet boundary conditions appeared in Ref.
[32].

The rest of this work is organized as follows. In Sec. II we
review briefly the path-integral approach and then introduce
the method for a nonperturbative computation of Casimir
interactions. We consider periodic uniaxially deformed sur-
faces. The approach is then applied in Sec. III to the example
of a flat and a corrugated surface with sharp edges. The
asymptotic limits of small and large corrugation lengths are
treated analytically. For arbitrary corrugation lengths the in-
teraction is obtain by a numerical implementation of our ap-
proach. We give detailed numerical results for the total elec-
tromagnetic Casimir force and the contributions from TM
and TE modes separately. In Sec. IV we compare our results
to perturbation theory for slightly deformed smooth surfaces.
We interpret our results for large corrugation length in terms
of classical ray optics. Throughout the paper we setc=1 and
"=1.

II. NONPERTURBATIVE PATH-INTEGRAL APPROACH

We consider two perfectly conducting periodically de-
formed (corrugated) platesSa sa=1,2d with a mean separa-
tion H. They are assumed to be infinitely extended over a
base plane which is parametrized by the coordinatesxi

=sx1,x2d. For simplicity we assume that the corrugation is
uniaxial along thex1 direction. The shape of the plates is
then described by height functionshasx1d which measure de-
viations from the mean height so thatex1

hasx1d=0. The Ca-
simir energy of the two plate configuration can be obtained
from an imaginary time path integral representation[23,24]
for the partition function of the electromagnetic field and the
confining plates. In the absence of boundaries, the path inte-
gral extends over the electromagnetic gauge fieldAm with the
four-dimensional(4D) space-time action

S0fAmg = −
1

4
E d4X FmnF

mn s2d

and the fieldFmn=]mAn−]nAm andX=sx0,xi ,x3d. In order to
eliminate redundant gauge-field configurations the Fadeev

Popov gauge fixing procedure has to be applied[33]. The
ideal metal boundary condition for the gauge fieldAmsXd is
given by the requirement that the tangential components of
the electric field vanishes at the surfaces.

For plate deformations which are uniaxial, the transla-
tional invariant direction can serve as reference axis for de-
fining TM and TE modes, similar to the treatment of wave
guide geometries[34]. Then every field configuration can be
decomposed into those two types of modes, and one can
resort to a scalar field path-integral quantization[25,26]. The
scalar fields are given by the electric- and magnetic-field
components along the translational symmetry axis,

FsXd = E2sXd for TM modes, s3d

FsXd = B2sXd for TE modes. s4d

Since the plates are assumed to be ideally conducting, the
boundary conditions for TM and TE modes are of Dirichlet
and Neumann type, respectively; i.e.,

FuSa = 0 for TM modes, s5d

u]n̂a
FuSa

= 0 for TE modes, s6d

with the surface normal derivative denoted by]n̂ pointing
into the vacuum between the plates. After a Wick rotation to
imaginary timex0→ ix0, both types of modes are described
by the Euclidean action

SEhFj =
1

2
E d4X s¹Fd2. s7d

In 4D Euclidean space, the surface positions of the plates are
then parametrized byXasr d=fr ,hasx1d+Hda2g with r
;sx0,xid. Following the procedure introduced in Refs.
[30,31], the boundary conditions are imposed by insertingd
functions on the surface in the functional integral. The par-
tition function for TM and TE modes, respectively, then
reads

ZD = Z0
−1E DFp

a=1

2

p
Xa

d„FsXad…e−SEhFj, s8d

ZN = Z0
−1E DFp

a=1

2

p
Xa

d„]n̂a
FsXad…e−SEhFj, s9d

with the boundary free partition functionZ0. The functional
integrals can be calculated by introducing auxiliary fields to
represent thed functions. Then, the Gaussian integration
over F can be carried out, yielding the partition function in
terms of an effective action for the auxiliary fields,

Z =E p
a=1

2

Dca e−Seffhcaj, s10d

with the effective action
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Seffhcaj =
1

2
E

r
E

r8
o
a,b

casr dMabsr ;r 8dcbsr 8d. s11d

In the following we will drop the subscript D or N for the
boundary conditions on all quantities, which apply to both
conditions in the same way. The total electrodynamic Ca-
simir energy is then given by the sum of TM and TE mode
contributions,E=ETM +ETE. After subtracting the divergent
and H-independent terms, the energies can be written as
ETM =ln detsMDMD,`

−1 d / s2ALd, and analogous toETE with D
replaced byN, whereMD,` is the asymptotic expression of
MD for H→`, A is the surface area of the plates, andL is
the Euclidean length in time direction. The Casimir forceF
=−]HE per unit area is then given byF=FTM +FTE, with

FTM = −
1

2AL
TrsMD

−1]HMDd, s12ad

FTE = −
1

2AL
TrsMN

−1]HMNd. s12bd

The right-hand side of these expressions is always finite, and
no regulation of divergences by subtraction of the vacuum
energy in the absence of boundaries is necessary. The Dirich-
let and Neumann matrix kernels of the effective Gaussian
action can be expressed in terms of the Euclidean scalar
Green’s functionGsr ,x3d=sr 2+x3

2d−1/ s4p2d, and are respec-
tively given by

MD
absr ;r 8d = hasx1dhbsx18dG„Xasr d − Xbsr 8d…, s13ad

MN
absr ;r 8d = hasx1dhbsx18d]n̂asx1d]n̂bsx18dG„Xasr d − Xbsr 8d…,

s13bd

with the coefficients given byhasx1d=s1+fs]x1
hadsx1dg2d1/4.

These coefficients arise from the integral measure on the
curved surfaces. However, since they are independent of the
mean plate distanceH, they cancel in the matrix product of
Eq. (12) and therefore can be ignored for the calculation of
forces. The kernels are symmetric withMsr ; r 8d
=MTsr 8 ; r d, where the transpose refers toa, b. Using the
parametrization in terms of height profiles, the matrix kernels
can now be written as

MD
absr ;r 8d = G„r − r 8,hasx1d − hbsx18d + Hsda2 − db2d…,

s14ad

MN
absr ;r 8d = s− 1da+bh− ]x3

2 + fha8sx1d + hb8sx18dg]x1
]x3

− ha8sx1dhb8sx18d]x1

2 j

3Gsr − r 8,x3 − x38dux3=hasx1d+Hda2

x38=hbsx18d+Hdb2

s14bd

for the Dirichlet and Neumann case, respectively. So far, we
have not used the periodicity of the surface profile, and the
above results are valid for any uniaxial deformation. How-
ever, the computation of the force can be performed more

efficiently if the periodic symmetry of the surface is used.
Due to the translational invariance in timesx0d

and one spacesx2d direction, it is convenient to introduce the
momentum vector q'=sq0,q2d which is perpendicular
to the direction of modulation. Due to the periodicity

of the surface profile, the Fourier transformM̃sp ;qd
=er er8 eip·r+iq·r8Msr ; r 8d can be decomposed into the series

M̃sp1,p';q1,q'd = s2pd3dsp' + q'd

3 o
m=−`

`

dsp1 + q1 + 2pm/ldNmsq',q1d,

s15d

whereNmsq' ,q1d are 232 matrices which depend only on

q'= uq'u. From Eq.(15) it is obvious that the matrixM̃ has
its nonzero entries arranged in 232 blocks along parallel
bands. Due to this structure, there exists a transformation,
consisting only of row and column permutations, which
makes the matrix block diagonal. To perform this transfor-

mation, we cut the matrixM̃ into smaller matricesBkl which
have nonzero entries only in 232 blocks along the diagonal,
see Fig. 1. For the purpose of parametrization, we consider
discrete momentaq1=s2p /Wd j , j =0, . . . ,N, along the direc-
tion of surface modulation withN=W/l−1. The continuum
limit is obtained if the linear sizeW of the surfaces andN are
taken to infinity in order to obtain the force per unit surface
area A=W2. With this parametrization, the block-diagonal
matricesBkl of dimension 2sN+1d32sN+1d can be read off
from Eq. (15), leading to

Bklsq'd

= diaghBklsq',0d,Bklsq',2p/Wd, . . . ,Bklsq',2pN/Wdj,

s16d

with the 232 block matrices defined as(see Fig. 1)

Bklsq',q1d = Nk−lsq',q1 + 2pl/ld. s17d

By inspection of Fig. 1 one easily realizes that a sequence
of row permutations and a subsequent sequence of column

permutations transforms the matrixM̃ to block-diagonal

form. Each of theN+1 blocksM̃ j is composed of exactly
one element from each matrixBkl and those elements form-

ing a blockM̃ j come from the same position in every matrix
Bkl as indicated by the color scheme in Fig. 1. Thus, each

block M̃ j is composed of entries which correspond to the
same discrete momentumq1=s2p /Wd j , and we obtain for

the elements ofM̃ j the result

M̃ j ,klsp',q'd = s2pd2 dsp' + q'dBklsq',2p j /Wd.

s18d

The number of permutations needed for the matrix transfor-
mation is always even, and thus we get the determinant
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detM̃ = p
j=0

N

detM̃ j . s19d

By differentiating with respect to the mean surface distance

H and by using the relation ln detM̃ j =Tr ln M̃ j, we obtain

]Hsln detM̃d = o
j=0

N

TrsM̃ j
−1]HM̃ jd. s20d

This result reflects the fact that the(free) energy of the
system can be calculated as the sum of the individual(free)
energies ofdecoupledsubsystems, which are described by

the matricesM̃ j. Each subsystem with fixedj describes scat-
tering events at thefixed momentaq1=s2p /Wd j +s2p /ldl
which differ only by integer multiples of 2p /l.

Using Eq.(18) we can perform the trace over the continu-
ous lateral momenta and the discrete indices within a fixed
subsystem,

TrsM̃ j
−1 · ]HM̃ jd =

LW

s2pd2 E d2q' o
k,l=−`

a,b=1,2

`

Bkl,ab
−1 sq',2p j /Wd

3]HBlk,basq',2p j /Wd, s21d

where we have explicitly indicated that the trace is per-
formed with respect to all discrete indices, and we remind
thatL is the system size in time direction. It appears useful to
define the function

gsq',q1d ; trfB−1sq',q1d]HBsq',q1dg, s22d

with the lower-case symbol tr denoting the trace over the
discrete indices summed over in Eq.(21). Next we perform
the sum over all subsystems withj =0, . . . ,N=W/l−1. This
can be easily done by going back to continuous momentap1.
If we take the limitW, N→` with W/ sN+1d=l fixed, the
sum in Eq.(20) can be written as the integral

]Hsln detMd =
LW

s2pd2 E d2q'

W

2p
E

0

2p/l

dq1gsq',q1d.

s23d

The functiongsq' ,q1d has the following symmetry proper-
ties. A shift of the momentumq1 by 2p /l corresponds just to
a renumbering of the matrix elementsBkl since the matrix is
of infinite dimension. Thus we havegsq' ,q1+2p /ld
=gsq' ,q1d. If both surface profiles are described by even
functions,has−x1d=hasx1d, for the matricesNm the relation
Nmsq' ,−q1d=N−msq' ,q1d holds. Using the later relation and
the definition of Bkl of Eq. (17) it is easy to check that
gsq' ,−q1d=gsq' ,q1d by performing appropriate row and
column permutations for the matrixB. The above symme-
tries allow to write the Casimir force per unit area,F /A
=−s1/2LW2d]Hsln detMd, as

FIG. 1. (Color online) Transformation of the matrixM̃ to block-diagonal form. The figure shows a finite part of the matrix, correspond-

ing to the blocksBkl with k, l =−1,0,1,before and after the permutations of rows and columns. Before the transformation(left box) M̃ has
a band structure with diagonal blocksBi j consisting of 232 matricesNm along the diagonal.(The dependence on the lateral momentumq'

is not shown here.) The first step of the transformation is to permute the rows and columns which are formed by the first entryNm in every

block Bkl (indicated as grid). These entries form after the permutations the first blockM̃0 of M̃ (right box). The latter permutation process

is then repeated for the second and the third entry till thesN+1dth entry of every blockBkl, leading to theN+1 blocksM̃ j. The momenta

q1 within each blockM̃ j are constant for every column and they differ only by integer multiples of 2p /l between columns(of the same

block), see labels in the right box. The blocksM̃ j differ in their momentum shiftjd, d=2p /W, which is located in the unit cellf0,2p /lf
since j =0, . . . ,N=W/l−1.
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F/A = −
1

4p2E
0

`

dq'q'E
0

p/l

dq1 gsq',q1d. s24d

This is the final result of the general approach for arbitrary
uniaxially corrugated surfaces. As we will show below, it can
be used for an efficient numerical computation of the Ca-
simir force. The input of such a numerical approach are the
matricesNm from the decomposition in Eq.(15). Moreover,
the result can be also used to obtain nonperturbative analyti-
cal results in the asymptotic limit of very small corrugation
lengths.

Before one can develop a numerical implementation of
the above representation of the Casimir force, one of course
has to restrict the infinite-dimensional matrices. In the re-
maining part of this section we will introduce a suitable cut-
off procedure for the matrix dimension. We will take two flat
plates as a simple example to examine the convergence of
the procedure if the cutoff is taken to large values. The cutoff

procedure consists in the restriction of the matrixM̃ to

blocksBkl with k, l =−M , . . . ,M only. The dimension ofM̃
is then 2s2M +1dsN+1d. Figure 1 displays the restricted ma-
trix for M =1. The corresponding functiong is then defined
by Eq. (22) with the restriction that the trace runs overk, l
=−M , . . . ,M only. We will denote this function in the follow-
ing by gM. This function is then used instead ofg in Eq. (24)
to obtain a series of approximationsFM to the force which
converges toF for M→`. As an example consider two flat

plates at distanceH. ThenM̃ is a diagonal matrix andNm
=0 for mÞ0. Thus the matrixB is also diagonal with

Bklsq',q1d = dkl N0sq',q1 + 2pl/ld. s25d

Using Eq.(22) with the trace taken fork, l =−M , . . . ,M, one
gets the function

gMsq',q1d = o
l=−M

M
2Îq'

2 + sq1 + 2pl/ld2

e2Îq'
2 +sq1 + 2pl/ld2H − 1

. s26d

Integration overq1 yields anMth-order approximationFM to
the force,

FM/A = −
1

8p2E
0

`

dq'q'E
0

2p/l

dq1gMsq',q1d

= −
1

8p2E
0

`

dq'q'E
−2pM/l

2psM+1d/l

dq1
2q

e2qH − 1
, s27d

with q=Îq'
2 +q1

2. For M→` one gets the known
(l-independent) resultF /A=−sp2/480dH−4, and the finiteM
corrections to this asymptotic result scale exponentially fast
s,e−4pMH/ld to zero for largeM. Therefore, in the case of
periodically deformed plates one can expect accurate nu-
merical results forF from moderate values for the cutoffM,
and the convergence is faster for smallerl.

III. RECTANGULAR CORRUGATION

In the preceding section we developed a nonperturbative
approach for computing Casimir interactions between peri-

odically deformed surfaces. In this section we will use the
approach to obtain explicit results for the Casimir force be-
tween a flat plate and a plate with a rectangular grating. The
effect of this class of periodic geometries(corrugated sur-
faces) can significantly modify the interaction of the objects
[35,36]. It was proposed that such geometries can be used to
reveal more features of the Casimir interaction[23,24]. For a
similar geometry consisting of a sinusoidally corrugated
plate and a sphere with a radius@H, Roy and Mohideen
measured the force, and found clear deviations from the pre-
dictions of the proximity force approximation[20]. While it
has been suggested that lateral shifts of the surfaces caused
the discrepancy, we demonstrate below that periodic surfaces
allow for a much stronger sensitivity to geometry if the cor-
rugation length is reduced to smaller values. Specifically, we
consider the geometry shown in Fig. 2 with a rectangular
grating of amplitudea and wavelengthl. Choosingx1 as the
direction of modulation, this corresponds to the height profile

h1sx1d = H+ a for ux1u , l/4

− a for l/4 , ux1u , l/2,
s28d

and continuation by periodicityh1sx1d=h1sx1+nld for any
integern. The upper plate is flat so thath2sx1d=0.

The main purpose of our work is to obtain the Casimir
interaction in regimes where other methods such as proxim-
ity approximation, pairwise summation of two-body forces,
or perturbation theory fail or become unreliable. While the
proximity approximation assumes smooth profiles with small
local curvature also perturbation theory in the height profile
yields divergences in the presence of edges in the profile or if
the corrugation length becomes very small, i.e.,l!a, H
[25,26]. In perturbation theory, finite corrections of ordera2

are recovered only if edges are “smeared out” over a finite
length scale. Thus the correct procedure would be presum-
ably to sum all orders of perturbation theory for a “smeared
out” profile, and then to take the limit of sharp edgesafter
summing all contributions. Since the perturbative treatment
is rather cumbersome the latter program is not practicable,
and nonperturbative techniques are imperative.

FIG. 2. Geometry consisting of a rectangular corrugated plate
and a flat plate. The surfaces are translationally invariant along the
x2 direction.
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In order to apply the general result of Eq.(24) for the

Casimir force, we have to decompose the matrixM̃ into the
matricesNm, see Eq.(15). For a general profile, this has to be
done by a numerical Fourier transformation. A nice property
of the rectangular profile of Eq.(28) is that it allows for an
analytical computation of the matricesNm. The idea is to
rewrite the profile of the corrugated plate as a discrete Fou-
rier series,

h1sx1d =
2a

p
o

n=−`

`
s− 1dn−1

2n − 1
es2pi/lds2n−1dx1, s29d

which is inserted into the matrixM of Eq. (14). Then the

Fourier-transformed matrixM̃ can be calculated, leading af-
ter some algebra to the matricesNmsq' ,q1d. Details of this
calculation are given in Appendix A. The results are

ND,msq',q1d =5S
Am

Dsq',q1d 0

0 0
D + dm01

1

4q
s1 + e−2aqd

e−qH

2q
coshsaqd

e−qH

2q
coshsaqd

1

2q
2 for m even

1 0 s− 1d
m−1

2

mp

e−qH

q
sinhsaqd

s− 1d
m−1

2

mp

e−q̃mH

q̃m

sinhsaq̃md 0 2 for m odd

s30d

for Dirichlet conditions and

NN,msq',q1d =5S
Am

Nsq',q1d 0

0 0
D + dm01 −

q

4
s1 + e−2aqd

q

2
e−qHcoshsaqd

q

2
e−qHcoshsaqd −

q

2
2 for m even

1 0 s− 1d
m−1

2

mp
e−qHFq +

2pm

l

q1

q
Gsinhsaqd

s− 1d
m−1

2

mp
e−q̃mHFq̃m −

2pm

l

q1 + 2pm/l

q̃m
Gsinhsaq̃md 0 2 for m odd

s31d

for Neumann conditions with

Am
Dsq',q1d =

1

p2 o
k=−`

`
s− 1dm/2

s2k − 1dsm− 2k + 1d
e−2aq̃2k−1 − 1

q̃2k−1

s32d

and

Am
Nsq',q1d =

1

p2 o
k=−`

`
s− 1dm/2

s2k − 1dsm− 2k + 1d
1 − e−2aq̃2k−1

q̃2k−1
3

3 Hq1Sq1 +
2pm

l
DSq1 +

2p

l
s2k − 1dD2

+ 2q'
2 Sq1 +

pm

l
DSq1 +

2p

l
s2k − 1dD + q'

4 J ,

s33d

respectively, with the definitionq̃n=Îq'
2 +sq1+2pn/ld2,

which impliesq; q̃0. With these results at hand, the Casimir
force can be calculated by the approach developed in the
preceding section. The method is as follows. First, one con-
structs the matrixBkl of Eq. (17), then one calculates the
inverse ofBkl to obtain the functiongsq' ,q1d of Eq. (22),
and finally one has to perform the integration of Eq.(24). In
general, this program can only be performed numerically.
However, in the limitl→0 it turns out that a closed form for
the functiongsq' ,qd is available, which allows to obtain the
Casimir force in this limit exactly.

A. The limit of small l

Let us consider the case where the corrugation lengthl
sets the smallest length scale in the geometry of Fig. 2. If we
take the extreme limit ofl→0, a naive assumption is that
the field can no longer get into the narrow valleys of the
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corrugated plate. Even for small but finitel this picture
should be a good, though approximate, description since it
still affects the wavelengths of orderH which give the main
contribution to the force. Thus one expects that the plates
feel a force which is equal to the force between twoflat
plates at thereduceddistanceH−a. However, the question
remains to what extent this is a good approximation whenl
becomes larger, say of ordera. To check our naive expecta-
tion, we will apply the approach of the preceding section to
the limit l→0. Fortunately, in this limit the matrices
Nmsq' ,q1d simplify considerably both for TM and TE
modes. The explicit form of these matrices is given in Ap-
pendix B. From this result, we can explicitly calculate the
functionsgMsq' ,q1d which were introduced before Eq.(25).
As explained in Sec. II, the infinite-dimensional matrixBkl is
truncated for the calculation at orderM with k, l
=−M , . . . ,M so that the truncation is done symmetrically
around the center atsk, ld=s0,0d which contains the leading
matrix entries. From the exponential convergence behavior
of the flat plate result given below[Eq. (27)] one can expect
that in the extreme limitl→0, the seriesgMsq' ,q1d con-
verges so rapidly towardsgsq' ,q1d that already forM =1 the
exact asymptotic expression is obtained. Indeed, our explicit
calculation ofgMsq' ,q1d for low M confirms this expecta-
tion. From the truncated matrixBkl of Eq. (17) and the ma-
trices of Appendix B we get the simple result

gMsq',q1d = 5−
2qs1 + e−2aqd

1 + e−2aq − 2e2sH−adq for M = 0

qfcothsqsH − add − 1g for M ù 1

s34d

for both TM and TE modes. Thus from first ordersM =1d on
the functiongMsq' ,q1d remains invariantwith increasing di-
mensionM of the matrixBkl. Interestingly, the result forM
ù1 has precisely the form, which one gets for twoflat plates
at reduced distanceH−a. If one integrates the function
gMsq' ,q1d for M =1 one obtains from Eq.(24) the Casimir
force per surface area,

F0/A = −
p2

480

1

sH − ad4 , s35d

for both TM and TE modes. Thus in the limitl→0 both
types of modes yield the same contribution to the total elec-
trodynamic Casimir forceF=2F0. The result of Eq.(35) cor-
responds to the naive reduced distance argument given at the
beginning of this section. Note that this result is nonpertur-
bative in a/H and is exact in the limitl→0. Perturbation
theory for smoothly deformed surfaces always yields correc-
tions to the force of ordera2 [25,26]. However, for small
a/H, the result of Eq.(35) has the expansion

F0/A = −
p2

480

1

H4F1 + 4
a

H
+ OXS a

H
D2CG , s36d

which indicates that perturbation theory is not applicable if
l!a. Below we will see that the forceF0 provides anupper
boundfor the Casimir force from both TM and TE modes at
fixed H /a, i.e., for increasingl the force always decreases
compared toF0. We expect that the results of this section for

l→0 are valid for corrugations of arbitrary shape and also
for rough surfaces ifl is identified with the characteristic
length scale for surface deformations.

B. The limit of large l

In the opposite limit of very largel the corrugated surface
is composed of large flat segments with a low density of
edges. At sufficiently small surface separationsH!l the
main contribution to the force comes from wavelengths
which are much smaller than the scalel of the surface struc-
ture. Thus in the dominant range of mode diffraction can be
neglected, and the simple proximity force approximation
(Derjaguin approximation[15]) should be applicable. Such
an approximation assumes that the total force can be calcu-
lated as the sum of local forces between oppositeflat and
parallel small surface elements at their local distanceH
−hsx1d. No distinction is made between TM and TE modes.
This procedure is rather simple for the rectangular corruga-
tion considered here since the surface has no curvature(ex-
cept for edges). There are only two different distancesH
+a, H−a which contribute one-half each across the entire
surface area, leading forl→` to the proximity approxima-
tion for the force,

F`/A = −
p2

480

1

2
F 1

sH − ad4 +
1

sH + ad4G . s37d

Below we will see that later result provides alower bound
for the Casimir force from both TM and TE modes. In con-
trast to the limit of smalll the correction for smalla/H is of
order sa/Hd2 here.

C. Numerical analysis

In this section we implement the nonperturbative ap-
proach of Sec. II numerically for the rectangular corrugation
of Fig. 2. One has to resort to a numerical analysis here since
the functiongsq' ,q1d cannot be obtained analytically from
the matrices of Eqs.(30) and (31) for arbitrary corrugation
lengths l. The numerical procedure follows straightfor-
wardly the computation of the Casimir force in Sec. II. The
following implementation applies both to TM and TE modes.
At fixed orderM, the truncated matrixBkl of Eq. (17) with k,
l =−M , . . . ,M is calculated from the matricesNm of Eqs.(30)
and(31). Then the matrixBkl is inverted numerically to yield
the functiongMsq' ,q1d from Eq. (22) where the indexM
denotes the truncation order. Note that the derivative ofBkl
with respect toH is obtained analytically and no potentially
inaccurate numerical derivatives have to be computed. Fi-
nally, the integration in Eq.(24) is carried out numerically
without difficulty sincegMsq' ,q1d decays exponentially fast
for largeq', q1. This provides a series of approximationsFM
to the Casimir force which must converge to the exact value
of the force asM→`. From our analysis of the flat plate
geometry, see Eq.(27), we expect an exponentially fast con-
vergenceF−FM ,e−gM with a coefficientg. However, the
decay coefficientg depends on the geometrical lengths, and
it is expected to increase with decreasingl /H. This type of
convergence behavior was found to be consistent with our
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numerical data forFM. It allowed us to extrapolate the data
to obtain the Casimir forceF. The largestM for which we
calculatedFM wasM =10 for smalll /a=0.1 andM =97 for
largel /a=300.

The results of our numerical analysis are as follows. If we
express the total Casimir forceF or the force contributions
FTM andFTE from TM and TE modes, respectively, in units
of the corresponding force between two flat plates the results
can be expressed in terms of the dimensionless ratiosH /a
andl /a only. The results from the extrapolation of the data
for FM are shown in Fig. 3 both for TM and TE modes and
different corrugation lengths. For both types of modes the
force FTM, FTE is bounded at a fixed plate separationH /a
betweenF` and F0 as given by Eqs.(37) and (35), respec-
tively. For small l /a the upper boundF0 is approached,
whereas for asymptotically largel /a the force converges
towards the lower boundF`, which is given by the proximity
force approximation. Since the convergence towards the
lower boundF` becomes slower with increasingH /a there
are two distinct scaling regimes for the force at a fixed cor-
rugation lengthl /a. At small H /a the relative change of the
force compared to the force between two flat plates,
FT/FT,flat−1, T=TM or TE, decays assH /ad−2. After a cross-
over regime the relative change of the force decays at larger
H@l like sH /ad−1, following the behavior of the exact result
F0 for l→0. The so far described qualitative behavior of the
force is common to both types of modes. However, there is a
clear distinction between TM and TE modes, especially at
large l /a, as can be seen from Fig. 3. The force from TE
modes has much more pronounced deviation from the prox-
imity approximation resultF` as the TM modes. In particu-
lar, at large corrugation lengthssl /a=300d this can be seen
clearly from our numerical data. The same behavior is ob-
served for the deviations fromF0 at small l /a. Thus, the
force FTE appears at intermediate values ofl /a more
strongly separated from the lower and upper bounds, cf. Fig.
3(b). We will come back to this point below when we discuss
the scaling of the force withl close to the bounds. Figure 4
shows the total Casimir force in the range of small separa-
tions H.

For particular geometries such as a cubic volume the Ca-
simir force has even a different sign for a scalar field with
Dirichlet boundary conditions(attractive force) and an elec-
trodynamic field(repulsive force) [16,37]. Since for uniaxial
plate deformations both types of fields differ in the presence
of a scalar field with Neumann boundary conditions(TE
modes) it is interesting to study more quantitatively the dif-
ference between the two wave types. Figure 5 shows the
ratio FTM /FTE of the forces from both types of modes at
different l /a. One observes that the ratio is peaked at a
characteristicH /a which depends onl /a. For small H /a
→1 the ratio tends to 1 as one can expect from the proximity
force approximation which does not differentiate between
TM and TE modes. In the opposite range of largeH /a again
both types of modes must contribute almost equally since the
geometry approaches that of two flat plates. For the entire
range of studied corrugation lengths the ratio converges to
one for largeH /a according touFTM /FTE−1u,sH /ad−1, see
Fig. 5(b). However, this asymptotic behavior sets in only
beyond a crossover separationH, which increases withl. At

intermediatel /a the ratio varies approximately between
0.95 and 1.15 in the studied range ofl /a. TM modes domi-
nate atl /a&10 and at smallH /a for all l /a. The contribu-
tion from TE waves is larger forl /a*10 andH /a*2. It is
instructive to compare this behavior to perturbative results of
Refs. [25,26] for the geometry consisting of asmoothsinu-
soidally corrugated and a flat plate. As will be explained in
more detail in the following section, the perturbative result
for the later geometry yieldsFTM /FTE.1 for all l /a@1 and
H /a@1, in contrast to our results for the rectangular corru-
gation. This observation suggests that the corners of the rect-

FIG. 3. (Color online) Casimir force for TM modes(a) and TE
modes(b) as a function ofH /a for different corrugation lengths
l /a. Displayed is the change of the force compared to the force
between two flat plates,FTM,flat=FTE,flat=−sp2/480dH−4, in units of
FTM,flat andFTE,flat, respectively. The two bold curves enclosing the
numerical data are the analytical resultsF0 for l→0 (upper curve)
andF` for l→` (lower curve), see text.
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angular corrugation in fact cause the slight amplification of
TE modes compared to TM waves atl /a*10. One can
argue that imposing for TE modes a vanishing normal de-
rivative on the field at the concave corners inside the valleys
of the corrugation provides a stronger constraint on field
fluctuations as compared to Dirichlet conditions for TM
modes. If the width of the valleys is decreased withl, the
two opposite corners can no longer be considered separately
and the Dirichlet condition might provide a stronger restric-
tion. For very smallH /a the main contribution to the force
comes from rather short wavelengths which should be only
very weakly affected by the Neumann conditions at the con-
cave corners.

Finally, we consider the scaling of the force from TM and
TE modes close to lower and upper boundsF` and F0, re-
spectively. Figures 6 and 7 show a logarithmic plot of force
form TM and TE modes at fixedH=10a andH=100a, mea-
sured relative toF` for largel /a and relative toF0 for small
l /a. At small l we found an interesting qualitative differ-
ence between TM and TE modes for the scaling towards the
exact resultF0 for l→0,

F0 − FTM

FTM,flat
,

l

a
,

F0 − FTE

FTE,flat
, Sl

a
D1/2

. s38d

For the change in the exponents we cannot present a satisfy-
ing simple argument. In the opposite limit of largel the
proximity approximation resultF` is approached linearly for
both types of modes,

FTM − F`

FTM,flat
,

a

l
,

FTE − F`

FTE,flat
,

a

l
. s39d

As we will show in the following section, this linear decrease
can be understood in terms of geometric optics.

IV. COMPARISON WITH PERTURBATION THEORY
AND GEOMETRIC OPTICS

The aim of this section is to compare the numerical results
of the preceding section to those which were obtained from
perturbation theory in Refs.[25,26] for a uniaxially and si-
nusoidally corrugated surface. We will show that discrepan-
cies in the results from the two approaches can be qualita-

FIG. 4. (Color online) Total Casimir force as sum of TM and TE
mode contributions in the short-distance regime. Shown is the rela-
tive change of the force compared to the total Casimir forceFflat

between two flat plates. The data enclosing bold curves have the
same meaning as in Fig. 3, but for the total force they are now given
by 2F0 and 2F` due to the same contribution of TM and TE modes
in these two limits.

FIG. 5. (Color online) (a) Ratio of Casimir force from TM and
TE modes as a function of the plate distanceH for different corru-
gation lengthsl. (b) Logarithmic plot of the deviation of the ratio
from one at largeH.
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tively understood in terms of classical ray optics, a concept
which was introduced in Ref.[28] for the computation of
Casimir interactions. In the perturbational path-integral ap-
proach, the logarithm of the partition function is expanded in
powers of the height profileh1 as lnZ=ln Zu0+ ln Zu1
+ ln Zu2+¯. The zero-order term lnZu0=sp2/720dALH−3 is
the result for flat planes. The first-order correction vanishes,
ln Zu1=0, sinceh1 is on spatial average zero, and the second-
order contribution reads

ln Z2 =
p2L

240H5E
xi

h1
2sx1d −

L

4
E

xi

E
xi8

Ksuxi − xi8ud

3fh1sx1d − h1sx18dg
2. s40d

whereKsuxi−xi8ud denotes a response kernel which has con-
tributions from both TM and TE modes and was obtained in
Ref. [26]. The second term is only finite for a smooth profile
h1sx1d since the kernel has a singularity,uxi−xi8u−3. Thus for
a rectangular corrugation withexi

fh1sx1d−h1sx1+x18dg
2,ux18u

for ux18u,l /4 the perturbative result diverges due to the pres-
ence of sharp edges in the surface profile. In contrast, for a

FIG. 6. (Color online) Scaling of the force from TM(a) and TE
(b) modes close to the upper boundF0 sl→0d and the lower bound
F` sl→`d as a function ofl /a at fixed mean surface distanceH
=10a. Forces are measured in units ofFTM,flat and FTE,flat,
respectively.

FIG. 7. (Color online) Same plot as in Fig. 6 but for fixed
distanceH=100a.
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sinusoidal profile with h1sx1d=a coss2px1/ld one has
exi

fh1sx1d−h1sx1+x18dg
2,x18

2 and the divergence of the ker-
nel is compensated. For this reason, we compare our numeri-
cal results for the rectangular corrugation to the perturbative
results for a sinusoidal profile[25,26]. This will allow us to
study the influence of edges on the Casimir interaction. Per-
turbation theory yields for the total Casimir force of the sinu-
soidal geometry of Fig. 8(a) the result

F = FflatF1 + G̃SH

l
DS a

H
D2

+ Osa3dG , s41d

with the function parameter freeG̃sud=s480/p2df5Gsud
−uG8sudg, where Gsud=GTMsud+GTEsud has contributions
from TM and TE modes; for the explicit form ofGsud see
Ref. [26]. For comparison with our numerical results the
limits of small and largeH /l are of particular interest. From

an expansion ofG̃sud one obtains the asymptotic expressions

F

Fflat
− 1 =5

8p

3

a

l

a

H
for l ! H

5S a

H
D2

+ S4p2

3
− 20DSa

l
D2

for l @ H.

s42d

In both limits the results are valid only ifa!l. In the limit
of small l /a there is a divergence,a/l in the perturbative
result, which reflects the above-mentioned divergence in Eq.
(40) for rectangular corrugations with vertical segments. This
singularity does not appear in our numerical results of the
preceding section; it is a characteristic feature of perturbation
theory. In the following comparison we consider only the
casel@a. Equation(42) suggests for large plate separations
H@l a decay of the excess force from the corrugation
,a/H and for smallH /l a decay,sa/Hd2. The scaling
behavior is in agreement with our observations for the rect-
angular corrugation as demonstrated in Fig. 3. However, the
latter figure also shows that for smallerl /a&10 the scaling
regime with a decay,sa/Hd2 does not exist.

Next, we will compare the perturbative results of Eq.(42)
with our numerical results for the deviation of the actual
Casimir force from the proximity force approximation(PA),
sF−FPAd /Fflat, whereFPA is the force obtained from the PA.
This approximation does no distinguish between the two
types of modes and thus for the rectangular corrugation one
has FPA=2F`, with F` given by Eq.(37). In general, for
deformed surfaces the PA is ambiguous[28] since the pairs
of small parallel surface elements can be chosen to be paral-
lel to either surface so that the local plate distance is mea-
sured either normal toS1 or normal toS2 as indicated by the
arrows of Fig. 8. We emphasize that this ambiguity does not
arise for the rectangular corrugation. For smooth surfaces
with finite curvature such as a sinusoidal corrugation the PA
result depends on the reference plate. If one measures the
local distance perpendicular to the flat surface, as it is most
common, one obtains for the Casimir energy per surface
area,

EPA =
1

A
E

S2

dSEflat„H − h1sx1d…, s43d

but if the local distances are chosen perpendicular to the
corrugated plate, one has

EPA,corr=
1

A
E

S1

dSEflat(sH − h1sx1d…Î1 + fh18sx1dg2),

s44d

whereEflatsHd=−sp2/720dH−3 is the Casimir energy per sur-
face area for two flat surfaces. For a sinusoidal corrugation
the integrals over the surfaces can be computed perturba-
tively in a. This yields for largel the difference between the
forceF from perturbation theory[Eq. (42)] and the PA force,
based on the flat and the corrugated plate, respectively,

FIG. 8. (Color online) Typical paths of the proximity force ap-
proximation and the geometric optics approach for both sinusoidal
(a) and rectangular corrugation(b) with l@a. Paths with arrows
denote distances which are measured normal to one of the surfaces
as used for the proximity force approximation. Paths without arrows
denote the shortest surface connecting paths of length,sxd through
a pointx located in the gap between the plates.
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F − FPA

Fflat
= S4p2

3
− 20DSa

l
D2

,

F − FPA,corr

Fflat
= S10p2

3
− 20DSa

l
D2

. s45d

The essential result is that the perturbatively obtained force
approaches the PA approximation likesa/ld2 for large l
which has to be compared to thea/l decay seen in our
numerical results for the rectangular corrugation, cf. Figs. 6
and 7. Thus the deviation from the PA is stronger for the
rectangular corrugation than for the sinusoidal profile, pre-
sumably due to sharp edges. Before we give a simple physi-
cal argument for the variation of the decay exponent, let us
compare the amplitudes in Eq.(45). If we chose the PA to be
based on the flat plate, the amplitude is negative, and the
forceFPA is not a lower bound to the force at a fixedH /a, in
disagreement with our observation for a rectangular corruga-
tion. The corrugated surface based PA in contrast yields a
positive amplitude. We expect that also for a sinusoidal cor-
rugation the actual force is monotonous inl /a at fixedH /a,
assuming its minimal value forl /a→`. The change of sign
is just another manifestation of the ambiguity in the proxim-
ity approximation. The observation that the actual Casimir
force is located between the flat and the curved surface based
PA was also made for a plane plate-sphere geometry recently
[38].

In order to understand the dependence of the exponent for
the scaling towards the PA limit on the shape of the corruga-
tion, it is instructive to consider classical ray optics. Such an
approach was recently applied to the calculation of Casimir
interactions[28]. Since this approach does not take diffrac-
tion into account it is limited to deformations where the radii
of curvature are large compared to the smallest distance be-
tween the surfaces. But still, geometric optics allow for a
better description of Casimir forces than the conventional
proximity force approximation. By considering instead of all
actual optical paths only theshortest paths, Jaffe and
Scardicchio proposed an “optimal” proximity approximation
for scalar field fluctuations subject to Dirichlet boundary
conditions [28]. It can be also applied to electromagnetic
fields. Consider a positionx in the vacuum space between
the plates, and denote by,sxd the length of the shortest op-
tical ray between the plates through that point. Figure 8
shows typical paths for the two types of corrugations we
consider here. The Casimir energy in this optical approxima-
tion can then be written as

Eopt

Eflat
=E d2xiE

h1sx1d

H

dx3
H3

A,4sxi,x3d
, s46d

where the integral runs over the total space between the sur-
faces.

First, we apply this approach to the sinusoidal profile, see
Fig. 8(a). For simplicity, we replace the sinusoidal profile by
a piecewise linear profile, cf. Fig. 8(a), which is a good ap-
proximation in the limita!l considered here. Then we have
to determine,sxd for each position between the plates for
this simpler profile. Since the exact value for,sxd is difficult

to evaluate, we consider the two cases where the position is
close to one of the two surfaces and then assume a linear
interpolation between the two lengths for,sxd at arbitraryx
in the gap between the plates. Ifx is very close to the de-
formed surfaceS1 the shortest path is perpendicular to the
flat surfaceS2. On the contrary, ifx is located close to the flat
surfaceS2, the shortest ray is perpendicular to the deformed
surfaceS1. With the so obtained approximative lengths,sxd
we obtain from Eq.(46) by expansion ina/H for the correc-
tion to the flat surface based proximity approximation the
scaling behavior

Fopt − F`

Fflat
, Sa

l
D2

. s47d

Thus the optical approach nicely reproduces the correct scal-
ing of the corrections to the proximity approximation at large
l, in agreement with the perturbative result of Eq.(45).

In order to examine the role of edges for deviations from
the proximity approximation, we apply the optical approach
also to the rectangular corrugation in Fig. 8(b). For this ge-
ometry the shortest paths are easily identified. Except for
positions located in an almost triangular shaped region[com-
posed of the two shaded regions of Fig. 8(b)] the paths are
just perpendicular to both surfaces. Thus the deviation from
the proximity approximation is caused by paths through
points which are located inside the shaded region. These
paths run either to cornerC of the surface(larger region) or
to the vertical surface segment(smaller region). For suffi-
ciently largel the regions from adjacent edges do not over-
lap and can be treated independently. Furthermore, since the
ratio of the area of the larger shaded region formed by the
triangle ABC and the area of the smaller shaded region
bounded by the vertical surface segment scales like
,sH /ad2, one has to consider only the triangleABC for the
evaluation of Eq.(46) in the limit a/H!1. This gives

Fopt − F`

Fflat
,Î a

H

a

l
. s48d

This result is in agreement with the scaling behavior we have
observed in our nonperturbative approach for the rectangular
profile; see Figs. 6 and 7, and Eq.(39). We conclude that the
analysis of theshortestoptical paths explains the observed
dependence of the Casimir force on the surface shape close
the proximity force limitl@H.

Finally, we consider the ratioFTM /FTE of the force con-
tributions from TM and TE modes. In perturbation theory
one obtains from the separate contributions of the two types
of modes to the result of Eq.(41) the low a expansion

FTM

FTE
= 1 +

8p

3

a

l

a

H
, s49d

which is valid if bothH@l and l@a. Thus for sinusoidal
corrugations the force has always larger contributions from
TM modes at asymptotically largeH, in contrast to our nu-
merical results for rectangular corrugations, cf. Fig. 5(a). We
argued in the preceding section that edges might cause the
amplification of TE mode contributions. However, the con-
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vergence of the ratio to one for largeH turns out be insensi-
tive to the shape of the corrugations. Our numerical results
agree perfectly over the full range of studiedl /a with per-
turbation theory in that the ratio decays likea/H to one, see
Fig. 5(b). For small l /a→0 the amplitude in no longer
given by Eq.(49) but saturates at a finite value which de-
creases withl since forl→0 the reduced distance argument
of Sec. III A implies equal contributions from both types of
modes.

V. CONCLUSIONS AND FURTHER APPLICATIONS

In this paper we have developed a nonperturbative
method to compute Casimir interactions in periodic geom-
etries. This approach is based on a path-integral quantization
of the electromagnetic field subject to ideal metal boundary
conditions. The so obtained effective action for the Casimir
interaction is transformed to a representation which is
adapted to periodic geometries and allows for an efficient
numerical computation of the force between macroscopic ob-
jects. In particular, the approach allows us to compute the
Casimir force between surfaces withstrong periodic defor-
mations and edges. For uniaxial deformations the electro-
magnetic field can be decomposed into two scalar fields
which are subject to Dirichlet and Neumann boundary con-
ditions, respectively. This enables us to study qualitative dif-
ferences in the geometry dependence of the Casimir interac-
tion for scalar fields with different boundary conditions.
Applications of the latter case range from thermal fluctua-
tions in superfluids to liquid crystals[30,31] which can be
described by a scalar field. Path-integral quantization in the
presence of boundaries has been previously applied to per-
turbative calculations of Casimir interactions between static
and dynamic deformed manifolds in the context of both ther-
mal [30,31] and quantum fluctuations[23–26] of the con-
fined field. However, all these computations were restricted
to slightly deformed surfaces and edges were excluded.
While a number of qualitative predictions of perturbation
theory are confirmed by our approach even for strong defor-
mations, we find nonperturbative effects which were unac-
cessible previously.

As an explicit example, we calculated by the Casimir in-
teraction between a flat and a rectangular corrugated plate
with edges, including the case of large deformation ampli-
tudes. Arbitrary periodic profiles can be treated by our ap-
proach as well by Fourier transforming the kernel of the
effective action numerically and then applying the same
technique we used here for the rectangular corrugation. We
could confirm the perturbatively predicted existence of two
different scaling regimes for the deformation-induced part of
the interaction as a function of the mean plate separationH.
However, we also find that for small corrugation lengths only
the largeH scaling regime exists. We demonstrate by explicit
calculations that in the limit of very small corrugation
lengths the force can be obtained as the interaction of two
flat surfaces with a reduced distance. At very large corruga-
tion length and smallH we find that the force approaches the
result of the proximity force approximation. Our approach
also allowed for a precise computation of the scaling of the

force close to the limits of small and large corrugation length
which provide an upper and lower bound, respectively, to the
force. In both cases we find power-law scaling withl /a,
rendering corrections to proximity approximation in general
large. The exponents of these power laws depend on the type
of modes(transversal electric or magnetic) for small corru-
gation length. At large corrugation length we find an inter-
esting dependence of the exponents on generic features of
the corrugations. By comparison with perturbation theory for
a sinusoidal corrugation we find that edges induce a slower
decay towards the prediction of the proximity approximation
as compared to smooth profiles. We could explain this ge-
neric behavior in terms of classical optical paths.

Our nonperturbative method can be applied to a number
of other interesting situations. Since the path-integral tech-
nique can be used in arbitrary dimensions of the embedding
space and the surfaces, our method can be also used in this
general case. In this paper we focused on uniaxial deforma-
tions. Two directional corrugations can also be treated by our
method by applying it to the full electromagnetic gauge field
without splitting into TM and TE modes. The latter case
could help to understand the possibility of repulsive forces
since plates with two directional corrugations form at short-
distance cavities, i.e., geometrical shapes similar to a sphere
for which a repulsive “force” is expected[16]. At short plate
separations, material properties become in general important
for the interaction. These effects can be also described by a
path-integral approach with nonlocal boundary conditions
[39], enabling the application of the methods developed here.
For two corrugated surfaces, the existence of a lateral Ca-
simir force has been predicted and computed by perturbative
techniques[23,26]. It would be interesting to study the effect
of strongcorrugations and edges on the lateral Casimir effect
by our method. For the dynamic Casimir effect the surfaces
are dynamically deformed, which leads for oscillations in
time again to corrugated surfaces in Euclidean space, but
now along imaginary time. Our results thus imply different
behavior at small and large frequencies.
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FIG. 9. Two rectangular corrugated plates with the same wave-
lengthl but different amplitudesa1 anda2 and a lateral shift ofb.
The plates are translationally invariant along thex2 direction.
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APPENDIX A: FOURIER TRANSFORM OF THE RECTANGULAR CORRUGATION MODEL

We calculate the Fourier-transformed matricesM̃ for Dirichlet and Neumann boundary conditions for a slightly more
general geometry with two corrugated plates. Both plates are assumed to have a rectangular corrugation profile with the same
wavelengthl, but with different amplitudesa1 anda2. This geometry is depicted in Fig. 9, and the geometry of the system
discussed in Sec. III is obtained by simply setting the amplitude of the second plate to zero. The reason to perform this
calculation here is that it is more transparent than the calculation which assumes one corrugated and one flat plate. In addition,
we allow the plates to have a lateral displacementb.

We start with the matrix for Dirichlet boundary conditions, cf. Eq.(14a). Performing first the Fourier transformation with
respect tox'=sx0,x2d, we have

M̃D
absp,qd =E

x'

E
y'

E
x1

E
y1

eip'·x'+iq'·y'eip1x1+iq1y1Gfx' − y',x1 − y1;hasx1d − hbsy1d + Hsda2 − db2dg

=s2pd2ds2dsp' + q'dE
x1

E
y1

E
p18

eisp1−p18dx1+isq1+p18dy1
e−Îp'

2 +p18
2uhasx1d−hbsy1d+Hsda2−db2du

2Îp'
2 + p18

2
sA1d

To evaluate this last expression analytically, it is necessary to find a simplified expression for the dependence of the second
exponential term onx1 and y1. At this point, the use of piecewise constant profiles for the material plates becomes crucial.
Sinceha= ±aa, for a=b we can write

e−p̃uhasx1d−hasy1du = e−aap̃fcoshsaap̃d + aa
−2 hasx1dhasy1dsinhsaap̃dg. sA2d

Similarly, for aÞb, we get

e−p̃uhasx1d−hbsy1d+Hsda2−db2du = e−p̃Hfcoshsaap̃d − s− 1daaa
−1hasx1dsinhsaap̃dgfcoshsabp̃d − s− 1dbab

−1hbsy1dsinhsabp̃dg. sA3d

To keep the notation short, we introducedp̃=Îp'
2 +p18

2. Now, we insert the Fourier series expression forha, given by

hasx1d =
2aa

p
o

n=−`

`
s− 1dn−1

2n − 1
es2pi/lds2n−1dsx1+da2bd sA4d

into the right-hand side(rhs) of Eqs.(A2) and (A3). Then, inserting those into Eq.(A1), the remaining integrals overx1,y1,
andp18 can easily be performed. This yields the periodic formula

M̃Dsp,qd = s2pd3ds2dsp' + q'd o
m=−`

`

dsp1 + q1 + 2pm/ldND,msq',q1d, sA5d

with the matrices

ND,msq',q1d = S Am,1
D sq',q1d Bm,12

D sq',q1d
gmBm,21

D sq',q1d gmAm,2
D sq',q1d

D + dm01
1

4q
s1 + e−2a1qd

e−qH

2q
coshsa1qdcoshsa2qd

e−qH

2q
coshsa1qdcoshsa2qd

1

4q
s1 + e−2a2qd 2 sA6d

for m even, and

ND,msq',q1d = S 0 Cm,12
D sq',q1d

Cm,21
D sq',q1d 0

D sA7d

for m odd. The entries of the matrices are given as follows:

Am,a
D sq',q1d =

s− 1dm/2

p2 o
k=−`

`
1

sm− 2k + 1ds2k − 1d
e−2aaq̃2k−1 − 1

q̃2k−1

, sA8d

Bm,ab
D sq',q1d = 2

s− 1dm/2

p2 o
k=−`

`
gs2k−1dsdb2−da2d

sm− 2k + 1ds2k − 1d
e−q̃2k−1H

q̃2k−1

sinhsaaq̃2k−1dsinhsabq̃2k−1d, sA9d

and
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Cm,ab
D sq',q1d =

s− 1dsm+1d/2

mp
Fs− 1dagmda2

e−qH

q
sinhsaaqdcoshsabqd + s− 1dbgmdb2

e−q̃mH

q̃m

sinhsabq̃mdcoshsaaq̃mdG , sA10d

where the phase factorg=e2pib/l was introduced. We note that the off-diagonal entriesBm,ab
D andCm,ab

D implicitly depend on
b throughg. Furthermore,q̃n=Îq'

2 +sq1+2pn/ld2 was introduced, which impliesq; q̃0. If a2=0, the matricesND,m have the
symmetryND,msq' ,−q1d=ND,−msq' ,q1d, and analogously for the Neumann matricesNN,m, which we used in Sec. II. We
remark that this symmetry is no longer valid for either type of boundary conditions ifh2sx1dÞh2s−x1d.

The matrix M̃N for the Neumann boundary condition is obtained similarly, as for the Dirichlet boundary condition.
Evaluating first the Fourier transform of the orthogonal components as done in expression(A1), the result is

M̃N
absp,qd = s2pd2ds2dsp' + q'dE

x1

E
y1

eip1x1+iq1y1s− 1da+bh− ]x3

2 + fha8sx1d + hb8sy1dg]x1
]x3

− ha8sx1dhb8sy1d]x1

2 j

3E
p18

e−ip18sx1−y1dUe−Îp'
2 +p18

2ux3−y3u

2Îp'
2 + p18

2 Ux3=hasx1d+Hda2
y3=hbsy1d+Hdb2

= s2pd2ds2dsp' + q'dE
x1

E
y1

E
p18

eisp−p18dx1+isq1+p18dy1
s− 1da+b

2 F− Îp'
2 + p18

2 −
ip18

Îp'
2 + p18

2
s]x1

− ]y1
d

−
p18

2

sp'
2 + p18

2d3/2]x1
]y1G3e−Îp'

2 +p18
2uhasx1d−hbsy1d+Hsda2−db2du. sA11d

We apply partial integration to obtain

M̃N
absp,qd = s2pd2ds2dsp' + q'd

s− 1da+b

2
E

p18
F− Îp'

2 + p18
2 −

p18

Îp'
2 + p18

2
sp1 − q1 − 2p18d +

p18
2

sp'
2 + p18

2d3/2sp1 − p18dsq1 + p18dG
3E

x1

E
y1

eisp1−p18dx1+isq1+p18dy1e−Îp'
2 +p18

2uhasx1d−hbsy1d+Hsda2−db2du. sA12d

This expression will be treated analogous to the case of the matrix for the Dirichlet boundary condition, cf. Eq.(A1). It
differs from the Dirichlet kernel by the additionalp18 dependent term. This yields again Eq.(A5), but now withND,m substituted
by the Neumann matricesNN,m, which are given by

NN,msq',q1d = S Am,1
N sq',q1d Bm,12

N sq',q1d
gmBm,21

N sq',q1d gmAm,2
N sq',q1d

D + dm01 −
q

4
s1 + e−2a1qd

q

2
e−qHcoshsa1qdcoshsa2qd

q

2
e−qHcoshsa1qdcoshsa2qd −

q

4
s1 + e−2a2qd 2

sA13d

for m even, and

NN,msq',q1d = S 0 Cm,12
N sq',q1d

Cm,21
N sq',q1d 0

D sA14d

for m odd. The entries are now given by

Am,a
N sq',q1d =

s− 1dm/2

p2 o
k=−`

`
1

sm− 2k + 1ds2k − 1d
1 − e−2aaq̃2k−1

q̃2k−1
3 fmksq',q1d, sA15d

Bm,ab
N sq',q1d = 2

s− 1dm/2

p2 o
k=−`

`
gs2k−1dsdb2−da2d

sm− 2k + 1ds2k − 1d
e−q̃2k−1H

q̃2k−1
3 sinhsaaq̃2k−1dsinhsabq̃2k−1dfmksq',q1d, sA16d

and
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Cm,ab
N sq',q1d =

s− 1dsm+1d/2

mp
Fs− 1dagmda2e−qHSq +

2pm

l

q1

q
Dsinhsaaqdcoshsabqd + s− 1dbgmdb2e−q̃mH

3Sq̃m −
2pm

l

q1 + 2pm/l

q̃m
Dsinhsabq̃mdcoshsaaq̃mdG , sA17d

using the function

fmksq',q1d = q1Sq1 +
2pm

l
DSq1 +

2p

l
s2k − 1dD2

+ 2q'
2 Sq1 +

pm

l
DSq1 +

2p

l
s2k − 1dD + q'

4 . sA18d

As in the case of the Dirichlet matrices, the off-diagonal elements depend onb via the phase factorg=e2pib/ld. The matrices
of the previous discussion of the rectangular corrugation model are now simply recovered by performing the limita2→0 and
by defininga=a1.

APPENDIX B: THE LIMIT OF SMALL l FOR THE MATRICES Nm

In this section, the limitl→0 of the matricesNmsq' ,q1d for the rectangular corrugation model of Sec. III will be performed
(cf. Appendix A fora=a1, a2=0, andl→0). These matrices depend on the shift of the argumentq1 relative to 2pn/l, which
requires a separate treatment of various cases. Considering this, for the Dirichlet case we find the simplified expressions

ND,0sq',q1 + 2pn/ld =
l→051

e−2aq + 1

4q

e−qH

2q
coshsaqd

e−qH

2q
coshsaqd

1

2q
2 for n = 0

1−
1

p2n2

e−2aq − 1

q
e

e
l

4punu
2 for n odd

10 e

e
l

4punu
2 for n even.

6 sB1d

We have introduced a small quantitye, which is needed in order to have a nonsingular matrixBkl. However, at the end we can
safely takee→0 in the final expression for the Casimir force. Asl→0, this quantity vanishes ase,l expf−2pnsH
−ad /lg. The other matrices formÞ0 are given by

ND,msq',q1 + 2pn/ld =
l→051

0 s− 1d
m−1

2

pm

e−qH

q
sinhsaqd

0 0
2 for n = 0

1 0 0

s− 1d
m−1

2

pm

e−qH

q
sinhsaqd 02 for n = − m

S0 0

0 0
D for n ¹ h− m,0j

sB2d

for m odd, and

ND,msq',q1 + 2pn/ld =
l→051−

s− 1dm/2

p2nsm+ nd
e−2aq − 1

q
0

0 0
2 for n odd

S0 0

0 0
D for n even

sB3d

for evenmÞ0. Analogously, for the Neumann matrices, we find
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NN,0sq',q1 + 2pn/ld =
l→051

−
q

4
se−2aq + 1d

q

2
e−qHcoshsaqd

q

2
e−qHcoshsaqd −

q

2
2 for n = 0

1
4s− 1dn−1

l2

q1
2

q3se−2aq − 1d e

e −
punu

l
2 for n odd

1−
1

l
Fpunu

2
+

2

p
C̃0sndG e

e −
punu

l
2 for n even

6 sB4d

and

NN,msq',q1 + 2pn/ld =
l→051

0 2s− 1d
m−1

2

l

q1

q
e−qH sinhsaqd

0 0
2 for n = 0

1 0 0

−
2s− 1d

m−1
2

l

q1

q
e−qH sinhsaqd 02 for n = − m

S0 0

0 0
D for n ¹ h− m,0j

sB5d

for m odd, and

NN,msq',q1 + 2pn/ld =
l→051

4s− 1dm/2

l2

q1
2

q3se−2aq − 1d 0

0 0
2 for n odd

1−
2nsn + md

pl
C̃msnd 0

0 0
2 for n even,n ¹ h− m,0j

1±
mq1

p2 C̃msnd 0

0 0
2 for n P h− m,0j

sB6d

for evenmÞ0. Here, the asymptotic behavior ofe for l→0 is e,l−1expf−2pnsH±ad /lg. The constant is given byC̃msnd
=s−1dm/2ol=−`8` fs2l −1ds2l −1−mdu2l −1+nug−1, and the prime at the summation sign indicates thatl Þ s1−nd /2 if n is odd.
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