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Abstract

This paper presents a model for asset returns incorporating both

stochastic volatility and jump e�ects. The return process is driven by

two types of randomness: small random shocks and large jumps. The

stochastic volatility process is a�ected by both types of randomness

in returns. Speci�cally, in the absence of large jumps, volatility is

driven by the small random shocks in returns through a GARCH(1,1)

model, while the occurrence of a jump event breaks the persistence

in the volatility process, and resets it to an unknown deterministic

level. Model estimation is performed on daily returns of S&P 500

index using the maximum-likelihood method. The empirical results

are discussed.

Recently, there has been fair amount of work in the asset pricing literature

that studies models with both jump and stochastic volatility dynamics. For

�Graduate School of Business, Stanford, CA 94305. junpan@stanford.edu. I am grate-

ful for extensive discussions with Darrell Du�e and Kenneth Singleton. I would also like

to thank Geert Bekaert for helpful comments.



example, in the discrete-time setting, Jorion [1989] employs a jump model

with ARCH(1)1 to test equity returns and exchange rates, and Bekaert and

Gray [1996] use a jump with GARCH(1,1) model to study the target zones

and exchange rates. In the continuous setting, jump-di�usion models with

stochastic volatility can be found in Bates [1997] and Bakshi, Cao, and Chen

[1997], among others.

Although existing empirical work has clearly shown the importance of

characterizing the dynamics of both jumps and stochastic volatility in asset

returns, it still remains an open question as how these two dynamics interact

with each other. To be more speci�c, one important question is: how does

a jump in return a�ect the dynamics of the stochastic volatility process? In

Jorion [1989], the volatility dynamics are a�ected only through the mixture

of random shock and jumps, and as a consequence, this volatility process

can not di�erentiate large jumps from small random movements. Moreover,

because of the ARCH dynamics, the volatility process can \overshoot" to an

unreasonably high level due to jumps in returns. Bekaert and Gray [1996] em-

ploy a \pressure relief" mechanism to capture the phenomenon that certain

types of jumps in exchange rates break up the persistence in the volatility

process. However, in their paper, the arrival of such \pressure reliefs" is

given exogenously. Bates [1997] and Bakshi, Cao, and Chen [1997] model

the stochastic volatility with an autonomous process, which is independent

of the return process, hence one can not rely on these models to study the

jump e�ect on a stochastic volatility process.

In this paper, we develop a simple model for asset return that incorporates

1For details on ARCH and GARCH models, see Engle [1982] and Bollerslev [1986].

2



both the jump and stochastic volatility dynamics: the small (marginal) move-

ments in returns are driven by a sequence of random shocks with stochastic

volatility, whereas the arrival of jumps is dictated by Bernoulli trials with a

normally distributed jump size. To study explicitly the a�ect of return jumps

on the dynamics of stochastic volatility, we introduce a volatility model with

\resets" at jumps. Speci�cally, in the absence of a jump, the volatility is

driven by the small random shock, which can be associated with marginal

movements in returns, through a GARCH(1,1) dynamic, while the arrival of

a jump in returns \resets" the volatility level to an unknown deterministic

level. This reset mechanism allows the volatility process to \refresh its mem-

ory" and breaks its persistence pattern. Such a \pressure relief" phenomenon

in the volatility process, caused by realizations of surprises, can be observed

in many markets, for example, in the exchange-rate market.2

Given that this model accommodates three random sources (marginal

movement, jump arrival, and jump size), we can no longer exactly invert

the sample path of the volatility process from observations of asset returns.

This problem with un-observable variables can potentially make maximum-

likelihood estimation infeasible. However, because of the volatility reset fea-

ture incorporated in this model, we are able to back out a conditional volatil-

ity tree whose dimension grows linearly with the number of periods. As a

consequence, this model speci�cation has the advantage of moderate demand

in model estimation using the maximum-likelihood method.

Finally, this model with volatility reset nests GARCH(1,1), and jump

with constant volatility models.

2See Bekaert and Gray [1996] for details.
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The rest of the paper is organized as follows. In Section I, we specify

the model, and sketch the calculation of the sample likelihood function. In

Section II, we apply this model to the S&P 500 daily returns, and discuss the

empirical results. In Section III, we discuss possible extensions of the model.

In Section IV, we conclude the paper.

I. Model Speci�cation and Implementation

A. Model Speci�cation

Under a discrete-time setting, let � = f�t : t = 1; 2; : : : g be a sequence of i:i:d:
random variables with standard normal distribution, J = fJt : t = 1; 2; : : : g
be Bernoulli trials with success probability p,3 and Z = fZt : t = 1; 2; : : : g
be a sequence of i:i:d: random variables normally distributed with mean �Z

and variance �2
Z
. f�g, fJg, and fZg are mutually independent. We model

the return process by an R-valued process y such that

yt+1 = �+
p
ht �t+1 + Zt+1 Jt+1 ; (1)

where � 2 R, and where the R+ -valued process h is de�ned by

ht = h Jt + g (yt; ht�1) (1� Jt) ; h0 2 R+ ; (2)

where the GARCH function g : R � R+ ! R+ is de�ned by

g(y; h) = a0 + a1 (y � �)2 + a2 h; (3)

3That is, for a �xed time t, Jt = 1 with probability p, and Jt = 0 with probability

1� p. For any times t 6= s, Jt and Js are independent.
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where a0, a1, and a2 are in R+ :

In the above model, the time-t jump arrival is dictated by Jt, while the

jump size in return is controlled by Zt. At time t, the marginal movement

in return is modeled by �t with a stochastic volatility
p
ht�1. Both J and �

contribute to the dynamics of h. Speci�cally, conditioning on a jump event

at time t, that is Jt = 1, ht is reset to a constant level h, while, in the absence

of a jump at time t, ht follows the usual GARCH(1,1) process.

B. Model Implementation

The empirical methodology we adopt for this model estimation is maximum

likelihood. For a general model with stochastic volatility, implementation of

the likelihood function could be computationally infeasible because of the un-

observable variable ht.
4 In this paper, however, the special volatility model

with reset at jumps allows us to back out the conditional distribution of

ht explicitly, and requires moderate computational demand to calculate the

likelihood function.

For a time series of T observations, we write the sample likelihood function

f(yT ; yT�1; � � � ; y2; y1) =
T�1Y
t=0

f(yt+1 j It);

where It = fy1; y2; : : : ; ytg, and I0 = ;.
Let � , the random time since last jump, be de�ned by

�t = minft� s : s � t; Js = 1g: (4)

4See, for example, Jacquier, Polson, and Rossi [1994], and references therein for model

estimation techniques under a more general stochastic volatility structure.
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Noting that �t 2 f0; 1; : : : ; tg, we write

f(yt+1 j It) =
tX

i=0

f(yt+1 j It; �t = i)P (�t = i j It) : (5)

Conditional on the outcome of Jt+1, we have

f (yt+1 j It; �t = i) = p f (yt+1 j It; �t = i; Jt+1 = 1)

+ (1� p) f (yt+1 j It; �t = i; Jt+1 = 0) ; (6)

where p is the success rate of the Bernoulli trial.

Using the dynamics of h de�ned in (2), we know that, at time t =

1; 2; : : : ; T , ht depends entirely on It and �t. Speci�cally, we denote Ht(i) to

be the outcome of ht conditional on the event fIt; �t = ig, and we immediately

have H0(0) = h0, and Ht(0) = �h for any t = 1; 2; : : : ; T . Moreover, for i =

1; 2; : : : ; t, Ht(i) can be calculated recursively by Ht(i) = g (yt; Ht�1(i� 1)),

for i = 1; : : : ; t.

It then follows that

f (yt+1 j It; �t = i; Jt+1 = 1) = 'A(yt+1; Ht(i))

f (yt+1 j It; �t = i; Jt+1 = 0) = 'B(yt+1; Ht(i)) ;

where 'A : R � R+ ! R+ ; and 'B : R � R+ ! R+ are de�ned by

'A(x; b) =
1p

2�(b+ �2
Z
)
exp

�
�(x� �� �Z)

2

2(b+ �2
Z
)

�
(7)

'B(x; b) =
1p
2�b

exp

�
�(x� �)2

2b

�
(8)

As it is illustrated in Figure 1, we may intuitively think of

[Ht(0); Ht(1); : : : ; Ht(t)]
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as the time-t branch of a volatility tree inverted back from observations of

returns up to time t. Moreover, given It, the probability that ht ends up

at the i-th node with value Ht(i) is simply �t(i) = P (�t = i j It). We next

derive a recursive formulation to calculate �t(i). Let �0(0) = 1, and for any

t � 1 and i = 1; : : : ; t, we have

�t(i) = P (�t = i; �t�1 = i� 1 j It)

= P (�t = i j It; �t�1 = i� 1) P (�t�1 = i� 1 j It)

= P (Jt = 0 j It)P (�t�1 = i� 1 j It) ;

where

P (Jt = 0 j It) = (1� p)
f (yt j It�1; Jt = 0)

f (yt j It�1)
(9)

P (�t�1 = i� 1 j It) = �t�1(i� 1)
f (yt j It; �t�1 = i� 1)

f(yt j It�1)
(10)

where

f (yt j It�1; Jt = 0) =

tX
i=1

'B(yt; Ht�1(i� 1))�t�1(i� 1)

f (yt j It; �t�1 = i� 1) = p 'A(yt; Ht�1(i� 1)) + (1� p)'B(yt; Ht�1(i� 1))

f(yt j It�1) =
tX

i=1

f (yt j It; �t�1 = i� 1) �t�1(i� 1) :

And �nally we obtain �t(0) from �t(0) = 1�Pt

i=1
�t(i), for t = 1; : : : ; T .

II. Application to S&P 500 Daily Returns

As an application, we estimate the parameters of the model speci�ed in (1)

and (2) (\Full Model") by maximum likelihood using daily returns of the
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S&P 500 composite index from January 1986 to January 1997. The time

series has a total of of 2,870 observations.

In addition to estimating the \Full Model", we also estimate two nested

models: (1) GARCH(1,1), a special case of the \Full Model" with Jt = 0 (or

p = 0); (2) Jump with constant volatility, another special case of the \Full

Model" with a0 = �h, a1 = 0, and a2 = 0. The outcome of the parameter es-

timates and relevant statistics, for all three models, is reported in Table I. A

likelihood ratio test soundly rejects the model of jump with constant volatil-

ity against the \Full Model". Because of the missing \nuisance" parameters,

the test of GARCH(1,1) against the \Full Model" is non-standard. Speci�-

cally, the large sample distribution of the likelihood ratio statistics (LR) is

unknown. A bound of the probability distribution of LR could be obtained

using a grid method such as that in Hansen [1992], but we omit this test and

simply point out the signi�cant improvement of the log-likelihood value.

Using the \Full Model" estimates reported in Table I, we may summarized

the model-dependent characteristics of the daily movement of the S&P 500

index as following:

� Base of the jump probability of 1.24%, we can calculate that signi�cant

\surprise" price movement happens, on average, about three times a

year. These small-probability jump events are, in expectation, 1.83%

downward, with a standard deviation of 4.9%.5

� There are high persistence in the volatility process : the �rst order auto-

correlation of the volatility process is a1+ a2 = 0:9857 with a standard

5Given these estimates, a 20% downward jump like that in the 1987 Crash will take

more than ten thousand years to happen once.
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error of 0:0047, conditioning on no jump events. The unconditional

auto-correlation could be calculated as (1� p) (a1+ a2) = 0:9736, with

a standard error of 0:0056.

� Right after each jump, the stochastic volatility starts \afresh" from

a relatively higher level (
p
�h = 16:6%) than the steady-state average

level (
p
E(ht) = 13:0%). As the mean of jump returns is estimated to

be -1.83%, the e�ect of negative correlation between downward price

movement and high levels of volatility is captured, with cov(yt; ht) =

p �Z
�
�h� E(ht)

�
. From the model estimates, corr(yt; ht) = �0:0319,

with a standard error of 0.0174.

The rest of the section is organized as following: In section A, we discuss

the jump e�ect in daily returns picked up by our model and the model of

jump with constant volatility, and stress the point why stochastic volatility

is essential in modeling jump e�ect. In section B, we compare the stochastic

volatility process implied by our model with that implied by GARCH(1,1),

and stress the point why stochastic volatility alone is not adequate in han-

dling time series with jump e�ect. And �nally, in section C, we study the

population moments implied by all of the three models, and compare them

with the sample moments to understand how well each model characterizes

the distribution of the time series.

A. Model Characterization of Jumps

In order to study how well the model characterizes jumps, Figure 2 plots

P (Jt j It), the probability of jump at time t updated by observations of re-
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turns up to time t. The top panel is obtained using the \Full Model", while

the bottom panel is obtained using the model of jump with constant volatil-

ity. From this result, we notice that the jump model with constant tends

to overestimates the probability of jump events. From the model estimates

in Table I, we can also see that the model of jump with constant volatility

picks smaller jumps with a higher frequency. This could be explained by

the inexibility of the volatility structure, which results in mistaking high

volatility levels as small jumps.

B. Model Characterization of Stochastic Volatility

Figure 3 combines
p
ht inferred from GARCH(1,1) and

p
E(ht j It) implied

by the \Full Model" on the same plot, and shows the fact that GARCH(1,1)

\overshoots" the level of volatility in the event of large price movements.

For example, the volatility level jumps to an unreasonably high of 112.6% in

the 1987 Crash. This is a direct consequence of the mis-speci�cation of the

GARCH model, which fails to incorporate jump e�ects. As a result, a high

level of jyt � �j accompanying a jump event will enter the volatility process

through �2
t
� a1 (yt � �)

2
, and cause a high volatility level to explain the

jump event. For the same reason, a1 is estimated to be signi�cantly larger

in the GARCH(1,1) model than the full model, and the opposite case for a2.

Figure 4 plots the conditional expectation of volatility updated by obser-

vations, E(ht j It), and Figure 5 plots the conditional variance of volatility

updated by observations, var(ht j It). The highest level (
p
0:07 = 26%) of

volatility occurs around the 87-Crash, when the highest conditional variance

of volatility also occurs, at the level of 0:03%. The variation range of the
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volatility process and the variance of the volatility depicted in Figure 4 and 5

seems, subjectively, to be reasonable estimates for the volatility process and

its variance.

C. Model Characterization of Moments

In order to examine how well the model characterizes the distribution of

the time series in terms of distribution, we study the moments of S&P 500

daily-return distribution implied by the model estimates, and compare them

with the sample moments. The point estimates, as well as the estimated

standard errors, are listed in Table II. In obtaining the standard errors for

the sample estimates, we use a GMM-style approach for the four exactly-

identi�ed moments. The covariance estimator of the sample moments is

obtained using the Newey-West method with 5 lags.6

Skewness is a measure of the degree to which positive deviations from

the mean are larger than the negative deviations from the mean. A negative

skewness means that large negative returns are more likely than large positive

returns. From Table II, judging only from the point estimates, we see that

the population skewness basically captures the negativity in sample skewness,

however, the magnitude is underestimated. There are possibly two contribu-

tions to the skewness: one comes from jumps with negative mean; the other

comes from negative correlation between the level of stochastic volatility ht

and the random shock �t, which is not incorporated in this model. However,

6See Hansen [1982] for large sample distributions of the GMM estimators, and Newey

and West [1987] for the covariance estimator. For a more accessible exposure, see Hamilton

[1994].
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at short time horizon, the skewness e�ect introduced by negative jumps is

expected to be the more pronounced.

Kurtosis is a characteristic of tail-fatness. The large sample kurtosis

of 113 is accompanied with a \huge" standard error of 54, resulting from

infrequent observations of large moves. This is a direct consequence of the

1987 Crash, when the market moved over 20% in one day. After taking out

this period from the sample, the kurtosis is less than 10. Also, if we measure,

instead, weekly returns, the sample kurtosis reduces to 12. Judging from

the point estimates of sample and population kurtosis, we can see that the

population kurtosis implied by the model estimates severely underestimates

the kurtosis of daily returns. Kurtosis estimated on a daily horizon is less

precise than estimated kurtosis on a weekly or monthly horizon. A study of

the term structure of kurtosis is not within the scope of this paper. We do

acknowledge, however, the di�culty involved in estimating the high end of

this kurtosis term structure.

III. Model Extensions

A. Jump Clustering

Equity returns of short time horizon usually exhibit \jump clustering," that

is, large movements in returns tend to happen together within short time

period. To model this e�ect, we may allow the time-t success rate pt of

the Bernoulli trial Jt to depend on the history of jumps. Speci�cally, let

pt = (�t�1) be the probability that Jt = 1, where � is the random time since

last jump de�ned in (4), and where  : N ! [0; 1]. By allowing pt to be

12



a function of the past jump history, we e�ectively model the phenomena of

\jump clustering." Moreover, maximum-likelihood estimation is still feasible

under this extension. Speci�cally, equation (6) in Section 1B becomes

f (yt+1 j It; �t = i) = (i) f (yt+1 j It; �t = i; Jt+1 = 1)

+ (1� gamma(i)) f (yt+1 j It; �t = i; Jt+1 = 0) : (11)

B. Volatility Asymmetry

We may capture the volatility asymmetry e�ect contributed by � and h by

using an E-GARCH dynamics. Speci�cally,

ln(ht) = ln(h) Jt + g� (yt; ln(ht�1)) (1� Jt) ; h0 2 R+ ; (12)

where g� : R � R ! R is de�ned by

g�(x; v) = a0 + a1x+ a2x
2 + a3v;

where a0, a1, a2, and a3 are in R.

Conditional on no jumps, the conditional volatility is a�ected by the

sign of �. Hence, we e�ectively introduce a correlation between � and h.

Moreover, the maximum-likelihood estimation approach is still feasible under

this extension.

C. Relax the \Aftermath"

One over-restrictiveness of this model is that the volatility process is reset to a

deterministic level �h conditional on a jump event. While this particular reset

mechanism provides with us a manageable conditional volatility tree, this
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\aftermath" can be overly restrictive. By allowing �h to be a random variable

can relax this restriction, however, likelihood estimation is not feasible under

this extension.

IV. Conclusion

A simple and easy to implement model for asset returns is developed to

incorporate both jump and stochastic volatility dynamics. The contribution

of this paper lies mainly in the particular dynamics of the volatility process,

that is, a volatility process with reset at jumps. The motivation behind this

model is that \small" and \large" returns a�ect volatility through di�erent

channels, and a jump event usually relieves the system from its \built-up"

pressure, and \refreshes" its memory.

As an application, this model is applied to daily returns of the S&P 500

composite index from 1986 to 1997. We �nd that both the jump e�ect and

stochastic volatility are useful features in characterizing the stochastic be-

havior in market returns. The e�ect of \over-shooting" of volatility level or

\over-jumping" in returns could be found if either one component is missing

from the model. Speci�cally, GARCH(1,1) and jump with constant volatil-

ity models are both mis-speci�ed. We also �nd, through model estimation,

that in the absence of jump event, volatility is highly persistent; jumps are

negative in mean, and after a jump event, volatility starts at a level that

is higher than its steady state mean. From this, we capture the e�ect of

volatility asymmetry, or negative correlation between price movements and

the volatility level.
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Implications of this model estimation on option pricing could be sum-

marized as follows. First, we document the jump e�ect in daily returns of

the S&P 500, and provide maximum-likelihood estimates for this jump model

with stochastic volatility. Hence option pricing could be readily implemented

after an appropriate risk-neutralization, and be compared with observed op-

tion prices. From the model estimation, we invert a volatility tree that is

implied by the underlying price, and further research can be conducted to

compare this implied historical volatility tree with the option-implied volatil-

ity tree.

The basic characteristics imposed by this model on the time series of re-

turns are quite general, and this model could be carried over naturally for

estimations in stock returns in other markets, as well as in foreign exchange

returns. The maximum-likelihood estimation of this model is very easy to set

up, and the computational demand is moderate. The model can be further

relaxed to allow jump probability p depending on the history of jumps. This

can be a very important feature to model the \jump clustering" e�ect. This

model can also be extended to incorporate volatility asymmetric between

the random shock � and conditional volatility, by introducing an E-GARCH

dynamics. However, the relaxation of �h from deterministic to random (pos-

sibly depend on the size of last surprise) will make the maximum-likelihood

approach adopted in this paper infeasible.
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Table II: Estimates of the �rst four moments of daily returns of the S&P 500

Composite Index from January 1986 to January 1997, with a total of 2870

observations

mean std skew kurtosis

Sample 0.1136 0.1580 -4.7906 113.0720

ŜE (0.0460) (0.0004) (2.6635) (53.9954)

Full Model 0.1258 0.1568 -0.6550 27.6092

ŜE (0.0434) (0.0100) (0.3975) (9.0859)

\pure GARCH" 0.1596 0.1693 0 6.2298

ŜE (0.0352) (0.0222) 0 (3.1323)

\pure Jump" 0.1136 0.1569 -0.2282 13.5363

ŜE (0.0494) (0.0053) (0.1221) (1.7658)

The Standard Errors of the sample moments are obtained using a GMM

approach. The variance-covariance matrix is estimated using a Newey-West

Estimator with 5 lags.

26


