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One often-overlooked factor when selecting a platform for large-

scale electrophysiology is whether or not a particular data

acquisition system is ‘open’ or ‘closed’: that is, whether or not the

system’s schematics and source code are available to end users.

Open systems have a reputation for being difficult to acquire,

poorly documented, and hard to maintain. With the arrival of more

powerful and compact integrated circuits, rapid prototyping

services, and web-based tools for collaborative development,

these stereotypes must be reconsidered. We discuss some of the

reasons why multichannel extracellular electrophysiology could

benefit from open-source approaches and describe examples of

successful community-driven tool development within this field. In

order to promote the adoption of open-source hardware and to

reduce the need for redundant development efforts, we advocate

a move toward standardized interfaces that connect each element

of the data processing pipeline. This will give researchers the

flexibility to modify their tools when necessary, while allowing them

to continue to benefit from the high-quality products and expertise

provided by commercial vendors.
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Introduction
Major breakthroughs in neuroscience often occur shortly

after new methods become available. Many investigators

prioritize in-house tool building, since being the first to

apply cutting-edge technologies frequently leads to
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high-impact publications. How does the hardware devel-

oped within individual laboratories make its way to the

wider community? For the most part, companies invest

the time and money required to polish researchers’

prototypes, which they then distribute back to research-

ers. These products typically use proprietary schematics

and source code, which prevents them from being modi-

fied by users and commercial competitors. Knowledge of

key elements required to extend or adapt the technology

is not available to end users who would like to do so.

In the recent past the benefits of having companies

supply robust, well-documented devices have often out-

weighed the costs of dealing with closed hardware. Most

scientists are happy to use commercial tools if they help

generate useful data and are widely adopted by their

peers. In some instances, though, relying on closed-source

tools can hinder progress. When commercial hardware is

treated as a ‘black box,’ it can limit scientists’ under-

standing of the data being generated, as well as their

ability to update hardware functionality in light of new

experimental demands. Furthermore, tools from different

companies — even those designed for the same pur-

pose — are often incompatible with one another. Once

a platform has been selected, future work may end up

locked in to a particular data processing pipeline.

Recent advances in the domain of open-source design have

increased the quality of tools built by scientists, extending

their usefulness beyond their lab of origin. When designed

properly, open-source hardware can combine the user-

friendliness and dependability of commercial products with

the high performance and flexibility of tools developed in-

house. There are numerous examples of open-source soft-

ware making an impact in neuroscience [1–3,4�,5–9], but

open-source hardware has yet to take hold to the same

degree. We expect that to change in the immediate future.

In this opinion piece, we outline the merits of open-

source development schemes with respect to a widely

used neuroscientific technique: high-channel-count

electrophysiology. We argue that the vanishing differ-

ences in quality between open and closed recording
 States.
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systems no longer justify the higher cost, hardware lock-

in, and lack of interoperability that reliance on commer-

cial hardware entails. Standardizing the interfaces be-

tween elements of the electrophysiologist’s tool chain

could create a scenario in which open and closed hardware

can flourish side by side.Regardless, we believe that in the

long run, open-source initiatives in electrophysiology will

lead to considerable productivity benefits for scientists —

even those without an inclination toward engineering.

Electrophysiology is well-suited for an open
development model
In the simplest case, recording electrical signals from the

brain requires two conductors to measure a potential

difference, a means of amplifying that difference, and a

method to store changes in this signal over time. A

century ago, nerve impulses were amplified using vacuum

tubes and recorded on photographic film scanned behind

a mercury column [10]. Today, mass-produced circuits

costing a few dollars can be used to amplify neural signals

and store them digitally. In recent years, there has been a

push to record from dozens or hundreds of channels sim-

ultaneously in order to understand the brain at the network

level [11��,12–14]. Furthermore, experimental designs now

call for equipment that can precisely manipulate neural

activity in real time, as well as record it [15–20,21�].

For the most part, these advances in recording and

stimulation technology have occurred within individual

labs, after which they were commercialized and distrib-

uted to a wider audience. Some of the major vendors of

commercial electrophysiology data acquisition systems

are Neuralynx, Plexon, Blackrock Microsystems, Multi-

channel Systems, Tucker-Davis Technologies, Ripple,

and Axona. All of these systems are monolithic, meaning

the hardware and software components sold by different

companies are not interoperable. By giving researchers

access to high-quality, professionally tested tools, as well

as reliable support services, these companies have been

essential for the proliferation of multichannel electro-

physiology over the past two decades. However, it is

no longer clear that these services should be provided

exclusively by commercial entities.

We see three reasons why tool development and distri-

bution for large-scale electrophysiology would benefit

from an active open-source community:

1. Electrode technology is advancing rapidly. Exper-

imenters using twisted-wire tetrodes are packing more

electrodes into a smaller area [22–24], electrode arrays

are becoming thinner and denser [25–29], and

dynamically reconfigurable probes are in use in vitro
[29] and under development in vivo [30]. Researchers

need the flexibility to choose among these options, or

to mix technologies within the same preparation.
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Companies that adopt proprietary standards restrict

researchers’ freedom. For example, when neural signal

processing chips were introduced by Intan Technol-

ogies, vendors gave up the opportunity to rally around

a common standard. These chips can amplify and

digitize up to 32 channels of neural data in an

8 mm � 8 mm package (http://www.intantech.com)

[31,32��]. When integrated into a ‘headstage’ (the

interface that connects electrodes to a data acquisition

system), Intan chips offer considerable advantages

over the analog buffer amplifiers that were used

previously. For this reason, nearly every major vendor

now sells headstages that incorporate Intan chips.

However, none of these headstages are interchange-

able. Users are stuck with whatever connectors the

vendors have chosen to provide, and cannot customize

them without the help of the manufacturer.

2. On the software side, the requirements for analysis and

visualization vary greatly between labs, and even

between experiments. Specialized algorithms are

needed to handle electrophysiological data, especially

when closed-loop feedback is required. It is often

impossible to predict which algorithms will work best

before the experiments have been run. An example of

this is online spike sorting, which allows researchers to

analyze the activity of single neurons during an

experiment [33–35]. A few commercial systems

already implement spike sorting using algorithms that

may not be fully disclosed. This makes it difficult or

impossible to compare data collected across different

labs [36,37��].
3. Electrophysiologists tend to be technically savvy and

favor a ‘do it yourself’ approach to science. Some of this

is cultural, but much of it is out of necessity. The

complexity and fragility of neural systems has forced

many electrophysiologists to develop customized

hardware and software for their experiments. Unfortu-

nately, very little of this development is currently

shared, leading to a huge amount of redundant effort

within and across laboratories. Even though every

experiment has unique demands, the general require-

ments for electrophysiology are similar enough that

scientists would benefit from a more generalized, open

framework for acquisition and analysis. Because

electrophysiologists are already so adept at tool-

building, support and development efforts could be

distributed throughout the community.

These reasons, which are not unique to extracellular

electrophysiology, make it likely that a shift toward a

more open development model will occur in the near

future.

A brief history of open-source approaches to
multichannel data acquisition
There have been several attempts to develop open-

source recording platforms that are polished enough
www.sciencedirect.com
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and sufficiently well-documented to propagate beyond

the labs that invented them. This section is not meant to

be an exhaustive list of such platforms; rather, we hope to

provide examples of how shifts in technology created

opportunities for scientists to improve on previously

available systems. Figure 1 charts the changes that have

occurred in the price and channel count of these systems

over time.

A/D

One of the first advances that drove the need for high-

channel-count extracellular electrophysiology was the

introduction of tetrode recording technology [38,39].

By placing four tightly spaced electrodes at a single

location in the brain, tetrodes increased the number of

identified neurons that could be isolated. Early work with

tetrodes was essential for improving our understanding of

how the hippocampus represents the environment

[40,41], but they also increased the number of simul-

taneously recorded channels required in any given exper-

iment. In the early 1990s in Bruce McNaughton’s lab at

the University of Arizona, and later in his own lab at MIT,

Matt Wilson (along with his graduate student, Loren

Frank) designed and built ‘A/D,’ an open-source system

capable of processing data from many tetrodes in parallel.

The closed-source alternative, DataWave, lacked the

flexibility required for tetrode recordings, and Dr. Wilson

did not want his research to be tied to the destiny of a

single company. Data collected with A/D has led to a
Figure 1
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number of important discoveries in the field of systems

neuroscience [42–44].

MEABench

Another domain that demands high channel counts is

recording action potentials from cell cultures using planar

microelectrode arrays (MEAs). In 1999, Daniel Wagenaar,

Tom Demarse, and Steve Potter at Caltech created

MEABench, a set of Linux command-line programs for

acquiring, processing, and saving voltages from these

arrays [45��] (http://www.danielwagenaar.net/res/soft-

ware/meabench/). Each MEABench program applies a

function, such as ‘Filter’ or ‘Record,’ to a multichannel

data stream. A standardized interface allows programs to

be daisy-chained and branched in order to construct

complex signal processing pipelines. Although MEA-

Bench does not provide native support for closed-loop

experiments, it can be combined with real-time stimu-

lation tools to create feedback loops [45��]. MEABench

has limited hardware driver support and currently only

works with outdated and expensive Multichannel Sys-

tems data acquisition cards. However, the modularity and

configurability of MEABench have inspired more modern

open-source solutions.

NeuroRighter

In the mid-2000s, the introduction of high-channel-count

analog-to-digital conversion hardware produced by

National Instruments led the Potter lab to develop a
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mprovements in usability, flexibility, and computational power of open-

ralleled growth in open-source culture (e.g. the introduction of Arduino,

nce (e.g. the introduction of Intan Technologies integrated

has decreased by nearly two orders of magnitude while available

tandardization of hardware and software interfaces has allowed

n visualization software. For instance, the Open Ephys FPGA-based

leboard.com) both target the Open Ephys GUI.
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second open-source platform called NeuroRighter

(https://sites.google.com/site/neurorighter/). NeuroRigh-

ter was created by John Rolston, Riley Zeller-Townson,

and Jon Newman. This platform significantly reduced the

cost of data acquisition for MEAs compared to MEA-

Bench from around $60,000 to $10,000. To increase

usability compared to MEABench, NeuroRighter oper-

ates as a standalone application with graphical control

over filter and amplifier settings, online spike-sorting,

data visualization, and data storage [46,47��]. Further,

NeuroRighter integrated native support for real-time

feedback. NeuroRighter’s data processing pipeline can

be augmented using an application programing interface

(API) to create ‘plugin’ libraries that can be executed by

NeuroRighter as it operates [47��]. The NeuroRigher API

also supports electrical and optical stimulation protocols,

making closed-loop experimentation possible.

ArtE

The A/D system worked reliably in the Wilson lab at MIT

for over two decades, but it was only compatible with an

outdated operating system (DOS) and obsolete compu-

ters. The increasing difficulty of obtaining replacement

parts motivated a total rewrite of the underlying code for

National Instruments hardware and GNU/Linux. This

project, was named ‘ArtE’ (Almost real time Electro-

physiology) to highlight the intention to provide

closed-loop feedback (https://github.com/imalsogreg/

arte-ephys). In addition to supporting equivalent features

to A/D, ArtE was designed to run in parallel with an

existing A/D system for the purpose of bootstrapping

development and testing recorded spikes against a

thoroughly debugged standard. The requirement to run

alongside a very different system forced ArtE to be

modular, with data moving between independent pro-

cesses running on different machines over the network, in

the spirit of MEABench. ArtE is still under active de-

velopment, with large portions of its code written in

Haskell to experiment with protection against bugs,

crashes, and dead-locks.

Open Ephys

The public release of integrated amplifier chips by Intan

Technologies [32��] made it possible to circumvent the

National Instruments hardware that was a part of previous

open-source platforms. The co-founders of the Open

Ephys initiative (http://open-ephys.org), Josh Siegle

and Jakob Voigts, two graduate students at MIT,

designed a system based on these chips. The Open Ephys

acquisition board featured both reduced hardware com-

plexity and an order of magnitude drop in equipment cost

compared to ArtE and NeuroRighter. Intan’s develop-

ment of open interfaces (RHD2000 SPI protocol and

Rhythm FPGA firmware) made the development process

much simpler. The low price of manufacturing acqui-

sition boards (�$700 per unit in bulk) allowed Open

Ephys to distribute 150 systems in less than a year.
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The Open Ephys platform also includes software that

supports customizable data processing pipelines, similarly

to MEABench.

What drove the development and adoption of these open-

source tools? There are a few recent factors that have

allowed open-source tools to rival and, in some ways,

surpass the functionality of their commercial counter-

parts. First of all, thanks to their openness, all of the

systems described above were facilitated by the advances

of their predecessors. NeuroRighter was created to

simplify MEABench, ArtE was inspired by the efforts

of A/D and NeuroRighter, and the Open Ephys software

began as a graphical interface for ArtE. Different require-

ments caused these systems to diverge, but they continue

to serve different experimental requirements while

benefitting from the cross-pollination of ideas.

Advances in open-source tools for multichannel electro-

physiology benefited from three technological and cul-

tural developments occurring in parallel:

1. Smaller, cheaper, and better hardware. Market forces

are pushing for ever-more compact and powerful

components for mobile computers. Because these

components are produced in huge volumes and

provide substantial computational power, they can

now fill the role of expensive application-specific

integrated circuits (ASICs) for multichannel data

acquisition and processing.

2. Tools for collaborative design. The rise of tools such as

GitHub and Bitbucket (based on Git version control

software) lowers the barriers to collaborative devel-

opment. Additionally, wiki software allows documen-

tation to be distributed throughout the community and

continuously updated.

3. The open-source hardware movement. Products like

Arduino (http://arduino.cc), Raspberry Pi (http://

www.raspberrypi.org/), and Beaglebone (http://bea-

gleboard.org/) make high-powered embedded com-

putations more accessible. Many neuroscientists are

introduced to hardware design through simple proto-

typing platforms like the Arduino, and subsequently

graduate to more powerful systems. These devices set

a precedent for what good open-source hardware

design should be: powerful, simple to comprehend,

highly adaptable, and well-documented.

Open interfaces: a middle-of-the-road
solution
Taking cues from these widely adopted open-source plat-

forms, we propose an approach to hardware development for

extracellular electrophysiology that centers around standar-

dized interfaces and modular architectures. The essence of

this proposal is that the most common interfaces (e.g. elec-

trode-to-headstage, headstage-to-cable, data-to-computer)
www.sciencedirect.com
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Key interfaces within multichannel electrophysiology platforms. Overview of the main components and interfaces in multichannel electrophysiology

systems. Some components and interfaces need to be incompatible in order to comply with different requirements, such as electrodes and their

connectors. Others, such as interfaces for software plug-ins or the interfaces between recording hardware and software, could be standardized

with little additional development cost. The vertical text describes the interfaces that we recommend standardizing to improve the overall

efficiency of our field.
should become standardized, so that anyone can make tools

that fit into the same pipeline. In Figure 2, we illustrate some

of the interfaces for large-scale electrophysiology that would

benefit most from standardization.

It would be unwise to circumvent the expertise accumu-

lated by existing companies. In a model where systems

are modular, well documented, and interoperable, com-

panies could concentrate their resources. Rather than

developing and supporting entire platforms from top to

bottom, they could focus on making the highest quality

components within a modular system. This could occur in

collaboration with the scientists that require new tools, or

that have already built prototypes that are not ready for

distribution. Additionally, standardization should create a

market for supporting existing systems, in the same way

that companies sell support contracts for Linux-based

systems, rather than selling the software itself.

There is no fundamental reason why all the components

of electrophysiology systems need to be open-source. In

fact, most open tools currently make use closed-source

integrated circuits. If each component were to be well-

defined, with its interfaces documented and adherent to

common standards, closed-source components would

introduce less inflexibility into the complete system.

The same principle applies to the software used to record

and process data. Currently, most software is closed-

source and tied to commercial hardware, which leads to

redundancy and lock-in. For the same reasons that we

need modular hardware, modular software will become

crucial in coming years. This is especially important given

increasing popularity of real-time data processing in

electrophysiology [21�,45��,47��,48]. Complex processing

needs to be accomplished on the fly, and in close coopera-

tion with the acquisition hardware. Modern processors are

making it feasible to attain the real-time performance
www.sciencedirect.com 
traditionally associated with low-channel-count systems

(such as dynamic clamp) in a high-channel-count setting

(see the Puggle at http://www.puggleboard.com and

Open Ephys as http://open-ephys.org). Embedded CPUs

and FPGAs provide the opportunity to merge hard real-

time projects such as RTXI (http://rtxi.org) [49] with

multi-channel systems like Open Ephys. This move

toward real-time processing makes it even more import-

ant that algorithms and data interfaces become standar-

dized and open. Otherwise it will become increasingly

difficult to share custom data processing algorithms and to

compare the results of experiments collected on different

platforms.

Conclusion
Today, open-source electrophysiology systems tend to be

cheaper and offer increased flexibility, while closed-source

systems offer more robust hardware and professional sup-

port. But, as we have described, we anticipate that open

hardware will continue to become more powerful, more

accessible, and better supported in the near future. Scien-

tists and funding agencies that stand to benefit from this

progress should play a more active role in nurturing the

maturation and proliferation of such tools.

One practical barrier to the spread of open-source hard-

ware for electrophysiology is the lack of standardized

interfaces. Pushing for the adoption of such interfaces

wherever possible will improve the quality of open-source

tools and allow open-source and closed-source tools to

work together seamlessly. This would give electrophy-

siologists the option to employ custom-built solutions

whenever necessary, while relying on commercial

solutions at other points in the acquisition and analysis

pipeline. In the rapidly changing landscape of extracellu-

lar electrophysiology, this model would reduce the need

for the redundant development efforts that currently

impede progress toward our ultimate goal: understanding
Current Opinion in Neurobiology 2015, 32:53–59
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the brain by eavesdropping on the electrical signals that

underlie its functions.
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