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We consider the propagation of a contagion process (“epidemic”) on a network and study the problem of

dynamically allocating a fixed curing budget to the nodes of the graph, at each time instant. For bounded

degree graphs, we provide a lower bound on the expected time to extinction under any such dynamic

allocation policy, in terms of a combinatorial quantity that we call the resistance of the set of initially infected

nodes, the available budget, and the number of nodes n.

Specifically, we consider the case of bounded degree graphs, with the resistance growing linearly in n. We

show that if the curing budget is less than a certain multiple of the resistance, then the expected time to

extinction grows exponentially with n. As a corollary, if all nodes are initially infected and the CutWidth

of the graph grows linearly, while the curing budget is less than a certain multiple of the CutWidth, then

the expected time to extinction grows exponentially in n. The combination of the latter with our prior work

establishes a fairly sharp phase transition on the expected time to extinction (sublinear versus exponential)

based on the relation between the CutWidth and the curing budget.

Key words : contagion, contact process, SIS model, CutWidth, time to extinction

1. Introduction. We study the dynamic control of contagion processes (from now on called
epidemics) under limited curing resources. Specifically, we study dynamic allocation policies that
use information on the underlying structure of contacts and on the infection state of individuals, and
evaluate performance in terms of the expected time until the epidemic becomes extinct. In our main
contribution, we provide an exponentially large lower bound on the expected time to extinction,
under certain assumptions on the network and the available curing resources.

Our general motivation comes from infectious disease epidemics, although without aiming at a
faithful representation of the details of real-world situations. One example is the recent outbreak
of the Ebola virus which causes an acute and serious illness, which is often fatal if untreated [17].
However, supplies of experimental medicines, e.g., the prototype drug ZMapp, are limited and “will
not be sufficient for several months to come,” as stated in [18]. In view of the limited availability
of treatment for the virus, [20] addresses the following question: “Ebola Drug Could Save a Few
Lives. But Whose?”. Apart from the above, contagion processes are also relevant in the context of
information and influence propagation in social networks [1, 2, 12, 10], viral marketing [14], spread
of computer viruses [9], or diffusion of innovations [22].

1.1. Preview of the model. The wide relevance and applicability of contagion processes has
led to extensive work on modeling their evolution and on understanding the resulting dynamics.
Many models have been proposed in the literature; see, e.g., [15] for an in-depth review of such
models and main results. Our work involves an extension of the canonical SIS epidemic model: the
epidemic spreads on the underlying network from an initial set of infected nodes to healthy nodes
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and at the same time, infected nodes can be cured. Healthy nodes get infected at a constant and
common infection rate by each of their infected neighbors. In contrast to the standard SIS model,
which assumes a common curing rate for all infected nodes at all times, we assume instead a node
and time-specific curing rate. A curing policy, to be applied by a central controller, is a choice, at
each time instant, of the curing rates at each node, taking into account the history of the epidemic
and the network structure, subject to a budget on the sum of the curing rates applied at each time.
The resulting process is a controlled finite Markov chain with a unique absorbing state: the state
where all nodes are healthy. We say that the epidemic becomes extinct when that absorbing state is
reached. Under mild assumptions on the curing budget and given any set of initially infected nodes,
the epidemic becomes extinct in a random but finite amount of time. The main question here is
how much time will be needed.

We can draw an important qualitative distinction between networks in which (i) the spread of
the epidemic is hard to stop with the given curing budget, so that the expected time to extinction
grows exponentially with the number of nodes, and (ii) networks for which the curing resources
are adequate, so that the expected time to extinction grows slowly (polynomially or even sub-
polynomially) with the number of nodes. Our general objective is to develop criteria that allow us
to distinguish between cases (i) (slow extinction) and (ii) (fast extinction). In this paper, we focus
on graphs in which the maximum degree is bounded by some � (independent of n) and provide the
answer for a particular “regime”, namely, the case of graphs whose CutWidth grows linearly.

1.2. Main contribution. In a companion paper [7], we have established that a certain com-
binatorial quantity, the CutWidth of the underlying graph, denoted by W , plays a central role.
In particular, if the curing budget r satisfies r � 4W and r � 16� log2 n, where n is the number
of nodes, then the expected time to extinction is small — in fact, upper bounded by 26n/r, and
therefore sublinear in n. In the present paper, we establish a converse result, for graphs with large
CutWidth, namely, for graphs whose CutWidth is lower bounded by c�n, for some constant c� > 0.
In particular, we show that if r crW , where cr > 0 is an absolute constant (depending only on the
degree bound and on c�), then, for some initial states, the expected time to extinction is at least
exponential, under any curing policy. In other words, for graphs whose CutWidth scales linearly
with n, a curing budget that also scales linearly with n is necessary (from the results in this paper)
and sufficient (from the results in [7]) for fast extinction. In an equivalent interpretation of our
main result, we are establishing that, for the case of bounded degree graphs, fast extinction with a
sublinear curing budget is possible if and only if the CutWidth grows sublinearly.

1.3. Related literature. A similar problem, but in which the curing rate allocation is static
(open-loop) has been studied in [6, 11, 5, 21], but the proposed methods were either heuristic or
based on mean-field approximations of the evolution process; see [16] for a survey. Closer to our work,
the authors of [4] let the curing rates be proportional to the degree of each node and independent
of the current state of the network, which may actually result in having curing resources wasted
on healthy nodes. For bounded degree graphs, the policy in [4] achieves sublinear expected time to
extinction, but requires a curing budget that is proportional to the number of nodes. In contrast,
the dynamic policy in [7] achieves the same performance (sublinear expected time to extinction) for
bounded degree graphs with small CutWidth, more economically, by properly allocating a sublinear
curing budget, hence demonstrating the increased effectiveness of dynamic policies.

Regarding lower bounds for dynamic policies, [4] establishes that for expander graphs, and with
a sublinear curing budget, the expected time to extinction is at least exponential in the number
of nodes, under any curing policy. Expander graphs have automatically a large CutWidth, and so
our result is in the same flavor, but much more general and also much harder to establish. The
argument behind the result in [4] is essentially the following: for expander graphs, any sufficiently
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large set of infected nodes results in a large (linear) total infection rate, which cannot be countered
by a sublinear curing budget. But more general graphs with a large CutWidth need not have such
a property: it may be the case that the instantaneous total infection rate is large for only “a few”
configurations (sets of infected nodes). For such graphs, one can still establish that the total infection
rate will be larger than the curing rate at some point in time, but this may last, in principle, for
only a small time interval, and this is not enough to establish a negative result, in the form of a
strong lower bound. We finally mention [23], which also deals with dynamic policies, but for the
special case of a line graph.

In order to establish our result, we have to argue that a large total infection rate (larger than
the curing budget) will be encountered for a sufficiently long time interval, and that this creates
a barrier to the fast extinction of the epidemic. The argument involves an elaborate combinatorial
analysis of the evolution of the set of infected nodes.

We finally note a related negative result (exponential expected time to extinction) that we have
established in [8]. That result deals with a special case, namely, graphs for which the CutWidth is
close to the largest possible value for graphs of the given size. The result in [8] admits however a
much simpler proof because under the large CutWidth assumption, it is easier to identify a barrier
(a situation where the instantaneous total infection rate is high) inside which the process must
remain for a sufficiently long time.

1.4. Outline of the paper. The rest of the paper is organized as follows. In Section 2 we
present the epidemic propagation model and define the curing policies under consideration. In
Section 3 we define the CutWidth, as well as a generalization of that concept, and develop some
combinatorial preliminaries that will be needed later. Section 4 contains a statement of the main
result, two key lemmas that comprise the core of the proof, and some discussion. Sections 5-7 contain
the proofs of the two key lemmas. Finally, Section 8 contains some concluding remarks.

2. The Model. The model that we use and the contents of this section are borrowed from [7]
and [8]. We consider a network, represented by an undirected graph G= (V,E), where V denotes
the set of nodes and E denotes the set of edges. We use n to denote the number of nodes. Two
nodes u, v 2 V are neighbors if (u, v)2E. We restrict to graphs for which the node degrees are upper
bounded by �, which we take to be a given constant throughout the paper.

We let I0✓ V be a set of intially infected nodes, and assume that the infection spreads according to
a controlled contact (or SIS) process, where the rate at which infected nodes get cured is determined
by a network controller. Specifically, each node can be in one of two states: infected or healthy.
The controlled contact process is a right-continuous, continuous-time Markov process {It}t�0 on the
state space {0,1}V , where It stands for the set of infected nodes at time t. We refer to It as the
infection process. We will sometimes use It� as a short-hand for the value lims"t Is just before time
t.

At any point in time, state transitions at each node occur independently, according to the following
rates. (These rates essentially define the generator matrix of the continuous-time Markov process
under consideration.)

a) The process is initialized at the given initial state I0.
b) If a node v is healthy, i.e., if v /2 It, the transition rate associated with a change of the state of

that node to being infected is equal to a positive infection rate � times the number of infected
neighbors of v, that is,

� ·
��{(u, v)2E : u2 It}

��,

where we use | · | to denote the cardinality of a set. Any transition of this type will be referred to
as an infection. By rescaling time, we can and will assume throughout the paper that � = 1.
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c) If a node v is infected, i.e., if v 2 It, the transition rate associated with a change of the state
of that node to being healthy is equal to a curing rate ⇢v(t) that is determined by the network
controller, as a function of the current and past states of the process. We are assuming here that
the network controller has access to the entire history of the process. Any transition of this type
will be referred to as a recovery.
We impose a budget constraint of the form

X

v2V

⇢v(t) r, (1)

for each time instant t, reflecting the fact that curing is costly. A curing policy is a mapping which at
any time t maps the past history of the process to a curing vector ⇢(t) = {⇢v(t)}v2V that satisfies (1).

We define the time to extinction as the first time when the process first reaches the absorbing
state where all nodes are healthy:

⌧ =min{t� 0 : It = ;}.

In this paper, we focus on the expected time to extinction (the expected value of ⌧), as the perfor-
mance measure of interest.

Without loss of generality, we can and will restrict to curing policies that allocate the entire budget
r to infected nodes, as long as such nodes exist; this is because having unused curing resources
or allocating them to healthy nodes would be wasteful. Under this restriction, the empty set (all
nodes being healthy) is a unique absorbing state, and therefore the time to extinction is finite, with
probability 1.

Finally, we can and will restrict to policies that at any point in time allocate the entire budget to
a single infected node, if one exists. We can do this because it is not hard to show that there exist
optimal policies (i.e., policies that minimize the expected time to extinction) with this property.1

3. Graph theoretic preliminaries. In this section, after some elementary definitions and
notation, we focus on a deterministic version of the problem under consideration. Variants of such
deterministic problems have been studied in the literature [13, 19] and involve the concept of the
CutWidth of a graph. Loosely speaking, the CutWidth is the maximum cut encountered during the
deterministic extinction of an epidemic on a graph, starting from all nodes infected, in the absence
of any reinfections of nodes that have become healthy, and under the best possible sequence with
which nodes are cured. (A formal definition will be given shortly.)

We also introduce and study a natural extension of the concept of the CutWidth, for the case
where only a subset of the nodes is initially infected; we refer to it as the resistance of the subset.The
resistance turns out to contain important information about the evolution of an epidemic, starting
from the corresponding subset, and will serve as a low-dimensional summary of the state of an
infection process. In the subsections that follow, we introduce those two concepts and study the
properties of the latter.

1
A formal proof of this statement (which we only outline) goes as follows. We write down the Bellman equation for

the problem of minimizing the expected time to extinction and observe that the right-hand side of Bellman’s equation

is linear in ⇢(t). We then recall that ⇢(t) is constrained to lie in a certain simplex, and conclude that we can restrict,

without loss of optimality, to the vertices of that simplex. Any such vertex corresponds to allocating the entire budget

to a single infected node.
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3.1. Notation and Terminology. For convenience, we use the term bag to refer to a “subset
of V .” For any bags A, B, and any node v, we define

A \B = {v 2A : v /2B},

which is the set of nodes that belong in A but not in B, and

A4B = (A \B)[ (B \A),

which is the set of nodes at which A and B differ. Finally, we write

A+ v=A[ {v}, A� v=A \ {v}.

We next define the concept of a crusade from A to B as a sequence of bags that starts at A and
ends at B, with the restriction that at each step of this sequence, arbitrarily many nodes may be
added to the previous bag, but at most one can be removed. The formal definition follows.

Definition 1. For any two bags A and B, an (A-B)-crusade ! is a sequence (!0,!1, . . . ,!k)

of bags, of length k+1, with the following properties:
(i) !0 =A,
(ii) !k =B, and
(iii) |!i \!i+1| 1, for i= 0, . . . , k� 1.
We use the notation ⌦(A) to refer to the set of all (A-;)-crusades, i.e., crusades that start with

a bag A and eventually end up with the empty set.
Property (iii) states that at each step of a crusade, arbitrarily many nodes can be added to, but

at most one node can be removed from the current bag. Note that the definition of a crusade allows
for non-monotone changes, since a bag at any step can be a subset, a superset, or not comparable
to the preceding bag. For this reason, crusades, as defined here, are different from the monotone
crusades that were introduced in [7].

3.2. Cuts, CutWidth, and Resistance. The number of edges connecting a bag A with its
complement will be called the cut of the bag. Its importance lies in that it is equal to the total rate
at which new infections occur, when the set of currently infected nodes is A.

Definition 2. For any bag A, its cut, c(A), is defined as the cardinality of the set of edges
�
(u, v) : u2A, v 2Ac

 
.

In Lemma 1 below, we record, without proof, some elementary properties of cuts.

Lemma 1. For any two bags A and B, we have
(i)

��c(A)� c(B)

��� ·
��A4B

��.
(ii) If A✓B, and v 2A, then

c(A� v)� c(A) c(B� v)� c(B).

Note that Lemma 1(ii) states the well-known submodularity property of the function c(·), and thus
of the infection rate.

We now define the width of a crusade as the maximum cut that it encounters.
Definition 3. The width z(!) of an (A-B)-crusade != (!0, . . . ,!k) is defined by

z(!) = max

1ik
{c(!i)}.
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Note that in the above definition, the maximization starts at the first step of the crusade, i.e., we
exclude !0 from consideration. The reason is the important Monotonicity property in Lemma 2(i),
in the next subsection, which would otherwise fail to hold.

We finally define the resistance2 of a a bag A as the minimum crusade width, over all (A-;)-
crusades. Intuitively, this is the maximum cut encountered after the first step, during a crusade that
“cures” all nodes in A in an “optimal” manner.

Definition 4. The resistance �(A) of a bag A is defined by

�(A) = min

!2⌦(A)
z(!).

For the special case where A is the set V of all nodes, the corresponding resistance �(V ) is called
the CutWidth of the graph and is denoted by W .

We remark that the more common definition of the CutWidth, and which was the one used in [7],
takes the minimum over monotone crusades, i.e., over crusades that only remove nodes. Nevertheless,
the two definitions are equivalent, as has been established in [3] and [13].

We close this section by observing that the resistance of a bag A satisfies the Bellman equation

�(A) = min

|A\B|1

�
max{c(B),�(B)}

 
. (2)

3.3. Properties of the resistance. This section develops some properties of the resistance.
Lemma 2(i) states that if A and B are two bags with A✓B, then �(A) �(B). Intuitively, this is
because one can construct a crusade from A to ; as follows: The crusade starts from A, then continues
to the first bag encountered by a B-optimal crusade !B, and then follows !B. The constructed
crusade and !B are the same except for the respective initial bags. By the definition of the resistance,
the initial bag does not affect the maximization and thus the width of the new crusade is equal to
�(B). An optimal crusade from A can do no worse.

Lemma 2(ii) states that if two bags A and B differ by only m nodes, then the corresponding
resistances are at most m� apart. Intuitively, this is because if m = 1 and A4B = {v}, one can
attach node v to the optimal crusade for the smaller of the two bags, thus obtaining a crusade
that starts at the larger bag and encounters a maximum cut which is at most � different from the
original. The result for general m is obtained by moving from A to B by adding or removing one
node at a time.

The formal proof of Lemma 2 follows the above outlined intuitive argument, and is given in
Appendix A, so as not to disrupt continuity.

Lemma 2. Let A and B be two bags.
(i) [Monotonicity] If A✓B, then �(A) �(B).
(ii) [Smoothness] We have that

���(A)� �(B)

��� ·
��A4B

��.

An immediate corollary of Lemma 2(i) is that for any bag A, we have �(A)W .

Example. Consider a line graph with n nodes. Its CutWidth is easily seen to be equal to 1:
if all nodes are initially infected, we can cure them one at a time, starting from the left; the cuts
encountered along the way are all equal to 1. On the other hand, if all even nodes are initially
infected, the corresponding cut is large, equal to n � 1. However, the cut being large does not
acurately convey the difficulty of curing those nodes. For example, we might artificially infect the
healthy nodes (or, in the stochastic SIS model, simply wait until they all get infected—this would
happen in time which is sublinear in n), and then follow a curing policy for the case of a fully
infected initial graph. Thus, the expected time to extinction will be comparable to the one for the

2
Note that in [7] we used a related notion, where the minimization took place with respect to monotone crusades.
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case where all nodes are initially infected. Note that the resistance of any nonempty bag is equal
to 1: an optimal nonmonotone crusade can start by infecting all nodes (except possibly one of the
end nodes, if n is even), and then curing the nodes one at a time. Thus, the resistance, rather than
the cut, is a better reflection of the difficulty of curing a given initial set of infected nodes. As a
side-note, these considerations suggest that some additional infections in the beginning (as allowed
in our definition of the resistance) can be beneficial, and this is one of the reasons why our line of
argument is based on nonmonotone (as opposed to monotone) crusades.

3.4. Relating cuts to the resistance. As illustrated in the preceding example, a large value
of c(I0) does not mean that the infection is hard to extinguish; the resistance is more relevant.
On the other hand, the proof of any negative result (i.e., a lower bound on the expected time to
extinction) has to argue that at certain times the cut will be large and will present a barrier to the
extinction of the epidemic. For this reason, we need a way of pinpointing certain times at which a
large resistance implies a large cut. This is accomplished by the next lemma, which establishes a
connection between cuts and resistances at those times that the resistance is reduced. It shows that
whenever the resistance is high and is reduced, the total infection rate is also high. This observation
will play a central role in the proof of our main result.

Lemma 3. Let A be a bag and suppose that �(A� v)< �(A), for some v 2A. Then,

c(A� v)� �(A).

Proof: Let B =A� v. Since |A \B|= 1, Eq. (2) implies that

�(A)max{c(B),�(B)}. (3)

Having assumed that �(B)< �(A), Eq. (3) implies that �(A) c(B). ⇤

4. The main result and the core of its proof. In this section we state our main result and
provide the key elements of its proof in the form of two lemmas. Loosely speaking, the result states
that if the resistance of the initial bag scales linearly with the number n of nodes, and the budget
scales only as a small constant multiple of n, then the expected time to extinction is exponentially
large.

Theorem 1. Consider a graph with n nodes and a set I0 of initially infected nodes, and suppose
that for some constant c�,

�(I0)� c�n.

Suppose, furthermore that all node degrees are bounded above by �. Then, there exist positive con-
stants cr and c, which only depend on c� and �, such that if

r crn,

then
P
⇣
⌧ � cecn

⌘
� 1

2

,

under any policy, and for all large enough n. In particular,

E[⌧ ]� 1

2

cecn.



Drakopoulos, Ozdaglar, and Tsitsiklis: Network resistance

8

Remark: An immediate corollary of Theorem 1 is obtained by letting I0 = V , so that �(I0) coincides
with the CutWidth W : if the CutWidth scales linearly in n, and the curing budget is less than a
certain multiple of the CutWidth, then the expected time to extinction grows exponentially in n.
As a further corollary, if the curing budget grows sublinearly with n, fast extinction is possible only
if the CutWidth grows sublinearly in n. This is a converse to the results of [7], which establish that
if the CutWidth grows sublinearly in n, then fast extinction is possible with a sublinear budget.

The proof of our main result involves the following line of argument.
a) In the first, deterministic, part of the proof (Lemma 4), we show that for graphs with large

CutWidth, the time interval until the extinction of the epidemic must contain a substantially long
subinterval during which the expected total infection rate is significantly larger than the budget,
yet the realized ratio of infections to recoveries is relatively small, and in particular, fairly different
than the ratio of the corresponding expected rates.

b) In the second, stochastic, part of the proof (Lemma 5), we argue that for a given time interval
to have the properties in a), a “large deviations” event, with exponentially small (in n) probability,
must occur. This is used to conclude that, with significant probability, it will take an exponentially
long amount of time until an interval with the properties in a) emerges.
Proof of Theorem 1. We start the proof by fixing a graph with n nodes, and the initial set I0
of infected nodes. For convenience, from now on, we will use the short-hand notation � instead of
�(I0). We assume that c� and � have been fixed, and that � � c�n. Note that for sufficiently large
n, � will be much larger than �, so that we can use freely inequalities such as �< �/4, or �/4�> 1.
In order to keep notation simple and avoid the use of ceilings and floors, we will also assume from
now on that �/4� is an integer. The proof for the general case, is essentially the same.

The first part of the proof corresponds to the following lemma.

Lemma 4. Consider a sample path for which ⌧ <1. For that sample path, there exist times t0

and t00, with 0 t0  t00  ⌧ , such that:
(i) c(It)� �/4, for all t2 [t0, t00];
(ii) we have b= (�/4�)� 1 recoveries during the interval [t0, t00];
(iii) we have no more than n+ b infections during the interval [t0, t00].

The times t0 and t00 in the preceding lemma are random variables (they depend on the sample
path). However, they are not necessarily stopping times of the underlying stochastic process.

Note that it suffices to prove the existence of a time interval [t0, t00] with just properties (i) and (ii).
This is because there are only n nodes in the graph. If we have b recoveries during a time interval,
the number of infections cannot exceed n+ b, and property (iii) follows automatically.

For the stochastic part of the proof, let us introduce some notation: for any c > 0, we define Bc

to be the event that there exist times t0, t00, with the properties in Lemma 4, together with the
additional property t00  cecn.

Lemma 5. Having fixed c� and �, there exist small enough positive constants cr and c such that
if r crn, then

P(Bc)
1

2

,

for all large enough n.

Lemmas 4 and 5 immediately imply Theorem 1. To see this, Lemma 4 implies that t00 is well
defined for any sample path. For any sample path that satisfies ⌧  cecn, we must also have t00 
cecn. Thus, the event {⌧  cecn} is a subset of the event Bc. Using Lemma 5, we conclude that
P(⌧  cecn) P(Bc) 1/2, as long as cr and c are suitably chosen.
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5. Proof of Lemma 4. Lemma 4 is the central — and least obvious — part of the proof.
Before continuing with a formal argument, we provide a high-level informal overview, intended
to enhance comprehension. The overall plan is to argue that �(It), whose initial value is �, must
eventually (at some time T ) drop to �/2, and that while the value �/2 is approached, there must
be a sufficiently long interval during which c(It) is at least �/4. Indeed, if c(It)� �/4 for all times
in [0, T ] (this is Case 1 below), the cut remains relatively large (and larger than the budget), which
implies that the process is moving in a direction opposite to its drift; in particular, the probability
of this happening is small.

Recall now that the cut is approximately equal to the resistance at those times that the resistance
drops. Thus, c(IT ) is approximately equal to �/2. If c(It) drops below �/4 before time T (this is
Case 2 below), there must exist an interval [T 0, T ] during which c(It)� �/4, and during which the
cut increases from �/4 to �/2. We want to argue that such an increase must be accompanied by
a large number of recoveries (which will consist a low-probability event). The difficulty is that cut
increases may be caused by either recoveries or infections. In order to isolate the effects of recoveries,
we look at a “bottleneck process” ⇥t that starts the same as It at time T 0, and which keeps track
of the recoveries in It, while ignoring the infections. Similar to It, there will be a time at which the
resistance of ⇥t will drop to �/2 (this is due to the fact that ⇥t ⇢ It, and monotonicity), and at
that time, c(⇥t) will be roughly equal to �/2. Thus, c(⇥t) also increases from �/4 to �/2. However,
because ⇥t only changes whenever the process It has a recovery, it follows that there must be O(�)
recoveries in the process ⇥t and, therefore, for the process It as well (Lemma 6).

We can now start with the formal proof. Let us fix a particular sample path for which ⌧ <1.
Let T be the first time that �(It) drops to a value of �/2 or less:

T = inf

�
t� 0 : �(It) �/2

 
.

Given that �(I⌧ ) = �(;) = 0, it is clear that such a time T exists and satisfies 0 T  ⌧ .
We distinguish between two cases:

Case 1: Suppose that throughout the interval [0, T ], we also have c(It) � �/4. Because of the
monotonicity property of �(·) (Lemma 2(i)), �(It) decreases only when the set It decreases, that is,
only when there is a recovery. Furthermore, using the smoothness property in Lemma 2(ii), each
time that there is a recovery, �(It) can drop by at most �. Therefore, the number of recoveries
during the time interval [0, T ] is at least

�(I0)� �(IT )

�

� �� �/2

�

=

�

2�

.

We can then find some ˆT  T such that during the time interval [0, ˆT ], we have exactly �/4�� 1

recoveries, and properties (i)-(ii) in the statement of Lemma 4 are satisfied by letting t0 = 0 and
t00 = ˆT .
Case 2: Suppose now that there exists some t2 [0, T ], with c(It)< �/4, which is the more difficult
case. Note that just before time T , we have �(IT�) > �/2. Furthermore, �(IT )  �/2. With our
continuous-time Markov chain model, only one event (infection or recovery) can happen at any time.
Since �(IT )< �(IT�), and since �(·) is monotonic, it follows that we had a recovery and, therefore,
IT = IT� � v, for some node v. Lemma 3 applies, with A= IT� and A� v= IT , and we obtain

c(IT )� �(IT�)>
�

2

.

We now define
T 0

= sup{t T : c(It)< �/4},
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so that c(IT 0�)< �/4. Furthermore, since c(It) can change by at most � at each transition (Lemma
1), we must actually have

c(IT 0
)<

�

4

+�, (4)

which implies that T 0 6= T and 0 T 0 <T .
We will show that the interval [t0, t00], with t0 = T 0 and t00 = T has properties (i)-(ii) in the statement

of Lemma 4. Indeed, the definition of T 0 implies that

c(It)�
�

4

, 8 t2 [T 0, T ],

which is property (i). The proof of Lemma 4 is completed by showing property (ii), namely, that
the increase in c(It), from a value smaller than (�/4) +� (at time T 0), to a value above �/2 (at
time T ) together with a drop of the resistance from a value above �/2 (at time T 0) to a value below
�/2 (at time T ), must be accompanied by at least (�/4�)� 1 recoveries. This is the content of the
next lemma.

Lemma 6. The number of recoveries during the time interval [T 0, T ] is at least
�

4�

� 1.

Lemma 6 is a rather simple statement, but we are not aware of a simple proof or of a transparent
intuitive explanation. Our proof relies on an auxiliary process, the bottleneck process, coupled with
It, which is introduced and analyzed in the next section.

6. Proof of Lemma 6. The first step in proving Lemma 6 is the construction of a process
which is coupled with the infection process. Observe that a sample path of the infection process
defines a crusade in which, at each step, a single node is added to or removed from the current bag.
To any such crusade, we associate a bottleneck sequence, which is a sequence of bags consisting of
subsets of the bags in the original crusade, with several important properties. Consider a crusade
!= (A0,A1, . . . ,Al) in which |Ai4Ai�1|= 1, for i= 1, . . . , l. In particular, we always have Ai ⇢Ai�1

or Ai �Ai�1. We associate with ! a related sequence of bags (⇥0, . . . ,⇥l), by letting

⇥i =

i\

k=0

Ak, i= 0, . . . , l. (5)

It is clear from our construction that ⇥i is always a subset of Ai, and that ⇥i ◆⇥i�1. We have
the following interpretation: ⇥0 starts the same as A0. Whenever a node is removed from a bag in
the original sequence, the same is done in the bottleneck sequence, as long as this is possible. On
the other hand, whenever a node is added to a bag in the original sequence, nothing is done in the
bottleneck sequence.

Lemma 7. Consider a sequence (A0,A1, . . . ,Al) of bags such that |Ai4Ai�1|= 1, for i= 1, . . . , l,
and the associated bottleneck sequence (⇥0, . . . ,⇥l). The following hold:

(i) ⇥i ✓Ai.
(ii) If c(⇥i)> c(⇥i�1), then Ai ⇢Ai�1.
(iii) c(⇥i)� c(⇥i�1)�.

Proof: (i) Follows directly from the definition.
(ii) Suppose that c(⇥i)> c(⇥i�1). Then, ⇥i 6=⇥i�1. From the definition of the bottleneck sequence,

we see that it if Ai �Ai�1, then ⇥i =⇥i�1. Therefore, we must have that Ai ⇢Ai�1.
(iii) If Ai�Ai�1, then, ⇥i = ⇥i�1, and c(⇥i)� c(⇥i�1) = 0. On the other hand, if Ai ⇢ Ai�1, and

using the assumption |Ai4Ai�1|= 1, we write Ai =Ai�1 � v for some v 2Ai�1, and from Eq.
(5) we obtain ⇥i =⇥i�1 � v. The result then follows from Lemma 1(i). ⇤
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We now complete the proof of Lemma 6. Let A0, . . . ,Al be the sequence of bags that arise during
the evolution of It, between times T 0 and T . In particular, A0 = IT 0 and Al = IT . Let ⇥0, . . . ,⇥l

be the corresponding bottleneck sequence, so that ⇥0 =A0 = IT 0 . Using property (i) in Lemma 7,
we have ⇥i ✓ Ai, for all i. Using the nonotonicity of �(·), we obtain �(⇥i)  �(Ai), for all i. In
particular,

�(⇥l) �(Al) = �(IT )
�

2

< �(IT 0
) = �(⇥0).

(The second and third inequalities follow from the definition of T and the fact T 0 <T , respectively.)
This implies that there exists some i2 {1, . . . , l} for which

�(⇥i)
�

2

< �(⇥i�1).

We apply Lemma 3 and obtain that c(⇥i)� �(⇥i�1)> �/2. Thus, the bottleneck sequence starts
with c(⇥0) = c(IT 0

)< (�/4)+� (cf. Eq. (4)) and eventually its cut rises to a value above �/2. From
part (ii) of Lemma 7, c(⇥i) can increase only when there is a recovery. From part (iii) of Lemma
7, c(⇥i) can increase by at most � at each recovery. Thus, in order to obtain an increase from
(�/4)+� to �/2, we must have had at least (�/4�)� 1 recoveries in the process It between times
T 0 and T .

A schematic summary of the two cases introduced in Section 5 is provided in Figure 1.

7. Proof of Lemma 5. Lemma 5 is a fairly routine “large deviations” result. It is useful to
provide some intuition by considering the special case in which the times t0 and t00 are fixed (not
random), and c(It) = �/4 throughout the interval [t0, t00] (as opposed to c(It)� �/4). In this case,
we have a Poisson process (recoveries) with rate r and an independent Poisson process (infections)
with rate �/4; their ratio is 4r/�. For properties (i) and (ii) in Lemma 4 to hold, the empirical ratio
of observed recoveries to infections must be at least

b

n+ b
=

(�/4�)� 1

n+(�/4�)� 1

,

where b is as defined in Lemma 4. When r is small compared to �/4, which is the case if we choose
cr small enough, we have an empirical ratio of recoveries to infections which is above the theoretical
ratio by a constant factor. Large deviations theory implies that this event has exponentially small
probability. We then argue that within the time horizon of interest, [0, cecn], there are only O(necn)
intervals that need to be considered. By choosing c small enough and using the union bound, the
overall probability that there exist t0 and t00 with the desired properties can be made small.

The proof for the general case runs along the same lines but involves a coupling argument to
show that when c(It) can exceed �/4�, then the event of interest (relatively few infections or,
equivalently, too many recoveries) is even less likely to occur.

7.1. Decomposing the event of interest. Let c be a small enough constant — how small it
needs to be will be seen at the end of the proof. Let t⇤ = cecn, which is the time horizon of interest
in Theorem 1. Recall our definition of the event Bc in Section 4: event Bc occurs if and only if there
exists a time interval [t0, t00] with t00  cecn = t⇤, with exactly b= (�/4�)�1 recoveries, with at most
n+ b infections, and during which c(It)� �/4.

Our first step is to show that only a finite number of intervals [t0, t00] need to be considered. The
recovery process behaves as a Poisson process with rate r, as long as the absorbing state has not
been entered. To simplify the presentation, let us redefine the process, so that recoveries take place
forever, according to a Poisson process. Any recovery that occurs after the extinction time ⌧ is
“dummy” and has no effect on the process {It}.
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�

�/2

�/4

�

�/2

�/4

T

TT 0

�(It)

c(It)

c(⇥t)

Case 1

Case 2

�(It)

c(It)

Figure 1. Case 1: In the first case, c(It) remains at least �/4 throughout the interval [0, T ]. Moreover, since the

resistance drops from � to �/2, at least �/2 recoveries must occur. Case 2: In the second case, c(It) drops below

�/4. The last time that it does so (time T 0
), the resistance is above �/2 and needs to drop to a value below �/2.

Therefore, c(It) needs to grow above (roughly) �/2. In principle, this increase may happen through infections and

not only through recoveries. This is why we define the auxiliary process ⇥i, whose cut also needs to increase to �/2
but can only increase through recoveries, implying that at least (roughly) �/4� recoveries occur.

For i� 1, let ti, be the time of the ith recovery (actual or dummy). We consider the time interval
[ti, ti+b�1], which is the interval until b� 1 new recoveries are observed, after the time ti of the ith
recovery.

For i� 1, we define Bi as the event that throughout the interval [ti, ti+b�1] we have c(It)� �/4
and at most n+ b infections.

Lemma 8. Bc ✓
1[

i=1

Bi.
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Proof: Consider a sample path that belongs to Bc, so that there exists an interval [t0, t00] with the
properties in the definition of Bc. In particular, there exists some i� 1 such that the interval [t0, t00]
contains the times ti, . . . , ti+b�1, i.e.,

t0  ti  ti+b�1  t00;

furthermore, c(It) � �/4 during that interval, and we have at most n+ b infections. But in that
case, the interval [ti, ti+b�1] has all of the properties that are required for event Bi to hold. ⇤

Let K be the total number of recoveries (real or dummy) during the time interval [0, t⇤]. Using
Lemma 8 and the union bound, we obtain

P(Bc)
4rt⇤X

i=1

P(Bi)+P(K > 4rt⇤)
4rt⇤X

i=1

P(Bi)+
1

4

, (6)

where the last inequality is obtained from the fact that K is a (Poisson) random variable with mean
rt⇤, and the Markov inequality.

It remains to bound the sum of the P(Bi). Since t⇤ grows exponentially with n, we are looking
for an exponentially small upper bound on each Bi. This is the subject of the next subsection.

7.2. Bounding P(Bi). The main obstacle in characterizing P(Bi) is that the infection process
has a time-varying rate. We will handle this issue through a coupling with a Poisson process that
has a constant rate.

For t� ti, let Mi(t) be the number of infections during the interval [ti, t], Let also

Ci(t) =
�
c(It)� �/4, 8t2 [ti, t]

 
,

which is the event that c(It) remains “large” during the interval [ti, t]. Then, the event Bi can be
expressed as

Bi =
�
Mi(ti+b�1) n+ b

 
\Ci(ti+b�1).

For the remainder of the proof, we assume that cr is chosen (based only on c� and �, as in the
statement of the theorem) so that

cr <
c2�
40�

(7)

By rearranging terms, it is then seen that we can fix a constant ¯t that again depends only on c�
and �, which satisfies

cr¯t <
c�
5�

and
c�
4

¯t > 2 (8)

For some interpretation and an outline of the rest of the argument, ¯t is chosen so that, with high
probability, the interval [ti, ti +¯t] has fewer than b� 1 recoveries, but more than n+ b infections if
the cut remains “large.” As will be seen, this property of ¯t implies that, with high probability, the
event Bi does not occur.

We define the event Bi by

Bi =
�
ti+b�1 < ti +¯t

 
[
⇣�

Mi(ti +¯t) n+ b
 
\ c(ti +¯t)

⌘
.

We will now show that Bi ✓ Bi. Consider a sample path in Bi. If that sample path also satisfies
ti+b�1 < ti+¯t, then it is also an element of Bi. Suppose now that the sample path satisfies ti+b�1 �
ti + ¯t. Using the monotonicity of the counting process Mi(·), we obtain Mi(ti + ¯t)Mi(ti+b�1)
n+ b, where the last inequality holds because the sample path belongs to Bi. Furthermore, since
the sample path belongs to Bi, it must belong to Ci(ti+b�1), which implies that it must also belong
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to Ci(ti + ¯t). Thus, the sample path belongs to
�
Mi(ti + ¯t) n+ b

 
\ c(ti + ¯t), and is therefore an

element of Bi. This concludes the proof that Bi ✓Bi. It then follows, using the union bound, that

P(Bi) P(Bi) P(ti+b�1 < ti +¯t)+P
⇣�

Mi(ti +¯t) n+ b
 
\ c(ti +¯t)

⌘
. (9)

Our next step is to derive an upper bound for each of the two terms on the right-hand side of Eq.
(9), in terms of the Poisson distribution. For the first term, this is simple. The event {ti+b�1 < ti+¯t}
is the event that starting from time ti, at least b� 1 recoveries occur within ¯t time units. Since the
recovery process is Poisson with rate r, we have

P(ti+b�1 < ti +¯t) = P
�
R> b� 1

�
, (10)

where R is a Poisson random variable with mean r¯t.
To study the second term, we use C to denote the indicator function of the event Ci(ti+¯t). For

those sample paths that belong to Ci(ti+¯t), and during the interval [ti, ti+¯t], the counting process
Mi(·) maintains a rate that is larger than or equal to �/4. Thus, on that time interval, Mi(·) can
be coupled with a Poisson process M(·) with rate equal to �/4, in a way that guarantees that

Mi(ti +¯t) C �M i(ti +¯t) C ,

for every sample path. Using this dominance relation, we obtain

P
⇣�

Mi(ti +¯t) n+ b
 
\ c(ti +¯t)

⌘
= P

⇣�
Mi(ti +¯t) C  n+ b

 
\ c(ti +¯t)

⌘

 P
⇣�

M i(ti +¯t) C  n+ b
 
\ c(ti +¯t)

⌘

= P
⇣�

M i(ti +¯t) n+ b
 
\ c(ti +¯t)

⌘

 P
�
M i(ti +¯t) n+ b

�

= P(M  n+ b), (11)

where M is a Poisson random variable with mean �¯t/4.
We are now ready to apply large deviations results for Poisson random variables. Note that a

Poisson random variable with mean �n can be viewed as a sum of n independent Poisson random
variables with mean �, and therefore, by the Chernoff bound, the probability of deviating from the
mean by a constant factor falls exponentially with n. We record this fact in the lemma that follows,
which just asserts the fact that we have a positive large deviations exponent.

Lemma 9. There exists a function ✏(�,�0
), defined for positive � and �0, and which is positive

whenever � 6= �0, with the following properties.
(i) Let X be a Poisson random variable with mean bounded above by �n. If �0 > �, then

P(X � �0n) e�✏(�,�0)n, 8 n.

(ii) Let X be a Poisson random variable with mean bounded below by �n. If �0 < �, then

P(X  �0n) e�✏(�,�0)n, 8 n.

The random variable R in Eq. (10) is Poisson with mean r¯t cr¯tn. Note that, for large enough
n, we have b�1 = (�/4�)�2� (�/5�)� (c�/5�)n, where the last inequality follows from the fact
that � � c�n. . We apply Lemma 9(i), with �= cr¯t and �0

= c�/5�:

P
�
R> b�1

�
 P

�
R> (c�/5�)n

�
 e�✏1n.
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Because of our assumptions on cr and ¯t (cf. Eq. (8)), we have �0 > �0, and ✏1 is a positive number
determined by cr, c� , and �.

Similarly, the random variable M in Eq. (11) is Poisson with mean �¯t/4 � (c�¯t/4)n. For any
graph, � is bounded above by n�, and this implies that b= (�/4�)�1 n. We apply Lemma 9(ii),
with �= c�¯t/4 and �0

= 2:
P
�
M  n+ b

�
 P

�
M  2n

�
 e�✏2n.

Because of our assumptions on c� and ¯t (cf. Eq. (8)), we have �0 < �, and ✏2 is a positive number
determined by c� .

We have therefore established that each of the two terms on the right-hand side of Eq. (9) is
bounded above by an exponentially decaying term. By letting ✏=min{✏1, ✏2}> 0, we obtain that

P(Bi) 2e�✏n. (12)

7.3. Completing the proof of Lemma 5. For the given c� and �, we choose a suitably
small cr as in Eq. (7). This allows us to set ¯t as in Eq. (8), leading to a positive ✏ in Eq. (12). We
then use Eq. (12) to bound the terms P(Bi) in the inequality (6), and also make use of the facts
that t⇤ = cecn and 4rt⇤  4crnce

cn, to obtain

P(Bc) 4crnce
cn
2e�✏n

+

1

4

 1

2

,

provided that c is small enough (it just needs to be chosen a little smaller than ✏) and n is large
enough. This concludes the proof of Lemma 5.

8. Conclusions. We have considered the control of an epidemic (contagion process) given a
limited curing budget, and provided an exponential lower bound on the expected time to extinction,
for bounded degree graphs. For the interesting (and least favorable) case where all nodes are initially
infected, our assumption was that the CutWidth of the graph scales linearly with the number of
nodes, and that the curing budget is bounded above by a small enough multiple of the number of
nodes.

This result complements the results in [7], which show that when the ratio of the curing budget
to the CutWidth is large enough, then the expected time to extinction is sublinear in the number
of nodes. These results, taken together, show that for graphs with a large CutWidth, the ratio
of the curing resources to the CutWidth is the key factor that distinguishes between slow and
fast extinction. Our proof was based on a generalization of the CutWidth, the “resistance,” which
captures the difficulty of extinguishing an epidemic, starting from an arbitrary set of infected nodes.

It remains an open problem to develop lower bounds for more general bounded-degree graphs,
whose CutWidth scales sublinearly with the number of nodes. In some cases, this is easy. For
example, for a square mesh with n nodes, the CutWidth is of order O(

p
n). Using the fact that any

subset of the mesh with ⇥(n) nodes has a cut of size ⌦(

p
n), one can show that a curing budget that

scales at least as fast as
p
n is necessary for fast exticntion. The same argument applies whenever

we deal with families of graphs that satisfy suitable isoperimetric inequalities. We conjecture that
a similar result is always true: that is, unless the curing budget scales in proportion with the
CutWidth, the expected time to extinction will be exponential. However, some new tools may have
to be developed.

The proof of Theorem 1, and in particular Eq. (7), shows that the exponential lower bound holds
when cr is smaller than a constant multiple of c2� . We conjecture that a similar lower bound can be
established under the assumption that cr is smaller than a constant multiple of c� . If this is true,
the deciding factor will be the ratio between the resistance and the recovery rate in a very concrete
sense. However, the proof of this conjecture, if true, will require a much more refined argument.

Finally, the problem of controlling contagion processes on networks gives rise to a broader family
of interesting research directions, such as control under partial information on the state of each
node, combining inference and control etc.
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Appendix A: Proof of Lemma 2. Recall that ⌦(A) stands for the set of all (A-;)-crusades.
Let also ⌦

A be the set of all such crusades that achieve the minimum in the definition of the
resistance, i.e.,

⌦

A
= {! 2⌦(A) : z(!) = �(A)}.

(i) Suppose that A ✓ B. Let !B
= (!B

0 , . . . ,!
B
k ) 2 ⌦

B. Consider the sequence !̂ = (!̂0, . . . , !̂k) of
bags with !̂0 =A, and !̂i = !B

i , for i= 1, . . . , k. We claim that !̂ is a crusade !̂ 2⌦(A). Indeed,
(a) !̂0 =A;
(b) !̂k = !B

k = ;;
(c) |!̂0 \ !̂1|= |A \ !̂1| |B \!B

1 |= |!B
0 \!B

1 | 1, where the first inequality follows from A✓B
and !̂1 = !B

1 . Moreover, for i= 0, . . . , k� 1, we have |!̂i \ !̂i+1|= |!B
i \!B

i+1| 1.
Clearly,

z(!̂) = max

1ik
{c(!̂i)}= max

1ik
{c(!B

i )}= �(B).

Using the definition of �(A), and the fact that !̂ 2⌦(A), we conclude that

�(A) = min

!2⌦(A)
z(!) z(!̂) = �(B).

(ii) If |A4B|=m, we can go from bag A to bag B in a sequence of m steps, where at each step,
we add or remove a single node. It thus suffices to show that each one of these steps can change
the resistance by at most �. Accordingly, we only need to conside the case where B =A+ v,
for some v /2A.

Let !A
= (!A

0 , . . . ,!
A
k ) 2 ⌦

A. Consider the sequence !̂ = (!̂0, . . . , !̂k+1) of bags with !̂i =

!A
i + v, for i= 0, . . . , k, and !̂k+1 = ;. Clearly, !̂ is a crusade in ⌦(B) and, therefore,

�(B) z(!̂)= max

1ik
{c(!A

i + v)} max

1ik
{c(!A

i )}+�= �(A)+�,

where the second inequality follows because the addition of one node can change the cut by at
most � (Lemma 1(i)).
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