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Abstract

The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational
complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at
the interface between these "elds. We begin with a brief introduction to models of computation, the concepts of undecidability,
polynomial-time algorithms, NP-completeness, and the implications of intractability results. We then survey a number of problems
that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the
point of view of computational complexity and also point out many open problems. In particular, we consider problems related to
stability or stabilizability of linear systems with parametric uncertainty, robust control, time-varying linear systems, nonlinear and
hybrid systems, and stochastic optimal control. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to motivate the reader, and as a preview of the
types of problems and `solutionsa overviewed in this
paper, we start with a deceptively simple problem.

We are given two n]n real matrices A
`

and A
~

, and
we consider products of the form

A
iT
2A

i2
A

i1
, (1)

where ¹ is an arbitrary positive integer and (i
1
, i
2
,2, i

T
)

is an arbitrary "nite sequence whose elements take values
in the set M#,!N. We wish to decide whether there
exists some ¹ and a sequence of length ¹ such that the

corresponding product is a stable matrix (in the sense
that all of its eigenvalues have magnitude strictly less
than 1).

If we are given an upper bound ¹H on the allowed
values of ¹, the problem has an obvious solution: form
all the possible products and check whether one of them is
stable. The amount of computation required by this solu-
tion grows exponentially with ¹H. We will see in Section
3.5 that the exponential growth of the computational
resources needed for a solution is probably unavoidable.

In the absence of a bound ¹H, we have to form and
check an in"nite set of matrix products, which cannot be
done in "nite time under any reasonable model of com-
putation. We may wonder whether a shortcut is possible
that only involves a "nite amount of computation. It
turns out that none exists, and the problem is unsolvable
in a precise mathematical sense; see Section 3.5.

By turning around the question of the preceding para-
graph, we could ask whether all products (1) are stable.
As will be discussed in Section 3.5, this is related to some
major open problems: an algorithmic solution is not
known, but a proof of unsolvability is not available
either.

In this paper, we introduce background material that
will make statements such as the above precise, and also
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1We use the O( ) ) notation, whose precise meaning is the following.
Let f and g be functions that map positive numbers to positive numbers.
We write f (n)"O(g(n)) if there exist positive numbers n

0
and c such that

f (n)4cg(n) for all n5n
0
.

provide a review of existing results of this type. The key
concepts that we will be working with refer to the algo-
rithmic solvability of di!erent problems and to the
amount of resources (e.g., computation time) required.
The premise behind our development is that a problem
has been `solveda only if an algorithm for that problem is
available. This viewpoint is an outgrowth of the pioneer-
ing work of Church, GoK del, and Turing earlier in this
century, and has been re"ned through an additional
focus on computation time requirements. It meshes very
well with the availability of powerful computing machin-
es, which has brought sophisticated systems and control
approaches into the realm of the practical.

The remainder of the paper is organized as follows. In
Section 2, we present models of digital computation and
develop the notion of undecidability. We also introduce
the concepts of polynomial-time algorithms and NP-
completeness. We present some basic problems that are
known to be undecidable or NP-complete, and conclude
by discussing the consequences of NP-completeness re-
sults from a pragmatic point of view. In Section 3, we
survey complexity-theoretic results that relate to linear
systems, with a focus on time-invariant or time-varying
uncertainty. In Section 4, we consider several classes of non-
linear systems, such as systems with a single nonlinearity,
linear systems with componentwise nonlinearities, and
hybrid systems. In Section 5, we move to stochastic
optimal control problems and Markov decision theory,
together with some pointers to related literature on dis-
crete-event systems. We end with some brief conclusions
in Section 6. Throughout the paper, several open prob-
lems are pointed out.

The literature on these subjects is large and growing,
and our presentation could not be exhaustive. Additional
information can be found in a number of more focused re-
views such as Sontag (1995) (nonlinear control), Blondel
and Tsitsiklis (1998) (elementary nonlinear systems),
Littman, Dean and Kaelbling (1995), Rust (1996),
Mundhenk, Goldsmith, Lusena and Allender (1997),
(Markov decision theory), Alur et al. (1995) (hybrid
systems), Bournez and Cosnard (1996), Moore (1998)
(Turing machine as dynamical systems) and Orponen
(1994) (recurrent neural networks). Some open problems
related to the computational complexity of control
questions are proposed in Blondel, Sontag, Vidyasagar
and Willems (1999c, Problems 11, 14, 22, and 43).

2. Complexity theory

In this section, we introduce the main concepts from
the theory of computability and complexity, with a focus
on models of digital computation. An accessible intro-
duction to the concepts of decidability/undecidability is
given in Jones (1974). For textbook treatments, we refer
the reader to Minsky (1967), Aho, Hopcroft and Ullman

(1974), Garey and Johnson (1979), Hopcroft and Ullman
(1979), Davis (1982) and Papadimitriou (1994). There is
also an extensive literature on algebraic and continuous
models of computation, and on problems with continu-
ous data, which we do not cover; we refer the reader to
Nemirovsky and Yudin (1983), Traub, Wasilkowski and
Wozniakowski (1988) and Blum, Cucker, Shub and
Smale (1998).

2.1. Problems, instances, and the size of an instance

In a typical instance of a computational problem, we
are given input data x

1
,2,x

d
and we are asked to

compute some function of them. For example, in the
DETERMINANT problem, an instance consists of the entries
of a given matrix and the desired outcome is its determi-
nant. We focus on digital computation and constrain the
input data to be given with a "nite number of bits. For
example, we will typically assume that the inputs take
integer or rational values. As far as negative complexity
results are concerned, this is hardly restrictive. If a func-
tion is di$cult or impossible to evaluate on integer or
rational inputs, then it certainly remains so with arbit-
rary real inputs.

Di!erent instances of the same problem can have
di!erent `sizesa. We follow the standard convention of
mainstream complexity theory and de"ne the size of an
instance as the number of bits used to encode the input
data according to a certain prespeci"ed format. In par-
ticular, any (nonzero) integer i can be viewed as having
size (bit length) approximately equal to log DiD, since this is
roughly the number of bits in a binary representation of i.
For example, the size of an instance of the DETERMINANT

problem involving an n]n integer matrix can be upper
bounded by O(n2 log;), where ; is an upper bound on
the magnitude of the entries of the matrix.1

2.2. Algorithms

Loosely speaking, an algorithm is described by a pro-
gram, i.e., a "nite sequence of instructions of the type
encountered in common programming languages. For
a more precise description, we need to specify a model of
computation. A rather simple such model is provided by
a random access machine (RAM) (Aho et al., 1974;
Papadimitriou, 1994). A RAM consists of a read-only
tape that contains the input data x

1
,2,x

d
, an output

tape on which the outcome of the computation is written,
an unlimited sequence of registers used to store inter-
mediate quantities generated in the course of the compu-
tation, and a program. Each register and each memory
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location on the input and output tapes may contain an
arbitrary, possibly negative, integer. The program is a se-
quence of instructions, some of which may be associated
with labels that are used in `jump toa instructions. The
instruction set can be assumed to contain the halting
instruction, the four arithmetic operations, instructions
for reading from a location on the input tape into a regis-
ter (respectively, writing the contents of a register to
a location on the output tape), indirect addressing (e.g.,
read the contents of the register whose address is stored
in register i, and store them in register 1), and jump
instructions that move the program to a next instruction,
possibly depending on the outcome of the comparison of
some register to zero. The exact nature of the allowed
instructions is not important, because alternative choices
of the instruction set lead to computing machines with
equivalent computing capabilities, as long as all critical
abilities, such as jumping, are present.

In a typical execution of the algorithm (or `computa-
tiona), the input data are loaded on the input tape, and
the algorithm starts carrying out the program instruc-
tions. For any given input, the computation may or may
not halt (that is, reach a halting instruction). We say that
the algorithm solves a particular problem if it always
halts (for every instance of the problem, that is, for every
choice of the input data) and produces the correct answer
on the output tape. We also say that a problem is unsolv-
able if there exists no algorithm (under our model of
computation) that will always halt with the correct an-
swer.

One may wonder whether the class of solvable prob-
lems depends on the choice of a model of computation.
According to the so-called Church}Turing thesis, all
reasonable models of digital computation lead to the
same class of solvable problems, and are therefore
equally powerful. This thesis is supported by the fact that
all reasonable models that have been proposed and
studied lead indeed to the same class of solvable prob-
lems. Still, it only remains a thesis * rather than a the-
orem * because we do not have a precise de"nition of
`all reasonable modelsa.

2.3. Decidable and undecidable problems

We will now focus on so-called decision problems, that
is, problems where the desired output is binary, and can
be interpreted as `yesa or `noa. An example is the prob-
lem of deciding whether a given (integer) matrix is non-
singular, which can be solved by, say, computing its
determinant and comparing it to zero. This makes
MATRIX NONSINGULARITY a decidable problem, one for
which there exists an algorithm that always halts with the
right answer. Similar to MATRIX NONSINGULARITY, many
problems in linear algebra are decidable. But there
also exist undecidable problems, for which there is no
algorithm that always halts with the right answer. We

give below one additional example of a decidable prob-
lem and then describe three examples of undecidable
problems.

Let us consider the following problem. We are given
a set of multivariable polynomials p

1
,2, p

m
in n real

variables, with rational coe$cients. Let S be the set
of all x"(x

1
,2,x

n
)3Rn that satisfy equalities

and inequalities of the form p
i
(x

1
,2, x

n
)"0,

p
j
(x

1
,2,x

n
)'0, p

k
(x

1
,2, x

n
)50. The problem of de-

ciding whether S is nonempty (i.e., whether there exists
a solution) is known to be decidable. More generally, we
may consider questions such as whether the following
statement is true:

&x
1
,x

2
∀x

3
&x

4
,x

5
[(x

1
,x

2
,x

3
, x

4
,x

5
)3S].

This problem can be reduced to the previous one by
a technique known as quantixer elimination and is there-
fore decidable as well; see Tarski (1951) and Seidenberg
(1954).

The amount of computation required by the original
methods of Tarski and Seidenberg was very high and
more e$cient methods have been devised since then.
Consider a system of m polynomial (in)equalities, each of
degree at most d, in n real variables. The problem of
deciding whether the system has a solution can be solved
with m(n`1)dO(n) arithmetic operations; see Basu, Pollack
and Roy (1996). Similar bounds are possible when alter-
nations of quanti"ers are present (Basu et al., 1996); see
also Blum et al. (1988, Section 18.6) and the references
therein.

We now turn to undecidable problems. The usual
technique for proving that a problem is undecidable
involves the idea of a reduction. Suppose that some deci-
sion problem A can be reduced to problem B, in the sense
that any algorithm for B leads to an algorithm for A.
Suppose, furthermore, that A is known to be undecid-
able. It follows that B is undecidable as well. In this proof
schema, we need a prototype problem whose undecida-
bility can be established by some other means, and which
can play the role of problem A. One such problem is the
halting problem, described below. Its undecidability can
be proved by a relatively simple `diagonalizationa argu-
ment (Papadimitriou, 1994).

An instance of the halting problem consists of a de-
scription of a computing machine M, e.g., a particular
RAM program, together with a particular input x to M.
The question is whether M will eventually halt when
started with input x. A possible approach to this problem
might be to run M with input x and assert YES if it halts.
But if M does not halt on input x, it is not apparent how
to detect this in "nite time and assert that the answer is
NO. One could hope to infer the answer through some
form of syntactic analysis of the program of machine M,
but this is ruled out by the undecidability result.

A second example is provided by Hilbert's famous
tenth problem on Diophantine equations, which is the
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2A word from a given alphabet (e.g., the alphabet Ma, bN) is a concat-
enation of "nitely many symbols from that alphabet (e.g., aababb), or
the `emptya word. For any two words s and p, sp stands for their
concatenation.

following. We are given a polynomial in several variables,
with integer coe$cients, and we wish to decide whether it
has an integer solution. Building on previous work by
Davis and Robinson, this problem was proved undecid-
able in Matiyasevich (1970). An elementary exposition of
Matiyasevich's Theorem can be found in Davis (1973).

A third example, which is remarkable in its simplicity,
is Post's correspondence problem. We are given "nitely
many pairs of words2 (x

1
, y

1
),2, (x

n
, y

n
), and we wish to

decide whether there exists some n51 and a "nite se-
quence (i

1
,2, i

m
) of integers in the range 1,2, n, such

that

x
i1
x
i2
2x

im
"y

i1
y
i2
2y

im
.

This problem, proved undecidable in Post (1946), re-
mains undecidable even if there are only seven pairs of
words (Matiyasevich & SeH nizergues, 1996). The problem
is decidable for two pairs of words (Salomaa, 1985). The
decidability of the intermediate cases (34n46) is
unknown but is likely to be di$cult to settle. The unde-
cidability of the Post correspondence problem can be
established by reducing the halting problem to it; for
a proof see Hopcroft and Ullman (1969, Section 14.2).

2.4. Time complexity

If an algorithm halts, we de"ne its running time to be
the sum of the `costsa of each instruction carried out.
Within the RAM model of computation, arithmetic op-
erations involve a single instruction and could be as-
sumed to have unit cost. Realistically, however,
arithmetic operations take time that increases with the
size (bit length) of the integers involved. This leads us to
the bit model in which the cost of an arithmetic operation
is taken to be the sum of the sizes (bit lengths) of the
integers involved.

Of course, the running time of an algorithm will gener-
ally depend on the size of the instance. Furthermore, the
running time can be di!erent for di!erent instances of the
same size. We de"ne the running time ¹(s) of an algo-
rithm, as a function of size, to be the worst-case running
time over all instances of size s.

We say that an algorithm runs in polynomial time if
there exists some integer k such that

¹(s)"O(sk)

and we de"ne P as the class of all (decision) problems that
admit polynomial-time algorithms. Due to a combina-
tion of practical and theoretical reasons, P is generally
viewed as the class of problems that are e$ciently solv-
able. It is most often the case that a computational

problem can be e$ciently solved in practice if and only if
it belongs in P. The emphasis on worst-case performance
is not fully satisfactory, as an algorithm may be fast on
most instances but take exponential time only on a small
minority of pathological instances. For example, the
simplex method is known to have polynomial running
time, on the average (Schrijver, 1986). However, it is often
di$cult to give a precise and reasonable meaning to the
term `on the averagea. For this reason, the vast majority
of complexity-theoretic research has focused on worst-
case complexity.

Note that under the bit model that we have adopted,
an algorithm that uses a polynomial number of arithme-
tic operations is not necessarily a polynomial-time algo-
rithm. To appreciate this distinction, notice that the
number 22n can be computed with n multiplications, by
successive squaring, but this takes at least 2n steps ( just to
write the output). On the other hand, this distinction
disappears for algorithms that produce intermediate and
"nal results that are integers of size (bit length) bounded
by a polynomial in the size of the original instance.

To make the above statement more concrete, let us
consider the inversion of integer matrices. It can be
carried out using Gaussian elimination, with O(n3) arith-
metic operations, but more work is needed before assert-
ing that we have a polynomial-time algorithm. The size
of an instance involving an n]n matrix is O(n2 log;),
where ; is the magnitude of the largest entry of the
matrix. It can be veri"ed (see, e.g., Schrijver, 1986) that
Gaussian elimination can be implemented with O(n3)
arithmetic operations and so that every intermediate
quantity produced is an integer of magnitude O((n;)nk )
for some integer k. Thus, intermediate quantities have
size O(nk log (n;)). The cost of each arithmetic operation
is bounded by that latter quantity, and the overall run-
ning time of the algorithm is O(nk`3 log (n;)). This is seen
to be polynomial in the instance size O(n2 log;) and we
conclude that matrix inversion can be done in poly-
nomial time.

In the sequel, the bit model will always be in e!ect
when talking about polynomial-time algorithms. On the
other hand, unless there is an explicit statement to the
contrary, we will provide complexity estimates in terms
of arithmetic operations, which is less tedious.

2.5. Turing machines and other models

Turing machines provide a model of digital computa-
tion which is more primitive, hence harder to `programa
than random access machines. However, their primitive-
ness becomes an advantage when they are manipulated
for the purpose of proving theoretical results.

A Turing machine (TM, for short) uses a "nite symbol
alphabet that includes a `blanka symbol. It uses a linear
tape (memory), which is an in"nite sequence of cells, each
one containing a symbol. It also uses a `heada that has
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a "nite number of possible internal states and, at any
time, scans a particular cell. When computation starts,
the input is written on "nitely many of the tape cells (the
other cells are blank), the head is in a special `starta state,
and it scans the "rst cell. At each time step, the machine
reads the contents of the cell being scanned, and
a transition is implemented. The e!ects of the transition
are a function only of the current state and the contents
of the scanned cell, and they result in (a) a new internal
state, (b) a new symbol written in the scanned cell, and
(c) a movement of the head one unit to the left or to the
right. The computation terminates when the head enters
a special `haltinga state. At that point, the tape contents
are interpreted as the output. A TM can be viewed as
a representation of an algorithm, which is encoded in the
transition function.

Most questions related to the operation of TMs are
known to be undecidable (e.g., is a given TM guaranteed
to halt on every input, does it halt on a particular input,
etc.). Furthermore, the functions that can be computed
by Turing machines are the same as those for the seem-
ingly more powerful RAM model.

As far as time complexity is concerned, the most sen-
sible notion of running time for TMs is to count the
number of steps until the machine halts. Turing machines
are capable of performing arithmetic operations on k-bit
integers in time which is polynomial in k (verifying this is
a simple but tedious exercise in low-level programming).
Building on this observation, it can be shown that a TM
can simulate a RAM with only polynomial slowdown.
That is, if a RAM algorithm solves a certain problem in
time O(sk) under the bit model, then there exists some
l and an equivalent TM algorithm that takes time O(sk`l).
The converse is also true because RAMs are at least as
powerful as TMs.

This and similar observations have led to the some-
times called ewective Church}Turing thesis, which states
that `any reasonable attempt to model mathematically
computer algorithms and their time performance is
bound to end up with a model of computation and
associated time cost that is equivalent to Turing
machines within a polynomiala (Papadimitriou, 1994).

2.6. Some polynomial-time solvable problems

We refer here to some important problems that are
known to be polynomial-time solvable. We have already
mentioned matrix inversion, and the same is true for
problems such as solving systems of linear equations,
computing determinants, or computing matrix rank.
LINEAR PROGRAMMING (the problem of deciding whether
a set of linear inequalities in real variables has a solution)
can also be solved in polynomial time using interior point
methods (Schrijver, 1986). The same is true for certain
optimization problems such as convex quadratic pro-
gramming (minimizing a convex quadratic function sub-

ject to linear equality and inequality constraints), or for
solving linear matrix inequality (LMI) problems to with-
in a prespeci"ed error tolerance (Boyd, El Ghaoui, Feron
& Balakrishnan, 1994).

Closer to control theory, consider the problem of de-
ciding whether a matrix A is stable, i.e., whether its
spectral radius o(A) (the maximum of the magnitudes of
its eigenvalues) satis"es o(A)(1. A solution to this
problem follows from the following result: the matrix
A is stable if and only if the Lyapunov equation
APAT#I"P has a positive-de"nite solution P (Gant-
macher, 1959). (In that case, the solution is unique.) Since
the Lyapunov equation is linear in the unknown entries
of P, we can compute a solution P (or decide it does not
exist) in polynomial time. To check that P is positive
de"nite, it su$ces to compute the determinants of the
n principal minors of P and verify that they are all
positive. Since determinants can be computed in poly-
nomial time, we have a polynomial-time solution to the
stability problem. A similar polynomial-time solution is
also possible for continuous-time stability (are all eigen-
values of A in the open-left half-plane?). The same ques-
tions about roots of polynomials can also be answered in
polynomial time, since it is easy to construct a matrix
A with a prespeci"ed characteristic polynomial. An alter-
native method is to use the Routh test.

2.7. NP-completeness and beyond

There are many decidable problems of practical inter-
est for which no polynomial-time algorithm is known,
despite intensive research e!orts. Many of these prob-
lems belong to a class known as NP (nondeterministic
polynomial time), that includes all of P. A decision
problem is said to belong to NP if every YES instance
has a `certi"catea of being a YES instance whose validity
can be veri"ed with a polynomial amount of computa-
tion. For example, consider the ZEROONE INTEGER

PROGRAMMING problem (ZOIP). In this problem, we are
given a number of zero}one variables and a system of
linear equality and inequality constraints, and we wish to
determine whether a solution exists. If we have a YES

instance, any feasible solution is a certi"cate that testi"es
to this and whose validity can be checked in polynomial
time. (Simply, check that all the constraints are satis"ed.)

The ZOIP problem turns out to be a hardest problem
within the class NP in the sense that every problem in NP
can be reduced to ZOIP, in polynomial time (Cook, 1971).
Such problems are said to be NP-complete. More pre-
cisely, if A is any problem in NP, there is an algorithm
that runs in polynomial time and which, given an in-
stance I of problem A produces an `equivalenta instance
I@ of ZOIP. Equivalence here means that I is a YES instance
of A if and only if I@ is a YES instance of ZOIP.

If we had a polynomial-time algorithm for ZOIP, then
any problem in NP could also be solved in polynomial
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time by "rst reducing it to ZOIP and then using a poly-
nomial-time algorithm for ZOIP. It would then follow that
NP is the same as the class P of polynomial-time solvable
problems. Whether this is the case or not is a major open
problem in theoretical computer science. It is widely
believed that PONP, although a proof is not in sight. If
indeed PONP, then ZOIP is not polynomial-time solv-
able, and the same is true for every other NP-complete
problem. By now, NP-completeness has been established
for thousands of problems (Karp, 1972; Garey & John-
son, 1979). We will have the opportunity of introducing
several NP-complete problems later on. For now, let us
mention QUADRATIC PROGRAMMING, the problem of min-
imizing a quadratic* but not necessarily convex* cost
function over a polyhedron.

If a problem A is at least as hard as some NP-complete
problem B (in the sense that B can be reduced to A in
polynomial time) we will use the term NP-hard to de-
scribe this situation. In particular, a decision problem is
NP-complete if and only if it is NP-hard and belongs
to NP.

There are also classes of problems that are much
harder than NP-complete. For example, a problem is
said to belong to exponential time (EXP) if it can be
solved in time O(2s

k ) for some k, where s is the instance
size. Once more, EXP-complete problems are the hardest
in this class and, in this case, they require provably ex-
ponential time (Papadimitriou, 1994).

Let us also de"ne PSPACE, the class of all problems
that can be solved by a Turing machine that uses a
polynomial amount of memory (tape cells). We have
NPLPSPACE. (For example, ZOIP can be solved with
polynomial memory by simply checking all possible solu-
tions.) However, it is not known whether the contain-
ment is proper. Given the present state of knowledge, it is
even possible that PSPACE"P, but this is considered
highly unlikely. If a problem is shown to be PSPACE-
complete, this is viewed as a very strong indication that it
is not polynomial-time solvable. To summarize, we have
PLNPLPSPACELEXP. It is known that POEXP
but it is unknown which of the above inclusions are strict.

2.8. Coping with NP-completeness

NP-hardness of a problem means that it is about as
di$cult as ZOIP, and this is often interpreted as an indica-
tion of inherent intractability. Assuming that the conjec-
ture PONP is true, an NP-hardness result eliminates
the possibility of algorithms that run in polynomial time
and that are correct for all problem instances. However,
this is not reason enough for declaring the problem
intractable and refraining from further research. Many
NP-hard problems are routinely solved in practice, either
exactly or approximately, using a variety of methods. For
example, there are methods such as branch-and-bound
that require exponential time in the worst case, but run

fairly fast on many problems and instances of practical
interest (Nemhauser & Wolsey, 1988).

Another point that needs to be appreciated is that not
all NP-complete problems are equally hard. A standard
example is provided by the 0}1 KNAPSACK problem (see,
e.g., Bertsimas & Tsitsiklis, 1997)

maximize
n
+
i/1

c
i
x
i

subject to
n
+
i/1

w
i
x
i
4K, x

i
3M0,1N,

where the data c
i
, w

i
, and K are nonnegative integers.

The problem is NP-hard, but can be solved in pseudo-
polynomial time, with n2max

i
Dc
i
D arithmetic operations.

This is not polynomial time, because the instance size is
of the order of log K#+

i
log(c

i
w
i
), and the running time

is an exponential function of the instance size. However,
unless the numbers c

i
are extremely large, this can be

a practically viable algorithm.
In addition, many NP-complete (or NP-hard) prob-

lems become much easier if we are willing to settle for
approximate solutions. For example, for any e'0, we
can get a feasible solution of the 0}1 KNAPSACK problem,
whose value is no less than (1!e) times the optimal
value, and this can be done in polynomial time, with
O(n3/e) arithmetic operations. More generally, a minimiz-
ation (respectively, maximization) problem is said to ad-
mit a polynomial-time approximation scheme if for every
e'0, there exists an algorithm (depending on e) whose
running time is polynomial in the instance size, and
which outputs a solution which comes within a factor of
1#e (respectively, 1!e) from the optimum. However,
some NP-hard problems are not amenable to approxim-
ate solution, and there is a rich theory pertaining to this
matter (Papadimitriou, 1994). We revisit this subject in
Section 3.2.

Finally, let us mention the possibility of using poly-
nomial-time randomized algorithms that provide solu-
tions to arbitrarily high levels of accuracy and con"dence
(see Tempo et al. (1996), Khargonekar and Tikku (1996),
Vidyasagar (1998) and Vidyasagar and Blondel (1999)
for a description of such methods applied to control
problems).

3. Linear systems

Many questions about linear systems are decidable,
and can be decided e$ciently. For example, controllabil-
ity, stability, and observability of continuous- or dis-
crete-time linear systems can be decided in polynomial
time. One problem for which no algorithm is yet avail-
able is the `hyperplane hitting problema which arises,
among other situations, in sliding mode control. In this
problem, we are given a discrete-time autonomous
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3This de"nition of stability relates to continuous-time systems. We
restrict the discussion in Sections 3.1}3.4 to this continuous-time
setting.

system x
t`1

"Ax
t
, together with the initial state x

0
, and

we wish to determine whether the state x
t

eventually
lands on the hyperplane cTx"0, that is, whether we have
cTAtx

0
"0 for some t50. This problem is the system-

theoretic transcription of a well-known problem in the
theory of formal power series (Salomaa & Soittola, 1978).
It is also a long-standing open problem in number the-
ory. The problem is proved NP-hard in Blondel and
Portier (1999a) but it is unknown whether it is decidable.
The present consensus among number theorists is that an
algorithm should exist. This has been proved to be the
case for a large number of special cases, including the
generic situation where the eigenvalues of A are all dis-
tinct; see Mignotte, Shorey and Tijdeman (1984), and also
Samake (1996) for recent extensions.

3.1. Stable and unstable polynomials in
polynomial families

Many computational complexity results in control
theory arise when considering families of polynomials or
matrices. The interest in the stability analysis of such
families emerged in the early 1980s after the populariz-
ation of Kharitonov's theorem in the control engineering
literature. In the following, a polynomial is said to be
stable if all of its roots have negative real parts.3

In Kharitonov (1978), it is proved that every real
polynomial in the interval family of polynomials

Ma
0
#a

1
x#a

2
x2#2#a

n
xn: a~

i
4a

i
4a`

i
,

i"0,2, nN

is stable if and only if four special members of the family
with extreme coe$cients (the Kharitonov polynomials) are
stable.

The original proof of the theorem is in Russian. Simple
geometrical proofs can be found in Dasgupta (1988)
and Minnichelli, Anagnost and Desoer (1989). Using
Kharitonov's theorem, it is easy to design a polynomial-
time algorithm that decides whether a given interval
family is stable: it su$ces to apply stability tests to the
four Kharitonov polynomials. The relevance of this re-
sult to robust stability analysis provided motivation for
various attempts at generalizations but with limited suc-
cess. This experience opened up the possibility that broad
generalizations of Kharitonov's Theorem, of comparable
simplicity, do not exist. Indeed, results from computa-
tional complexity show that, unless P"NP, a variety of
other types of polynomial families do not admit stability
criteria that can be tested e$ciently. We review a number
of such results.

Interval polynomial families are special cases of a$ne
polynomial families. Let p

i
(x), i"1,2, n, be real poly-

nomials. An azne polynomial family is a set of poly-
nomials of the form

Mp
0
(x)#a

1
p
1
(x)#a

2
p
2
(x)#2#a

m
p
m
(x):

a~
i
4a

i
4a`

i
, i"1,2,mN.

An edge of the family is a subset (i.e., a set of polynomials)
for which all of the parameters a

i
are "xed to their upper

or lower bounds a`
i

or a~
i
, with the exception of one

parameter, which is allowed to vary within the corre-
sponding interval. It is known (Bartlett, Hollot & Huang,
1988) that the stability of an a$ne polynomial family is
equivalent to the stability of all of its edges. Furthermore,
the stability of an edge can be checked in polynomial
time by using an edge stability condition given in Bialas
(1985). There are m2m~1 edges in an a$ne polynomial
family with m parameters. The elementary stability
checking procedure that consists in checking all edges
leads thus to a number of operations that is exponential
in the number of parameters. This procedure can be
improved by identifying critical edges. It is shown
in Sideris (1991) that the stability of an a$ne poly-
nomial family of degree n, with m parameters, can be
checked in polynomial time, with O(m3n2) arithmetic
operations.

Broader classes of polynomial families can be con-
structed as follows. A multilinear polynomial family (or,
more precisely, a multiazne polynomial family) is a set of
polynomials of the form

Mb
0
(a

0
,2, a

m
)#b

1
(a

0
,2, a

m
)x#b

2
(a

0
,2, a

m
)x2

#2#b
n
(a

0
,2, a

m
)xn:a~

i
4a

i
4a`

i
, i"0,2mN,

where each coe$cient b
i
(a

0
,2, a

n
) is an a$ne function of

each parameter a
i

when the remaining parameters are
held "xed. This structure arises, for example, when one
considers the characteristic polynomial of an interval
family of matrices (see the next section). Several contribu-
tions have dealt with the stability of such families. In
contrast to the a$ne case, however, no polynomial-time
stability checking algorithms are available. Indeed, using
Proposition 2.1 in Nemirovskii (1993), it is easily con-
cluded that, unless P"NP, no such algorithm exists. We
present here an elementary proof of an improved version
of this result. We de"ne a bilinear polynomial family as
a multilinear polynomial family in which each coe$cient
function depends only on two parameters. We show that,
unless P"NP, the stability of bilinear polynomial fami-
lies of degree one is not decidable in polynomial time. We
provide a complete proof because of its simplicity and
because it adequately illustrates the usual way that such
negative results are proved. The proof is based on a re-
duction of the MAXIMUM 2-SATISFIABILITY problem,
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4A literal is either a Boolean variable u
i
or its negation u6

i
. A one-

literal clause consists of a single literal. A two-literal clause is a disjunc-
tion (xsy) of two literals x and y.

5The results presented in Poljak and Rohn (1993) and Nemirovskii
(1993) were found independently. Poljak and Rohn (1993) was submit-
ted about two years before Nemirovskii (1993), but for editorial rea-
sons, the two papers appeared in the same issue of Mathematics of
Control, Signals, and Systems.

which is known to be NP-complete (Garey & Johnson,
1979).

MAXIMUM 2-SATISFIABILITY

Instance: A set ;"Mu
1
,2, u

m
N of Boolean variables,

a collection C of k clauses over ;, such that there are at
most two literals in each clause, and a positive integer
K4k.4

Question: Is there a truth assignment for the variables
in; that simultaneously satis"es at least K of the clauses
in C?

Theorem. The stability of bilinear polynomial families of
degree one is NP-hard to decide.

Proof. Given an arbitrary instance of MAXIMUM 2-
SATISFIABILITY, we will construct an equivalent instance of
the stability problem. Any clause c3C is of one of the
following forms: c"u

i
, c"u6

i
, c"u

i
su

j
, c"u

i
su6

j
, or

c"u6
i
su6

j
, for some i, j. To c"u

i
we associate the a$ne

function a
i
, to c"u6

i
we associate 1!a

i
, to c"u

i
su

j
we associate a

i
#a

j
!a

i
a
j
, to c"u

i
su6

j
we associate

1!a
j
#a

i
a
j
, and to c"u6

i
su6

j
we associate 1!a

i
a
j
.

Let A(a
1
,2, a

n
) be the sum of the polynomials asso-

ciated with the clauses in C and consider the bilinear
polynomial family

Mx#(K!A(a
1
,2, a

n
)): 04a

i
41N.

All polynomials in the family are stable if and only if the
root A(a

1
,2, a

n
)!K is negative for all choices of the

a
i

in [0,1]. That is, if and only if the maximum of
A(a

1
,2, a

n
) is less than K. Note that the maximum of

A(a
1
,2, a

n
) for a

i
3[0,1] is attained for a

i
3M0,1N, and is

therefore equal to the maximum (over all possible truth
assignments) number of satis"ed clauses. Thus, we have
a stable family if and only if we have a NO instance of
MAXIMUM 2-SATISFIABILITY. We therefore have a poly-
nomial time reduction of an NP-complete problem to the
problem of interest, and the result follows. h

We have seen that the stability of a$ne polynomial
families can be checked in polynomial time, whereas the
stability of bilinear polynomial families is NP-hard.
Thus, the tractability borderline is somewhere between
a$ne and bilinear families. Unless P"NP, e$cient
stability checking algorithms can only be derived for
particular multilinear polynomial families, see, e.g., Fu,
Dasgupta and Blondel (1995).

The problem of deciding whether a given family of
polynomials is stable is equivalent to the problem of

deciding whether the family contains an unstable poly-
nomial. Both problems are analysis problems. A related
problem is that of asking whether a family contains
a stable polynomial, which is the same as asking whether
all polynomials in the family are unstable. This is a design
problem and, although its complexity is related to the
complexity of the analysis problem, the relation is not as
immediate as it may "rst seem.

Kharitonov's theorem does not hold for instability.
In general, it is not true that instability of all four
Kharitonov polynomials of an interval family of poly-
nomials ensures instability of the entire family. Similarly,
it is not true in general that instability of all edges of an
a$ne polynomial family ensures instability of the entire
family. Existence of a polynomial time algorithm for
checking the presence of a stable polynomial in an a$ne
polynomial family is an open problem. This problem is of
interest because it is intimately related to basic control
design problems. On the other hand, the proof given
above can be easily adapted to prove that the problem of
deciding whether there is a stable polynomial in a given
bilinear family of polynomials is NP-hard.

3.2. Stability of matrix families

If A
~

and A
`

are square matrices of the same dimen-
sions, we de"ne the interval matrix family [A

~
, A

`
] as

the set of all matrices A that satisfy the inequality
A

~
4A4A

`
componentwise, i.e., (A

~
)
ij
4A

ij
4(A

`
)
ij

for every i and j.
For interval matrix families, there are no results ana-

logous to Kharitonov's theorem. In fact, the stability of
all edges of an interval matrix family does not necessarily
imply the stability of the entire family. There are however
some results, for the symmetric case, in terms of the
extreme points of the family. An interval matrix family
[A

~
,A

`
] is said to be symmetric if the matrices A

~
and

A
`

are symmetric. (Note, however, that in general,
a symmetric interval matrix family [A

~
,A

`
] also con-

tains nonsymmetric matrices.) Necessary and su$cient
conditions for stability of symmetric interval matrices,
formulated in terms of the stability of a "nite subset of
matrices in the family, are given in Soh (1990), Hertz
(1992), and Rohn (1994a). Still, in all of these references, the
number of matrices that have to be tested is exponential in
the dimension of the matrices. This seems to be unavoid-
able given the negative results that we describe next.

The computational complexity analysis of problems
associated with interval matrix families was initiated in
Poljak and Rohn (1993) and Nemirovskii (1993).5 A com-
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6 In the PARTITION problem, we are given integers a
1
,2, a

n
, whose

sum is some number K and we are asked whether there exists a subset
of these integers whose sum is K/2.

bination of the results presented in these two papers is as
follows. An elegant and economical presentation is pro-
vided in Rohn (1994b).

For interval matrix families, the following four prob-
lems are NP-hard:

(i) decide whether all matrices in a given family are
nonsingular (INTERVAL MATRIX NONSINGULARITY);

(ii) decide whether all matrices in a given family are
stable (INTERVAL MATRIX STABILITY);

(iii) decide whether all matrices in a given family have
spectral norm (maximum singular value) less than
one;

(iv) decide whether all symmetric matrices in a given
family are positive dexnite.

The NP-hardness proof of (i) given by Poljak and
Rohn involves the MAX CUT problem, which is de"ned as
follows. We are given an undirected graph, and we wish
to partition the set of nodes into two disjoint subsets, in
a way that maximizes the number of edges with one
endpoint in each subset. The decision version of this
problem (`Is the maximum larger than a given number?a)
is NP-complete (Papadimitriou, 1994; Poljak & Rohn,
1993) shows that MAX CUT can be reduced to INTERVAL

MATRIX NONSINGULARITY. Furthermore, INTERVAL MATRIX

NONSINGULARITY remains NP-hard even if the size (bit
length) of the entries of the n]n matrices A

~
and A

`
is

O(logn). Problems with such a property, that remain
NP-hard even if the size of each number in the input is
restricted to be small (of the order of a polynomial in the
logarithm of the overall instance size), are said to be
strongly NP-hard. The complexity of such problems is of
an inherently combinatorial nature, rather than being
due to excessively long numerical input.

We can rephrase the decision problem INTERVAL

MATRIX NONSINGULARITY as an optimization problem, and
look at the possibility of approximations. The center of the
interval matrix family [A

~
,A

`
] is A

#
"(A

`
#A

~
)/2 and

its error is A
%
"(A

`
!A

~
)/2. The interval matrix family

[A
#
!jA

%
,A

#
#jA

%
] is equal to MA

#
N when j"0, and

is equal to the interval family [A
~

,A
`

] when j"1. The
radius of stability j(A

#
,A

%
) associated with A

#
and A

%
is

the smallest value of j for which [A
#
!jA

%
, A

#
#jA

%
]

contains a singular matrix. Clearly, all matrices in
[A

~
,A

`
] are nonsingular i! j(A

#
,A

%
)'1 and, therefore,

deciding whether j(A
#
,A

%
)'1 is also NP-hard. However,

a stronger result that refers to the impossibility of approxi-
mating j(A

#
,A

%
) is also possible, as we discuss next.

It is known that unless P"NP, MAX CUT does not
admit a polynomial-time approximation scheme as de-
"ned in Section 2.8 (Papadimitriou, 1994). It follows that
the same is true for the optimization version of INTERVAL

MATRIX NONSINGULARITY (Coxson & De Marco, 1994); see
also Demmel (1992).

The NP-hardness of the other three problems in the
above theorem was shown in Nemirovskii (1993), by

using a reduction of the classical PARTITION problem,6
which is NP-complete (Garey & Johnson, 1979). The
reductions produce very particular classes of interval
matrix families. Thus, restricted versions of the problems
that encompass these classes are also NP-hard. For
example, INTERVAL MATRIX STABILITY is NP-hard when all
the entries of the matrices in the family are "xed, except
for some of the entries of a single row and a single
column, which are allowed to vary between !1 and 1.

Even though PARTITION is NP-complete, it can be sol-
ved in time polynomial in the number of integers and ex-
ponential in their size (bit length). (In fact, it is a special
case of the 0}1 KNAPSACK problem discussed in Section
2.8.) Thus, the proof in Nemirovskii (1993) still leaves the
possibility that problems such as INTERVAL MATRIX

STABILITY can be solved in time polynomial in the dimen-
sions of the matrices, when their entries have small bit
length, e.g., logarithmic in the dimension of the matrices.
However, this possibility is ruled out by adapting
Nemirovskii's proof with the help of the reduction used
in Poljak and Rohn (1993), and all of these problems are
strongly NP-complete (Coxson, 1993).

An interval matrix family can always be expressed in
the form

MA
0
#a

1
A

1
#2#a

m
A

m
: 04a

i
41, 14i4mN,

where each matrix A
i
has a single nonzero entry. A rank-q

azne matrix family is a family of the form above, where
the matrices A

i
have rank that is less than or equal to q.

The stability of rank-1 a$ne families is NP-hard to
decide, and the special case m"1 is solvable in poly-
nomial time without any rank restrictions; see Fu and
Barmish (1988). Besides these two special cases, the terri-
tory is unmarked. Exponential time branch-and-bound
algorithms for the case of arbitrary m and q are proposed
in Kokame and Mori (1992). A solution in terms of
"nitely many linear programs is proposed in Barmish,
Floudas, Hollot and Tempo (1994).

There are many more results on the complexity of
interval linear algebra problems. A survey of some of
these results is given in Kreinovich, Lakeyev, Rohn and
Kahl (1995) and Rohn (1997). See also the recent book
(Kreinovich et al., 1997).

Let us "nally mention a di!erent problem but with
a somewhat similar #avor. Given a system with delays, of
the form

x5 (t)"A
0
x(t)#

p
+
k/1

A
k
x(t!h

k
),

we wish to determine whether the system is stable for all
allowed values of the delays h

k
. It turns out that this
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7This formulation has been suggested by M. Overton (personal
communication).

problem is NP-hard for the case where each h
k

is con-
strained to lie within an interval [h~

k
, h`

k
], as well as for

the unconstrained case, where h
k
3[0,#R) (Toker &

Ozbay, 1996).

3.3. Structured singular values

The results in the preceding subsection have direct
implications for the computation of the structured singu-
lar value of a matrix, a fact that was hinted at in Poljak
and Rohn (1993). The structured singular value general-
izes the notion of singular value and arises in many
robust control problems involving systems with uncer-
tain parameters.

We start with a square, possibly complex, matrix M
of dimensions n]n and we consider a set D of block-
diagonal perturbation matrices *, of the form
*"diagM*

1
,2,*

k
N, where each *

i
has dimensions

n
i
]n

i
and n

1
#2#n

k
"n. Each diagonal block is

constrained to be of a particular type, e.g., a real multiple
of the identity matrix, a complex multiple of the identity
matrix, or an arbitrary real (or complex) matrix. Having
de"ned the set of matrices D in terms of such constraints,
the corresponding structured singular value is de"ned by

k(M)"G
0

if det(I!*M)O0 for all *3D,

(min*|DMp6 (*) : det(I!*M)"0N)~1

otherwise,

where p6 (*) stands for the largest singular value of *.
When D"MdI: d3CN, k(M) is equal to the spectral
radius of M, and when D"CnCn, k(M) is equal to the
maximum singular value of M. For an introduction to
structured singular values and their importance in system
analysis and design, see Doyle (1982), Safonov (1982) and
Zhou, Doyle and Glover (1995).

Many researchers had worked on algorithms for com-
puting k exactly, under various uncertainty structures,
until it was established that the problem of deciding
whether k(M)51 is NP-hard for the following cases:

(i) If M is real and each block *
i
is a real multiple of

the identity (the `real ka problem).
(ii) If M is complex and each block *

i
is a multiple d

i
I

of the identity, where some d
i
are constrained to be

real and some are allowed to be complex (the
`mixed ka problem).

(iii) If M is complex and each block *
i
is of the form d

i
I

for some complex d
i
(the `purely complex ka prob-

lem).

The result for the "rst two cases is a corollary of the
results in Poljak and Rohn (1993). It is also derived in
Braatz, Young, Doyle and Morari (1994), by showing
that quadratic programming can be reduced to the prob-
lem of computing k. The third result was shown later in

Toker and Ozbay (1998) by establishing that a suitably
de"ned quadratic programming problem involving com-
plex variables is NP-hard, and then reducing it to the
purely complex k problem.

Partly as a consequence of such results, research e!orts
have shifted to the problem of "nding approximations of
k which are easy to compute and that are as close as
possible to the exact value of k; see Fu (1999) and Toker
and de Jager (1999) for some discussion on computa-
tional complexity problems related to the approximate
computation of k, and Trei (1999) for a negative result on
an approach that had seemed promising.

Finally, let us mention that Fu and Dasgupta (1998)
have studied the complexity of computing the real struc-
tured singular value with perturbations measured by
a p-norm. For a set D of block diagonal matrices where
each block *

i
is a real multiple d

i
I of the identity, de"ne

k
p
(M)"Amin

* | D

MDD*DD
p
: det(I!*M)"0NB

~1
,

where d"(d
1
,2, d

k
) and *"diagMd

1
I,2, d

k
IN. The

quantity k
p

coincides with k when p"R and so the
problem of deciding whether k

=
(M)51 is NP-hard. Fu

and Dasgupta show that the problem of deciding
whether k

p
(M)51 is NP-hard for any p3[1,R] when

the size of the smallest block exceeds one. For blocks of
size one and "nite p, the question of NP-hardness is open.

3.4. Existence of a stable matrix in an interval family;
static output feedback

We now turn our attention to design, rather than
analysis, questions for interval matrix families, and con-
sider the following problem.

STABLE MATRIX IN INTERVAL FAMILY

Instance: An interval family of matrices.
Question: Does the family contain a stable matrix?

This problem is NP-hard. It remains so even if the
interval family is symmetric and all the entries of the
family are "xed, except for some of the entries of a single
row and a single column, which can take values between
!1 and 1. The proof is given in Blondel and Tsitsiklis
(1997) and involves again a reduction of the PARTITION

problem. In contrast to the corresponding analysis ques-
tion discussed in Section 3.2, it is not known whether
STABLE MATRIX IN INTERVAL FAMILY is NP-hard in the
strong sense. A variation of STABLE MATRIX IN INTERVAL

FAMILY is the problem in which we only look at symmet-
ric matrices. Consider the semide"nite programming
problem of minimizing j subject to the constraint that
jI!A is nonnegative de"nite and subject to the interval
constraints on the symmetric matrix A.7 Stability is then
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8This conjecture can be restated as saying that the convergence to
zero of all periodic products of a given "nite set of matrices, implies the
same for all possible products.

equivalent to the optimal value of j being negative. This
semide"nite programming problem can be solved in
polynomial time to any "xed desired accuracy. However,
the complexity of an exact solution is unknown.

This problem bears some similarities to the widely
studied, and still unsolved, static output feedback problem.
We are given matrices A, B, and C, and we are interested
in determining whether there exists a `gaina matrix
K such that A#BKC is stable. Despite numerous con-
tributions since the early 1960s, a satisfactory answer to
this problem has yet to be found. The problem is often
cited as one of the di$cult open problems in systems and
control (Blondel, Gevers & Lindquist, 1995). See Syrmos,
Abdallah and Dorato (1994) for a survey, and Rosenthal
and Wang (1997) for genericity results on the related pole
assignment problem. From a complexity point of view, the
problem is algorithmically decidable using Tarski elimina-
tion, as pointed out in Anderson, Bose and Jury (1975).

Still, despite various attempts, it is unclear whether the
problem is NP-hard. In Fu and Luo (1997), the authors
show that a certain type of mixed LMI can be used to
solve the static output feedback problem, but they then
show that the proposed mixed LMI is NP-hard.

Using the NP-hardness result for STABLE MATRIX IN

INTERVAL FAMILY, it is easily shown that the static output
feedback problem is NP-hard if we also require the gain
matrix K to satisfy interval constraints. However, the
relevance of this observation is unclear, because the
problem with interval constraints remains NP-hard for
the special case of state feedback (given A and B, deter-
mine whether there exists some K within a given interval
family such that A#BK is stable), even though it can be
solved in polynomial time in the absence of interval
constraints (Blondel & Tsitsiklis, 1997a). Let us also
mention some related problems that have been shown
to be NP-hard in the same reference. These are the
problems of simultaneous stabilization by output feed-
back (see also Toker and Ozbay, 1995), decentralized
output feedback stabilization using a norm bounded
controller, and decentralized stabilization using identical
controllers.

3.5. Time-varying systems

We have been discussing so far problems related to
uncertain systems but with time-invariant uncertain
parameters. We now turn to a discussion of problems
relevant to systems with time-varying uncertainty, and
we will be focusing on discrete-time systems.

We consider a time-varying system of the form
x
t`1

"A
t
x
t
, where & is a "nite set of matrices, and A

t
3&

for every t50. We do not impose any restrictions on the
sequence of matrices A

t
. Starting from the initial state x

0
,

we obtain

x
t`1

"A
t
2A

1
A

0
x
0
.

We wish to characterize how x
t

grows with t. For this
purpose, let DD ) DD be an induced matrix norm. The joint
spectral radius o6 (&) is de"ned in Rota and Strang (1960)
by

o6 (&)" lim
k?=

o6
k
(&),

where

o6
k
(&)"maxMDDA

k
2A

2
A

1
DD1@k: each A

i
3&N

for k51. (See also Berger and Wang (1992) for another
characterization of o6 (&) in terms of the spectral radius of
the matrix products.) It turns out that the limit always
exists and the value of o6 (&) is the same for every induced
matrix norm. The same comment applies to the de"ni-
tions of o

6
(&) and o

P
(&) given later in this section.

For a given "nite set of matrices &, we can now pose
questions such as the following:

f Do we have o6 (&)(1?
f Are all possible matrix products A

k
2A

1
stable?

f Do we have o6 (&)41?
f Do all in"nite matrix products converge to zero?
f Do all periodic matrix products converge to zero?
f Do we have x

t
P0 for every x

0
and any possible

sequence of matrices?
f Do we have x

t
P0 for every x

0
and any possible

periodic sequence of matrices?
f Is the set of all possible matrix products A

k
2A

1
bounded?

The above questions are not equivalent, but they are
closely related. Due to their relevance in many practical
settings, they have been extensively studied in recent
years. For example, certain inequalities proved in
Daubechies and Lagarias (1992, Lemma 3.1) can be used
to derive algorithms that compute arbitrarily precise
approximations for o6 (&); see Gripenberg (1996) for one
such algorithm. These approximation algorithms can
then be used in procedures that decide, after "nitely
many steps, whether o6 '1 or o6 (1. Related procedures
are given in Brayton and Tong (1980) and Barabanov
(1988). The drawback of all of these procedures is that
they need not terminate when o6 happens to be equal to 1.
In fact, the ability to compute arbitrarily accurate ap-
proximations of o6 does not rule out the possibility that
the problem of deciding whether o6 (1 is undecidable,
and it is so far unknown whether this is the case or not;
see Lagarias and Wang (1995) for a discussion of this
issue and for a description of its connection with the
so-called "niteness conjecture,8 as well as the discussions
in Gurvits (1995) and the NP-hardness result in Toker
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9 In fact, a careful examination of the proof in that reference shows
that a stronger result is true, ruling out algorithms that run in time
which is polynomial in 1/e.

10This result is stated incorrectly in Tsitsiklis and Blondel (1997a);
a correction appears in Tsitsiklis and Blondel (1997b).

(1997). It turns out however that the slightly di!erent
problem of deciding whether o6 41 (as well as the ques-
tion of boundedness of the set of all matrix products) is
undecidable (Blondel and Tsitsiklis, 1999b). Both prob-
lems remain undecidable in the case where & contains
only two matrices. Another negative result is given in
Kozyakin (1990), which establishes that several questions
of the type introduced in this section cannot be answered
using a restricted class of algebraic algorithms, because
the set of all YES instances has in"nitely many connected
components, even for pairs of 2]2 matrices.

As a practical matter, e$cient approximation algo-
rithms for computing o6 (&) might su$ce. However, the
results of Tsitsiklis and Blondel (1997a, Theorem 1) place
some limitations on possible approximation algorithms.
In particular, it is shown that unless P"NP, there is no
algorithm that can compute o6 with e percent relative
accuracy and which runs in time polynomial in log(1/e)
and the size of &.9 Furthermore, this negative result
continues to hold even if we restrict the set & to consist of
only two matrices with 0}1 entries. Despite this negative
result it is still conceivable that for any xxed e'0, there
exists a polynomial-time algorithm that computes o6 with
relative accuracy e, but it is not known whether this is the
case or not.

If a polynomial-time algorithm were available for
checking the stability of all products of two given ma-
trices, then the algorithm could be used in conjunction
with binary search to approximate the joint spectral
radius in polynomial time. As a consequence, it is NP-
hard to decide whether all products of two given matrices
(with rational entries) are stable. This is true even if all
nonzero entries of the two matrices are constrained to be
equal.10 The decidability of this problem is not known.
On the other hand, polynomial-time stability checking
algorithms are available when all nonzero entries are
equal to one; see Gurvits (1996).

Similar to the joint spectral radius, we can de"ne the
lower spectral radius o

6
(&) by

o
6
(&)" lim

k?=

o
6 k

(&),

where

o
6 k

(&)"minMDDA
1
A

2
2A

k
DD1@k: each A

i
3&N

for k51.
The joint spectral radius measures the maximal aver-

age norm of long products of matrices taken from a "nite
set, whereas the lower spectral radius measures the min-

imal average norm. The problem of computing o
6
(&) is

intimately related to the mortality problem. We say that
the set of matrices & is mortal if the zero matrix can be
expressed as the product of "nitely many matrices from
&. Reference Paterson (1970) establishes a relation be-
tween word concatenation and matrix multiplication,
and reduces Post's correspondence problem to the prob-
lem of deciding whether & is mortal. In particular, it
shows that the mortality problem is undecidable, even if
& consists of only 2n

p
#2 integer matrices of dimensions

3]3, as long as Post's correspondence problem with
n
p

pairs of words is undecidable. (As discussed in Section
2.3, we can take n

p
"7.) Building on this result (Blondel

& Tsitsiklis, 1997b) establishes that the mortality prob-
lem remains undecidable even if & consists of only two
integer matrices of dimensions (6n

p
#6)](6n

p
#6). The

number of 3]3 integer matrices involved in Paterson's
proof can be reduced to n

p
#2 by considering the modi-

"ed Post correspondence problem in which the initial
pair of words used in the correspondence is predeter-
mined and is part of the instance description (Hopcroft
& Ullman, 1969); see Bournez and Branicky (1998) for
a proof. An easy argument shows that, if mortality of
d matrices of size n]n is undecidable, then the same
applies to pairs of matrices of size nd]nd (Blondel
& Tsitsiklis, 1997b). Thus, mortality of two integer ma-
trices of size 3(n

p
#2) is undecidable. Moreover, all 3]3

matrices involved are diagonalizable, and so, by adapting
the argument in Blondel and Tsitsiklis (1997b), one can
conclude that the mortality problem for pairs of 3(n

p
#2)

integer matrices, one of which is diagonal, is also unde-
cidable. For the special cases of matrices with non-
negative entries, or when we restrict to products of the
form A

1
2A

k
for "xed k, the mortality problem can

be solved (in exponential time), but is actually NP-hard
(Blondel & Tsitsiklis, 1997b). See also Bournez and
Branicky (1998) for a discussion of the mortality problem
for 2]2 matrices, and Krom (1981), Krom and Krom
(1989) and Klarner, Birget and Satter"eld (1991) for more
results on problems of similar #avor.

As long as the matrices have integer entries, we have
either o

6
(&)"0 (which is the case if and only if & is

mortal) or o
6
(&)51. Thus the undecidability results for

the mortality problem preclude the possibility of an
exact, or even approximate computation of o

6
(&) (Blondel

& Tsitsiklis, 1997b). By the same argument, the problem
of determining whether some product of two given ma-
trices A

0
and A

1
is stable is also undecidable. Building on

the comments made in the previous paragraph, it can be
shown that this is true even if the two matrices have
integer entries, are of size 27]27, and one of them is
diagonal. On the other hand, if it is a priori known that
o6 (&)"1, the question o

6
(&)(1 can be decided in poly-

nomial time (Gurvits, 1996).
While o6 (&) and o

6
(&) refer to two extreme ways of

choosing a sequence of matrices, we can de"ne an
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intermediate quantity if we let the matrices A
t
be gener-

ated randomly and independently, according to a prob-
ability distribution P on the set &. The largest Lyapunov
exponent associated with P and & is then de"ned by

j(&,P)" lim
k?=

1

k
E[log(DDA

1
2A

k
DD)],

where E[ ) ] stands for expectation. We de"ne the
Lyapunov spectral radius o

P
(&) by

o
P
(&)"ej(&, P)

and it is easily veri"ed that

o
6
(&)4o

P
(&)4o6 (&).

Similar to our earlier arguments, the undecidability of
mortality can be used to establish that o

P
(&) cannot be

computed exactly or approximately (Blondel & Tsitsiklis,
1997b).

It is interesting to contrast the latter result with what is
known for analogous quantities de"ned in the max-plus
algebra, where the usual operations of addition and multi-
plication are replaced by taking the maximum of two
numbers, and addition, respectively (Baccelli, Cohen,
Olsder & Quadrat, 1992). Products of matrices in the
max-plus algebra correspond to performance measures
for discrete-event systems, and the Lyapunov spectral
radius is particularly interesting. In this context, the joint
spectral radius can be computed in polynomial time, but
the question whether o(1 is NP-hard for both the lower
spectral radius and for a quantity analogous to the
Lyapunov spectral radius (Blondel, Gaubert & Tsitsiklis,
1998). In terms of computability, the latter quantity can
be approximated (in exponential time) to any degree of
accuracy (Baccelli et al., 1992), but it is unknown whether
the question `is o(1?a is decidable.

4. Nonlinear and hybrid systems

4.1. Introduction

Control problems are in general easier to solve for
linear systems than for nonlinear ones. Even for systems
that seem mildly nonlinear, simply stated control ques-
tions may become intractable or, in many cases, undecid-
able. We review in this section some of the available
complexity results, including related results for hybrid
systems. We look at four particular control problems.

STATE CAN BE DRIVEN TO THE ORIGIN

Input: A system x
t`1

"f (x
t
, u

t
) and an initial state x

0
.

Question: Does there exist some ¹51 and controls
u
t
, t"0,2,¹!1, such that x

T
"0?

NULLCONTROLLABILITY (All states can be driven to the
origin.)

Input: A system x
t`1

"f (x
t
, u

t
).

Question: Is it true that for every initial state x
0
, there

exists some ¹51 and controls u
t
, t"0,2,¹!1, such

that x
T
"0?

TRAJECTORY GOES TO THE ORIGIN

Input: A system x
t`1

"f (x
t
) and an initial state x

0
.

Question: Does there exist some ¹51 such that
x
T
"0?

ALL TRAJECTORIES GO TO THE ORIGIN

Input: A system x
t`1

"f (x
t
).

Question: Is it true that for every x
0

there exists some
¹51 such that x

T
"0?

Asymptotic versions of these de"nitions are possible
by requiring the sequences to converge to the given state
rather than reaching it in "nite time. For example, in
a problem ALL TRAJECTORIES CONVERGE TO THE ORIGIN, we
have an autonomous system and the objective is to
decide whether x

t
P0 for any initial state x

0
. The "rst

two problems are control design problems, whereas the
last two are analysis problems. When algorithms exist for
the design problems, they can be used for the correspond-
ing analysis problem as well. Thus, analysis problems are
in general easier to solve. When looking for negative
complexity-theoretic results, the reverse is true; analysis
problems are harder to show undecidable or NP-hard
than control problems.

In all of these problems, we need to assume that the
system is `givena in terms of a "nite-length description of
the function f. For example, if f is polynomial with ra-
tional coe$cients, it is `givena in terms of its coe$cients.
For linear systems the above questions are all decidable
in polynomial time. On the other hand, no algorithms
exist for general nonlinear systems. Stated at this level of
generality, these problems are not interesting, because
they are far too di$cult. For example, as pointed in
Sontag (1995), the null-controllability question for gen-
eral nonlinear systems includes the problem of deciding
whether a given arbitrary nonlinear equation /(u)"0
has a solution. Indeed, for a given function /, consider
the system x

t`1
"/(u

t
), which is null controllable if and

only if / has a zero. Thus, the null-controllability ques-
tion for nonlinear systems is at least as hard as deciding
whether a given nonlinear function has a zero, which is
far too general a problem. For a problem to be interest-
ing, we need to constrain the type of nonlinear systems
considered. In the subsections that follow we consider
several classes of systems, such as systems with a single
nonlinearity, systems with componentwise nonlinearities,
piecewise-linear systems, and hybrid systems.

4.2. Systems with a single nonlinearity

Even for systems that involve a single scalar nonlin-
earity, algorithms for deciding stability are inherently
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ine$cient. To illustrate this, let us "x an arbitrary non-
constant scalar function l :RCR that satis"es

lim
x?~=

l(x)4l(x)4 lim
x?`=

l(x), ∀ x3R. (2)

Having "xed l, let us consider the problem in which we
are given A

0
,A

1
3QnCn, and c3Qn as input, and we wish

to determine whether all trajectories of the system

x
t`1

"(A
0
#l(cTx

t
)A

1
)x

t
(3)

converge to the origin. If l were constant, system (3)
would be linear and this question could be decided in
polynomial time. On the other hand, the problem is
known to be NP-hard for any "xed nonconstant l that
satis"es (2) (Blondel & Tsitsiklis, 1999a).

If we focus on the particular case where l is the sign
function, we obtain an NP-hardness result for a very
simple class of nonlinear systems, namely systems that
are linear on each side of a hyperplane:

x
t`1

"G
A

`
x
t

when cTx
t
50,

A
~

x
t

when cTx
t
(0.

(4)

Such systems could arise when a linear system is control-
led using a `bang}banga controller. They also represent
one of the simplest types of hybrid systems.

It is not clear whether questions related to the stability
of systems (3) are actually decidable. We do not know of
any nonconstant function l for which ALL TRAJECTORIES

CONVERGE TO THE ORIGIN has been proved decidable or
undecidable.

System (4) is of the form x
t`1

"A
t
x
t

where each
A

t
belongs to the set MA

~
,A

`
N. This is a situation similar

to the one considered in Section 3.5, except that now the
sequence of matrices is not arbitrary, but is determined
by the state sequence. Still, this does not help in reducing
complexity as we now argue using an example taken
from Blondel and Tsitsiklis (1998a). Consider a system
described by a state vector (v

t
, y

t
, z

t
), where v

t
and y

t
are

scalars and z
t
is a vector in Rn, and the dynamics is of the

form

A
v
t`1

y
t`1

z
t`1
B"A

!1/4 0 0

!1/4 1/2 0

0 0 A
`
BA

v
t

y
t

z
t
B when y

t
50,

and

A
v
t`1

y
t`1

z
t`1
B"A

1/4 0 0

1/4 1/2 0

0 0 A
~
BA

v
t

y
t

z
t
B when y

t
(0.

This system consists of two linear systems, each of which
is enabled in one of two half-spaces, as determined by the
sign of y

t
. Given that y

0
can be any real number, it can be

veri"ed that the sequence sign(y
t
) is completely arbitrary,

which then implies that the matrices A
~

and A
`

can be

multiplied in an arbitrary order. Clearly, all trajectories
converge to zero if and only if z

t
always converges to zero

and the problem is at least as hard the corresponding
question from Section 3.5 in which arbitrary products
were allowed. If the latter problem is ever shown to be
undecidable, the same will be automatically true for the
problem considered here. On the other hand, since the
boundedness of all products of A

~
and A

`
is undecid-

able (Blondel & Tsitsiklis, 1999b), it follows that the
uniform boundedness of the trajectories of system (4), for
all initial states in a bounded set, is also undecidable.

One can easily adapt (3) to include the possibility of
a control action, as in a system of the form

x
t`1

"(A
0
#l(cTx

t
)A

1
)x

t
#Bu

t
. (5)

The question of NULLCONTROLLABILITY for system (5),
subsumes the question of whether ALL TRAJECTORIES GO TO

THE ORIGIN the autonomous system (3) * just consider
the special case where B"0 * and NP-hardness fol-
lows. One can in fact say more than that. When l is the
sign function, then NULLCONTROLLABILITY and STATE CAN

BE DRIVEN TO THE ORIGIN for systems (5) becomes undecid-
able (Blondel & Tsitsiklis, 1999a, Theorem 2).

Let us "nally note that for functions l that have "nite
range, systems (5) become piecewise linear. We shall say
more about the complexity of such systems in Section 4.4.

4.3. Systems with componentwise nonlinearities

Let us "x a scalar function p : RCR, and consider
systems of the form

x
t`1

"p(Ax
t
), (6)

where the matrix A has size n]n and p is applied com-
ponentwise, i.e.,

p(q
1
,2, q

n
)"(p(q

1
),2,p(q

n
)).

Systems of this type arise in a wide variety of situations.
When p is linear, we have a linear system and most
dynamical properties of interest can be checked e$cient-
ly. When p has "nite range, the entries of the state vector
take values in a "nite set, the system evolves on a "nite
state space after the "rst time step, and dynamical
properties can be decided in time which is polynomial
in the number of possible states. Note, however, that
the number of states generally increases exponentially
in n. If p is the sign function and A is symmetric,
system (6) is guaranteed to have a "xed point, but it
is not known whether it can be found in polynomial time
(Papadimitriou, 1994).

Recurrent arti"cial neural networks are commonly of
the form (6) (Sontag, 1996b) and, in that context, p is
referred to as the activation function. Some of the activa-
tion functions that are common in the neural network
literature are the logistic function p(x)"1/(1#e~x),
the trigonometric function p(x)"arctan(x), and the
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11A universal Turing machine is a Turing machine M that receives as
input the description of another machine M@ and a string s, and then
simulates the operation of machine M@ on input s.

12Notice that the title of the reference Hyotyniemu (1997) involves
the term `stabilitya, but it is actually used in a sense di!erent than the
usual one in systems theory.

saturated linear function

p(x)"G
0 when x40,

x when 0(x(1,

1 when x51.

Note that all of these functions are continuous and have
"nite limits on both ends of the real axis, which is a com-
mon assumption in the context of arti"cial neural net-
works. Other motivations for studying systems of type (6)
arise in the context of "xed-point digital "lters and of
linear systems with saturation limits on the state or
control variables. See the book Liu and Michel (1994) for
further motivation and many references related to neural
networks and "lter design. Finally, we will also discuss
the cut function, de"ned by

p(x)"G
0 when x40,

x when x'0,

which is probably the simplest nonlinear but piecewise
linear function.

It turns out that systems of the form (6) have vastly
di!erent characteristics from linear systems. A result an-
nounced in Siegelmann and Sontag (1991) and completed
in Siegelmann and Sontag (1995), shows that saturated
linear systems are capable of simulating Turing machin-
es. This is done by suitably encoding the transition rules
of the Turing machine in the matrix A, while the tape
contents and the machine's internal state are encoded on
some of the states of the saturated linear system. Thus, as
computational devices, linear saturated systems are as
powerful as Turing machines. This abstract result has
several system-theoretic implications. We describe a rep-
resentative one. Recall that the halting problem is unde-
cidable for Turing machines. Therefore, the problem of
deciding whether a given initial state of a saturated linear
system eventually leads to a state that encodes a halting
con"guration, is also undecidable. This halting state can
be chosen to be the origin (see Sontag, 1995) and it
follows that TRAJECTORY GOES TO THE ORIGIN is undecid-
able for saturated linear systems.

By using a universal Turing machine,11 one can in fact
prove that for saturated linear systems, TRAJECTORY GOES

TO THE ORIGIN is undecidable for some particular matrix
A. More concretely, there exists a particular integer
matrix A (of size approximately equal to 1000]1000) for
which there exists no algorithm that takes an initial state
x
0

(with rational components) as input and decides
whether the state will eventually hit the origin (Siegel-
mann & Sontag, 1995). The problem of "nding the
smallest possible such matrix is a di$cult open problem

that is related to the smallest possible size of universal
Turing machines (Rogozhin, 1996).

The initial result by Siegelmann and Sontag has
prompted e!orts to understand the necessary properties
of a function p, under which Turing machine simulation
is possible. The fact that such simulations are possible
with the cut function is proved in an elementary and
simple way in Hyotyniemu (1997).12 In Koiran (1996), it
is shown that Turing machines can be simulated if
p eventually becomes constant on both ends of the real
line and is twice di!erentiable with nonzero derivative on
some open interval. Note, however, that the function
p"arctan and other standard functions in the neural
network literature do not satisfy these hypothesis. The
conditions are further relaxed in Kilian and Siegelmann
(1996). The authors o!er a sketch of a proof that Turing
machines can be simulated for any function p in a certain
class that includes, among others, the functions described
above and all the functions that are classically used in
arti"cial neural networks. The functions do not need to
become ultimately constant but need to be monotone.

Using an argument similar to the one provided earlier
for saturated linear systems, we arrive at the conclusion
that TRAJECTORY GOES TO THE ORIGIN for systems (6) is
undecidable when p is the saturated linear function, the
cut function, the logistic function, or any function that
belongs to the classes de"ned in Koiran (1996) and Kilian
and Siegelmann (1996). The undecidability of TRAJECTORY

GOES TO THE ORIGIN immediately implies the same for
STATE CAN BE DRIVEN TO THE ORIGIN for systems of the form

x
t`1

"p(Ax
t
#Bu

t
). (7)

These results do not have any direct implications for the
problem ALL TRAJECTORIES CONVERGE TO THE ORIGIN. For
saturated linear systems, this problem was conjectured to
be undecidable by Sontag in Sontag (1995). A proof that
this is indeed the case is given in Blondel, Bournez,
Koiran and Tsitsiklis (1999b) and establishes the unde-
cidability of several related global properties such as ALL

TRAJECTORIES GO TO THE ORIGIN. The main idea is to
simulate a Turing machine by a saturated linear system
so that all trajectories converge to the origin if and only if
the Turing machine halts for every initial con"guration.
By a result of Hooper (Hooper, 1966), the latter Turing
machine problem is undecidable, hence the proof of
Sontag's conjecture.

4.4. Piecewise linear and hybrid systems

Hybrid systems involve a combination of continuous
dynamics (e.g., di!erential or di!erence equations) and
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discrete dynamics. There is no consensus on a single
general model of hybrid systems, but many discrete-time
models include the class that we describe next.

We start with a partition of Rn into "nitely many
disjoint subsets H

1
,H

2
,2, H

m
. We assume that a di!er-

ent linear system is associated with each subset, and the
overall system is described by

x
t`1

"A
i
x
t

when x
t
3H

i
. (8)

When the subsets H
i

are de"ned in terms of a "nite
number of linear inequalities, the systems of the form (8)
are the piecewise linear systems introduced by Sontag
(1981) as a unifying model for describing interconnec-
tions between automata and linear systems. See Sontag
(1985) for a characterization of the complexity of ques-
tions related to "xed time horizon properties of such
systems, and Sontag (1996a) for a more recent account of
available results.

Note that systems with componentwise nonlinearities,
and with p equal to the saturated linear function, are
a special case of piecewise linear systems. Hence, using
the results of the previous section, we deduce that piece-
wise linear systems can simulate Turing machines and
TRAJECTORY GOES TO THE ORIGIN is undecidable for piece-
wise linear systems. It is known that simulation of Turing
machines is possible by using piecewise azne systems in
state dimension two (Moore, 1990), but not in dimension
one (Koiran, Cosnard & Garzon, 1994). This result can
be interpreted and rearranged by saying that Turing
machine simulation is possible by piecewise linear sys-
tems in dimension three and, hence, TRAJECTORY GOES TO

THE ORIGIN is undecidable for such systems. Similar to
saturated linear systems, one can use a universal Turing
machine to prove that there exists a particular piecewise
linear system in R3 (with the state space being partitioned
into fewer than 800 subsets) for which TRAJECTORY GOES

TO THE ORIGIN is undecidable (Koiran et al., 1994).
Let us now introduce a control variable and consider

systems of the form

x
t`1

"A
i
x
t
#Bu

t
when x

t
3H

i
. (9)

When B"0, these systems are equivalent to auton-
omous piecewise linear systems and so STATE CAN BE

DRIVEN TO THE ORIGIN is undecidable. This result is also
obtained in Blondel and Tsitsiklis (1999a), with a di!er-
ent proof technique that has the advantage that it can be
used to derive sharper estimates of the decidability limit
(see also Toker, 1996 for a similar proof ). There is an
obvious tradeo! in piecewise linear systems between the
state-space dimension n and the number of subsets m.
When there is only one subset, or when the state dimen-
sion is equal to one, most properties are easy to check. In
Blondel and Tsitsiklis (1999a, Theorem 2), it is shown
that NULLCONTROLLABILITY is undecidable for piecewise
linear systems of dimension 6n

p
#7 on two regions, and

that STATE CAN BE DRIVEN TO THE ORIGIN is undecidable for
piecewise linear systems of dimension 3n

p
#1 on two

regions. Here, n
p

is a number of pairs for which Post's
correspondence problem is undecidable and, as ex-
plained in Section 2, we can take n

p
"7. This result can

be improved by showing that, when nm52#6n
p
, then

the problem of deciding whether a given initial state
x
0

can be driven to the origin, is undecidable. Thus, the
problem of interest is undecidable when nm544. In
particular, the problem remains undecidable for piece-
wise linear systems of state dimension 22 and with as few
as two subsets.

Finally, the problem ALL TRAJECTORIES GO TO THE

ORIGIN, as well as a number of other properties related to
stability, are undecidable for piecewise azne systems in
dimension two (Blondel, Bournez, Koiran, Papadimit-
riou & Tsitsiklis, 1999a). The proof makes use of two-
counter machines, a model of computation equivalent to
Turing machines, as far as decidability is concerned, and
relies on the fact that the problem of determining whether
a given two-counter machine halts for every initial con"g-
uration of the machine is undecidable. If the mapping
x
t`1

"f (x
t
) is piecewise a$ne but continuous, the prob-

lems related to stability are decidable in dimension 1,
undecidable in dimension 3 (Blondel et al., 1999b), and
open in dimension 2.

4.5. Other classes of systems

Piecewise linear systems are closely related to the con-
tinuous-time piecewise constant derivative systems ana-
lyzed in Asarin, Maler and Pnueli (1995). Once more, we
are given a partition of Rn into "nitely many disjoint
subsets H

1
,2, H

m
, and we consider a system of the form

dx(t)

dt
"b

i
when x3H

i
,

where the b
i

are given vectors. Assuming that the sets
H

i
are described by linear inequalities, the trajectories of

such systems are piecewise a$ne functions of time, with
break points occurring on the boundaries of the regions.
In Asarin et al. (1995) the authors show that, for given
states x

b
and x

e
, the problem of deciding whether x

e
is

reached by a trajectory starting from x
b
, is decidable for

systems of dimension two, but is undecidable for systems
of dimension three or more. Once more, this undecidabil-
ity result is obtained by simulating Turing machines
and by reducing the halting problem to a reachability
problem.

Many of the undecidability results presented in this
section are based on simulations of Turing machines
using dynamical systems of a particular type. Similar
Turing machine simulations are possible by other types
of devices; see, e.g., Pollack (1987) for simulation by
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13 In high-order neural nets, activations are combined using multipli-
cation as opposed to just linear combinations.

high-order neural nets,13 Bournez and Cosnard (1996)
for simulation by analog automata, Garzon (1995) for
simulation by cellular automata, Siegelmann and Sontag
(1994) and Siegelmann (1998) for simulation by saturated
linear systems that can involve arbitrary real (not neces-
sarily rational) numbers, Branicky (1995b), Branicky
(1995a), Ruohonen (1997) and Moore (1991) for simula-
tion by di!erential equations, Moore (1990) for simula-
tion by continuous-time physical devices in dimension
three, and Koiran and Moore (1999) for simulation by
analytic maps. In all of these constructions, the state of
the system is used to encode the con"guration (state and
tape contents) of a Turing machine, and the dynamics of
the system are used to represent the transition rules of the
Turing machine.

The results discussed in this section are far from being
exhaustive, and there are several topics that we have not
touched. These include systems with polynomial non-
linearities (Sontag, 1988b), bilinear systems (Sontag,
1988a; Kawski, 1990), decidability results for hybrid
systems (Henzinger, Kopke, Puri & Varaiya, 1998;
La!erierre et al., 1999), and systems evolving on "nite
groups (Golaszewski & Ramadge, 1989).

5. Stochastic control

We now turn our attention to problems of stochastic
optimal control, and discuss exclusively the discrete-time
case. Stochastic control problems can be addressed, in
principle, using the methods of dynamic programming.
However, their practical applicability is somewhat re-
stricted because many natural problems lead to very
large state spaces, a phenomenon that Bellman has
termed the `curse of dimensionality.aBy approaching the
subject from the point of view of computational complex-
ity, we can get a lot of insight into the types of problems
and formulations that can be e$ciently solved. We will
mainly focus on Markov decision problems (MDPs), that
involve "nite state and control spaces, but we will also
discuss brie#y the case of continuous state spaces.

5.1. Perfectly observed MDPs

A Markov Decision Problem is speci"ed by a "nite
state space S"M1,2,nN, a "nite control space
;"M1,2, mN, a (possibly in"nite) time horizon ¹, a dis-
count factor a3[0,1], transition probabilities p

ij
(u, t), and

one-stage costs g(i, u, t). At a typical time t, the state is
equal to some i, a decision u is applied, and the cost
g(i, u, t) is incurred. The next state is chosen at random
and is equal to j with probability p

ij
(u, t). We will pay

special attention to stationary problems, in which the
transition probabilities and costs per stage do not depend
explicitly on time and can be written as p

ij
(u) and g(i, u).

We de"ne a policy n as a sequence of functions
k
t
:SC; that specify the decision u

t
at time t as a func-

tion of the current state i
t
, that is, u

t
"k

t
(i
t
). If k

t
is the

same for all t, the policy is called stationary, and we abuse
terminology by referring to the corresponding function
k as a policy. Once a policy is "xed, the state of the
system evolves as a Markov chain and we de"ne the
corresponding expected discounted cost-to-go, as a func-
tion of the initial time and state, by

Jn
t
(i)"EC

T~1
+
k/t

ak~tg(k, i
k
, u

k
) K it"iD,

where E[ ) ] stands for expectation with respect to the
transition probabilities speci"ed by the policy. When the
time horizon ¹ is in"nite, we will always assume that
the problem is stationary, and that a(1, so that the
in"nite sum converges and the expectation is well-
de"ned. We de"ne the optimal cost-to-go JH

t
by

JH
t
(i)"inf

n
Jn
t
(i).

According to the standard theory of dynamic program-
ming, there exists a policy n which is optimal, that is,
Jn
t
(i)"JH

t
(i), for every state i. Furthermore, for in"nite-

horizon stationary problems, there exists an optimal pol-
icy which is stationary, and JH

t
is the same for all t. If

JH
t

can be somehow computed, an optimal policy be-
comes immediately available by letting

k
t
(i)"argmin

u|U
Cg(i, u, t)#a+

j

p
ij
(u, t)JH

t`1
( j)D.

We will mostly refer to complexity results for decision
problems where we wish to determine whether JH

t
(i) is less

than some given rational number, for some given i and t.
Typically, the problem of computing an optimal decision
k
t
(i) for some given i and t has similar complexity.
For "nite-horizon problems, JH

t
can be computed

by the standard backwards dynamic programming
recursion

JH
t
(i)"min

u
Cg(i, u, t)#a+

j

p
ij
(u, t)JH

t`1
( j)D,

which is initialized with JH
T
(i)"0. This algorithm in-

volves O(¹mn2) arithmetic operations, which is of the
same order of magnitude as the length of the input (the
speci"cation of the transition probabilities p

ij
(u, t) for

every i, j, u, t). An interesting twist arises if we deal with
stationary problems, because the input now consists of
only mn2 transition probabilities and the time horizon ¹.
Since it takes O(log¹) bits to specify ¹, dynamic pro-
gramming becomes an exponential time algorithm. Still,
(Tseng, 1990) shows that for any "xed a(1, the problem
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14The example in Melekopoglou and Condon (1994) involves an
undiscounted problem, but as pointed out in Littman et al. (1995), it
applies to discounted problems as well.

can be solved with a number of arithmetic operations
proportional to log¹, provided that the corresponding
in"nite horizon problem admits a unique optimal policy.
(The complexity, however, increases as a approaches 1.)

For in"nite-horizon, discounted, stationary problems,
a solution boils down to solving the Bellman equation

JH(i)"min
u
Cg(i, u)#a+

j

p
ij
(u)JH( j)D, i"1,2, n, (10)

which is a nonlinear system of n equations, in n un-
knowns. It is known that the (unique) solution to this
equation can be obtained by solving an equivalent linear
programming problem (Puterman, 1994; Bertsekas,
1995). Since linear programming can be solved in poly-
nomial time, the same conclusion follows for such MDPs
as well. Note, however, that the complexity of an exact
solution will generally depend on the numerical values of
the input data. No algorithm (neither for linear program-
ming nor for MDPs) is known in which the number of
arithmetic operations is a polynomial in n and m, and this
is connected to major open problems in linear program-
ming theory (Bertsimas & Tsitsiklis, 1997). This entire
discussion applies equally to the average cost MDP,
which is a related problem formulation that we will not
discuss further. Su$ce to say that for both discounted
and average cost problems, linear programming is the
only method known to solve them in polynomial time.

In practice, MDPs are often solved by special purpose
methods, rather than linear programming. The simplest
method, value iteration consists of iterating the Bellman
equation (10). After k iterations, it is guaranteed to ap-
proximate JH to within O(ak), and also provides a policy
which is within O(ak) from being optimal. Because there is
a "nite number of policies, a policy which is e-optimal, for
su$ciently small e, is guaranteed to be exactly optimal.
Building on these observations and certain bounds de-
rived in Tseng (1990), it is shown in Littman et al. (1995)
that value iteration can be adapted to solve in"nite-
horizon discounted MDPs to exact optimality, with com-
putational e!ort which is polynomial in m, n, 1/(1!a),
and the size (bit length) of the inputs g(i, u), p

ij
(u). Thus,

value iteration is a polynomial time algorithm as long as
a is "xed to a constant value less than 1.

Some of the fastest methods for in"nite-horizon MDPs
are based on policy iteration and its re"nements. Policy
iteration is a method that produces policies with strict
performance improvement at each step, until the algo-
rithm terminates (which must eventually happen because
there are only "nitely many policies). Policy iteration is
known to require no more iterations than value iteration,
and the complexity analysis in the preceding paragraph
still applies. This analysis still allows for the possibility
that the number of iterations (policy improvements) in-
creases as a approaches 1, but in practice the number of
iterations seems to be fairly insensitive to the discount

factor. We have just identi"ed a major problem in this
area; namely, to determine whether the number of iter-
ations in policy iteration can be bounded by a poly-
nomial in the instance size, or even better, whether the
number of iterations is bounded by a polynomial in
m and n. The answer to these questions is not known. The
authors of Melekopoglou and Condon (1994) consider
a variant of policy iteration and show, by means of an
example, that the number of policy improvements is in
the worst-case exponential in n.14 However, this variant
is rather weak in that it can be slower than value iter-
ation, and need not have any implications for the perfor-
mance of the standard version of policy iteration. Policy
iteration bears close resemblance to Newton's method
(Puterman & Brumelle, 1978) which, for smooth non-
linear systems of equations, is rapidly convergent in a
local sense. Still, this observation is not enough to settle
the complexity issue, "rst because Bellman's equations
are not smooth (due to the minimization involved) and,
second, because we are interested in convergence in a
global sense.

The situation is di!erent when we consider the special
case of deterministic problems. In the "nite-horizon case,
deterministic MDPs are essentially equivalent to the
much studied and e$ciently solvable shortest path
problem. For the in"nite-horizon discounted case, the
problem can be solved in polynomial time, with a
number of arithmetic operations that depends on n but
not on the discount factor (Papadimitriou & Tsitsiklis,
1987; Littman, 1996). For the in"nite-horizon average
cost case, the problem amounts to "nding a cycle in
a graph that has the smallest possible average arc cost.
This is again a classical problem, that can be solved with
O(n3) arithmetic operations (Karp, 1978).

5.2. Succintly described problems

Even though MDPs can be solved in time which in-
creases polynomially in the number of states, many prob-
lems of practical interest involve a very large number of
states, while the problem data (e.g., the transition prob-
abilities) are succinctly described, in terms of a small
number of parameters. For concreteness, let us consider
the in"nite-horizon discounted multi-armed bandit prob-
lem. We start with a Markov chain on an n-element state
space S, with transition probabilities p

ij
and costs per

stage g(i). In a problem involving N arms, the state is an
N-tuple (x

1
,2, x

N
), where each x

k
is an element of S and

describes the state of the kth arm. The control set is
;"M1,2, NN. If a decision u"k is made, the state of
the kth arm makes a transition to a new state, according
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15Although these results are stated for the problem of uniform
approximation, the proof of the lower bounds also applies to the
problem of approximating JH at a particular given state.

to the transition probabilities p
ij
, while the states of the

remaining arms stay the same, and a cost g(x
k
) is in-

curred. We now have an MDP de"ned on a state space of
cardinality nN, but which is described using only
O(n2) parameters (transition probabilities and costs).
A straightforward solution using general purpose MDP
tools requires at least nN resources (time and memory).
However, due to the ingenious solution by Gittins
(Gittins, 1989; Bertsekas, 1995), there is an algorithm
which given the current state performs a polynomial (in
the instance size) amount of computation and determines
an optimal action. (Note that there is no point in trying
to precompute an optimal action for every state because
there are exponentially many states.)

Unfortunately, the multi-armed bandit problem is
a rare exception and for most problems of practical
interest no alternatives have been found that would allow
for computations that are polynomial in the size of a suc-
cinct problem description. In fact, a mild variation of the
multi-armed bandit problem, the so-called restless bandit
problem (Whittle, 1988), becomes PSPACE-hard, even if
the problem is deterministic (Papadimitriou & Tsitsiklis,
1994). For a stronger result, the same reference considers
a problem of routing and scheduling in closed queueing
networks. An instance of this problem involving n cus-
tomer classes and servers can be described in terms of
O(n2) parameters (service rates, routing probabilities,
etc.), but the state space in an MDP formulation is
exponentially large. (If each one of n queues can be
independently empty or nonempty, we already have
2n states.) It is shown that the problem is EXP-complete,
which implies that any algorithm that attempts a short
cut * similar to the one for the multi-armed bandit
problem * has provably exponential complexity. This
result is developed for average cost problems, but the
same proof also works for the "nite-horizon case, as long
as the time horizon is large (exponential in n). We also
refer to Mundhenk et al. (1997, Theorem 6.7) and Litt-
man (1997, Theorem 1) which study succinctly described
exponential or in"nite horizon MDPs, and provide
EXP-completeness results consistent with the one dis-
cussed here. The interest on this subject partly stems from
recent research activity on propositional planning sys-
tems within the "eld of arti"cial intelligence. It is shown
in Littman (1997) that the EXP-completeness result
applies to several classes of planning systems in the
literature. Finally, note that if we restrict attention to
deterministic succinctly described MDPs, the queue-
ing network problem becomes PSPACE-complete
(Papadimitriou and Tsitsiklis, 1994, Theorem 3), which is
consistent with results on planning problems in deter-
ministic domains (Bylander, 1994; Littman, Goldsmith
& Mundhenk, 1998).

Another case of interest refers to succinctly described
MDPs over a time horizon which is polynomial in the
instance size, and therefore logarithmic in the number of

states. This is motivated in the planning literature by the
fact that excessively long plans cannot be practically
useful. For this case, the problem becomes PSPACE-
complete. This is proved in Littman (1997, Theorems 2
and 3) for several planning systems, and in Mundhenk et
al. (1997, Corollary 6.14) for a related class of `com-
presseda MDPs; see also Littman et al. (1998).

5.3. Problems with continuous state spaces

Let us brie#y discuss some related work on problems
with continuous state spaces. Problems of this type do
not admit closed-form or exact algorithmic solutions.
A rare exception is the problem of optimal control of
linear systems, when the cost per stage is a nonnegative
quadratic function of the state and the control, and this is
because the optimal cost-to-go function turns out to be
quadratic. The "nite horizon problem can be solved
exactly using the standard dynamic programming recur-
sion. The in"nite horizon problem amounts to solving an
algebraic Riccati equation, which cannot be done exactly,
but there are rapidly convergent algorithms that can
quickly produce solutions within any desired precision.

General continuous-state problems can be solved ap-
proximately, by discretizing them, as long as the problem
data (transition probabilities and cost per stage) are su$-
ciently smooth functions of the state (Whitt, 1978a, b).
References Chow and Tsitsiklis (1989) and Chow and
Tsitsiklis (1991) establish that

OA
1

e2n`mB
arithmetic operations are necessary and su$cient for
uniformly approximating the function JH within e, for the
case where the state and control spaces are the sets [0,1]n
and [0,1]m, respectively, under a Lipschitz continuity
assumption on the problem data, and for a "xed discount
factor a.15 The 1/em complexity arises because we need to
search a grid with e spacing in order to "nd a close-to-
optimal decision for any given state. This issue disap-
pears if the control set has "nite cardinality. However,
the curse of dimensionality remains in e!ect due to the
1/e2n term.

In some important work, Rust (1997a) has shown that
the curse of dimensionality can be bypassed by allowing
for randomized algorithms. The advantage of randomiz-
ation can be best understood in terms of the multivari-
able integration problem. Deterministic methods require
a "ne discretization of the space of interest (which leads
to the curse of dimensionality), whereas Monte Carlo
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methods produce e-approximate estimates of the value of
an integral, with high probability, using a dimension-
independent number O(1/e2) of samples. Rust's method is
a variant of value iteration which only looks at a rela-
tively small number of randomly sampled representative
states.

The complexity estimates in all of these references are
proportional to the Lipschitz constant of the problem
data. When one considers practical problems of increas-
ing dimension, the Lipschitz constant will often increase
exponentially. To see this, consider the probability
density function p(x)"2x for a scalar random variable
that takes values in [0,1]. If we introduce n independent
copies of this random variable, the density becomes
2nx

1
2x

n
on the unit cube and the Lipschitz constant

increases exponentially with n. Thus, the curse of dimen-
sionality is not fully eliminated. Nevertheless, the results
of Rust suggest a de"nite advantage in using random
sampling (or even deterministic but pseudo-random
sampling (Rust, 1997b)).

5.4. Problems with imperfect information

We now return to "nite-state systems. So far, we have
allowed the decision u to be a function of the system state.
In an alternative formulation, the controller only has
access to partial observations y

t
"h(i

t
), where h is a pre-

speci"ed function on the state space, which we assume to
have "nite range. (One could augment this model by
including observation noise. However, by suitably re-
de"ning the state of the system, the problem with obser-
vation noise can be reduced to a problem without it.) In
the standard formulation of the partially observed
Markov decision problem (POMDP), the decision u

t
at time t is allowed to be a function of all past observa-
tions; that is, we are dealing with policies of the form
u
t
"k

t
(y

0
, y

1
,2, y

t
).

POMDPs can be reduced to perfectly observed
MDPs, by rede"ning the state at time t to be the past
observation history (y

0
, y

1
,2, y

t
) (Bertsekas, 1995). With

a time horizon ¹, the cardinality of the rede"ned state
space (and the resulting dynamic programming algo-
rithm) increases exponentially in ¹, but this is to some
extent unavoidable. Indeed, if we assume that the original
state space has cardinality n and let ¹"n, the problem is
PSPACE-complete (Papadimitriou & Tsitsiklis, 1987,
Theorem 6). Incidentally, the MDP obtained in this way
is another example of a succinctly described MDP, with
a time horizon which is polynomial in the size of the
instance, and so this result is in agreement with the
results mentioned in Section 5.2.

Another standard reformulation of an n-state
POMDP to a perfectly observed MDP uses a rede"ned
state (the `information statea) which is the posterior
distribution of the original state, given the available ob-
servations. This is now an MDP with a continuous state

space (the unit simplex in Rn), and smooth transition
probabilities, and it can be solved approximately (cf. the
discussion in Section 5.3). If the preimage of every pos-
sible observation has cardinality bounded by a constant
k, and if k53, the problem remains NP-hard. (The case
k"2 is open.) But we are now dealing with an essentially
k-dimensional state space and for any "xed k, the prob-
lem can be solved to within e of optimality with a number
of arithmetic operations which is polynomial in n, m, 1/e,
and the time horizon (Burago, Rougement & Slissenko,
1996, Theorem 8).

In"nite-horizon POMDPs cannot be solved exactly by
reducing them to perfectly observed MDPs, because the
latter have an in"nite state space. It turns out that
in"nite-horizon POMDPs are undecidable (under total,
discounted, or average cost criteria) (Madani, Hanks
& Condon, 1999), because they are closely related to
the `emptinessa problem for probabilistic "nite-state
automata, which is known to be undecidable. There are
also results for succinctly represented "nite-horizon
POMDPs. Generally speaking, the complexity (as a
function of the instance size) is exponentially higher
(Mundhenk et al., 1997).

Let us also mention an interesting special case of
POMDPs, namely, the case where there are no observa-
tions (open-loop control). Assuming a time horizon
¹ equal to the cardinality of the state space, the problem
is NP-complete (Papadimitriou and Tsitsiklis, 1987,
Corollary 2). See also Mundhenk et al. (1997) for results
concerning the case of succinct problem descriptions, and
Burago et al. (1996, Theorem 6) for nonapproximability
results.

At this point, it is interesting to draw a connection with
some of the results discussed in Section 3. For any deci-
sion u, let P(u) be the corresponding transition probabil-
ity matrix. Let n be a row vector with the probability
distribution of the initial state, and let g be a column
vector whose ith component is the cost if the system is
found at state i at time ¹. (Assume that there are no
costs at intermediate times.) Optimal open-loop control
amounts to minimizing nP(u

0
)P(u

1
)2P(u

T~1
)g over all

sequences u
0
, u

1
,2, u

T~1
, and as stated earlier, this is an

NP-complete problem. But this problem can also be
viewed as referring to the worst-case behavior of a time-
varying linear system x

t`1
"P

t
x
t
, where each matrix

P
t
is chosen from within a "nite set of matrices. Indeed,

this observation has been exploited in Tsitsiklis and
Blondel (1997a) to establish NP-hardness results for
problems related to time-varying linear systems (cf.
Section 3.5).

5.5. Nonclassical information structures

In stochastic control problems with a nonclassical
information structure, the decision at time t is
made without knowledge of the full history of past
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16This counterexample showed that optimal controllers for LQG
problems with a nonclassical information structure are not necessarily
linear, thus eliminating the hope of extending LQG theory to decentra-
lized control.

observations, and this setting includes problems of de-
centralized stochastic control and team decision theory.
When arbitrary information structures are allowed,
POMDPs are obtained as a special case and therefore,
the complexity is at least as large. But negative results
can be obtained even for seemingly simple special cases.

Consider the static team decision problem (Radner,
1962). Decision maker 1 (respectively, 2) observes a ran-
dom variable y

1
(respectively, 2) and makes a decision

according to a rule of the form u
1
"k

1
(y

1
) (respectively,

u
2
"k

2
(y

2
)), where u

1
and u

2
are restricted to lie in "nite

sets. We consider the objective

min
k1 , k2

E[g(y
1
, y

2
,k

1
(y

1
), k

2
(y

2
))]

and ask the question whether it is less than a given
rational number. Here, y

1
and y

2
are "nite-valued ran-

dom variables with a given (rational-valued) probability
mass function, and g is a given (rational-valued) cost
function. This problem was shown NP-complete in
Papadimitriou and Tsitsiklis (1982), and this result re-
mains valid for a special case that arises in the context of
decentralized detection (Tsitsiklis, 1984; Tsitsiklis and
Athans, 1985).

The same problem can be recast as an MDP with
a nonclassical information structure, and a time horizon
¹"3. We view (y

1
, y

2
) as the state after the "rst

transition. At stages 1 and 2, y
1

and y
2

are observed,
respectively, but we require the decisions at any time t to
be functions of the present observation only, of the form
u
t
"k

t
(y

t
), t"1,2. Thus, imperfectly observed MDPs

with a nonclassical information structure are NP-com-
plete even when the time horizon is ¹"3. (With a time
horizon of two, and a "xed initial state, we are back to the
case of a classical information structure and such prob-
lems are easily seen to be polynomial-time solvable.)

Problems in which we restrict to policies of the form
u
t
"k

t
(y

t
) are referred to as `time-dependent partially

observablea in Mundhenk et al. (1997). This reference
characterizes the complexity of several related variants;
see also Littman (1994). We also refer the reader to
Papadimitriou and Tsitsiklis (1986) which establishes the
NP-completeness of a discrete variant of Witsenhausen's
counterexample (Witsenhausen, 1968).16

5.6. Supervisory control of discrete-event systems

There is an extensive literature on supervisory con-
trol of discrete-event systems, within the framework of
Ramadge (1983) and Ramadge and Wonham (1987).
Many of the problem formulations in this area lead to

problems similar to MDPs, except that the transitions
are not determined stochastically, but may be chosen by
an adversary. The di!erence between the two model
types is rather minor, because a variant of dynamic
programming, applicable to min}max problems, can be
used. In particular, the standard formulation of the
supervisory control problem can be solved in polynomial
time if the supervisor has perfect information (Ramadge
and Wonham, 1987), but becomes PSPACE-hard for the
case of imperfect information, because it has essentially
the same structure as POMDPs (Tsitsiklis, 1989). See
also Rudie and Willems (1995) for some related results.

5.7. Zero-sum Markov games

The setting here is similar to MDPs except that there
are two competing decision makers, one acting at odd
times, the other at even times. One decision maker wants
to maximize the total expected cost, and the other at-
tempts to minimize it. The "nite-horizon version of the
problem is similar to MDPs: with perfect information, it
can be solved by a simple adaptation of the dynamic
programming recursion. For the in"nite-horizon dis-
counted case, the basic theory, including a suitable Be-
llman equation is again the same as for MDPs (Shapley,
1953; Raghavan and Filar, 1991). However, a reformula-
tion based on linear programming is not known, and
unlike ordinary MDPs, a polynomial-time algorithm is
not available. On the other hand, a negative complexity
result is not available either, and this problem's complex-
ity is an important open problem. We also refer the
reader to Condon (1989, 1992) and Zwick and Paterson
(1996) for complexity results on more general classes of
games.

6. Conclusions

The subject of complexity in systems and control is
multifaceted and interesting in many di!erent ways. It
can help the practitioner in choosing problem formula-
tions, and in calibrating expectations of what can be
algorithmically accomplished. For the systems theorist
or the applied mathematician, it raises a variety of chal-
lenging open problems that require a diverse set of tools
from both discrete and continuous mathematics. Finally,
for the theoretical computer scientist, the problems in
systems and control theory provide the opportunity to
relate abstractly de"ned complexity classes with speci"c
problems of practical interest.
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