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Abstract—We consider a service provider (SP) who provides
access to a communication network or some other form of on-line
services. Users initiate calls that belong to a set of diverse service
classes, differing in resource requirements, demand pattern, and
call duration. The SP charges a fee per call, which can depend
on the current congestion level, and which affects users' demand
for calls. We provide a dynamic programming formulation of the
problems of revenue and welfare maximization, and derive some
qualitative properties of the optimal solution. We also provide a
number of approximate approaches, together with an analysis that
indicates that near-optimality is obtained for the case of many,
relatively small, users. In particular, we show analytically as well
as computationally, that the performance of an optimal pricing
strategy is closely matched by a suitably chosen static price, which
does not depend on instantaneous congestion. This indicates that
the easily implementable time-of-day pricing will often suffice.
Throughout, we compare the alternative formulations involving
revenue or welfare maximization, respectively, and draw some
qualitative conclusions.

Index Terms—Dynamic programming, internet economics, loss
networks, revenue management.

I. INTRODUCTION

I N THIS paper, we consider a service provider (SP) who
provides access to a communication network or some other

form of on-line services. Users access the network and initiate
calls that belong to a set of diverse service classes, differing in
resource requirements, demand pattern, and call duration. The
SP charges a fee per call, which can depend on the current con-
gestion level, and which affects users' demand for calls. We
are interested in the problem of determining an optimal pricing
strategy, that maximizes an appropriate performance measure
such as social welfare or the provider's revenue. As discussed in
the sequel (Section III), our model applies to a variety of situ-
ations in which a user population shares dynamically a limited
resource, but our primary motivation comes from the context of
communication network services, e.g., provided through the In-
ternet.

For the case of a revenue maximizing provider, we have a
problem ofyield management, similar to the problems that arise
in service industries (e.g., airlines [1]). The common element in
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such problems is that the marginal cost of serving an additional
customer, e.g., an airline passenger or a new call, is negligible
once a flight has been scheduled or a communications infra-
structure is in place.

The pricing problem in communication networks, such as the
Internet, is complex and multifaceted, because one needs to take
into account engineering issues (compatibility with existing or
planned protocols), financial issues (cost recovery), a diverse
set of desired services (e.g., elastic versus real-time traffic), and
other considerations (such as simplicity, social welfare, etc.).
The current Internet relies on technical means to prevent con-
gestion (the TCP protocol), but includes no mechanisms for
ensuring quality of service (QoS) guarantees or for delivering
service to those users who need it most. Pricing mechanisms
can overcome these shortcomings, resulting in more efficient
resource allocation, by charging users on the basis of the con-
gestion that they cause.

In this spirit, several models have been put forth. MacKie-
Mason and Varian [2] have proposed a “smart market” where
packets bid for transport while the network only serves packets
with bids above a certain cutoff amount, depending on the level
of congestion. Kellyet al.[3], [4] consider charges that increase
with either realized flow rate or with the “share” of the network
consumed by a traffic stream. Gibbens and Kelly [5] describe
yet another scheme for packet-based pricing as an incentive for
more efficient flow control. Clark [6] proposes an expected ca-
pacity-based pricing scheme where users are charged ahead of
time on the basis of the expectation that they have of network
usage and excess packets are dropped at times of congestion.

The emergence of real-time traffic substantially complicates
the picture and requires QoS measures much harder to analyze
(see, e.g., Kelly [7], Bertsimaset al. [8], [9], and Paschalidis
[10]). More importantly, users who access the network wish to
complete certain tasks (e.g., send an e-mail, access a Web page,
place an “internet phone” call) and packets are completely trans-
parent to them. Thus, it is not clear whether packet-based pricing
schemes are always appropriate. Kelly [11] and Courcoubetis
et al. [12] propose the pricing of real-time traffic with QoS re-
quirements, in terms of its “effective bandwidth,” and provide
approximations that only involve time and volume charges.

A central question that has received little formal treatment
relates to determining the right time scale over which prices
should evolve. For example, prices could stay fixed, or they
might depend on slowly-varying parameters that capture the
prevailing operating conditions (as in time-of-day pricing), or
they could respond to statistical fluctuations of congestion. This
is one of the main issues addressed in this paper. We will estab-
lish that for both revenue and welfare maximization and under
stationary demand, fixed (static) prices are asymptotically op-
timal in a number of limiting regimes including light traffic,
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heavy traffic, and a regime of many, relatively small, users,
which is of more practical importance in an network environ-
ment such as the Internet. This indicates that when demand sta-
tistics are slowly varyingtime-of-daypricing will often suffice.

On the technical side, the problem that we study is structurally
similar to arrival and service rate control problems for single
server queueing systems; see, e.g., Lippman and Stidham [13]
as well as the work of Subramanianet al. [14] on yield man-
agement of airline reservations. It also has similarities with the
network pricing problem in Gallego and Van Ryzin [15]. Their
paper considers a finite horizon formulation (versus our infi-
nite horizon average-cost setup). Our problem is also related to
problems of admission control in loss networks (see, e.g., Key
[16], Ott and Krishnan [17], and Ross [18]). It is different, how-
ever, because this literature assumes that the prices are fixed and
is only concerned with admission decisions, while we wish to
study optimal or near-optimal pricing schemes. Another differ-
ence with most of the literature is that we use a decision-the-
oretic framework under an explicit model of users' reaction to
prices (demand functions). Similar demand functions have been
used in Low and Varaiya [19] under a somewhat different model.

The remainder of the paper is organized as follows. In Sec-
tion II, we formulate the two problems of revenue and welfare
maximization. In Section III, we discuss the applicability of our
model. In Section IV, we indicate how to obtain an optimal dy-
namic pricing policy using dynamic programming and derive
some qualitative properties of the optimal solution. After a brief
discussion of static (congestion-independent) pricing, in Sec-
tion V, we proceed to develop bounds and approximations. In
Section VI, we derive an easily computable upper bound on the
optimal performance. Then, using this bound, in Section VII
we establish asymptotic optimality of the static policy in light
traffic, heavy traffic, and a regime involving many and relatively
small users. We also draw a number of qualitative conclusions.
In Sections VIII and IX, we discuss briefly a number of methods
for obtaining approximately optimal static and dynamic pricing
policies, respectively. In Section X, we present numerical re-
sults, including a comparison of different approaches. More-
over, we compute approximately optimal dynamic policies for
some large scale examples. In Section XI, we discuss the case of
slowly-varying or imprecisely-known demand statistics. Con-
clusions and extensions are in Section XII.

II. PROBLEM FORMULATION

In this section, we introduce a model for the operation of an
SP. We assume that the SP has a total amountof some resource
and that each service request (“call”) needs a certain amount of
that resource. We will be referring to this resource as “band-
width” and to as the “capacity” although, as will be discussed
later, other interpretations are also possible.

We assume that calls belong to different classes. Calls of
class , arrive according to a Poisson process and
stay connected for a time interval which is exponentially dis-
tributed with rate . Let . Upon arrival, a call
of class pays a fee of ; we denote . We
assume that there is a knowndemand function , which de-
termines the arrival rate of classcalls, as a function of the price

. The following assumption will remain in effect throughout
the paper.

Assumption A:For every , there exists a price beyond
which the demand becomes zero. Furthermore, the func-
tion is continuous and strictly decreasing in the range

.
We will write , and we will

be denoting by the vector of arrival rates when the price is

zero, i.e., By monotonicity,
for all nonnegative price vectors.

Let be the number of classcalls that are in progress
at time . Since is discontinuous at the times of call
arrivals and departures, we adopt the convention that
is a right-continuous function of . We will be writing

. An incoming class call requires
units of bandwidth and is only accepted if that bandwidth is

available, that is, if , where
and prime denotes transpose. A rejected call gets a busy signal
and is lost for the system.

A pricing policy is a rule that determines the current price
vector as a function of the current state

. We therefore use the notation to indicate that the
price vector is time-dependent. Without loss of generality, we
can assume that whenever , we set
and there are no classarrivals.

A. Formulation of the Revenue Maximization Problem

Under any given pricing policy, the system evolves as a con-
tinuous–time Markov chain with state . Given the current
time and price , and for small , there is a probability ap-
proximately equal to that there is a class arrival
during the next time units, and the expected revenue from class

arrivals during that interval is approximately .
Thus, the expected long-term average revenue is given by

(1)

(The above limit is easily seen to exist for any pricing policy,
because the state , corresponding to an empty system, is
recurrent.) We are interested in identifying a pricing policy that
maximizes the above quantity.

B. Formulation of the Welfare Maximization Problem

It is also of interest to consider the case where social welfare
is maximized. Toward this purpose, we need more specific as-
sumptions on the nature of user demand, that will allow us to
make inferences on user utility or welfare.

We interpret our demand model as follows.Potentialcalls of
class are born according to a Poisson process with constant
rate . (This is the maximum arrival rate introduced earlier.)
A potential call of class, if it goes through, results in a user
utility of , where is a nonnegative random variable taking
values in the range , and which is described by a con-
tinuous probability density function . We assume that a
potential call will go through if and only if the utility exceeds
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the prevailing price . This implies that class calls are real-
ized according to a randomly modulated Poisson process with
rate . Furthermore, the expected
utility conditioned on the fact that a call has been established,
under a current price of , is equal to . We con-
clude that the expected long-term average rate at which utility
is generated is given by

(2)

This objective is of the same form as in revenue maximization,
except that the instantaneous reward rate of class is
replaced by . Thus, the two problems can
be approached using the same set of tools.

The following two formulas are immediate consequences of
the above description and will be used later on:

(3)

(4)

Example: Suppose that the utility derived from a call of class
is uniformly distributed in the range . Then, it is

easily checked that

(5)

(6)

We observe that the reward rate for classcalls is a concave
quadratic function of the prevailing price for either case of
revenue or welfare maximization.

Remark: Due to Assumption A the function has an
inverse , defined on . Furthermore, is con-
tinuous and strictly decreasing. This is a usual assumption in
the yield management literature (see Gallego and Van Ryzin
[15]) and allows us to view the arrival rates as the SP's de-
cision variables. Sometimes, we will also assume that the in-
stantaneous reward rate (in the revenue maximization
problem) or (in the welfare maximization
problem) is concave. (This is always the case with the linear de-
mand functions in the example above.) With these assumptions,
the demand function isregular, in the terminology of [15].

III. A PPLICABILITY OF THE MODEL

Our model is relevant to a variety of contexts. The following
is a partial list of possibilities.

1) A network access provider has a finite modem pool and
serves a large user population. The price charged for a
call can depend on the present level of utilization in the
system. In this example, all calls can be viewed as be-
longing to a single class, since they all consume one unit
of the available resource (one modem).

2) A network provider provides a menu of possible connec-
tion types, reflecting the nature of the session (e.g., voice
versus video) and the desired QoS. The assumption is

that the requirements of any particular service type can
be characterized by a single number (e.g., some form of
effective bandwidth) and that the resources available to
the provider can be similarly described in terms of total
available effective bandwidth.

3) A server provides content (e.g., data base access, on-line
financial information), or access to a computer program
(“applications on tap”) possibly through the Internet. Re-
quests for content (“calls”) can be of different types in
terms of expected duration and in terms of how much of
the server capacity needs to be reserved in order to guar-
antee the desired QoS.

Our framework incorporates a number of assumptions. The
most important one is that the number of calls that can be ac-
commodated obeys alinear constraint. This is natural if the
constraining resource is a simple quantity like bandwidth. More
generally, any system can be described by its “admission re-
gion,” defined as the set of all vectors such that
the system is able to simultaneously accommodatecalls of
each class, at an acceptable QoS. This admission region can
be quite difficult to evaluate, especially if there is a complex in-
teraction between different calls through statistical multiplexing
(see [7], [10]), and may depend on low-level details such as
the scheduling algorithms used at multiplexers. For the pur-
pose of economic analysis, an exact but complex description
of the admission region is unlikely to be useful. Instead, it is
reasonable to aim at a single scalar that summarizes the re-
source requirements of any given class, and impose a linear con-
straint, as in our model. This is the approach advocated by Kelly
and coworkers [7], based on a linearization of the constraints
defining the admission region in the vicinity of a likely oper-
ating point.

We have also assumed that the demand functions are
known. There are some current research activities [20] that aim
at understanding the dependence of demand on price, but it is
plausible that the demand curves assumed here will never be
known with any great precision. Nevertheless, as in much of
economics research, one can postulate the existence of such de-
mand curves and derive valuable insights through mathematical
analysis. These insights can then lead to “adaptive” methods that
rely on observed behavior rather than on given demand models.

A limitation of our model is that it does not incorporate any
substitution effects either between classes or in time; see Cour-
coubetis and Reiman [21] for a model that does.

We finally note that our model involves a single charge at
the time that a call is admitted. Even though certain types of
“unlimited connect time” services are commercially available,
this is not economically sensible, because it does not provide
an incentive for the users to stop consuming network resources.
At the opposite extreme, one might consider connection time
charges at a rate that is continuously updated on the basis of
the present state of the system. This could be undesirable to
users because the total charge for a call would not be known
at the time of the connection. As a compromise, the connect
time charge rate for a classuser, denoted by , could be de-
termined at the time that the call is established, and then remain
locked throughout the call. In that case, the expected user pay-
ment becomes . Mathematically, this is equivalent
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to having the user make the full payment up front, and no sepa-
rate analysis is needed. More complex models, not analyzed in
this paper, are possible, e.g., when the mean durationde-
pends on the connect time charge rate.

IV. OPTIMAL DYNAMIC POLICIES

In this section, we show how to obtain an optimal pricing
policy usingdynamic programming (DP), and we derive some
of its properties. To keep the exposition simple, we mainly dis-
cuss the maximization of the provider's revenue. At the end of
the section, we comment on the corresponding results for the
welfare maximization formulation.

A. Dynamic Programming Formulation

The problem introduced in Section II is a finite-state, contin-
uous-time, average reward DP problem. Note that the set

of possible price vectors is com-
pact and that all states communicate, i.e., for each pair of states

, there exists a policy under which we can eventually
reach starting from . Having assumed that the demand
functions are continuous, the transition rates as well as
the reward rate are continuous in the decision vari-
ables. Moreover, the reward rate and the expected holding time
at each state are bounded functions of. The same is true for
the total transition rate out of any state. Under these assump-
tions, the standard DP theory applies (see [22] and [23]) and
asserts that there exists a stationary policy which is optimal.

The process is a continuous-time Markov chain. Since
the total transition rate out of any state is bounded by

, this Markov chain can be uniformized,
leading to a Bellman equation of the form

(7)

Here, is the set of classes whose
calls cannot be admitted in state. We impose the condition

, in which case Bellman's equation has a unique solu-
tion [in the unknowns and ]. Once Bellman's equation is
solved, an optimal policy is readily obtained by choosing at each
state a price vector that maximizes the right-hand side in
(7). The solution to Bellman's equation has the following inter-
pretation: the scalar is the optimal expected revenue per unit
time, and is therelative rewardin state . In particular,
consider an optimal policy that attains the maximum in (7) for
every state . If we follow this policy starting from state or

state , the expectation of thedifferencein total rewards (over
the infinite horizon) is equal to .

The solution to Bellman's equation and a resulting optimal
policy can be computed using classical DP algorithms. How-
ever, the computational complexity increases with the size of
the state space, which is exponential in the number of classes

. For this reason, an exact solution using DP is feasible only
when the number of classes is quite small.

B. Some General Properties

Our first result establishes the monotonicity of the relative
rewards. It corresponds to the intuitive fact that it is always more
desirable to have more free resources, as they lead to additional
revenue generating opportunities in the future. The proof uses a
coupling argument. In order to carry out this proof (as well as
the proof of Theorem 5, later on), we need some notation and a
few facts from DP theory.

We define the DP operator, which maps the set of functions
on the state space into itself, as follows: for any such function

is defined to be equal to the right-hand side of (7),
with replaced by . In particular, (7) can be written as

(8)

For any policy , we define an operator similarly, except that
instead of maximizing with respect to, we use the price vector
determined by the policy .

Let denote the composition of copies of . Then,
is equal to the optimal total expected reward in a

-stage problem with starting state, terminal reward function
, and reward per stage equal to . (A “stage” here

refers to a transition in the uniformized chain.) The composition
is defined similarly and admits the same interpretation,

except that it refers to expected reward under the fixed policy.
We will need the following facts, which are true for average

reward problems with a state which is recurrent under any
policy. For any function , and every state , we have

(9)

Let be a policy which at every state attains the maximum
of the right-hand side in the Bellman equation. Such a policy is
optimal and, furthermore,

(10)

for every function and state .
Theorem 1 [Monotonicity of ]: For all and all such

that , we have , where
denotes theth unit vector.

Proof: Let be an optimal policy that attains the max-
imum in the right-hand side of Bellman's equation for every state

. Consider a -stage ( transitions of the uniformized chain)
problem with terminal reward function, identically equal to
zero. We consider the system starting from two different initial
states. The first, which we refer to as System A, starts from state

and follows the optimal policy . Its -stage expected
reward is equal to . The second, which we refer
to as System B, starts from state, but at any time uses the
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same prices as System A. The statistics of the arrival processes
for the two systems are the same, and by defining the two pro-
cesses on a common probability space, we can assume that the
actual arrivals are the same. We can also identify the common

customers in the two systems and assume that they depart at
the exact same instances. Then, the state of System B is at all
times less than or equal to the state of System A, and in partic-
ular, whenever a customer is admitted in System A, a customer
of the same class is also admitted to System B, at the same price.
Thus, the revenue in System A is equal to the revenue in System
B, and the same remains true after we take expectations. But
the expected optimal–stage revenue for System B is at least as
large and this shows that . We
take the limit as and use (9) and (10) to conclude that

.
We now record some observations for the case where the SP

has infinite capacity.
Theorem 2 (The Infinite Bandwidth Case):If there are no

capacity constraints , the optimal revenue is given by

and the optimal price vector is some constant that does not
depend on the state. Furthermore, we have .

We now show that resource limitations always result in higher
prices in comparison to the unconstrained case.

Theorem 3: There exists an optimal policy such that for
every state , we have .

Proof: Fix some state . From the Bellman equation, we
see that for all , an optimal price can be chosen
by maximizing the expression

Consider a value of which is less than theth component
of . Then, , by the definition

of . By Theorem 1, we have . Also,
by monotonicity of the demand function, we have

. Using all of the above inequalities

This implies that cannot be strictly better than .

C. Price Monotonicity in the Single Class Case

We now assume that there is a single service class and that
. (Accordingly, we simplify notation, and useto denote

the state of the system.) We wish to show that the optimal price is
an increasing function of the state. We first show that the relative
rewards are concave.

Theorem 4 [Concavity of ]: For all satisfying
, we have .

Proof: Fix some with . Let be an
optimal policy that attains the maximum in the right–hand side
of (7) for every state. We consider two copies of the system.

The first, which we refer to as System A, starts from state
and follows the optimal policy. The second, which we refer to as
System B, starts from state. We identify of the customers
in System B with those in System A, so that they have identical
departure times. We refer to the remaining customer in System
B as the tagged customer. System B operates as follows: at any
point in time, it sets the same prices as System A does, and can
therefore be assumed to observe the same sequence of arrivals
and the same revenue stream. This is done until the timethat
the tagged customer departs, or until the first time that System B
moves to state , whichever comes first. After that, System
B follows the same optimal policy , as in System A.

If the departure of the tagged customer comes first (i.e., be-
fore System B reaches state ), the two systems have the
same revenue stream until time. At time , they are found in
the same state, and so their revenue streams coincide over the
infinite horizon. If on the other hand System B moves to state

before the departure of the tagged customer, which will
happen with some probability , then Systems A and B are
found in states and , respectively. From that time on, both
systems follow the same optimal policy, so that the difference in
their expected total future rewards is . We
conclude that the difference of the expected total future reward
(starting from time zero) of System B minus that of System A, is

. If System B was using an optimal policy
at all times, the expected future revenue would be no smaller,
which establishes that

Using the inequalities (cf. Theorem 1) and
, we obtain

which is the desired inequality.
We next establish that in the single class case, optimal prices

reflect the level of congestion, that is, the revenue maximizing
SP will raise prices as the system becomes more congested. To
that end, we use the result of Theorem 4.

Theorem 5 (Monotonicity of Optimal Prices):There exists
an optimal policy with the property , for

.
Proof: Since the mapping is invertible, we may

view as the controlled variable, instead of. From the Bellman
equation, we see that an optimal choice of, at state , must
maximize the function

where .
Fix some with . Let

, and let be
maximizing arrival rates at statesand , respectively. We
distinguish two cases: and . (The case

is impossible due to Theorem 4.) If ,
we can certainly set . Consider now the case where

. Since is optimal at state , we have
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Also, since is optimal at state , we have

These two inequalities imply that

and therefore . Since is a decreasing function
of , we can conclude that in both cases, an optimal price at
state can be chosen no smaller than the optimal price at state

.
Unfortunately, Theorem 5 does not extend to the multiclass

case, as shown by a counterexample provided in the Appendix.
This is similar to known counterexamples for the problem of
optimal admission control (under fixed prices/rewards) for mul-
ticlass loss networks; see, e.g., Ross and Tsang [24] and Ross
[18]. The reason behind the counterexample is the combinato-
rial nature of an underlying “packing” problem that arises from
the different bandwidth requirements of the two classes. It
is not clear whether a similar counterexample is possible when
all classes have the same bandwidth requirements. Furthermore,
this combinatorial aspect should become insignificant in the
limit where the capacity is large in comparison to the maximum
(over all classes) bandwidth requirement.

D. Computational Example

To illustrate the structure of an optimal dynamic pricing
policy, we consider an example involving a single class with a
linear demand function

(11)

For a particular choice of problem data, the optimal dynamic
policy is depicted in Fig. 1. As predicted by Theorem 5, it is
optimal to raise the price when the system is congested, so that
users are discouraged from connecting, and to lower the price
to attract calls when the system is underutilized. If we were to
set , the optimal price is equal to 6. We observe that
this is lower than the optimal dynamic price at every state, as
predicted by Theorem 2.

E. The Case of Welfare Maximization

For the case of welfare maximization, Bellman's equation re-
mains the same, except that the reward rate is replaced
by . As in Theorem 1, the relative
rewards are again monotonically nonincreasing in, be-
cause the same proof applies. If the bandwidth is infinite, wel-
fare is maximized by admitting every user, and the optimal price

is equal to zero. When is finite, the optimal prices are
nonnegative, which provides a trivial extension of Theorem 3.
For the single class case, the proof of Theorem 4 remains valid.
The relative rewards are again concave in the state variable,
which results in monotonically nondecreasing optimal prices, as
in Theorem 5.

F. Multiple Classes with Identical Characteristics

Suppose that all classes have identical technical characteris-
tics, namely, and , for all . The classes can

Fig. 1. Optimal dynamic pricing policy whenR = 30;M = 1; � =
60; � = 5; � = 1, and�(u) = � � � u.

be different, however, as far as their demand functions are con-
cerned. It is not hard to see that a revenue–maximizing provider
will generally charge different prices to the different classes,
even in the case of unlimited resources . Prices will
tend to be larger for those classes that have relatively inelastic
demand, which is a well-known characteristic of monopolistic
pricing.

Even though different classes are charged different prices, the
optimal prices can be determined by solving a DP problem with
one-dimensional (1-D) state space. This is because, once a call is
admitted, its future behavior is independent of its class (because
of and being the same), and the state of the system is simply
the number of active calls. In particular,
the relative reward function is of the form , and can
be easily computed by solving Bellman's equation. Once the
function has been computed, the optimal price for class,
when the state is , can be found by maximizing

When it comes to welfare maximization, it turns out that the
same price is charged to all classes. To see this, we first note that

depends only on the scalar , by our
earlier argument. The optimal price for class, at state ,
is determined by maximizing

(12)

If is the probability density function of , then (3) and (4)
show that we need to maximize

with respect to . Assuming an interior solution, the first order
conditions yield

which leads to

V. STATIC PRICING STRATEGY

We say that a pricing policy isstatic if a fixed price vector
is always in effect, independent of the state of the system. (Note
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that this definition deviates somewhat from our earlier conven-
tions, because a static price results in a constant arrival rate even
if the required resources are unavailable, in which case calls are
blocked.) Static prices are of interest because: (1) the compu-
tation of optimal dynamic prices increases exponentially with
the number of classes and the capacity and (2) dynamic prices
can be unattractive to users who may prefer facing a predictable,
fixed, pricing structure.

Under a static pricing policy , the system evolves as a con-
tinuous-time Markov chain whose steady-state probability can
be found in closed form [18]. The corresponding average rev-
enue, denoted by , is given by

(13)

where denotes the steady-state probability
that a call of class gets rejected. Clearly, theoptimal

static revenue , defined by

(14)

satisfies . It is of interest to determine the gap between
these two quantities; we return to this later.

The loss probabilities can be efficiently computed;
see, e.g., Kaufman [25] for a method with complexity,
or Mitra et al. [26] for fast approximations. By optimizing over

, an optimal static price can be usually computed with mod-
erate effort.

For the case of welfare maximization, the same discussion
applies, with replaced by . Fur-
thermore, if all classes share the sameand , it can be veri-
fied that the optimal price is the same for every class.

VI. A N UPPERBOUND ON THEOPTIMAL PERFORMANCE

To assess the degree of suboptimality of static or approxi-
mate dynamic policies, especially for high-dimensional prob-
lems where is unknown, we develop an upper bound on.
One such bound is (cf. Theorem 2), but this can be far from
tight if the resource limitations are significant.

We use the inverse demand functions , and let
stand for the instantaneous reward rate when the present class

arrival rate is . Thus, or
, for the case of revenue or welfare maxi-

mization, respectively. We assume that the functionsare con-
cave. (This property is true for both cases of revenue or welfare
maximization, when the demand function is linear.) Let

be the optimal value of the following nonlinear program-
ming problem:

maximize

subject to (15)

Theorem 6: If the functions are concave, then .

Proof: Consider an optimal dynamic pricing policy.
Without loss of generality, we can assume that the pricebe-
comes large enough and the arrival rate is equal to zero,
whenever the state is such that a classcall cannot be admitted.
In this proof, we view and as random variables, and use

, to indicate expectation with respect to the steady-state
distribution under this particular policy. At any time, we
have , which implies that .
Furthermore, Little's law implies that . This
shows that the and , form a feasible
solution of the problem (15). Therefore, using the concavity of

and Jensen's inequality

where the last equality used the optimality of the policy under
consideration.

Note that is very easy to compute, especially under our
concavity assumption. It is an optimistic upper bound because
it implicitly assumes that if the arrival rates are held constant
to some values that satisfy , then no calls
are blocked. Despite that, the optimal solution of (15) can form
the basis of an approximately optimal static strategy, as will be
discussed later.

If the functions are not concave, then is not, in gen-
eral, a valid upper bound, but we may proceed as follows. Con-
sider a new problem with reward rates , instead of ,
where is the smallest concave function that satisfies

for all . Let be the optimal average reward and let
be the optimal value in the maximization (15), when each

is replaced by . Using Theorem 6, applied to the new problem,
we have

VII. L IMITING REGIMES

In this section, we consider a number of limiting regimes and
discuss the nature of the resulting optimal policies. In many
cases, static policies are asymptotically optimal. The most in-
teresting regime involves a system with a large number of small
users, which is considered first.

A. Many Small Users

If the capacity is large compared to the bandwidth of a
typical call, we expect that the laws of large numbers will take
over, eliminate statistical fluctuations, and allow us to carry out
an essentially deterministic analysis. To capture a situation of
this nature, we start with a base system, involving a finite ca-
pacity and finite demand functions . We then scale the
system through a proportional increase of capacity and demand.

More specifically, let be a scaling factor. The scaled
system has resources , with , and demand functions

, given by . Note that the other param-
eters and are held fixed. We will use a superscriptto
denote various quantities of interest for the scaled system. It is
easily seen that the optimal performance , as well as the var-
ious bounds, such as , will increase roughly linearly with,
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and for this reason, a meaningful comparison should first divide
such quantities by, as in the result that follows.

Theorem 7: Consider either the revenue or the welfare max-
imization problem, and assume that the functions (de-
fined as in the preceding section) are concave. Then

Proof: For simplicity, we only work with the revenue
maximization formulation. The upper bound is obtained
by maximizing , subject to the constraint

(16)

It is easily seen that there exists an optimal solution
, which is independent of, and that

.
Fix some and let us consider new static pricesgiven

by . Let be the resulting average rev-
enue. For every such that , we have

. Let (respectively, ) be the random variable
which is equal to the number of active classcalls, in steady-
state, in the scaled system, under the prices, with capacity
(respectively, with infinite capacity). Using that the satisfy
(16), we obtain

(17)

where .
Next note that is equal to the number of customers in

an M/M/ queue with arrival rate and service rate
. Thus, is a Poisson random variable with parameter

. As , the mean of converges to
and the variance to zero. Consequently, it can be seen

that the random variable converges in probability to the
deterministic value , which is less than .
It follows that the probability in the right–hand side of (17) con-
verges to zero. We next compare and . Comparing the
number of customers in the two corresponding systems (one
with capacity and the other with infinite capacity), and by
defining the arrival processes on a common probability space,
we conclude that for all sample paths is smaller than .
Hence

and the loss probabilities also converge to zero. Using
(13) and (14), it follows that

This is true for any positive. We now let go to zero, in which
case tends to . Using the continuity of the demand func-
tion, we obtain

On the other hand, , and the result
follows.

B. Some Qualitative Conclusions for the Many Small Users
Case

Theorem 7 and its proof indicate that when the system is large
(many small users), and under the concavity assumption, ap-
proximate optimality is obtained by slightly modifying the static
prices derived through the optimization in the definition of
[cf. (15)].1 It is thus of interest to study the nature of these static
prices. The insights to follow can be very valuable in narrowing
down the design space when considering more sophisticated ap-
proximations or adaptive methods.

1) Revenue Maximization:For the purposes of this discus-
sion, it is more convenient to view the problem (15) as one in-
volving optimization with respect to , rather than . We write
the resource constraint in the form , and
associate it with a nonnegative Lagrange multiplier. Then,
the class price is determined by maximizing

Assuming an interior solution, we differentiate
and set the derivative to zero, to see that the maximizing prices
satisfy

(18)

Thus, consists of two parts. The first is the reciprocal of
the demand elasticity, and illustrates how a monopolist will
tend to increase revenue by overcharging inelastic demand.
The second term is a usage-based charge. The quantity
is the “volume” (product of bandwidth and time) consumed
by a class call. It is important to notice that this usage-based
charge is determined by a single parameter, common to all
classes. Equally important, such a charge can be implemented
without knowing , by setting a connection–time charge rate
equal to .

In the special case of linear demand functions of the form
, we can solve for and obtain

(19)

1Actually, this small modification is not necessary, but then a more compli-
cated proof would be required.
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2) Welfare Maximization:We proceed similar to the pre-
ceding case. After we introduce the Lagrange multiplier, we
need to maximize, with respect to, the expression [cf. (4)]

By differentiating, we obtain a condition for optimality of an
interior solution, of the form

Using (3), this leaves us with

(20)

Thus, there is a single price for volume, and all classes are
charged in proportion to the volume that they consume. (Such a
property is also present in [3] although the setting is different,
as it relates to elastic traffic.)

C. The Non-Concave Case

As discussed at the end of Section VI, is not, in general, a
valid upper bound, in the absence of concavity. Rather, we first
need to “convexify” the problem, by replacing the functions
by their concave counterparts , leading to the upper bound

. Unlike the concave case, the gap betweenand does
not vanish in the limit of many small users, and static policies
are no more asymptotically optimal. It turns out that asymptot-
ically optimal policies, whose performance is close to, are
again easy to obtain, but their form is less appealing. Rather than
developing a general theory, we focus on the single class case,
and assume, without loss of generality that . The general-
ization to multiple classes is straightforward.

In the single class case, we have

If , the approach of Section VII–A provides a static
policy whose performance approaches and we are done.
Suppose now that . Let be an arrival rate that
attains the maximum in the definition of . Because of the
way that has been defined (“convexification” of ), there
exist and and some , such that

Let be prices such that and ,
where is the demand function. Without loss of generality,
assume that , which leads to . Furthermore, it is
not hard to show that in this case, we will have .
Indeed, if , then we have

, which leads to a contradiction.
Consider a state–independent but time–varying pricing policy

that sets the price to for a fraction of the time and to for
a fraction of the time, and switches between these two
prices with very high frequency. In the limit, as the frequency

of switching increases, the system is faced with an arrival rate
of and an expected reward per unit time (in the absence of
blocking) equal to . In the many small user regime, the
probability of blocking can be made arbitrarily small, through
a small modification of the prices and , as in the proof of
Theorem 7. Thus, the average performance of the system ap-
proaches , and we have asymptotic optimality.

An alternative implementation is to segment the user popula-
tion into two classes, with a fractionbeing assigned to the first
class. A price (approximately equal to)is then quoted to class
. What may be surprising with this scheme is that market seg-

mentation is beneficial even if the two market segments have
identical technical characteristics (and ), thesame demand
elasticities, and even if the objective is to maximize social wel-
fare!

The schemes in the preceding two paragraphs are not realistic.
If the price switches frequently between and , users will
naturally try to “time the market” and place calls when the lower
price is in effect, invalidating the Poisson arrival model. If on
the other hand the market is segmented, users who have been
assigned to the higher priced segment will either try to switch
to the lower priced segment or to another provider with “fairer”
practices.

Of course, we know that there exists an optimal dynamic
pricing policy which is stationary (at all times, it is the same
function of the state of the system), and which does not ex-
plicitly segment the market. Without carrying out a detailed
analysis, it is not hard to guess the form of a close–to–optimal
dynamic policy with these properties, in the many small user
regime. We choose a threshold statenear . We then set

for , and for . It was
noted earlier that , and let us assume that is
close enough to so that Then, the system will
spend most of the time in the vicinity of and the price will
be switching very frequently between and , thus achieving
the same effect as in the two schemes that were discussed ear-
lier, including undesirable fluctuations at a fast time scale.

It is unclear whether nonconcave reward rates can arise
in practice. If they do, the discussion above implies that near-
optimality may not be practically attainable.

D. Light or Heavy Traffic

For simplicity, we only discuss revenue maximization and a
single class. We use a demand function , and we take the
limit as (light traffic), or (heavy traffic). In light
traffic, the resource constraint becomes immaterial, and the best
static price for an unconstrained system,, becomes asymp-
totically optimal. In heavy traffic, the system can be fully uti-
lized as long as the price is slightly less than . We sum-
marize the consequences of these observations in the theorem
below. The proof is straightforward and is omitted.

Theorem 8: a) (Light Traffic) We have

b) (Heavy Traffic) We have , where
and the inequality is asymptotically tight as

. Moreover, for all such that ,
the static price achieves revenue that satisfies

.
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VIII. A PPROXIMATELY OPTIMAL STATIC POLICIES

Computing exactly optimal static policies can be difficult
when the number of classes is large, because of numerical
problems with the computation of the loss probabilities and
also because we need to carry out an optimization over a
high–dimensional set of possible price vectors. We discuss a
number of approaches to get around this difficulty.

1) We can use the static prices suggested by the optimiza-
tion problem in (15). These will be of the form (18) or
(20), where is the optimal Lagrange multiplier associ-
ated with the resource constraint in (15).

2) More generally, we can use prices of the form (18) or
(20), and tune to optimize performance. This option
may be called for if we are not quite in the limiting regime
and the multiplier obtained from the maximization (15)
cannot be fully trusted. For example, we can simulate the
system for different choices ofand pick the best value.
Alternatively, we can estimate the gradient of the perfor-
mance metric with respect to, and iteratively adjust in
the course of a single simulation, using for example, the
methods of Marbach and Tsitsiklis [27].

3) We can add still more flexibility by viewing each as
an independent tunable parameter (as opposed to using a
single parameter), and then either use fast approxima-
tions of the blocking probabilities (as in [26]), or employ
a simulation-based method, as discussed above.

An advantage of the simulation-based methods described in
items 2 and 3 is that they may be carried on-line. One can then
explore model-free versions that do not assume explicit knowl-
edge or estimation of demand. This would lead to methods that
can adapt the static prices and track slow changes in the demand
functions.

IX. A PPROXIMATELY OPTIMAL DYNAMIC POLICIES

The computation of optimal dynamic policies becomes in-
tractable even with a moderate number of classes. If we are far
from the asymptotic regime where static prices are near-optimal,
it becomes of interest to explore methods that lead to approxi-
mately optimal dynamic policies. Possible approaches include
the following.

1) Construct a low-dimensional Markov model that approx-
imates the exact model, and use an optimal policy for the
approximate problem. For example, Subramanianet al.
[14] have used a 1-D approximate Markov model to ad-
dress an airline yield management problem. In our case,
we can use a two-dimensional state with compo-
nents and . Note that
measures the currently occupied volume, and has been
shown to be an important quantity by our analysis in Sec-
tion VII–B. It is not clear whether a 1-D model could cap-
ture both the resource constraints and the importance of
volume.

2) Work with the original model, but use a parametric repre-
sentation of the reward function, e.g., of the form

(21)

One can employ any one of many available approxi-
mate DP methods (“neuro-dynamic programming” or
“reinforcement learning” [28], [29]), all of which aim
at setting the values of the parametersin a way that
results in good performance. This methodology has been
used successfully in a wide range of resource allocation
problems, including some complex admission control
and routing problems [30]. In Section X–C, we apply
such an approach to derive an approximately optimal
dynamic policy for large-scale problems. We use the
parametric representation (21) and apply a method origi-
nating in [31] and described in [28].2 Define
to be equal to the expression in the right-hand side of the
Bellman equation (7), when prices are fixed to. It is
well known [23] that a solution to (7) can be obtained by
solving the linear programming problem:

minimize
subject to

(22)
where we discretize prices and is a discrete subset of

. Using the parametric representation (21) of, we ob-
tain a linear programming problem with decision
variables, but with a very large number of constraints.
To address this, we apply a cutting-plane method guided
by a simulation of the system. We initialize the method
by solving (22) with a small number of constraints
corresponding to values uniformly drawn from
the state space and . The resulting leads to a
policy through the maximization of the right-hand side
of Bellman's equation. We simulate this policy and for
each state encountered in the simulation, we check
whether the constraints

are satisfied for all . We solve again the linear pro-
gramming problem, with all violated constraints at state

included, to obtain a new policy, and continue the sim-
ulation from with the new policy. Thus, at each iter-
ation we “improve” by adding constraints violated by
the previous optimal solution.

3) Consider dynamic policies that depend on a small number
of parameters and tune those parameters to optimize per-
formance. The main idea here is the same as in items 2 and
3 of the preceding section. For example, guided by the in-
sights of Section VII–B, we could use prices of the form

where .

X. NUMERICAL COMPARISONSBETWEEN STATIC

AND DYNAMIC POLICIES

In this section, we numerically compare the performance of
the optimal dynamic and static pricing policies. We will see that
the static policy offers its substantial implementation advantage
at a modest performance cost, in agreement with the theoretical

2Other approximate DP methods are also possible, but we took this as an
opportunity to test a method for which there is practically no experience.
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Fig. 2. For the example of Fig. 1, we plot the fraction of timeP[n] that the
system is in staten, in steady-state, under the dynamic and the static pricing
policies, respectively.

conclusions from Section VII. We only consider revenue maxi-
mization problems. The results for welfare maximization would
not be much different.

A. Single Class Example

Among the objectives of pricing policies is to provide incen-
tives so that calls modify their arrival patterns and reduce de-
mand during congested periods, leading to more efficient re-
source utilization. To assess the extent to which this goal is
achieved, we depict in Fig. 2, and for the example of Fig. 1,
the steady-state system occupancy under the dynamic and the
static pricing policies, respectively. We observe that the curve
for the static policy closely approximates the one for the dy-
namic policy. Under both policies the system spends most of
the time with about 25 customers present (i.e., about 83% uti-
lization). As expected, dynamic pricing leads to better rationing
of the resources, with more “impulsive” system occupancy.

B. Two-Class Example

We next turn our attention to a system with two service classes
with linear demand functions of the form .
The objective is to demonstrate that the optimal static policy
is not significantly inferior to the optimal dynamic one. More-
over, we want to illustrate that by just setting appropriate static
prices, the provider can exploit class characteristics to maximize
revenues. The results for the two-class system are reported in
Table II. The input parameters for the calculations in Table II
are given in Table I. These results suggest that the optimal static
pricing is very close to optimal, the suboptimality gap being less
than 2%. Note that in light traffic (top rows of Table II) the static
policy performs very well. The same is true when the system is
highly congested (bottom rows of Table II). This is to be ex-
pected in view of the results in Section VII-D. Moreover,
exhibits the same behavior (i.e., it is especially tight in light and
heavy traffic).

Consider, for example, the case in the first row of Table II.
Note that class one customers require 4 times as much band-
width and stay for twice as long, on the average. That is, class
one customers are “fat and slow” while class two customers
are “slim and fast”. Although both classes have comparable
's, it turns out that under the optimal static policy class one

suffers a loss probability of 3.6%, while the corresponding
class two value is 0.79%. Moreover the optimal static prices
are . Let us recall the theory of

TABLE I
INPUT PARAMETERS FOR THECOMPUTATIONS IN TABLE II.

WE USEDR = 155; r = 4; r = 1; � = 1, AND � = 2. HERE,
� = � r =(R� ) IS A MEASURE OF THELOAD PRESENTED BY

EACH CLASS i

Section VII–B and, in particular, (19), which suggests prices of
the form . By setting ,
we see that these latter prices are in close agreement with the
optimal static prices. That is, the upper bound calculation can
capture the form of the optimal static prices. The differences
between and observed in Table II can be attributed
to the fact that the upper bound computation does not provide
an accurate estimate of.

It turns out that class two contributes 91.6% to the total
revenue. It is evident that class one needs more resources than
class two, and the system can focus on the second class and
make most of its revenue from it. Indeed, the static price
for class two is fairly close to the optimal infinite capacity price

. The steady-state system occupancy under the optimal
static policy is depicted in Fig. 3.

C. Large-Scale Examples: Approximate Dynamic Policies

In this subsection, we turn our attention to relatively large-
scale problems. The computation of optimal static and dynamic
prices becomes computationally prohibitive as the state space
grows, thus, we will resort to the approximation methods out-
lined in Sections VIII and IX.

In Table IV, we report approximate DP results for a number
of problems including large-scale ones. We have used the ap-
proach outlined in item 2 of Section IX. Table III reports the
corresponding input parameters. We observe that the perfor-
mance of the approximate dynamic policy is fairly close to the
optimal even for large scale problems (since it is close to the
upper bound). The form of the approximate dynamic policy for
Case 3 is depicted in Fig. 4. Notice that the resulting prices have
a “staircase” character, which is due to the discretization of the
control space.

Although this particular approximate dynamic policy may
underperform the optimal static pricing policy, there are some
reasons that can make it attractive.

1) The static pricing policy treats all users of the same class
equally, in the sense that they face the same probability of
getting a busy signal. On the other hand, the approximate
dynamic policy allows customers who place higher value
on their connection than others to increase their chance of
getting connected by paying a higher price.

2) Dynamic policies can be more robust to errors in the de-
mand estimation. We elaborate further on this point in the
next section.
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TABLE II
NUMERICAL RESULTS FOR THETWO-CLASS SYSTEM. WE DENOTE BY J (RESP. J ) THE OPTIMAL DYNAMIC (RESP. OPTIMAL

STATIC) REVENUE. J DENOTES THEOPTIMAL VALUE OF THE PROBLEM IN (15), (u ; u ) THE PRICES SUGGESTED BY THE

UPPERBOUND COMPUTATION, AND (u ; u ) THE OPTIMAL STATIC PRICES

Fig. 3. Steady-state system occupancy under the optimal static policy for the
two-class system.

TABLE III
INPUT PARAMETERS FOR THERESULTS OFTABLE IV WE CONSIDERED

TWO-CLASS SYSTEMS WITH DEMAND FUNCTIONS OF THEFORM

� (u ) = � � u � AND r = 4; r = 1; � = 1; � = 2

XI. TIME-OF-DAY AND ADAPTIVE PRICING

We have assumed throughout that the statistics of the arrival
and service processes are stationary, which led to the develop-
ment of stationary pricing policies (dynamic and static). In prac-
tice, these statistics typically vary with the time of the day. We
expect, however, that they are slowly varying, and that one can
sufficiently approximate and by piecewise constant
functions of time. In particular, one can define a number of
time intervals that span a 24-h period (e.g.,

)
such that for all

(23)

where and are constant functions of time. Thus, to im-
plement a static pricing policy, it suffices to calculate the static
price for each such interval (as a function of and ). The
resulting policy is atime-of-day pricing policywith prices.
Typical demand patterns in the Internet suggest that a relatively
small value of (e.g., 3 or 4) can yield a good approximation
of traffic statistics.

Alternatively, it is possible that demand undergoes slow but
unpredictable changes. In that case, we can let the static prices
change in an adaptive manner, e.g., by tuning the's (or the
single parameter of Section VII-B) according to a stochastic
iterative method. Without such adaptation, and if an incorrect
demand model is used, the resulting prices can be far from op-
timal.

It is interesting to note that a significant degree of adaptivity
can also be accomplished using dynamic (state-dependent)
but stationary (not explicitly depending on time) pricing. For
example, consider the single-class case under the objective
of welfare maximization, with , and let for

. For between and , let increase
smoothly from 0 to . Then, it is easy to see that in the
many-small-users regime of Section VII-B, the utilization of
the system will be at least 0.9, and we will have near opti-
mality even if we do not know the true demand function. This
argument indicates that even though dynamic pricing does not
perform much better than static pricing when an exact model
is available, it provides a degree of adaptivity when a demand
model is unavailable.

XII. CONCLUSIONS ANDEXTENSIONS

We have introduced and studied a model for optimal con-
gestion-dependent (dynamic) pricing of network services, with
the twofold objective of developing approximately optimal
methods as well as useful insights. We have carried out
the analysis in both a revenue maximization and a welfare
maximization setting. We explored a number of alternatives
such as the computation of the exact optimum and several
approximations, and have provided a comparison with conges-
tion-independent (static) pricing. Some of the most important
conclusions are that static pricing can come very close to
optimality and that a single price parameter(volume charge)
may suffice, especially when typical calls are relatively small.
This leads to the familiar time-of-day pricing policies. We also
saw that a revenue-maximizing provider may set substantially
different prices for two services even if they have very similar
resource requirements. This is consistent to what is happening
in other industries (e.g., in air travel all passengers receive
essentially the same service but can pay very different prices).
However, we established that this is usually not the case when
the objective is to maximize social welfare.

While we have considered a single shared resource, a sim-
ilar model is possible involving several shared resources, each
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TABLE IV
APPROXIMATE DP RESULTS FOR THECASES OFTABLE III. ~J DENOTES THEREVENUE GENERATED BY THE APPROXIMATE POLICY. FOR CASES4 AND 5 IT IS

COMPUTATIONALLY INTRACTABLE TO OBTAIN THE OPTIMAL STATIC AND DYNAMIC POLICIES

(a)

(b)

Fig. 4. Approximate dynamic prices for Case 3 of Table IV. Graphs (a) and
(b) depict prices for classes one and two, respectively.

one resulting in a separate linear constraint on the state space.
The case where service is delivered by a network, with each
call using one or more links, falls in this category. Many other
situations (see also [32]) can fit into this kind of model. The
methods described in this paper can all be extended, in principle,
although the increased complexity may require further approx-
imations, e.g., requiring that the price of a call is equal to the
sum of the prevailing prices for the different resources that it
consumes.

APPENDIX

We provide here an example that shows that optimal prices
can decrease with . Consider a system with two service classes

, in which and are such that the state
space only contains the states , and .
For an example, consider the case where and .

Consider the following demand functions:
and . Let
, where is a large constant, much larger than

1. Note that the rate in the uniformized chain can be taken
equal to .

Because is much larger than the arrival rate, the system
spends most of the time at state . Furthermore, if the
system is started instead at some nonzero state, the resulting

expected total loss in revenue is of the
order of . (This is proportional to the expected number of
lost calls before the state becomes .) If we set ,
we then see that for every other state. Using this
fact, and writing down Bellman's equation for state , we
see that the terms involving can be neglected (because they
are multiplied by the factor and ). We
obtain . Approximate
equality here means that we are ignoring terms of the order of

.
Bellman's equation at state is of the form

Since , and , we obtain
.

Similarly, Bellman's equation at state is of the
form

and .
The above calculations show the lack of concavity ofas

a function of , since
. The optimal class 1 price at state , for

, is determined by maximizing

In our example, increases with , and
it is easily seen that the optimal decreases with .

The intuition behind this counterexample is the following. A
single class one arrival blocks class two calls over a period of
expected length . Two class one arrivals block class two calls
over a period of expected length , and the corresponding
loss is less than twice the loss caused by a single arrival.
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