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Congestion-Dependent Pricing of Network Services

loannis Ch. Paschalidi#ember, IEEEand John N. TsitsiklisFellow, IEEE

Abstract—We consider a service provider (SP) who provides such problems is that the marginal cost of serving an additional
access to a communication network or some other form of on-line customer, e.g., an airline passenger or a new call, is negligible

services. Qse(s initiate calls that bglong to a set of diverse servicegnce a flight has been scheduled or a communications infra-
classes, differing in resource requirements, demand pattern, and e
structure is in place.

call duration. The SP charges a fee per call, which can depend
on the current congestion level, and which affects users' demand ~ The pricing problem in communication networks, such as the
for calls. We provide a dynamic programming formulation of the  Internet, is complex and multifaceted, because one needs to take
problems of revenue and welfare maximization, and derive some into account engineering issues (compatibility with existing or

qualitative properties of the optimal solution. We also provide a -, \heq protocols), financial issues (cost recovery), a diverse
number of approximate approaches, together with an analysis that

indicates that near-optimality is obtained for the case of many, S€tOf desired services (e.g., elastic versus real-time traffic), and
relatively small, users. In particular, we show analytically as well other considerations (such as simplicity, social welfare, etc.).
as computationally, that the performance of an optimal pricing The current Internet relies on technical means to prevent con-

Ztrategy isadoseéy matched by a suitably chosen _?tr?tic_ p(;i_C&Whiﬁh gestion (the TCP protocol), but includes no mechanisms for
oes not depend on instantaneous congestion. IS Indicates that . H : : :
the easily implementabletime-of-day pricing will often suffice. ensuring quality of service (QoS) guarantees or for delivering

Throughout, we compare the alternative formulations involving S€rvice to those users who ne?d It most. Pricing meCha.n'?mS
revenue or welfare maximization, respectively, and draw some can overcome these shortcomings, resulting in more efficient

qualitative conclusions. resource allocation, by charging users on the basis of the con-
Index Terms—Dynamic programming, internet economics, loss gestion that they cause.
networks, revenue management. In this spirit, several models have been put forth. MacKie-

Mason and Varian [2] have proposed a “smart market” where
packets bid for transport while the network only serves packets
with bids above a certain cutoff amount, depending on the level
N THIS paper, we consider a service provider (SP) whgf congestion. Kellyet al.[3], [4] consider charges that increase
provides access to a communication network or some othygith either realized flow rate or with the “share” of the network
form of on-line services. Users access the network and initiaiensumed by a traffic stream. Gibbens and Kelly [5] describe
calls that belong to a set of diverse service classes, differingyiet another scheme for packet-based pricing as an incentive for
resource requirements, demand pattern, and call duration. Fhére efficient flow control. Clark [6] proposes an expected ca-
SP charges a fee per call, which can depend on the current gg&city-based pricing scheme where users are charged ahead of
gestion level, and which affects users' demand for calls. Wge on the basis of the expectation that they have of network
are interested in the problem of determining an optimal pricingsage and excess packets are dropped at times of congestion.
strategy, that maximizes an appropriate performance measurghe emergence of real-time traffic substantially complicates
such as social welfare or the prOVider'S revenue. As diSCUSSEfH@ picture and requires QoS measures much harder to ana|yze
the sequel (Section Ill), our model applies to a variety of sitysee, e.g., Kelly [7], Bertsimast al. [8], [9], and Paschalidis
ations in which a user population shares dynamically a limitggo]). More importantly, users who access the network wish to
resource, but our primary motivation comes from the context @Bmplete certain tasks (e.g., send an e-mail, access a Web page,
communication network SerViCES, e.g., prOVided thrOUgh the |ﬁ|‘ace an “internet phone“ Ca”) and packets are Comp|ete|y trans-
ternet. parentto them. Thus, itis not clear whether packet-based pricing
For the case of a revenue maximizing provider, we havesghemes are always appropriate. Kelly [11] and Courcoubetis
problem ofyield managemensimilar to the problems that ariseet al. [12] propose the pricing of real-time traffic with QoS re-
in service industries (e.g., airlines [1]). The common element §ijirements, in terms of its “effective bandwidth,” and provide
approximations that only involve time and volume charges.
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heavy traffic, and a regime of many, relatively small, users,. The following assumption will remain in effect throughout

which is of more practical importance in an network envirorthe paper.

ment such as the Internet. This indicates that when demand staAssumption A:For everyi, there exists a price; max beyond

tistics are slowly varyingime-of-daypricing will often suffice. which the demand;(u;) becomes zero. Furthermore, the func-
Onthe technical side, the problem that we study is structuratipn A;(w;) is continuous and strictly decreasing in the range

similar to arrival and service rate control problems for single; € [0, ; wax]-

server queueing systems; see, e.g., Lippman and Stidham [13Ve will write A(u) = (A1(u1),- -+, Apr(upr)), and we will
as well as the work of Subramanian al. [14] on yield man- be denoting by\, the vector of arrival rates when the price is
agement of airline reservations. It also has similarities with thero, i.e. Ay = (M1, - - -, Ao.ar) 2 A(0). By monotonicity,

network pricing problem in Gallego and Van Ryzin [15]. Theil\, > A(u) for all nonnegative price vectors

paper considers a finite horizon formulation (versus our infi- | et ,(¢) be the number of clagscalls that are in progress
nite horizon average-cost setup). Our problem is also relatecy{otime ¢. Sincen;(t) is discontinuous at the times of call
problems of admssmn control in loss networks (see, e.g., KaMivals and departures, we adopt the convention thét)
[16], Ott and Krishnan [17], and Ross [18]). Itis different, howis a right-continuous function of. We will be writing
ever, because this literature assumes that the prices are fixed®g) = (n,(¢),--- nas(¢)). An incoming class call requires

is only concerned with admission decisions, while we wish tQ ynits of bandwidth and is only accepted if that bandwidth is
study optimal or near-optimal pricing schemes. Another diffegyajlable, that is, itN()'r +r; < R, wherer = (r1,- -+, 7)
ence with most of the literature is that we use a decision-thgnd prime denotes transpose. A rejected call gets a busy signal
oretic framework under an explicit model of users' reaction nd is lost for the system.

prices (demand functions). Similar demand functions have beem pricing policy is a rule that determines the current price
used in Low and Varaiya [19] under a somewhat different modedectoru = (uy,---,uy,) as a function of the current state

The remainder of the paper is organized as follows. In Segg(t). We therefore use the notatiar(t) to indicate that the
tion Il, we formulate the two problems of revenue and welfargrice vector is time-dependent. Without loss of generality, we
maximization. In Section lll, we discuss the applicability of ougan assume that whenewsitt)'r +r; > R, We Setu; = t; max
model. In Section IV, we indicate how to obtain an optimal dyand there are no classrrivals.
namic pricing policy using dynamic programming and derive
some qgalitative properties of.the'optimal solution: Afterg bri% Formulation of the Revenue Maximization Problem
discussion of static (congestion-independent) pricing, in Sec- . o )
tion V, we proceed to develop bounds and approximations. InUnder any given pricing policy, the system evolves as a con-
Section VI, we derive an easily computable upper bound on tauous—time Markov chain with staf§(¢). Given the current
optimal performance. Then, using this bound, in Section \iimet and priceu(), and for smalks, there is a probability ap-
we establish asymptotic optimality of the static policy in lighroximately equal to\; (u;(#))é that there is a class arrival
traffic, heavy traffic, and a regime involving many and relativelfluring the nexé time units, and the expected revenue from class
small users. We also draw a number of qualitative conclusiofig’ivals during that interval is approximatefy; () A; (u:(t)).

In Sections VIl and 1X, we discuss briefly a number of method§hus, the expected long-term average revenue is given by

for obtaining approximately optimal static and dynamic pricing

policies, respectively. In Section X, we present numerical re-

sults, including a comparison of different approaches. More- lim TE
over, we compute approximately optimal dynamic policies for Tmee
some large scale examples. In Section XI, we discuss the casrgr

/0 A(u(t)) u(t) dt] . )

slowly-varying or imprecisely-known demand statistics. Co %e above limit is easily seen to E?X'St for any pricing pohc_y,
clusions and extensions are in Section XiI. ecause the stald = 0, corresponding to an empty system, is

recurrent.) We are interested in identifying a pricing policy that
maximizes the above quantity.
1. PROBLEM FORMULATION

In this section, we introduce a model for the operation of zﬁﬁ Formulation of the Welfare Maximization Problem

SP. We assume that the SP has a total amBufisome resource  Itis also of interest to consider the case where social welfare
and that each service request (“call”) needs a certain amountfmaximized. Toward this purpose, we need more specific as-
that resource. We will be referring to this resource as “bandumptions on the nature of user demand, that will allow us to
width” and toR as the “capacity” although, as will be discussethake inferences on user utility or welfare.
later, other interpretations are also possible. We interpret our demand model as followetentialcalls of

We assume that calls belong Aé different classes. Calls of class: are born according to a Poisson process with constant
classi = 1,---, M, arrive according to a Poisson process anete ), ;. (This is the maximum arrival rate introduced earlier.)
stay connected for a time interval which is exponentially digh potential call of clasg, if it goes through, results in a user
tributed with rateu;. Letu = (1, -- -, uas). Upon arrival, a call utility of 1/;, wherel/; is a nonnegative random variable taking
of classi pays a fee oli;; we denoteu = (uq,---,up). We values in the rang®, u; ..x], and which is described by a con-
assume that there is a knowtamand functiot; (u; ), which de- tinuous probability density functiog;(«;). We assume that a
termines the arrival rate of classalls, as a function of the price potential call will go through if and only if the utilit]/; exceeds
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the prevailing pricey;. This implies that class calls are real-

ized according to a randomly modulated Poisson process with

rate A; (u;(¢)) = Ao P[U; > u;(¢)]. Furthermore, the expected

utility conditioned on the fact that a call has been established,

under a current price of;, is equal taE[U; | U; > w,]. We con-
clude that the expected long-term average rate at which util
is generated is given by
1 M
lim =Y E
To00 T ;

/T Xi(w, O)E[U; | Uy > wi(1)] dt] . @

This objective is of the same form as in revenue maximization,

except that the instantaneous reward raie:; )u; of classi is
replaced by\; (u;)E[U; | U; > w;]. Thus, the two problems can
be approached using the same set of tools.

The following two formulas are immediate consequences
the above description and will be used later on:

Ailu;) = Ao /“ﬁmax fi(v) dv (3)

g

M) BU; | Us > w] = Ao / T i wede. (@)

u;
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that the requirements of any particular service type can
be characterized by a single number (e.g., some form of
effective bandwidth) and that the resources available to
the provider can be similarly described in terms of total
available effective bandwidth.

A server provides content (e.g., data base access, on-line
financial information), or access to a computer program
(“applications on tap”) possibly through the Internet. Re-
quests for content (“calls”) can be of different types in
terms of expected duration and in terms of how much of
the server capacity needs to be reserved in order to guar-
antee the desired QoS.

Our framework incorporates a number of assumptions. The
most important one is that the number of calls that can be ac-
commodated obeys linear constraint. This is natural if the
Qif)nstraining resource is a simple quantity like bandwidth. More
generally, any system can be described by its “admission re-
gion,” defined as the set of all vectofsy,...,nss) such that
the system is able to simultaneously accommodatealls of
each clasg, at an acceptable QoS. This admission region can
be quite difficult to evaluate, especially if there is a complex in-
teraction between different calls through statistical multiplexing

ity 3)

Example: Suppose that the utility derived from a call of clas&S€€ [7], [10]), and may depend on low-level details such as

Ui

Ai{ui) = Ao <1 - (5)

¢ is uniformly distributed in the rangf, u; max]. Then, it is
easily checked that

u; + Ui, max
2

We observe that the reward rate for classalls is a concave
guadratic function of the prevailing priag for either case of
revenue or welfare maximization.

Remark: Due to Assumption A the function,(u;) has an
inverseu; (X, ), defined ono, Ao ;]. Furthermorey;(\;) is con-
tinuous and strictly decreasing. This is a usual assumption
the yield management literature (see Gallego and Van Ry
[15]) and allows us to view the arrival ratés as the SP's de-
cision variables. Sometimes, we will also assume that the
stantaneous reward rakgu;( ;) (in the revenue maximization
problem) ot\,E[U; | U; > w;(\;)] (in the welfare maximization

Ui, max

problem) is concave. (This is always the case with the linear de
mand functions in the example above.) With these assumptioﬁ

the demand function isegular, in the terminology of [15].

I1l. A PPLICABILITY OF THE MODEL

Our model is relevant to a variety of contexts. The followin
is a partial list of possibilities.

the scheduling algorithms used at multiplexers. For the pur-
pose of economic analysis, an exact but complex description
of the admission region is unlikely to be useful. Instead, it is
reasonable to aim at a single scalar that summarizes the re-
source requirements of any given class, and impose a linear con-
straint, as in our model. This is the approach advocated by Kelly
and coworkers [7], based on a linearization of the constraints
defining the admission region in the vicinity of a likely oper-
ating point.

We have also assumed that the demand functigts;) are
known. There are some current research activities [20] that aim
at understanding the dependence of demand on price, but it is
ql,?usible that the demand curves assumed here will never be

fown with any great precision. Nevertheless, as in much of
economics research, one can postulate the existence of such de-
m_and curves and derive valuable insights through mathematical
analysis. These insights can then lead to “adaptive” methods that
rely on observed behavior rather than on given demand models.
A limitation of our model is that it does not incorporate any
gbstitution effects either between classes or in time; see Cour-
colbetis and Reiman [21] for a model that does.

We finally note that our model involves a single charge at
the time that a call is admitted. Even though certain types of
“unlimited connect time” services are commercially available,
¢his is not economically sensible, because it does not provide
an incentive for the users to stop consuming network resources.

1) A network access provider has a finite modem pool arkt the opposite extreme, one might consider connection time

serves a large user population. The price charged fo

icharges at a rate that is continuously updated on the basis of

call can depend on the present level of utilization in thihe present state of the system. This could be undesirable to
system. In this example, all calls can be viewed as basers because the total charge for a call would not be known

longing to a single class, since they all consume one u
of the available resource (one modem).

@it the time of the connection. As a compromise, the connect
time charge rate for a clagauser, denoted by;, could be de-

2) A network provider provides a menu of possible connetermined at the time that the call is established, and then remain

tion types, reflecting the nature of the session (e.g., voi

tecked throughout the call. In that case, the expected user pay-

versus video) and the desired QoS. The assumptionnient becomes,; + (¢;/1:;). Mathematically, this is equivalent
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to having the user make the full payment up front, and no sefsatelN, the expectation of thdifferencein total rewards (over
rate analysis is needed. More complex models, not analyzedhe infinite horizon) is equal t6h(IN') — A(N))/v.

this paper, are possible, e.g., when the mean duratipn de- The solution to Bellman's equation and a resulting optimal
pends on the connect time charge rgte policy can be computed using classical DP algorithms. How-
ever, the computational complexity increases with the size of
IV. OPTIMAL DYNAMIC POLICIES the state space, which is exponential in the number of classes

) ) ) ) ~ M. For this reason, an exact solution using DP is feasible only
In this section, we show how to obtain an optimal pricing,nen the number of classes is quite small.

policy usingdynamic programming (DRand we derive some
of its properties. To keep the exposition simple, we mainly dig. Some General Properties
cuss the maximization of the provider's revenue. At the end OfOur first result establishes the monotonicity of the relative

the section, we cqmment on t_he corresponding results for tll?e%vards. It corresponds to the intuitive fact that it is always more
welfare maximization formulation.

desirable to have more free resources, as they lead to additional
revenue generating opportunities in the future. The proof uses a
coupling argument. In order to carry out this proof (as well as
The problem introduced in Section Il is a finite-state, contirthe proof of Theorem 5, later on), we need some notation and a
uous-time, average reward DP problem. Note that thé/set few facts from DP theory.
{u|0 < u; £ wu;max Vi) Of possible price vectors is com- We define the DP operat@F, which maps the set of functions
pact and that all states communicate, i.e., for each pair of stabesthe state space into itself, as follows: for any such function
N, N’, there exists a policy under which we can eventually, (7f)(IN) is defined to be equal to the right-hand side of (7),
reachIN’ starting fromN. Having assumed that the demanadvith /~ replaced byf. In particular, (7) can be written as
functions\; (u;) are continuous, the transition rates as well as
the reward rat® ", ), (u; )u; are continuous in the decision vari- J* +h(N) = (Th)(N). 8)

ables. Moreover, the reward rate and the expected holding ti%ar anv policvr. we define an operatdt- similarlv. excent that
at each stat® are bounded functions ef. The same is true for . y Policyr, P x Y P

the total transition rate out of any state. Under these assun'&n“:'tead of maximizing with respect tg we use the price vector

Y
tions, the standard DP theory applies (see [22] and [23]) an?]l_et T* denote the composition of copies of 7. Then,

asserts that there e_X|sts ast_atlonary_ policy which is ppt|rr_1al. (T* £)(N) is equal to the optimal total expected reward in a
The proces(#) is a continuous-time Markov chain. SlnceIs-sta e problem with starting stad, terminal reward function
the total transition rate out of any state is boundediby= gep 9

M (Moi4ui[R/ri]), this Markov chain can be uniformized,f’ and reward per stage equalig i (u;)u;- (A "stage” here

Iee{din to a Bellman equation of the form refers to a transition in the uniformized chain.) The composition
9 q TF is defined similarly and admits the same interpretation,

except that it refers to expected reward under the fixed palicy

A. Dynamic Programming Formulation

termined by the policy.

N _ We will need the following facts, which are true for average
ST+ hN) = et Z Ai (i Jui reward problems with a state which is recurrent under any
”ZC()\N)( ) policy. For any functionf, and every stat®, we have
o
+ Y SUh(N+e) . " o
wvonn Y klggo[(T HIN) = kJ*] = h(N). 9)
M illi y Let 7w be a policy which at every stal¥ attains the maximum
+ Z v (N —ei) of the right-hand side in the Bellman equation. Such a policy is
=l optimal and, furthermore,
il Tifl
+1- > ¥ - 7“ h(IN) |- lim [(T*f)(N) — kJ*] = h(N) (10)
igC(N) i=1 koo

(7) for every functionf and stateN.

Theorem 1 [Monotonicity 0i(IN)]:  For allj and allN such
Here,C(N) = {¢| (N +e;)'r > R} is the set of classes whosethat(N + e;)'r < R, we haveh(N) > h(N + e;), wheree;
calls cannot be admitted in staé. We impose the condition denotes thath unit vector.
h(0) = 0, in which case Bellman's equation has a unique solu- Proof: Let = be an optimal policy that attains the max-
tion [in the unknowns/* andh(-)]. Once Bellman's equation isimum in the right-hand side of Bellman's equation for every state
solved, an optimal policy is readily obtained by choosing at ea®¥. Consider a-stage § transitions of the uniformized chain)
stateN a price vectom that maximizes the right-hand side inproblem with terminal reward functio@, identically equal to
(7). The solution to Bellman's equation has the following intezero. We consider the system starting from two different initial
pretation: the scalaf* is the optimal expected revenue per unistates. The first, which we refer to as System A, starts from state
time, andh(N) is therelative rewardin stateN. In particular, N + e; and follows the optimal policy:. Its k-stage expected
consider an optimal policy that attains the maximum in (7) foeward is equal t¢Z77*0)(N + e;). The second, which we refer
every statéN. If we follow this policy starting from stat®N’ or to as System B, starts from stadg, but at any time uses the
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same prices as System A. The statistics of the arrival proces$as first, which we refer to as System A, starts from statel

for the two systems are the same, and by defining the two pemd follows the optimal policy. The second, which we referto as
cesses on a common probability space, we can assume thatyigtem B, starts from state We identifyn — 1 of the customers
actual arrivals are the same. We can also identify the commiarSystem B with those in System A, so that they have identical
N customers in the two systems and assume that they depadegiarture times. We refer to the remaining customer in System
the exact same instances. Then, the state of System B is aBadls the tagged customer. System B operates as follows: at any
times less than or equal to the state of System A, and in parfpint in time, it sets the same prices as System A does, and can
ular, whenever a customer is admitted in System A, a custontieerefore be assumed to observe the same sequence of arrivals
of the same class is also admitted to System B, at the same praoad the same revenue stream. This is done until the #ithat
Thus, the revenue in System A is equal to the revenue in Systtdra tagged customer departs, or until the first time that System B
B, and the same remains true after we take expectations. Buves to state + 1, whichever comes first. After that, System
the expected optimdl—stage revenue for System B is at least & follows the same optimal policy*(-), as in System A.

large and this shows théT*0)(N) — (1#0)(N +e;) > 0. We If the departure of the tagged customer comes first (i.e., be-
take the limit ask — oo and use (9) and (10) to conclude thafore System B reaches statet 1), the two systems have the

h(N) — h(N +e,) > 0. B same revenue stream until timeAt time ¢, they are found in
We now record some observations for the case where thetBE same state, and so their revenue streams coincide over the
has infinite capacity. infinite horizon. If on the other hand System B moves to state

Theorem 2 (The Infinite Bandwidth Casdy:there are no = + 1 before the departure of the tagged customer, which will
capacity constraintSR = o), the optimal revenue is given by happen with some probability < 1, then Systems A and B are
Iy found in states andn+ 1, respectively. From that time on, both
oo = max S A (s s sys_tems follow the same optimal policy, so that the difference in
= deu prt B their expected total future rewards(ig(n + 1) — h(n))/v. We
conclude that the difference of the expected total future reward
and the optimal price vector is some constag} that does not (starting from time zero) of System B minus that of System A, is
depend on the stal¥. Furthermore, we havé” < J... p(h(n+1)—h(n))/v. If System B was using an optimal policy
We now show that resource limitations always resultin highek all times, the expected future revenue would be no smaller,
prices in comparison to the unconstrained case. which establishes that
Theorem 3: There exists an optimal poliay* such that for
every statéN, we haveu*(N) > u.. h(n) — h(n — 1) = p(h(n + 1) — h(n)).

Proof: Fix some statéN. From the Bellman equation, we
see thatforall ¢ C(IN), an optimal price:; (IN) can be chosen
by maximizing the expression
i(us) h(n) —h(n—1) > h(n+1) — h(n)
——(R(N +e;) — h(N)).

Using the inequalitied(n+1) — h(n) < 0 (cf. Theorem 1) and
p < 1, we obtain

Ai(wi)u; +
which is the desired inequality. [ |
Consider a value of.; which is less than théth component ~ We next establish that in the single class case, optimal prices
Uoo i OF Uoo. ThEN A (1)1 < i (Uoo,i)Uso i, DY the definition reflect the level of congestion, that is, the revenue maximizing
0f Uoo 4. By Theorem 1, we have(N +e;) — h(N) < 0. Also, SP will raise prices as the system becomes more congested. To
by monotonicity of the demand function, we hakgw,;) > thatend, we use the result of Theorem 4.

Xi(uss 4). Using all of the above inequalities Theorem 5 (Monotonicity of Optimal Prices)here exists
\ an optimal policyu* with the propertyu*(n) > w*(n — 1), for
MG + A (N o) — () n=l-R-l _ .
v Proof: Since the mapping — A is invertible, we may
< Ai(thoo i ) thoo.s Ai (oo i) (h(N + e;) — h(N)). view)\_as the controlled variab_le, instegdpFromthe Bellman
’ ’ v equation, we see that an optimal choice\ofat staten, must
This implies that:; cannot be strictly better than, ;. m Mmaximize the function
A
C. Price Monotonicity in the Single Class Case FA) +—(h(n+1) = h(n))

We now assume that there is a single service class and g,r\l,%reF(A) = u( M)A
r = 1. (Accordingly, we simplify notation, and useto denote iy somen with 0 < » < R. Let gn = (h(n +1) —
the state of the system.) We wish to show that the optimal pricehi@l))/l/’ gn-1 = (h(n) — h(n — 1))/v, and leth,, A, _1 be
an increasing function of the state. We first show that the relaﬂ}ﬁ%ximizing arrival rates at statesandn — 1, respectively. We
rewards are concave. o distinguish two casest, = g,—1 andg, < g,—1. (The case
Theorem 4 [Concavity ofi(n)]: For all n safisfyingd < =" g impossible due to Theorem 4.) df, = gn_1,
n < R, we haveh(n) = (1/2)h(n — 1) + (1/2)h(n + 1). we can certainly se,, = \,_;. Consider now the case where

_ Proof: _Fix somen with 0 < n < R Let z_L*(-) be an dg" < gn_1. Since\, is optimal at state:, we have
optimal policy that attains the maximum in the right—hand side

of (7) for every state. We consider two copies of the system. () + Angn 2 F(h—1) + A—19n-
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Also, since),,_; is optimal at statex — 1, we have

F()‘n—l) + )‘n—lgn—l 2 F()‘n) + )\ngn—l-
These two inequa“ties |mp|y that S ol ............... T TR S R

()\n - )\n—l)(gn - gn—l) Z 0

and therefore\, < A, ;. SinceA(u) is a decreasing function /

of «, we can conclude that in both cases, an optimal price . * K2 = - -

staten can be chosen no smaller than the optimal price at stgs_ 1. Optimal dynamic pricing policy wheit

n— 1. B 60,0, =5, =1,andA(u) = Ao — \u.
Unfortunately, Theorem 5 does not extend to the multiclass

case, as shown by a counterexample provided in the Appendjk.different, however, as far as their demand functions are con-

This is similar to known counterexamples for the problem @ferned. It is not hard to see that a revenue—maximizing provider

optimal admission control (under fixed prices/rewards) for mulvill generally charge different prices to the different classes,

ticlass loss networks; see, e.g., Ross and Tsang [24] and R@&sn in the case of unlimited resourdds = o). Prices will

[18]. The reason behind the counterexample is the combinatend to be larger for those classes that have relatively inelastic

rial nature of an underlying “packing” problem that arises frordemand, which is a well-known characteristic of monopolistic

the different bandwidth requirements of the two classes. It pricing.

is not clear whether a similar counterexample is possible whenEven though different classes are charged different prices, the

all classes have the same bandwidth requirements. Furthermegggimal prices can be determined by solving a DP problem with

this combinatorial aspect should become insignificant in the-dimensional (1-D) state space. Thisis because, once a callis

limit where the capacity is large in comparison to the maximugdmitted, its future behavior is independent of its class (because

= 30,M = 1.)\, =

(over all classes) bandwidth requirement. of 1 andr being the same), and the state of the system is simply
) the numbem = n; + --- + ny of active calls. In particular,
D. Computational Example the relative reward function(IN) is of the formh(n), and can

To illustrate the structure of an optimal dynamic pricindgpe easily computed by solving Bellman's equation. Once the
policy, we consider an example involving a single class withfanction & has been computed, the optimal price for class
linear demand function when the state is < R, can be found by maximizing

For a particular choice of problem data, the optimal dynamic\yhen it comes to welfare maximization, it turns out that the

policy is depicted in Fig. 1. As predicted by Theorem 5, it i§5me price is charged to all classes. To see this, we first note that
optimal to raise the price when the system is congested, so tﬁ@g) depends only on the scalar= ny + - - - + nay, by our

users are discouraged from connecting, and to lower the price o, argument. The optimal price for classt stater < R,
to attract calls when the system is underutilized. If we were {9 yetermined by maximizing

setR = oo, the optimal price:., is equal to 6. We observe that

this is lower than the optimal dynamic price at every state, as N () E[U; | U; 2 wi) + Ai(u;) (h(n+1) — h(n)). (12)

predicted by Theorem 2. ) v

If f;(-)is the probability density function df;, then (3) and (4)

E. The Case of Welfare Maximization show that we need to maximize

For the case of welfare maximization, Bellman's equation re- .., ... h(n+ 1) — hin) [@m
mains the same, except that the reward ddie)’'u is replaced / fivywdy+ ——= / filv)dv
by >, Xi(w)E[U; | U; > w]. As in Theorem 1, the relative i v u
rewardsh(IN) are again monotonically nonincreasing¥ be-  with respect ta:;. Assuming an interior solution, the first order
cause the same proof applies. If the bandwidth is infinite, welonditions yield
fare is maximized by admitting every user, and the optimal price
u,, is equal to zero. Whe is finite, the optimal prices are —u f(u) — M(h(n +1)—h(n)) =0
nonnegative, which provides a trivial extension of Theorem 3. v
For the single class case, the proof of Theorem 4 remains valichich leads to

The relative rewards are again concave in the state varigble h(n) — h(n + 1)
which results in monotonically nondecreasing optimal prices, as ui(n) = — Vi
in Theorem 5.

F. Multiple Classes with Identical Characteristics V. STATIC PRICING STRATEGY

Suppose that all classes have identical technical characteriswe say that a pricing policy istaticif a fixed price vectom
tics, namelyu; = i andr; = » = 1, for all ¢. The classes can is always in effect, independent of the state of the system. (Note
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that this definition deviates somewhat from our earlier conven- Proof: Consider an optimal dynamic pricing policy.
tions, because a static price results in a constant arrival rate eVdthout loss of generality, we can assume that the prjclee-
if the required resources are unavailable, in which case calls acenes large enough and the arrival ratéu; ) is equal to zero,
blocked.) Static prices are of interest because: (1) the compuhenever the state is such that a clasall cannot be admitted.
tation of optimal dynamic prices increases exponentially witl this proof, we view); andn; as random variables, and use
the number of classes and the capacity and (2) dynamic pridgfs|, to indicate expectation with respect to the steady-state
can be unattractive to users who may prefer facing a predictaldestribution under this particular policy. At any time, we
fixed, pricing structure. have} . rn; < R, which implies that)_, E[n;]r; < R.
Under a static pricing policy, the system evolves as a confurthermore, Little's law implies th&[X;] = u;E[n;]. This
tinuous-time Markov chain whose steady-state probability cahows that th&[n;] andE[\;],i = 1,---, M, form a feasible
be found in closed form [18]. The corresponding average resslution of the problem (15). Therefore, using the concavity of
enue, denoted by (u), is given by F and Jensen's inequality

M Jun 2 Y F(END 2 Y EEN)] =S
J() = Ni(wi)ui (1= Pl [ul) (13) i i
=1 where the last equality used the optimality of the policy under
consideration. n
Note that./,,, is very easy to compute, especially under our
concavity assumption. It is an optimistic upper bound because
it implicitly assumes that if the arrival rates are held constant
to some values\; that satisfy) . A;7;/p; < R, then no calls
Jo = maxJ(u) (14) " are blocked. Despite that, the optimal solution of (15) can form
the basis of an approximately optimal static strategy, as will be
satisfiesJ; < J*. Itis of interest to determine the gap betweegjscussed later.
these two quantities; we return to this later. If the functionsF; are not concave, thef,, is not, in gen-
The loss probabilitie®] _ [u] can be efficiently computed; eral, a valid upper bound, but we may proceed as follows. Con-
see, e.g., Kaufman [25] for a method wit{ M R) complexity, ~ sider a new problem with reward ratB\; ), instead off7;(\,),
or Mitra et al.[26] for fast approximations. By optimizing overwheref; is the smallest concave function that satisfigs); ) >
u, an optimal static price can be usually computed with mog(\;) for all A;. Let .J* be the optimal average reward and let
erate effort. Ju, be the optimal value in the maximization (15), when eBgh
For the case of welfare maximization, the same discussigteplaced by7;. Using Theorem 6, applied to the new problem,
applies, Wlth)\z(uz)uz replaced b)&\z(uz)]:i)[[]Z | U, > U/z] Fur- we have
thermore, if all classes share the samandy;, it can be veri- ~ ~
fied that the optimal price is the same for every class. JEL T e

whereP{ __[u] denotes the steady-state probabilRyN'r +
r; > R] that a call of clas$ gets rejected. Clearly, treptimal

static revenue/,, defined by

VI. AN UPPERBOUND ON THE OPTIMAL PERFORMANCE VI LIMITING REGIMES

To assess the degree of suboptimality of static or approXi-|, this section, we consider a number of limiting regimes and

lmate dr)]/naen}ic_ pOI'Ck'eS’ espec(ljally Ifor h|gh-d|mel;13|or:ja}lﬁg)rola-lscuss the nature of the resulting optimal policies. In many
ems where/= IS unknown, we develop an upper bound. cases, static policies are asymptotically optimal. The most in-

the iu;:]h bound '§°<i,(c_f' Theorem 2?’ bl]ft this can be far fromteresting regime involves a system with a large number of small
tight if the resource limitations are significant. users, which is considered first.

We use the inverse demand functiang),;), and letZ;( ;)
stand for the instantaneous reward rate when the present cl@gsany Small Users
t arrval rate is;. Thus, F;(\:) Aii(Ai) or Ii(\i) . If the capacityR is large compared to the bandwidth of a
MNE[U; | U; = w;(\)], for the case of revenue or welfare maxi- . .
e . . typical call, we expect that the laws of large numbers will take
mization, respectively. We assume that the functibnare con- o o .
. " gver, eliminate statistical fluctuations, and allow us to carry out
cave. (This property is true for both cases of revenue or welfare : S : L
SN i O an essentially deterministic analysis. To capture a situation of
maximization, when the demand functiag(«; ) is linear.) Let

7 be the ontimal value of the following nonlinear oro ramt_his nature, we start with a base system, involving a finite ca-
“ub p. 9 prog pacity R and finite demand functions; («;). We then scale the
ming problem: . . .

system through a proportional increase of capacity and demand.
More specifically, letc > 1 be a scaling factor. The scaled

maximize Z Fi(A) system has resourcé, with B¢ = c¢R, and demand functions

subject to )\Z — ny Vi (15) AS(u;), given by AS(u,) =.c)\7;(u7¢). Note that the other param-
Z”‘T‘ <R etersr; andyu; are held fixed. We will use a superscripto
- o ; denote various quantities of interest for the scaled system. It is

easily seen that the optimal performante’, as well as the var-
Theorem 6: If the functionsF; are concave, thed* < J,;,. ious bounds, such ag;,, will increase roughly linearly witle,
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and for this reason, a meaningful comparison should first divide
such quantities by, as in the result that follows. <P Zn’nio@ > R — Tmax

Theorem 7: Consider either the revenue or the welfare max- J
imization problem, and assume that the functidié\;) (d

fined as in the preceding section) are concave. Then and the loss probabilitieB]_ [

(13) and (14), it follows that

u¢] also converge to zero. Using

1 1 1
lim —J$ = lim —=J"°= lim -Jg,. 1
c—oo ¢ c—o0 ¢ c—o0 ¢ lim —J¢ > lim —]c 9 Zue)\

c—o0 C c—o0 C
Proof: For simplicity, we only work with the revenue
maximization formulation. The upper bountf, is obtained This is true for any positive. We now lete go to zero, in which
by maximizing}_, cA; (u; )u;, subject to the constraint caseu tends touy,, ;. Using the continuity of the demand func-
tion, we obtain

Aq ()73
Z Ai(u)ri < ¢R. (16) 1 .
cggo et = zi:uub,z (uub,z) ub
It is easily seen that there exists an optimal solutigpy =
(u ubl,---,u;jb ), Which is independent af, and that/e,, = On the other hand/s < J*¢ < J3, = cJy,, and the result
el follows. [

Fix somee > 0 and let us consider new static pricgsgiven
by u§ = ufy,, + c. Let J°(uc) be the resulting average rev-B. Some Qualitative Conclusions for the Many Small Users
enue. For every such that\;(u},, ;) > 0, we have\;(uf) < Case
Ai(uhy,;)- Letng (respectivelyny ) be the random variable  Theorem 7 and its proof indicate that when the system is large
which is equal to the number of active classalls, in steady- (many small users), and under the concavity assumption, ap-
state, in the scaled system, under the prigesvith capacityc R proximate optimality is obtained by slightly modifying the static
(respectively, with infinite capacity). Using that th, ; satisfy  prices derived through the optimization in the definition/of,

(16), we obtain [cf. (15)].1 Itis thus of interest to study the nature of these static
prices. The insights to follow can be very valuable in narrowing
P Z ranf > R — T dowp the'deS|gn space when considering more sophisticated ap-
- proximations or adaptive methods.
( ) q 1) Revenue MaximizationEor the purposes of this discus-
“ub,i sion, it is more convenient to view the problem (15) as one in-
< P ‘max -, . - - -
- 27 Moo > Z -7 volving optimization with respect to;, rather thari;. We write
- - the resource constraint in the forpn, A;(u;)r; /s < R, and
( ub7) CR associate it with a nonnegative Lagrange multiplerThen,
=P — =21 (A7) the classi price w: is d ined b
Z - the classi price «; is determined by maximizing; A;(u;) —
L ¢ i g(Ni(w;)r;) /i Assuming an interior solution, we differentiate
and set the derivative to zero, to see that the maximizing prices
wherer,.x = max; r;. satisfy
Next note that  is equal to the number of customers in
an M/M/oo queue Wit arrival rate:h; (u5) and service rate A (1) r; )
: uy=——-——+q—, Vi (18)
pi- Thus,n{ . is a Poisson random variable with parameter dXi(w;) [ dus; 1t;

c)\( /i AS ¢ — oo, the mean ofn¢ /¢ converges to

Aiu ) /i and the variance to zero. Consequenﬂy, it can be seBhus, u; consists of two parts. The first is the reciprocal of
that the random variable; _./c converges in probability to the the demand elasticity, and illustrates how a monopolist will
deterministic value\; (u )/u7,wh|ch is less than; (uf, ;)/ . tend to increase revenue by overcharging inelastic demand.
It follows that the probability in the right-hand side of (17) conThe second term is a usage-based charge. The quantity
verges to zero. We next Compa':? andnZ oo Companng the is the “volume” (product of bandwidth and tlme) consumed
number of customers in the two Correéponding systems (dhba clasg call. Itis important to notice that this usage-based
with capacitycR and the other with infinite capacity), and bycharge is determined by a single parametecommon to all
defining the arrival processes on a common probability spagéasses. Equally important, such a charge can be implemented
we conclude that for all sample path$ is smaller thams .  Without knowingy.;, by setting a connection-time charge rate
Hence ' equal togr;.

In the special case of linear demand functions of the form
Ai(u;) = Ao, — A1:u;, We can solve for; and obtain

loss

i ul=P Z“nj >cR—r;

y A r
L J wy = 2%t 4T (19)
2)\177‘, 2 LL7
<P Z ] ”j > cR — Tiax 1Actually, this small modification is not necessary, but then a more compli-

j cated proof would be required.
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2) Welfare Maximization:We proceed similar to the pre-of switching increases, the system is faced with an arrival rate
ceding case. After we introduce the Lagrange multipfiewe of A* and an expected reward per unit time (in the absence of
need to maximize, with respect g, the expression [cf. (4)] blocking) equal toF'(A*). In the many small user regime, the

. probability of blocking can be made arbitrarily small, through

Ui, max )\Z (U'Z)7Z . . . h

vfi(v) dv — gZo—tE a small modification of the prices; andu., as in the proof of
ug Hi Theorem 7. Thus, the average performance of the system ap-

Ao

2

proached’(\*) = J,;,, and we have asymptotic optimality.
An alternative implementation is to segment the user popula-
tion into two classes, with a fractianbeing assigned to the first

By differentiating, we obtain a condition for optimality of an
interior solution, of the form

ry dhi(u;) class. A price (approximately equal tg)is then quoted to class
Ao, filui) = T i. What may be surprising with this scheme is that market seg-
mentation is beneficial even if the two market segments have
Using (3), this leaves us with identical technical characteristica @ndr), the same demand
r elasticities and even if the objective is to maximize social wel-
Ui =4 _Z (20)  fare!

T

The schemes in the preceding two paragraphs are notrealistic.
Thus, there is a single price for volume, and all classes afehe price switches frequently between andu,, users will
charged in proportion to the volume that they consume. (Suchaturally try to “time the market” and place calls when the lower
property is also present in [3] although the setting is differengrice is in effect, invalidating the Poisson arrival model. If on

as it relates to elastic traffic.) the other hand the market is segmented, users who have been
assigned to the higher priced segment will either try to switch
C. The Non-Concave Case to the lower priced segment or to another provider with “fairer”

As discussed at the end of Section Vi, is not, in general, a practices.
valid upper bound, in the absence of concavity. Rather, we firstOf course, we know that there exists an optimal dynamic
need to “convexify” the problem, by replacing the functidijs pricing policy which is stationary (at all times, it is the same
by their concave counterparf§, leading to the upper boundfunction of the state of the system), and which does not ex-
Jup. Unlike the concave case, the gap betwdeand.J,;, does Pplicitly segment the market. Without carrying out a detailed
not vanish in the limit of many small users, and static policiednalysis, it is not hard to guess the form of a close-to—optimal
are no more asymptotically optimal. It turns out that asymptaynamic policy with these properties, in the many small user
ically optimal policies, whose performance is closelig, are regime. We choose a threshold statenear k. We then set
again easy to obtain, but their form is less appealing. Rather them) ~ 11 for n < »*, andu(n) =~ up forn > n*. It was
developing a general theory, we focus on the single class caeted earlier thak, < R < Aq, and let us assume that is
and assume, without loss of generality that 1. The general- close enough té& so that\, < un* < A; Then, the system will

ization to multiple classes is straightforward. spend most of the time in the vicinity af* and the price will
In the single class case, we have be switching very frequently between andus, thus achieving
the same effect as in the two schemes that were discussed ear-
Ju, = ;1}% FO), Ju = ;1}% F(). lier, including undesirable fluctuations at a fast time scale.

Itis unclear whether nonconcave reward rdtés) can arise

If Ju, = Jub, the approach of Section VII—A provides a stati¢" Practice. If they do, the discussion above implies that near-
policy whose performance approachés, and we are done. OPtimality may not be practically attainable.

Suppose now thaf,;, < J,,. Let A* be an arrival rate that
attains the maximum in the definition of,,. Because of the
way thatF has been defined (“convexification” df), there For simplicity, we only discuss revenue maximization and a

D. Light or Heavy Traffic

existA; andX; and somex € (0, 1), such that single class. We use a demand functioiu), and we take the
limit as ¢ — 0 (light traffic), or ¢ — oo (heavy traffic). In light
A" =ad + (1 — ), traffic, the resource constraint becomes immaterial, and the best
FO) =aF(\) 4+ (1 —a)F(\y). static price for an unconstrained systam,, becomes asymp-

totically optimal. In heavy traffic, the system can be fully uti-

Let u1,uo be prices such that; = A(u1) and A2 = A(up), lized as long as the price is slightly less thap,... We sum-
where)(+) is the demand function. Without loss of generalitynarize the consequences of these observations in the theorem
assume that; < uo, whichleadsto\; > A;. Furthermore, itis below. The proof is straightforward and is omitted.
not hard to show that in this case, we will have< pR < ;. Theorem 8:a) (Light Traffic) We havelim._.o(J;/c) =
Indeed, ifA\2 < A1 < pR, then we havely, = F(\*) < lim._o(J*/c) = lim.—0(Joo/C) = A(Uoo)Uoo-
max{F (A1), F(A2)} < Jup, Which leads to a contradiction. b) (Heavy Traffic) We have J* < Kpiy,,, Where

Consider a state—independent but time—varying pricing poli¢y = [R/r] and the inequality is asymptotically tight as
that sets the price to; for a fractionc of the time and tai; for ¢ — oo. Moreover, for alle such thatd < ¢ < .y,
a fractionl — « of the time, and switches between these twthe static priceu,,ax — ¢ achieves revenud, that satisfies
prices with very high frequency. In the limit, as the frequencim. ... J. = (tUpax — €) K pe.
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VIII. A PPROXIMATELY OPTIMAL STATIC POLICIES

Computing exactly optimal static policies can be difficult
when the number of classes is large, because of numerical
problems with the computation of the loss probabilities and
also because we need to carry out an optimization over a
high—dimensional set of possible price vectardVe discuss a
number of approaches to get around this difficulty.

1) We can use the static prices suggested by the optimiza-
tion problem in (15). These will be of the form (18) or
(20), wherey is the optimal Lagrange multiplier associ-
ated with the resource constraint in (15).

More generally, we can use prices of the form (18) or
(20), and tune; to optimize performance. This option
may be called for if we are not quite in the limiting regime
and the multiplier obtained from the maximization (15)
cannot be fully trusted. For example, we can simulate the
system for different choices gfand pick the best value.

2)

mance metric with respect tg and iteratively adjusg in

the course of a single simulation, using for example, the
methods of Marbach and Tsitsiklis [27].

We can add still more flexibility by viewing each as

an independent tunable parameter (as opposed to using a
single parameteq), and then either use fast approxima-
tions of the blocking probabilities (as in [26]), or employ

a simulation-based method, as discussed above.

An advantage of the simulation-based methods described in
items 2 and 3 is that they may be carried on-line. One can then
explore model-free versions that do not assume explicit knowl-
edge or estimation of demand. This would lead to methods that
can adapt the static prices and track slow changes in the demand
functions.

3)

IX. APPROXIMATELY OPTIMAL DYNAMIC POLICIES

The computation of optimal dynamic policies becomes in-
tractable even with a moderate number of classes. If we are far
from the asymptotic regime where static prices are near-optimal,
it becomes of interest to explore methods that lead to approxi-
mately optimal dynamic policies. Possible approaches include
the following.

1) Construct a low-dimensional Markov model that approx- 3)

imates the exact model, and use an optimal policy for the
approximate problem. For example, Subramargtal.

[14] have used a 1-D approximate Markov model to ad-
dress an airline yield management problem. In our case,
we can use a two-dimensional stdte ) with compo-
nentsx = Y .n;r; andy = > nri/pi. Note thaty
measures the currently occupied volume, and has been
shown to be an important quantity by our analysis in Sec-
tion VII-B. Itis not clear whether a 1-D model could cap-
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One can employ any one of many available approxi-
mate DP methods (“neuro-dynamic programming” or
“reinforcement learning” [28], [29]), all of which aim

at setting the values of the paramet@ri a way that
results in good performance. This methodology has been
used successfully in a wide range of resource allocation
problems, including some complex admission control
and routing problems [30]. In Section X-C, we apply
such an approach to derive an approximately optimal
dynamic policy for large-scale problems. We use the
parametric representation (21) and apply a method origi-
nating in [31] and described in [28]Define (Qh)(IN, u)

to be equal to the expression in the right-hand side of the
Bellman equation (7), when prices are fixeduolt is

well known [23] that a solution to (7) can be obtained by
solving the linear programming problem:

minimize J
Alternatively, we can estimate the gradient of the perfor- sypjectto .J + A(N) > (Qh)(N,u) VN, Vuelf,
- (

22)
where we discretize prices abf} is a discrete subset of
U. Using the parametric representation (21hofve ob-
tain a linear programming problem with( A72) decision
variables, but with a very large number of constraints.
To address this, we apply a cutting-plane method guided
by a simulation of the system. We initialize the method
by solving (22) with a small number of constraints
corresponding to value@N, u) uniformly drawn from
the state space arld,. The resulting(J,8) leads to a
policy through the maximization of the right-hand side
of Bellman's equation. We simulate this policy and for
each statéN encountered in the simulation, we check
whether the constraints

J+h(N) > (Qh)(N,u)
are satisfied for alh € U,. We solve again the linear pro-
gramming problem, with all violated constraints at state
N included, to obtain a new policy, and continue the sim-
ulation from N with the new policy. Thus, at each iter-
ation we “improve”h by adding constraints violated by
the previous optimal solution.
Consider dynamic policies that depend on a small number
of parameters and tune those parameters to optimize per-
formance. The mainidea here is the same asinitems 2 and
3 of the preceding section. For example, guided by the in-
sights of Section VII-B, we could use prices of the form
uZ(N) = (71//12)(90 + 6.6+ 9252), whereb = 27 TiT.

X. NUMERICAL COMPARISONSBETWEEN STATIC
AND DYNAMIC POLICIES

ture both the resource constraints and the importance ofn this section, we numerically compare the performance of

volume.
2)
sentation of the reward function, e.g., of the form

h(N,8) = 6y + Z Oini + Z Oijnin;.

ij

(21)

the optimal dynamic and static pricing policies. We will see that

Work with the original model, but use a parametric reprdbe static policy offers its substantial implementation advantage
at a modest performance cost, in agreement with the theoretical

20ther approximate DP methods are also possible, but we took this as an
opportunity to test a method for which there is practically no experience.
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S TABLE |

namic pricing

- INPUT PARAMETERS FOR THECOMPUTATIONS IN TABLE Il.
WEUSEDR = 155,11 = 4,r5 = 1,1 = 1, AND 2 = 2. HERE,
pi = Ao,iri/(Ru;) Is AMEASURE OF THELOAD PRESENTED BY
EACH CLASS @

Aot | A P1 ] )\0,2 /\1,2 l P2

Case 1 40 4 1.032 350 35 1.129
Case 2 40 4 1.032 500 50 1.613
Case 3 80 8 2.064 350 35 1.129
Case 4 80 8 2.064 500 50 1.613

' ' ) . Case 5 || 160 | 16 | 4.128 | 1280 | 128 | 4.129
Fig. 2. For the example of Fig. 1, we plot the fraction of til¢z] that the Casc6 1320 1 32 | 8256 | 2560 | 256 | 8.258

system is in state, in steady-state, under the dynamic and the static pricing
policies, respectively. Case 7 || 640 | 64 | 16.512 | 5120 | 512 | 16.516

conclusions from Section VII. We only consider revenue maxection VII-B and, in particular, (19), which suggests prices of
mization problems. The results for welfare maximization woulthe form(u;, u2) = (5 4 2¢, 5+ (g/4)). By settingg = 1.04,

not be much different. we see that these latter prices are in close agreement with the
optimal static prices. That is, the upper bound calculation can
A. Single Class Example capture the form of the optimal static prices. The differences

I . L L betweenu,;, ; andu, ; observed in Table Il can be attributed

. Among the object|ve§ of pn_cmglpollmes Is to provide INCEM, the fact that the upper bound computation does not provide
tives so that calls modify their arrival patterns and reduce dgh accurate estimate of
mand during congested periods, leading to more efficient -1t turns out that class two contributes 91 6%
source utilization. To assess the extent to which this goal |gv

achieved, we depict in Fig. 2, and for the example of Fig.
the steady-state system occupancy under the dynamic andrﬂ%ﬁ(e most of its revenue from it. Indeed, the static price

static pricing policies, respectively. We observe that the CUNG class two is fairly close to the optimal infinite capacity price

for the static policy closely approximates the one for the dX[ ». The steady-state system occupancy under the optimal
namic policy. Under both policies the system spends most ﬁﬁfic policy is depicted in Fig. 3

the time with about 25 customers present (i.e., about 83% uti-
lization). As expected, dynamic pricing leads to better rationi
of the resources, with more “impulsive” system occupancy.

to the total
enue. It is evident that class one needs more resources than
lass two, and the system can focus on the second class and

n
g. Large-Scale Examples: Approximate Dynamic Policies

In this subsection, we turn our attention to relatively large-
B. Two-Class Example scale problems. The computation of optimal static and dynamic

We next turn our attention to a system with two service classedces becomes computationally prohibitive as the state space
with linear demand functions of the forky(w;) = Ao.;—; Ar ;.- grows, thus,_we will resort to the approximation methods out-
The objective is to demonstrate that the optimal static polidjp€d in Sections Viil and IX.
is not significantly inferior to the optimal dynamic one. More- In Table IV, we report approximate DP results for a number
over, we want to illustrate that by just setting appropriate staf Problems including large-scale ones. We have used the ap-
prices, the provider can exploit class characteristics to maximigg2ach outlined in item 2 of Section IX. Table Il reports the
revenues. The results for the two-class system are reporte§@responding input parameters. We observe that the perfor-
Table II. The input parameters for the calculations in Table fance of the approximate dynamic policy is fairly close to the
are given in Table I. These results suggest that the optimal st@Rtimal even for large scale problems (since it is close to the
pricing is very close to optimal, the suboptimality gap being les#Per bound). The form of the approximate dynamic policy for
than 2%. Note that n light traffic (top rows of Table II) the stati€ase 3 is depicted in Fig. 4. Notice that the resulting prices have
policy performs very well. The same is true when the systemaps“staircase” character, which is due to the discretization of the
highly congested (bottom rows of Table I1). This is to be excontrol space.
pected in view of the results in Section VII-D. Moreové,, Although this particular approximate dynamic policy may
exhibits the same behavior (i.e., it is especially tight in light ari¢gnderperform the optimal static pricing policy, there are some
heavy traffic). reasons that can make it attractive.

Consider, for example, the case in the first row of Table 1l. 1) The static pricing policy treats all users of the same class
Note that class one customers require 4 times as much band- equally, in the sense that they face the same probability of
width and stay for twice as long, on the average. That is, class  getting a busy signal. On the other hand, the approximate
one customers are “fat and slow” while class two customers  dynamic policy allows customers who place higher value
are “slim and fast”. Although both classes have comparable on their connection than others to increase their chance of
p's, it turns out that under the optimal static policy class one  getting connected by paying a higher price.
suffers a loss probability of 3.6%, while the corresponding 2) Dynamic policies can be more robust to errors in the de-
class two value is 0.79%. Moreover the optimal static prices  mand estimation. We elaborate further on this pointin the
are (us 1,us2) = (7.08,5.24). Let us recall the theory of next section.
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TABLE I
NUMERICAL RESULTS FOR THETWO-CLASS SYSTEM. WE DENOTE BY J* (RESP J,) THE OPTIMAL DYNAMIC (RESP OPTIMAL
STATIC) REVENUE. J,1, DENOTES THEOPTIMAL VALUE OF THE PROBLEM IN (15), (tys,1, tub,2) THE PRICES SUGGESTED BY THE
UPPERBOUND COMPUTATION, AND (s 1, ts,2) THE OPTIMAL STATIC PRICES

Js J* I Jub i:]_TJ“ x 100% Uyb,1 | Us,1 l Uub,2 | Us2
Case 1 || 945.79 | 952.63 972.85 0.72% 569 | 7.08 || 5.09 | 5.24
Case 2 || 1270.4 | 1281.65 | 1317.32 0.88% 762 { 874 | 5.33 | 5.42
Case 3 || 965.33 | 977.28 | 1012.43 1.22% 7.71 § 823 || 5.34 | 5.38
Case 4 || 1273.9 | 1288.97 | 1329.72 1.17% 8.7 19.26 || 5.46 | 5.48
Case 5 || 2206.1 | 2235.13 | 2349.22 1.30% 10 10 7.58 | 7.53
Case 6 || 2588.9 | 2613.36 | 2724.60 0.94% 10 10 8.79 | 8.64
Case 7 || 2804.1 | 2820.47 | 2912.30 0.58% 10 10 9.39 | 9.24

Alternatively, it is possible that demand undergoes slow but
unpredictable changes. In that case, we can let the static prices
change in an adaptive manner, e.g., by tuning:the (or the
single parameteg of Section VII-B) according to a stochastic
iterative method. Without such adaptation, and if an incorrect
demand model is used, the resulting prices can be far from op-
timal.

It is interesting to note that a significant degree of adaptivity
can also be accomplished using dynamic (state-dependent)
but stationary (not explicitly depending on time) pricing. For
example, consider the single-class case under the objective
Bf welfare maximization, with- = 1, and letu(n) = 0 for
n < 9R/10. Forn between9R/10 and R, let «(n) increase
smoothly from 0 tou,,.x. Then, it is easy to see that in the

Fig. 3. Steady-state system occupancy under the optimal static policy for
two-class system.

TABLE Il : - i

INPUT PARAMETERS FOR THERESULTS OFTABLE IV WE CONSIDERED many-small-u;ers reglme Of Section V“_B’ the Utlllzatlon Of
TWO-CLASS SYSTEMS WITH DEMAND FUNCTIONS OF THEFORM the system will be at least 0.9, and we will have near opti-
Ai(ug) = Xoji —widy AND = 4dro = 1o =1,y =2 mality even if we do not know the true demand function. This

argument indicates that even though dynamic pricing does not
[ r Aot [ A1 | ;m Aoz | A2 | p2 . -
perform much better than static pricing when an exact model
Case 1 10 40 1 16 350 35 | 17.5 ! . . ) L
Case 2 155 1T 40 7 [ To03 1 350 31113 is available, it provides a degree of adaptivity when a demand

Case 3 || 155 70 4 1.81 550 35 | 1.78 model is unavailable.
Case 4 || 1550 || 400 | 40 | 1.03 || 3500 | 350 | 1.13
Case 5 || 8500 || 400 | 40 | 0.19 || 35000 | 3500 | 2.06

XIl. CONCLUSIONS AND EXTENSIONS

We have introduced and studied a model for optimal con-
XI. TIME-OF-DAY AND ADAPTIVE PRICING gestion-dependent (dynamic) pricing of network services, with

We have assumed throughout that the statistics of the arriffa¢ twofold objective of developing approximately optimal
and service processes are stationary, which led to the develg}gthods as well as useful insights. We have carried out
ment of stationary pricing policies (dynamic and static). In pratde analysis in both a revenue maximization and a welfare
tice, these statistics typically vary with the time of the day. w&aximization setting. We explored a number of alternatives
expect, however, that they are slowly varying, and that one c@#ch as the computation of the exact optimum and several
sufficiently approximate\(u, ¢) andu(t) by piecewise constant @pproximations, and have provided a comparison with conges-
functions of time. In particular, one can define a numbetof tion-independent (static) pricing. Some of the most important

time intervalssy, . .., sy, that span a 24-h period (e.g., = conclusions are that static pricing can come very close to
3,51 = [9:00,17:00], s, = [17:00,1:00], s3 = [1:00,9:00]) oOptimality and that a single price paramegefvolume charge)
such that forallk = 1,---, L may suffice, especially when typical calls are relatively small.
This leads to the familiar time-of-day pricing policies. We also
Alu, t) ~ )\’“(u)’ p(t) ~ pk tes, (23) saw that a revenue-maximizing provider may set substantially

different prices for two services even if they have very similar

where)\"‘(u) andg” are constant functions of time. Thus, to imresource requirements. This is consistent to what is happening
plement a static pricing policy, it suffices to calculate the statin other industries (e.g., in air travel all passengers receive
price for each such interval (as afunctiomé"(u) andp®). The essentially the same service but can pay very different prices).
resulting policy is @ime-of-day pricing policywith L prices. However, we established that this is usually not the case when
Typical demand patterns in the Internet suggest that a relativétg objective is to maximize social welfare.

small value ofL (e.g., 3 or 4) can yield a good approximation While we have considered a single shared resource, a sim-
of traffic statistics. ilar model is possible involving several shared resources, each
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TABLE IV
APPROXIMATE DP RESULTS FOR THECASES OFTABLE |ll. J DENOTES THEREVENUE GENERATED BY THE APPROXIMATE POLICY. FOR CASES4 AND 51T IS
COMPUTATIONALLY INTRACTABLE TO OBTAIN THE OPTIMAL STATIC AND DYNAMIC POLICIES

J Js J* Jub i“j’:—" x 100% ” Uyb,1 Us,1 Uub,2 | Us,2
Case 1 159.54 | 163.73 | 164.63 | 188.57 15.39% 10.0 10 943 | 89
Case 2 920.53 | 945.79 | 952.63 | 972.85 5.38% 5.69 | 7.08 5.09 | 5.24
Case 3 || 2074.44 | 2164.4 | 2189.2 | 2260.87 8.25% 15.49 | 16.55 87 | 873
Case 4 || 8956.29 - - 9728.5 7.94% 5.69 - 5.09 -
Case 5 || 85430.68 - - 87772.28 2.67% 7.77 - 5.35 -

expected total loss in revenyé(0,0) — h(N))/v is of the
order of1/u. (This is proportional to the expected number of
lost calls before the state becon{és0).) If we seth(0,0) = 0,
we then see thdt(IN) = O(1) for every other state. Using this
fact, and writing down Bellman's equation for stéfe0), we
see that the terms involving-) can be neglected (because they
are multiplied by the factot /v and(N) /v = O(1/n)). We
obtain«}(0,0) =~ 1/2,45(0,0) = 1, J* ~ 3/4. Approximate
equality here means that we are ignoring terms of the order of
1/p.

Bellman's equation at stalé = (1, 0) is of the form

—

g ~ max {ul(l —u)+ (h(2,0) — h(1,0))

Uy 14

+ %(h(o, 0) — (1, 0))} .

Sincer = O(u),p/v = 1/2, andh(0,0) = 0, we obtain

h(1,0) ~ —1.
Similarly, Bellman's equation at stalé = (2,0) is of the
) form
. : o 3 __2p
Fig. 4. Approximate dynamic prices for Case 3 of Table V. Graphs (a) and 1 ~ T(h(l, 0) — h(2,0))

(b) depict prices for classes one and two, respectively.
andh(2,0) =~ —7/4.
one resulting in a separate linear constraint on the state spacehe above calculations show the lack of concavityhofis
The case where service is delivered by a network, with eaghunction ofny, sinceh(1,0) — h(0,0) =~ —1 < h(2,0) —
call using one or more links, falls in this category. Many OthG{(L 0) ~ —3/4. The optimal class 1 price at state; ,0), for
situations (see also [32]) can fit into this kind of model. The, = 0, 1, is determined by maximizing
methods described in this paper can all be extended, in principle,
although the increased complexity may require further approx- (1 —uy) +
imations, e.g., requiring that the price of a call is equal to the
sum of the prevailing prices for the different resources thatlit our exampleh(n + 1,0) — h(n1,0) increases wittn,, and
consumes. it is easily seen that the optimal decreases with; .
The intuition behind this counterexample is the following. A
APPENDIX single class one arrival blocks class two calls over a period of

We provide here an example that shows that optimal priC%pected lengt/.:. Two class one arrivals block class two calls

can decrease witN. Consider a system with two service classeI vera period of expected lengifi(2,:), and the_ corresp_ondlng
(M = 2), in which R andr = (r1, ) are such that the state 0ss is less than twice the loss caused by a single arrival.
space only contains the staté 0),(0,1),(1,0), and(2,0).
For an example, consider the case whgre 10 andr = (5, 8).

Consider the following demand function§j(u;) = 1 — The authors would like to thank M. Caramanis, B. Prabhakar,
up,up € [0,1], and Aa(uz) = 1 — (u2/2),uz € [0,2]. Let and the participants of the Finland Workshop (June 1998) of the
i = w,t = 1,2, wherey is a large constant, much larger tharinternet Telephony Consortium for some useful discussions, as
1. Note that the rate in the uniformized chain can be takernwell as H. Huang and Y. Liu for helping with some of the nu-
equal to2y + 2. merical results. The second author is grateful to C. Courcoubetis

Becauseu is much larger than the arrival rate, the systerand G. Stamoulis for hosting an extended visit to the Institute for
spends most of the time at staf@, 0). Furthermore, if the Computer Science, Crete, Greece, where this work was partly
system is started instead at some nonzero atie resulting carried out, as well as for several discussions.

1—u1

(h(n1+1,0) — h(ny,0)).
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