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1. Introduction 

The spectral radius of a real matrix A is defined by 

p(A) :=  max{[2[: 2 is an eigenvalue of A}. 

This definition can be extended in various ways to sets of  matrices. Due  to their 
numerous  practical applications, these possible extensions have been the object of 
intense attention in recent years. In this paper  we analyse some of these extensions 
from a computa t ional  complexity point of view. 

Let [I. [I be any matr ix no rm (in what  follows we always assume that  matr ix 
norms are submultiplicative, i.e., that  ][AB[] < [IAI[ ]IBID. The well-known identity 
p(A) = limk~oo [[Ak[l~/k (see, for example, Corol la ry  5.6.14 of  [HJ])  justifies the 
generalizations of  the concept  of  spectral radius to sets of  matrices given next. 
Let  Y~ be a set of matrices in R"• the joint spectral radius p(E) is defined [RS] 
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by 

~(Z) = lim sup ~k(X), 
k---+ r 

where pk(Z) = sup{]]A1A2.-. Ak]] l/k: each Ai �9 Z} for k >_ 1. It is shown in [DL] 
(notice that our notations are different from those used there) that p(Z) _< pk(Z) for 
all k _> 1, and therefore the joint spectral radius can be given in the equivalent 
form p(E) = limk~o~ /~k(E). Similarly to p we define the lower spectral radius _p(E) 
by 

p(X) = lim inf pk(]~), 
-- k_~. Qo - 

where _pk(Z) = inf{llAiA2 - �9 �9 Akll l/k: each A~ �9 Z} for k >_ 1. 
As for the single matrix case, the quantities ilk(Z) and _pk(Z) generally depend 

on the matrix norm used but the limiting values fi(Z) and _p(Z) do not. To see 
this, remember that any two submultiplicative norms I1' II1 and I[" [12 are related 
by allAII1 _< IIAIt2 _< fl[IAII1 for some 0 < ct < ft. For any product A1A2.. "Ak we 
have ctl/k]lAiA2... Akl]~/k <_ [IA1A2-.. Akll~/k <_ fll/kllA1A2... Akll~/k and by let- 
ting k tend to infinity we conclude that the joint and lower spectral radii are well 
defined independently of the matrix norm used. 

The joint and lower spectral radii correspond in a certain sense to two 
extreme cases. With the joint spectral radius we calculate the largest possible 
average norm that can be obtained by multiplying matrices from Z, whereas 
with the lower spectral radius we calculate the lowest possible such norm. We 
now define an additional quantity that is intermediate between these two 
extreme cases. We assume that we have a probability distribution P over the set 
Z and that we generate an infinite sequence (Ai)i___l of elements of X by picking 
each matrix Ai randomly and independently according to the assumed proba- 
bility distribution P. A probability distribution is said to be nontrivial if nonzero 
probabilities are attached to all matrices of Z. The largest Lyapunov exponent 
(also called the top Lyapunov exponent or asymptotic growth rate) associated 
with P and X is defined by (see [O], see also [CKN] for a more readable 
account) 

2(X, P) = l i m  ~ E[log(llA1... Ak[I)]. 

It can be shown that this limit exists and, as for the previous cases, does not 
depend on the matrix norm used (see [O] for a proof of the first of these state- 
ments). In order for our development to be uniform we transform the largest 
Lyapunov exponent into the Lyapunov spectral radius pp(Z) by defining 

pp(X) = e ~(x'P). 

Basic inequalities relating p, pp, and fi are given by 

e(x) <__ pAX) ___ p(x). 

Moreover, since p(A) = limk--,oo IIAkll l/k, the definitions of p, pp, and fi coincide 
with the usual spectral radius when Y, consists of a single matrix. 
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Additional definitions similar to those of p, pp, and fi are possible by replacing 
the norm appearing in their definitions by a spectral radius. For example, the 
generalized spectral radius f~(Z) defined by Daubechies and Lagarias [DL] is 
obtained by setting 

f'(X) = lim sup f~(X), 
k--~oo 

where f~(Z) = sup{(p(A1A2... Ak))l/k: each A i E •} for k > 1. Similar definitions 
lead to the spectral quantities _pP and p~. It has been conjectured in [DL] and 
established by Berger and Wang that the generalized spectral radius fit coincides 
with the joint spectral radius f when E is finite (see Theorem IV of [BW] or 
Theorem 1 of [E] for an elementary proof). Gurvits has also shown [G2, Theorem 
B.1] that p~ coincides with _p when E is finite. In what follows we always assume 
that the set E is finite and, for convenience, deal only with the three spectral radii 
defined in terms of norms. 

The generalized spectral radius was introduced in [DL] for studying concepts 
associated to Markov chains, random walks, and wavelets. The logarithm of the 
joint spectral radius also appears in the context of discrete linear inclusions 
where it is called the Lyapunov indicator, see, for example, [B1]. In systems- 
theoretic terms, the generalized spectral radius can be associated with the stabil- 
ity properties of time-varying systems in the worst case over all possible time 
variations, or with the stability of "asynchronous" [T] or "desynchronized" 
[K2] systems. 

The definition of the lower spectral radius is natural for formalizing control 
design notions associated to discrete-time systems. Instead of viewing the order 
of matrix multiplication as an externally imposed time variation, we view it as a 
control action, and are interested in the stability properties that can be obtained 
by choosing control actions in the best possible way. Despite this natural inter- 
pretation, the definition of the lower spectral radius seems quite recent (the first 
reference seem to be [G2], see also [BT2] for connections with control concepts). 

Finally, the largest Lyapunov exponent appears in the context of discrete 
linear differential inclusions (see [BGFB] and references therein) and is related 
to time-varying systems in which time variations are random. Besides systems- 
theoretic interpretations, Lyapunov exponents are pervasive in many areas of 
applied mathematics such as mathematical demography [C], [R2], percolation 
processes [D], statistics JR1], and Kalman filtering [B2]. Other references and 
descriptions of applications appear in the yearly conference proceedings [ACE] 
and in the survey [CKN]. 

We now briefly survey how these quantities can be computed or approxi- 
mated. By letting k tend to infinity, the inequalities (with our notations) 

_ _< fk(z) 

proved in Lemma 3.1 of [DL] can be used to derive algorithms which compute 
arbitrarily precise approximations for f(E) (see, for example, [G1] for one such 
algorithm). 

These approximating algorithms can in turn be used in procedures that 
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decide, after finitely many steps, whether p > 1 or 17 < 1 (such procedures 
are given, e.g., by Brayton and Tong [BT3] in a system-theory context and by 
Barabanov [B1] in the context of discrete linear inclusions). These procedures 
may not terminate when p happens to be equal to one. The existence of algo- 
rithms for computing arbitrarily precise approximations of p does not rule out 
the possibility that the decision problem "# < 1" is undecidable. It is so far 
unknown whether this problem, which was the original motivation for the 
research reported in this paper, is algorithmically solvable (see [LW] for a dis- 
cussion of this issue and for a description of its connection with the finiteness 
conjecture, see also the discussion in [G2]). A negative result in this direction is 
given by Kozyakin who shows [K2] that the set of pairs of 2 • 2 matrices that 
have a joint spectral radius less than one is not semialgebraic. 

In our first result (Theorem 1) we show that, unless P = NP, approximating 
algorithms for ~ cannot possibly run in polynomial time. More precisely, we 
show that, unless P = NP, there is no algorithm that can compute p(Z) with a 
relative error bounded by e > 0, in time polynomial in the size of E and e (see 
later for more precise definitions). As a corollary we show that it is NP-hard to 
decide if all possible products of two given matrices are stable. 

The situations for the largest Lyapunov exponent and for the lower spectral 
radius are somewhat different from that of the joint spectral radius. Computable 
upper bounds for PP for the case where E consists of nonnegative matrices are 
given in [GA] and analytic solutions are available for special cases (see, for 
example, [LR] for an analytic solution for the case where E consists of two 2 x 2 
matrices, one of which is singular). In general, no exact, or even approximate, 
computational methods other than simulation seem to be available for comput- 
ing p~, or _p. The problem of computing PP has been known for at least 20 years, 
and we quote from Kingman [K1, p. 8971 (the same quotation appears in [C]): 
"Pride of place among the unsolved problems of subadditive ergodic theory 
must go to the calculation of the constant ~ (a constant that is equal to the loga- 
rithm of Pc). In none of the applications described here is there an obvious 
mechanism for obtaining an exact numerical value, and indeed this usually 
seems to be a problem of some depth." 

In our second result (Theorem 2) we show that no approximating algorithm 
exists for _p and pp. More precisely, let p be any function satisfying 

e(Z) ___ p(Z) _ pe(Z) 

for some nontrivial probability distribution P and for all E. We show that the 
problem of computing p exactly, or even approximately, is algorithmically un- 
decidable. We also show that, when all the matrices in E are constrained to have 
nonnegative coefficients, then the problem of computing p becomes NP-hard. 

If the decision problem "p < 1" was decidable for such a function p, then the 
associated decision procedure could be used to compute arbitrary precise ap- 
proximations of p. Since p is not computable when _p < p < pp, we conclude, as 
a corollary to Theorem 2, that "p < 1" is undecidable for the Lyapunov spectral 
radius, for the lower spectral radius, and for all intermediate functions between 
these two. 
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For  convenience of the exposition we restrict our attention in what follows to 
pairs of matrices with integer entries. Our results being negative they equally 
apply to sets of k > 2 matrices or to infinite sets, and to matrices with real 
entries. 

An earlier version of this paper appears in the conference proceedings [TB]. 

2. Approximability of the Joint Spectral Radius 

As explained in the Introduction, the joint spectral radius can be approximated to 
arbitrary precision. We show in this section that, unless P = NP, approximating 
algorithms cannot run in polynomial time. Following Papadimitriou [P1], we say 
that a function p(Z) is polynomial-time approximable if there exists an algorithm 
p*(Z, 5), which, for every rational number e > 0 and every set of matrices Z with 
p(Z) > 0, returns an approximation of p(Z) with a relative error of at most 5 (i.e., 
such that Ip* - p[ -- 5lp[) in time polynomial in the size of Z and e. By the "size of 
E and e" we mean the description size, or "bit size," of E and e. For  example, if e is 
the ratio of two relatively prime numbers p and q, the size of e can be taken to be 
log(pq). 

Theorem 1. Unless P = NP, the joint (generalized) spectral radius ~ of two 
matrices is not polynomial-time approximable. This is true even for the special case 
where Z consists of two matrices with {0, 1} entries. 

Proofi Our proof proceeds by reduction from the classical SAT problem (see 
[GJ] for a definition of SAT), it is inspired from the proof of Theorem 6 in [PT] 
and it is similar to the proof of Theorem 2 in [BT1] (however, we were unable to 
deduce this theorem from Theorem 2 in [BT1].) 

Starting from an instance of SAT with n variables Xx, . . . ,xn and m clauses 
C t , . . . ,  Cm, we construct two directed graphs Go and GI. The graphs have iden- 
tical nodes but have different edges. Besides the start node s, there is a node uij 
associated to each clause Ci and variable xj, a 0th node u0j associated to each 
variable xj, and an (n + 1)th node ui(n+x) associated to each clause Ci. Edges are 
constructed as follows: for i = 1 , . . . ,  m and j = 1 , . . . ,  n there is 

�9 an edge (uij, ui(j+t)) in both Go and G1 if the variable xj does not appear in clause 
C~; 

�9 an edge (uij, uoj) in Go and an edge (uij, uio+l)) in GI if the variable xj appears in 
clause Ci negatively; 

�9 an edge (uij, u0j) in GI and an edge (u/j, ui(j+t)) in Go if the variable xj appears in 
clause Ci positively. 

For  i = 1 , . . . ,  m there are edges (s, uil) in both graphs. The graphs have edges 
(u0j, u00+l)) for j = 1 , . . . ,  n - 1 and have an edge from u0n to s. There are no 
edges leaving from (Ui(n+l) , S) for i = 1 , . . . ,  m. 

Let r denote the total number of nodes (r = (n + 1)(m + 1)). We construct two 
r x r matrices A0 and A1. Associated to the graph Go (resp. G1) is the r • r matrix 
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A0 (resp. A1) whose (i, j ) th entry is equal to one if there is an edge from node j to 
node i in Go (resp. G1), and is equal to zero otherwise. 

To any given node e we associate a column-vector x(e) of dimension r whose 
entries are all zero with the exception of the entry corresponding to the node 
which is equal to one. 

We need two observations. 

1. Let a partition of the nodes be given by Pn+2 = {s}, Pn+l = {ufl: i = 1 , . . . ,  m}, 
P,  = {u01,ui2: i =  1 , . . . , m } , . . . , P 2  = {u0(,-1),ui,: i = 1 , . . . ,m} ,  and P1 = 
{u0n, u/(n+l) : i = 1 , . . . ,  m}. We use g~ to denote the index of the partition to 
which the node e belongs. Any edge (from Go or Ga) leaving from a node of 
partition Ph goes to a node of partition Ph-1. Furthermore, the unique edge 
leaving from partition P1 goes back to partition P,+2. Thus, any path in Go 
and G1 that starts from node e either gets to a node ui(,+l), from which 
there is no outgoing edge, or it visits node s after g~ steps. In matrix terms 
this implies the following. Let ~ be an arbitrary node and let g~ be its asso- 
ciated partition index. If h is a positive integer equal to g~ modulo (n + 2) 
and A is a product of h factors in {A0, A1}, then 

Ax(o:) = laX(S) 

for some nonnegative scalar la. 
2. Let q l , . . . ,  q, e {0, 1} be a truth assignment of the boolean variables xj and 

consider the product A q . . . A q l .  The vector A q . . . A q l x ( u f l )  is equal to 
X(Uo,) if the clause Ci is satisfied and is equal to x(ui(,+l)) otherwise. Let A, 
be any of A0 or A1. There are no edges leaving from u~(,+l), there is one 
edge from u0, to s, and there are edges from s to ufl for i = 1 , . . . ,  m. Thus 
we h a v e  A,x(Ui(n+l) ) = 0, A,x(Uon) = x(s), and A,x (s )  = ~-~im=l X(Uil ). From 
this we conclude 

m 

a , A q  . . .  AqlA,x (s  ) = a , A q  . . .  Aql Z x(uil)  
i = 1  

ill 

= A,  ~ A q  . . . aq ,  x(uil)  ~- J.x(s), 
i=1 

where 2 is equal to the number of clauses that are satisfied by the given 
truth assignment. 

With these two observations we now prove the theorem. 
Assume first that the instance of SAT is satisfied by the assignment xi = qi 

for q l , . . . ,  q, ~ {0, 1} and define A by A = A , A q . . . . A q ~ A ,  with A,  any of A0 
or A1. Since all m clauses are satisfied we have A x ( s ) =  rex(s) and thus 
fi(A0, A1) _> m 1/(n+2) �9 

Assume now that the instance of SAT is not satisfiable. Let Yi = ~ P i  x(a) for 
i =  1 , . . . , n +  2 and consider the vector max norm [1' ]1- Let A be a product of 
n + 2 factors in {A0,A1}. Since the instance of SAT is not satisfiable we have 
]]Ayi]] <_ ( m -  1)llyi[I = m -  1 for i =  1 , . . . , n + 2 .  Now let e denote the vector 

n + 2  ~ n + 2  - -  whose entries are all equal to one. Then e = 2_,i=1 Yi and Ae = 2_.,,i=a Ayi. The 
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nonzero entries of Ayi are at the same place as the nonzero entries of yi. Hence, 
[[aell = l[ ~Ayi[[  = maxilla yill -< m - 1 .  The entries of A are all nonnegative 
and so Ilall = Ilae[I for the max row sum matrix norm. Thus we have [JAil-< 
m -  1 whenever A is a product of n + 2 factors in {Ao, A1}. From this we con- 
clude that fi(Ao, A1) < (m - 1) 1/(n+2). 

Suppose now that p*(Z, e) is an algorithm which, for every e > 0 and s with 
p(Y.) > 0, returns an approximation of p(E) with [p* - p[ < e[p[. By running this 
algorithm on the pair of {0, 1} matrices Ao, A1 obtained from the instance and 
on a sufficiently small e (e.g., we can take e < (m/(m - 1)) 1/(n+2) - 1), we are 
able to distinguish fi(Ao,A1) > m 1/(n+2) from fi(Ao, A1) < ( m -  1) 1/(n+2). The 
algorithm thus allows us to decide .the instance of SAT. Since all transformations 
are performed in polynomial time, the algorithm cannot possibly run in time 
polynomial in the size of Z and e unless P = NP. �9 

Remarks. 1. Since the problem remains NP-hard when the matrices have {0, 1} 
entries, a corollary of the theorem is the following: 

Corollary 1. Unless P = NP,  the joint (or generalized) spectral radius of two 
n • n matrices, with {0, 1} entries, is not approximable with relative error 10 -k 
(k positive integer) in a number of operations polynomial in n and k. 

2. If a polynomial-time algorithm was available for checking the stability of all 
products of two given matrices, then the algorithm could be used to approximate 
the joint spectral radius in polynomial time. Thus we have: 

Corollary 2. Consider all possible products of two given real matrices Ao and A1. 
I t  is NP-hard to decide if all products are stable. This is true even if the matrices 
have {0, 1} entries. 

3. As indicated by a reviewer it may be possible to improve the theorem by 
proving that, for a suitably small constant a, and unless P -- NP,  no polynomial- 
time approximation algorithm of relative error e exists for ft. Such a result would 
have to be derived from negative results on the approximability of the MAX- 
SAT problem. 

4. L. Gurvits has kindly communicated to us that he has also proved Corol- 
lary 2 using a different reduction (unpublished). 

3. Approximability of the Lower Spectral Radius and 
the Lyapunov Exponent 

In this section we show that the lower spectral radius and the Lyapunov spectral 
radius, and intermediate quantities between these two, cannot be approximated 
by an algorithm. Let p be a quantity that we wish to compute and let us fix some 
positive constants K and L with L < 1. Consider an algorithm which on input Z 
outputs a number p*(E). We say that this algorithm is a (K,L)-approximation 
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algorithm if for every E we have 

]p* - p ]  <_K + Lp. 

This definition allows for an absolute error of K and a relative error of L. Despite 
the latitude allowed by this definition, we show below that (K, L)-approximation 
algorithms do not exist for the Lyapunov and the lower spectral radii. 

In order to prove our result we need the following definition. We say that a set 
of matrices Z is mortal if there exists some k > 1 and matrices Ai a E such that 
A1A2. . .  Ak = 0. The following result can be found in [BT1] (see, in particular, 
Theorems 1 and 2, and Remark 2 after Theorem 1) and builds on an earlier 
result by Paterson [P2]. 

Proposition. Mortality of two integer matrices of size n • n is undecidable for 
n = 6np + 6 where np is any number of  pairs of words for which Post's corre- 
spondence problem is undecidable. (We may take np ~ 7, see below.) 

Post's correspondence problem is a classical undecidable problem on words 
(for a description of the problem and a proof of its undecidability see, e.g., 
[HU]). In a recent contribution Matiyasevich and S~nizergues [MS] have 
shown that Post's correspondence problem is undecidable as soon as there are 
seven pairs of words. Thus we can take n v = 7, and the mortality of pairs of 
48 x 48 integer matrices is undecidable. We are now able to prove our theorem. 
The proof essentially uses the fact that any (K, L)-approximation algorithm can 
be used to decide the mortality of matrices. 

Theorem 2. Let np be a number of pairs of words for which Post's correspondence 
problem is undecidable. Fix any K > 0 and L with 0 <_ L < 1. Let p be a function 
defined on pairs of matrices and assume that _p(E) <_ p(Y,) _< pp(E) for some non- 
trivial probability distribution P and for all pairs E. 

1. There exists no (K, L)-approximation algorithm for computing p. This is true 
even for the special case where E consists of one (6np + 7) • (6np + 7) integer 
matrix and one (6np + 7) • (6np + 7) integer diagonal matrix. 

2. For the special cases where E consists of two integer matrices with {0, 1} 
entries, there exists no polynomial-time (K,L)-approximation algorithm for 
computing p unless P = NP.  

Proof. Let K > 0 and 0 < L < 1 be given and let p be as above. Suppose that 
there exists a (K, L)-approximation algorithm for p and let Z be an arbitrary 
family of n • n integer matrices. 

We claim that the (K, L)-approximation algorithm can be used to decide 
whether or not E is mortal. This will establish the theorem. 

We form a family E ~ of (n + 1) • (n + 1) matrices as follows. For  each A ~ Z, 
we construct B ~ E r by letting B = diag{cA, d}, where c and d are positive con- 
stants satisfying K + d(L + 1) < (1 - L)c - K. 

Suppose that E is mortal. Then it is easily seen that p(Z') = pe(E') = d and 
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thus p(U)  = d. In this case, applying a (K, L)-approximat ion algorithm to Y/, 
would give a result p* bounded by p* < K + (L + 1) d. 

Suppose now that E is not mortal. The matrices in Y/have integer entries that 
are either equal to zero, or are larger than c. Since Y~ is not mortal,  any product 
of k matrices has some entry whose magnitude is at least c k and it follows that 
p(~ ' )  > c and thus p (Y / )>  c. In this case, applying a (K,L)-approximat ion  
algorithm to E',  would give a result p* satisfying p-p*<<_ Lp + K or p * >  
(1 - L ) p -  K >_ (1 - L ) c -  K. 

Having chosen c and d so that K + d < (1 - L)c - K,  the result of the (K, L)- 
approximat ion algorithm applied to Y/allows us to determine whether E is mor-  
tal or not. 

The mortal i ty problem is undecidable even for the case where Z consists of 
two (6% + 6) x (6% + 6) integer matrices. The fact that one of the matrices may 
be taken to be diagonal follows from the observation that the Lyapunov expo- 
nent and lower spectral radius are left unchanged by the similarity transforma- 
tion of the matrices, combined with the fact that the matrices used in the paper  
[P2], to which [BT1] refers, are all diagonalizable. The first part  of the theorem 
is therefore proved. 

For  proving the second part  of the theorem, we invoke the same reduction 
and use the fact that checking whether two matrices with {0, 1} entries are 
mortal  is an NP-complete  problem. �9 

R e m a r k s .  1. Note that  the matrices in Z are not irreducible. It  is not clear 
whether a similar negative result can be obtained if we restrict the set Z to irre- 
ducible matrices. 

2. If an algorithm was available for checking the presence of a stable matrix 
in the set of all products of two given matrices, then the algorithm could be used 
to approximate  the lower spectral radius. Thus we have: 

C o r o l l a r y  3. Consider all possible products of  two given real matrices Ao and A1. 
I t  is undecidable to decide if  one of  the products is stable. This is true even if the 
two matrices are integer, of  size 49 • 49, and one of  them is diagonal. 
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