
Machine Learning, 16, 185-202 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Asynchronous Stochastic Approximation
and Q-Learning

JOHN N. TSITSIKLIS jnt@athena.rnit.edu
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

Editor: Richard Sutton

Abstract. We provide some general results on the convergence of a class of stochastic approximation algorithms
and their parallel and asynchronous variants. We then use these results to study the Q-learning algorithm, a rein-
forcement learning method for solving Markov decision problems, and establish its convergence under conditions
more general than previously available.
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1. Introduction

This paper is motivated by the desire to understand the convergence properties of Watkins'
(1992) Q-learning algorithm. This is a reinforcement learning method that applies to
Markov decision problems with unknown costs and transition probabilities; it may also be
viewed as a direct adaptive control mechanism for controlled Markov chains (Sutton, Barto
& Williams, 1992).

In Q-learning, transition probabilities and costs are unknown but information on them
is obtained either by simulation or by experimenting with the system to be controlled; see
(Barto, Bradtke & Singh, 1991) for a nice overview and discussion of the different ways
that Q-learning can be applied. Q-learning uses simulation or experimental information to
compute estimates of the expected cost-to-go (the value function of dynamic programming)
as a function of the initial state. Furthermore, the algorithm is recursive and each new piece
of information is used for computing an additive correction term to the old estimates. As
these correction terms are random, Q-learning has the same general structure as stochastic
approximation algorithms. In this paper, we combine ideas from the theory of stochastic
approximation and from the convergence theory of parallel asynchronous algorithms, to
develop the tools necessary to prove the convergence of Q-learning.

Stochastic approximation algorithms often have a structure such as

where x = ( x 1 , . . . , xn) € Kn, F1, . . . , Fn are mappings from 3?n into 5R, wt is a random
noise term and a is a small, usually decreasing, stepsize. The Q-learning algorithm, to
be described in more detail in Section 7, is precisely of this form, with the mapping F =
( F 1 , . . ., Fn) being closely related to the dynamic programming operator associated with
a Markov decision problem.
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The convergence of Q-learning has been proved by Watkins and Dayan (1992) for dis-
counted Markov decision problems, as well as for undiscounted problems, under the as-
sumption that all policies eventually lead to a zero-cost absorbing state. It was assumed, in
addition, that the costs per stage are bounded random variables. The proof by Watkins and
Dayan uses a very clever argument. On the other hand, it does not exploit the connection
with stochastic approximation and runs into certain difficulties if some of the assumptions
are weakened.

In this paper, we provide a new proof of the results of Watkins and Dayan (1992). In
addition, our method of proof allows us to extend these results in several directions. In
particular, we can prove convergence for undiscounted problems without assuming that
all policies must lead to a zero-cost absorbing state; we allow the costs per stage to be
unbounded random variables; we allow the decision on which action to simulate next to
depend on past experience, and, finally, we consider the case of parallel implementation
that allows for the use of outdated information, as in the asynchronous model of Bertsekas
(1982) and Bertsekas and Tsitsiklis (1989).

To the best of our knowledge, the convergence of Q-learning does not follow from the
available convergence theory for stochastic approximation algorithms. For this reason,
our first step is to extend the classical theory. We briefly explain the technical reasons
for doing so. A classical method for proving convergence of stochastic approximation is
based on the supermartingale convergence theorem and exploits the expected reduction
of a smooth Lyapunov function such as the Euclidean norm (Poljak & Tsypkin, 1973).
However, for the case of Q-learning, we face the problem that the dynamic programming
operator does not always have the necessary properties. Indeed, the dynamic programming
operator, for discounted problems, is a contraction only with respect to the l^ norm and
the classical theory does not apply easily to this case; for undiscounted problems, it is not
a contraction with respect to any norm. Another method for establishing convergence is
based on "averaging" techniques that lead to an ordinary differential equation (Kushner
& Clark, 1978). While this method is very powerful, some of the required assumptions
might not be natural in certain contexts. For example, in the case of Q-learning, we would
have to require that there exist well-defined average frequencies under which the different
state-action pairs are being simulated. The method that we develop in this paper is based
on the asynchronous convergence theory of Bertsekas (1982) and Bertsekas et al. (1989),
suitably modified so as to allow for the presence of noise. There have been some earlier
works on the convergence of asynchronous stochastic approximation methods, but their
results do not apply to the models considered here: the results of Tsitsiklis, Bertsekas and
Athans (1986) involve a smooth Lyapunov function, the results of Kushner and Yin (1987,
1987) rely on the averaging approach, and the assumptions of Li and Basar (1987) are too
strong for our purposes.

During the writing of this paper, we learned that other authors (T. Jaakkola, M.I. Jordan,
S. Singh) have also been developing convergence proofs for Q-learning that exploit the
connection with stochastic approximation.

The rest of the paper is organized as follows. In Section 2, we present the algorithmic
model to be employed and our assumptions, and state our general results on stochastic
approximation algorithms. Section 3 contains an elementary result on stochastic approx-
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imation that we will be using in our proofs. Sections 4, 5, and 6 contain the proofs of
the results of Section 2. (Sections 3, 4, 5, and 6 can be skipped without loss of conti-
nuity.) Section 7 applies the theory of Section 2 to Q-learning. Section 8 contains some
concluding comments.

2. Model and assumptions

In this section, we describe the algorithmic model to be employed and state the assumptions
that will be imposed. The model is presented for the most general case which allows for
a number of parallel processors who may be updating based on outdated information. In
most respects, the model is the one in Chapter 6 of Bertsekas el al. (1989), except for the
presence of noise.

The algorithm consists of noisy updates of a vector x € 3?™, for the purpose of solving a
system of equations of the form F(x] — x. Here F is assumed to be a mapping from 3i™
into itself. Let F1,. . ., Fn : 5R™ >-» 3? be the corresponding component mappings; that is,
F(x) = (F1(X) Fn(x)) for all x e 3?n.

Let N be the set of nonnegative integers. We employ a discrete "time" variable t, taking
values in N. This variable need not have any relation with real time; rather, it is used to
index successive updates. Let x(t) be the value of the vector x at time t and let x1(£) denote
its ith component. Let Tl be an infinite subset of N indicating the set of times at which an
update of xi is performed. We assume that

Regarding the times that Xi is updated, we postulate an update equation of the form

Here, ai (t) is a stepsize parameter belonging to [0,1], Wi(t) is a noise term, and x i ( t ) is a
vector of possibly outdated components of x. In particular, we assume that

where each rj(t) is an integer satisfying 0 < rj(t) < t. If no information is outdated, we
have Tj(t] = t and xi(t) = x(t) for all t; the reader may wish to think primarily of this
case. For an interpretation of the general case, see Bertsekas et al. (1989). In order to bring
Eqs. (1) and (2) into a unified form, it is convenient to assume that a,(t), w i ( t ) , and r*(t)
are defined for every i, j, and t, but that Qj(i) = 0 and rj(i) = tfort£T\

We will now continue with our assumptions. All variables introduced so far (x(t), rj(£),
oti(t), Wi(t)) are viewed as random variables defined on a probability space (fi, JF, P) and
the assumptions deal primarily with the dependencies between these random variables. Our
assumptions also involve an increasing sequence {JT(t)}^0 of subfields of T. Intuitively,
F(t) is meant to represent the history of the algorithm up to, and including the point at
which the stepsizes cti(t) for the tth iteration are selected, but just before the noise term
Wi(t) is generated. Also, the measure-theoretic terminology that "a random variable Z is
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F(t)-measurable" has the intuitive meaning that Z is completely determined by the history
represented by F(t).

The first assumption, which is the same as the total asynchronism assumption of Bertsekas
et al. (1989), guarantees that even though information can be outdated, any old information
is eventually discarded.

Assumption 1. For any i and j, limt_00 rj(t) - oo, with probability 1.

Our next assumption refers to the statistics of the random variables involved in the
algorithm.

Assumption 2.

a) x(0) is F(0)-measurable;

b) For every i and t, w i ( t ) is F(t + 1)-measurable.

c) For every i, j, and t, oti(t) and rj(£) are F(t)-measurable.

d) For every i and t, we have E[wi(t) \ F(t)} = 0.

e) There exist (deterministic) constants A and B such that

Assumption 2 allows for the possibility of deciding whether to update a particular com-
ponent xi at time t, based on the past history of the process. In this case, the stepsize cei(t)
becomes a random variable. However, part (c) of the assumption requires that the choice of
the components to be updated must be made without anticipatory knowledge of the noise
variables wi that have not yet been realized. This is trivially satisfied if the sets Ti and the
stepsizes a,(£) are deterministic but this would be too restrictive as we argue in Section 7.

The next assumption concerns the stepsize parameters and is standard for stochastic
approximation algorithms.

Assumption 3.

a) For every i,

b) There exists some (deterministic) constant C such that for every i,
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Finally, we introduce a few alternative assumptions on the structure of the iteration map-
ping F. We first need some notation: if x, y £ 5ft™, the inequality x < y is to be interpreted
as Xi < yi for all i. Furthermore, for any positive vector v = ( v 1 , . . ., vn), we define a
norm || • \\v on 3?" by letting

Notice that in the special case where all components of v are equal to 1, || • \\v is the same
as the maximum norm || • ||oo.

Assumption 4.

a) The mapping F is monotone; that is, if x < y, then F(x) < F(y).

b) The mapping F is continuous.

c) The mapping -F has a unique fixed point x".

d) If e € 3?" is the vector with all components equal to 1, and r is a positive scalar, then

Assumption 5. There exists a vector x* e 5?n, a positive vector v, and a scalar 0 € [0,1),
such that

Assumption 6. There exists a positive vector v, a scalar /3 £ fO, 1), and a scalar D such that

We now state the main results of this paper. Theorem 1 provides conditions for x ( t ) to be
bounded. Theorems 2 and 3 deal with convergence under Assumptions 4 and 5, respectively.

THEOREM 1. Let Assumptions 1,2,3, and 6 hold. Then, the sequence x(t) is bounded,
with probability 1.

THEOREM 2. Let Assumptions 1,2,3, and 4 hold. Furthermore, suppose that x(t) is
bounded with probability 1. Then, x(t) converges to x*, with probability 1.

THEOREM 3. Let Assumptions 1,2,3, and 5 hold. Then, x(t) converges to x*, with
probability 1.
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3. Preliminaries

In this section, we state a well known result that will be needed later.

LEMMA 1. Let { f ( t ) } be an increasing sequence of'a-fields. For each t, let a(t), w(t — 1),
and B(t) be F-(t}-measurable scalar random variables. Let C be a deterministic constant.
Suppose that the following hold with probability 1:

Suppose that the sequence {B(t)} is bounded with probability 1. Let W(t) satisfy the
recursion

Then limt_>00 W(t] = 0, with probability 1.

Proof: For the case where the sequence B( t ) is bounded by a deterministic constant, we
are dealing with the classical stochastic gradient algorithm for minimizing a quadratic cost
function and its convergence is well known; for example, see Poljak et al. (1973).

For every positive integer k, we define r^ = min{i > 0 | B(t] > k}, with the un-
derstanding that rk = oo if B(t) < k for all k. We define wk(t) = w(t) if t < rk

and wk(t) = 0, otherwise. Let Wk(t] be defined by letting Wk(0) = W(0) and
Wk(t +1) = (!- a(t))Wk(t) + a(t)wk(t). Since E [ ( w k ( t ) ) 2 F(t)\ < k for all
t, we see that W k ( t ) converges to zero, with probability 1, for every k. On the other hand,
since B(t) is bounded, there exists some k such that Wk(t) = W(t) for all t, and this
implies that W(t) also converges to zero. •

4. Proof of Theorem 1

In this and in all subsequent proofs, we assume that we have already discarded a suitable
set of measure zero, so that we do not need to keep repeating the qualification "with
probability 1."

We assume that all components of the vector v in Assumption 6 are equal to 1. (The case
of a general positive weighting vector v can be reduced to this special case by a suitable
coordinate scaling.) In particular, there exists some 0 € [0,1) and some D such that
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It follows from Eq. (10) that there exist 7 6 [0,1) and G0 > 0 such that

(Any 7 e [0,1) and GO > 0 satisfying (3Go + D < 7Go will do.) Let us also fix e > 0 so
that 7(1 + e) = 1.

Let

We define a sequence {G(t)}, recursively, as follows. Let G(0) = max{M(0),Go}.
Assuming that G(t) has already been defined, letG(t+l) = G(t)if M(t+l) < (l+e)G(t).
If M ( t + 1 ) > (1 + e)G(t), then let G(t + 1) = G0(l + e)k where k is chosen so that

A key consequence of our definitions is that

and

It is easily seen that M(t) and G(t) are .F(t)-measurable.
In order to motivate our next step, note that as long as there is possibility that x(t) is

unbounded, E[w^(t) F(t)} could also be unbounded (cf. Assumption 2) and results such
as Lemma 1 are inapplicable. To circumvent this difficulty, we will work in terms of a
suitably scaled version of w i ( t ) whose conditional variance will be bounded.

We define

which is F(t +1) -measurable. Assumption 2 implies that

and

where K is some deterministic constant.
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For any i and to > 0, we define Wi(t0; t0) = 0 and

LEMMA 2. For every 8 > 0, there exists some T such that \ Wi (t; to) \ < 6, for every t and
to satisfying T < to < t.

Proof: By Lemma 1, we obtain limt_>00 Wi(t; 0) = 0. For every t > t0, we have

which implies that \Wi(t; t 0 ) \ < Wi(t; 0)| + \Wi(t0; 0)|. The result follows by letting T
be large enough so that \Wi(t; 0)| < 6/2 for every t > T. •

Suppose now, in order to derive a contradiction, that x(t) is unbounded. Then, Eqs. (12)
and (13) imply that G(t) converges to infinity, and Eq. (14) implies that the inequality
M(t) < G(t) holds for infinitely many different values of t. In view of Lemma 2, we
conclude that there exists some to such that M(t0) < G(to) and

The lemma that follows derives a contradiction to the unboundedness of G(t) and concludes
the proof of the theorem.

LEMMA 3. Suppose that x(t) is unbounded. Then, for every t > to, we have G(t) = G(t0).
Furthermore, for every i we have

Proof: The proof proceeds by induction on t. For t = t0, the result is obvious from
|z«(2o)| < M ( t 0 ) < G(t0) and Wi( t 0 ; t0) = 0. Suppose that the result is true for some t.
We then use the induction hypothesis and Eq. (11) to obtain

A symmetrical argument also yields — G(t0) + Wi(t + l ; to )G( t 0 ) < Xi(t + 1). Using
Eq. (15), we obtain lxi(t + 1)| < G(t0)(l + e) which also implies that G(t + 1) = G(t0).
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5. Proof of Theorem 2

Recall that e stands for the vector with all components equal to 1. Let r be a large enough
scalar so that x* -re < x(t) < x* + re for all t. [Such a scalar exists by the boundedness
assumption on x(t) but is a random variable because supt ||z(t)||oo could be different for
different sample paths.] Let L0 = (L?,. . . , L°) = x* - re and U° = (IT?, ...,U°) =
x* + re. Let us define two sequences {Uk} and {Lk} in terms of the recursions

and

LEMMA 4. For every k > 0, we have

and

Proof: The proof is by induction on k. Notice that, by Assumption 4(d) and the fixed
point property of x*, we have F(U°) = F(x*+re) < F(x*)+re = x* +re = U°. Using
the definition of U1, we obtain F(U°) < U1 < U0. Suppose that the result is true for
some k. The inequality Uk+l < Uk and the monotonicity of F yield F(Uk+l) < F(Uk).
Equation (16) then implies that Uk+2 < Uk+1. Furthermore, since Uk+2 is the average of
F(Uk+1) and Uk+l, we also obtain F(Uk+l) < Uk+2. The inequalities for Lk follow by
a symmetrical argument. •

LEMMA 5. The sequences {Uk} and {Lk} converge to x*.

Proof: We first prove, by induction, that Uk > x* for all k. This is true for U0, by
definition. Suppose that Uk > x*. Then, by monotonicity, F(Uk) > F(x*) = x*, from
which the inequality Uk+l > x* follows. Therefore, the sequence {Uk} is bounded below.
Since this sequence is monotonic (Lemma 4), it converges to some limit U. Using the
continuity of F, we must have U = (U + F(U))/2, which implies that U = F(U). Since
x* was assumed to be the unique fixed point of F, it follows that U = x*. Convergence of
Lk to x* follows from a symmetrical argument. •

We will now show that for every fc, there exists some time tk such that
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(The value of tk will not be the same for different sample paths and is therefore a random
variable.) Once this is proved, the convergence of x(t) to x* follows from Lemma 5. For
k = 0, Eq. (18) is certainly true, with to = 0, because of the way that U0 and L0 were
defined. We continue by induction on k. We fix some k and assume that there exists some
tk so that Eq. (18) holds. Let t'k be such that for every t > t'k, and every i, j, we have
Tj(t) > tk- Such a t'k exists because of Assumption 1. (For the case where no outdated
values of the components of x are used and Tj(t) — t, we may simply let t'k = tk.) In
particular, we have

LetWi(0) = 0 and

We then have limt ->oo Wi(t) = 0 (cf. Lemma 1). For any time to, we also define
W i ( t 0 ; t 0 )=0 and

Following the same argument as in the proof of Lemma 2, we see that for every to, we have
limt^00Wi(t;t0) = 0.

We also define a sequence Xi(t), t >t'k, by letting Xi(t'k) = Uk and

LEMMA 6.

Proof: The proof proceeds by induction on t. For t — t'k, Eq. (18) yields Xi(t'k) < Uk

and, by definition, we have Uk = Xi(t'k) + Wi(t'k; tk). Suppose that the result is true for
some t. Then, Eqs. (2), (19), (21), and (20) imply that

Let 6k be equal to the minimum of (Uk - Fi(Uk))/4, where the minimum is taken over
all i for which Uk — Fi(Uk) is positive. Clearly, 8k is well-defined and positive unless
Uk = F(Uk). But in the latter case, we must have Uk — x* = Uk+1 and the inequality
x(t) < Uk implies that x ( t ) < Uk+l and there is nothing more to be proved. We therefore
assume that 8k is well-defined and positive.

Let t'k' be such that t'k > t'k,
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and

for all t > t'k and all i. Such a t'k exists because Assumption 3(a) implies that

and because Wi(t\ t'k) converges to zero, as discussed earlier.

LEMMA 7. We have x i ( t ) < U k + l , for all i and t> t'k.

Proof: Fix some i. If Uk+l = Uk, the inequality x i ( t ) < Uk+l follows from Eq. (18).
We therefore concentrate on the case where Uk+l < Uf. Equation (21) and the relation
Xi(t'k) = Uk imply that Xi(t) is a convex combination of Uk and Fi(Uk). Furthermore,
the coefficient of Uk is equal to Ht=t' (1-- ai(T))> which is no more than 1/4 for t > tk.
It follows that

This inequality, together with the inequality Wi(t;t'k) < 6^ and Lemma 6, imply that
Xi(t) < U k + 1 f o r a l l t > t ' k . m

By an entirely symmetrical argument, we can also establish that x i ( t ) > Lk+l for all
t greater than some t'k. This proves Eq. (18) for k + 1, concludes the induction, and
completes the proof of the theorem.

6. Proof of Theorem 3

Without loss of generality, we assume that x* = 0; this can be always accomplished by
translating the origin of the coordinate system. Furthermore, as in the proof of Theorem 1,
we assume that all components of the vector v in Assumption 5 are equal to 1. Notice that
Theorem 1 applies and establishes that x ( t ) is bounded.

Theorem 1 states that there exists some (generally random) D0 such that ||a;(t) ||oo < D0,
for all t. Fix some e > 0 such that /3(1 + 2e) < 1. We define

Clearly, Dk converges to zero.
Suppose that there exists some time tk such that ||x(t)||oo < Dk for all t > tk. We will

show that this implies that there exists some time tk+1 such that ||x(f)||oo < Dk+1 for all
t > tk+1. This will complete the proof of convergence of x(t) to zero.

LetWi(O) = 0and
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We then have limt-xjoWi(t ) = 0, (cf. Lemma 1). For any time to, we also define
Wi(t0 ; t 0 ) = 0and

Following the same argument as in the proof of Lemma 2, we see that for every 6 > 0,
there exists some T such that \Wi(t; t0)\ < 6 for all t0 > T and t > t0.

Let rk > tk be such that \Wi(t; rfc)| < /3eDk and Ha^WHoo < Dk for all t > rk and all
i. As discussed earlier, the first requirement will be eventually satisfied. The same is true
for the second requirement, because of Assumption 1. We define Yi (Tk) = Dk and

LEMMA 8.

Proof: We use induction on t. Since Yi(fa) = Dk and Wi(rk', Tk) — 0, the result is true
for t = Tk. Suppose that Eq. (25) holds for some t. We then have

A symmetrical argument yields —Yi(t + 1) + Wi(t + 1; Tk) < xi(t + 1) and the inductive
proof is complete. •

It is evident from Eq. (24) and Assumption 3(a) that Yi(t) converges to /3Dk as t —> oo.
This fact, together with Eq. (25) yields

and the proof is complete.

7. The convergence of Q-learning

We consider a Markov decision problem defined on a finite state space 5. For every state
i € S, there is a finite set U(i) of possible control actions and a set of nonnegative scalars
P i j ( u ) , u £ U ( i ) , j € S, such that ^,j€SPij(u) = 1for all u 6 U(i). The scalar pij (u) is
interpreted as the probability of a transition to j, given that the current state is i and control
u is applied. Furthermore, for every state i and control u, there is a random variable Ciu

which represents the one-stage cost if action u is applied at state i. We assume that the
variance of ciu is finite for every i and u G U(i).
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A. stationary policy is afimctionwdefinedoiiS such that ir(i) 6 C/(i) forall i e 5. Givena
stationary policy, we obtain a discrete-time Markov chain a*(t) with transition probabilities

Let /3 6 [0,1] be a discount factor. To any stationary policy TT and initial state i, the
cost-to-go Vi is defined by

The optimal cost-to-go function V* is defined by

The Markov decision problem is to evaluate the function V*. (Once this is done, an optimal
policy is easily determined.)

Markov decision problems are easiest when the discount factor /? is strictly smaller than
1. For the undiscounted case (0 = 1), we will assume throughout that there is a cost-free
state, say state 1, which is absorbing; that is, pn(u) — l and c1u = 0 forall u e U(l). The
objective is then to reach that state at minimum expected cost. We say that a stationary policy
is proper if the probability of being at the absorbing state converges to 1 as time converges
to infinity; otherwise, we say that the policy is improper. The following assumption is
natural for undiscounted problems.

Assumption 7.

a) There exists at least one proper stationary policy.

b) Every improper stationary policy yields infinite expected cost for at least one initial state.

We define the dynamic programming operator T:3?I5I i-+ $s\, with components Ti,
by letting

It is well known that if 0 < 1, then T is a contraction with respect to the norm || • ||oo and
V* is its unique fixed point. If /3 — 1, then T is not, in general, a contraction. However,
it is still true that the set {V e 3J'SI | V1 = 0} contains a unique fixed point of T and this
fixed point is equal to V*, as long as Assumption 7 holds (Bertsekas et a/., 1989, 1991).

The Q-learning algorithm is a method for computing V* based on a reformulation of
the Bellman equation V* = T(V*). We provide a brief description of the algorithm. Let
p = {(i,u) | i e S, u 6 U(i)} be the set of all possible state-action pairs and let n
be its cardinality. We use a discrete index variable t in order to count iterations. After t
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iterations, we have a vector Q(t) € !Rn, with components Qiu(t), (i,u) <s P, which we
update according to the formula

Here, each a<u (t) is a nonnegative stepsize coefficient which is set to zero for those (i, u) 6
P for which Qiu is not to be updated at the current iteration. Furthermore, ciu is a random
sample of the immediate cost if action u is applied at state i. Finally, s(i, u) is a random
successor state which is equal to j with probability Pij(u). It is understood that all random
samples that are drawn in the course of the algorithm are drawn independently.

We now argue that the Q-learning algorithm has the form of Eq. (2). Let F be the mapping
from 3tn into itself with components Fiu defined by

and note that

It is not hard to see that if a vector Q is a fixed point of F, then the vector with components
Vi = minu6y(j) Qiu is a fixed point of T. In view of Eq. (27), Eq. (26) can be written as

where

[The expectation in the expression E[mmv&u^iiU)) Q s ( i ,u ) ,v ( t ) \ F(t)\ is with respect to
s(i,u).]

We now discuss the meaning of the various assumptions of Section 2 in the context of the
Q-learning algorithm. Assumption 1 is satisfied in the special case where Tj(t) = t, which
is what was implicitly assumed in Eq. (26), but can be also satisfied even if we allow for
outdated information. The latter case could be of interest if the Q-learning algorithm were
to be implemented in a massively parallel machine, with different processors carrying out
updates of different components of Q, possibly using outdated information on some of the
components of Q.

Regarding Assumption 2, we let f ( t ) represent the history of the algorithm during the
first t iterations. Parts (a) and (b) of the assumption are then automatically valid. Part (c)
is quite natural: in particular, it assumes that the required samples are generated after we
decide which components to update during the current iteration. Note, however, that it
allows this decision to be made on the basis of past experience, past explorations, or by
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simply following a simulated trajectory. This point was not appreciated in earlier proofs.
In particular, the proof of Watkins et at. (1992) implicitly assumes that the coefficients
aiu(t) are deterministic and, therefore, does not allow for experience-driven exploration
or the use of simulated trajectories. Part (d) is automatic from Eq. (28). The conditional
variance of mint,€(/(i,(i|U)) Qs(i,u)<v> given F(t), is bounded above by the largest possible
value that this random variable could take, which is max^gs maxu6yy) Q^v(t). We then
take the conditional variance of both sides of Eq. (28), to obtain

and part (e) is also satisfied. [ We have assumed here that Ciu is independent from s(i, u). If
it is not, the right-hand side in the last inequality must be multiplied by 2, but the conclusion
does not change.]

Assumption 3 needs to be imposed on the stepsizes employed by the Q-learning algorithm.
In particular, it requires that every state-action pair (i,u) is simulated an infinite number
of times.

For discounted problems (/3 < 1), Eq. (27) easily yields

In particular, F is a contraction mapping, with respect to the maximum norm || • H^ and
Assumption 5 is satisfied. In particular, Theorem 3 establishes convergence.

For undiscounted problems (j3 = 1), our assumptions on the absorbing state 1 imply
that the update equation for Q1u degenerates to Q1u(t + 1) = Q 1 u ( t ) , for all t. We
will be assuming in the sequel, that Q1u is initialized at zero. This leads to an equivalent
description of the algorithm in which the mappings Fiu of Eq. (27) are replaced by mappings
Fiu satisfying Fiu = Fiu if i / 1 and Flu(Q) = 0 for all u 6 U(l) and Q £ ^n. Let us
consider the special case where every policy is proper. It is then known (Bertsekas et al.,
1989, 1991) that there exists a vector v > 0 such that T is a contraction with respect to the
norm || • \\v. In fact, a close examination of the proof of Bertsekas et al. (1989) (pp. 325-
327) shows that the proof is easily extended to show that the mapping F (with components
FiU) is a contraction with respect to the norm || • ||2, where z,u = Vi for every u E U(i).
Convergence then follows again from Theorem 3.

Let us now keep assuming that /? = 1, but remove the assumption that all policies are
proper; we only impose Assumption 7. It is then known that the dynamic programming
operator T satisfies Assumption 4 (Bertsekas et al., 1989,1991) and this implies easily that
F satisfies the same assumption. However, in order to invoke Theorem 2, we must also
guarantee that Q(t) is bounded. We discuss later how this can be accomplished.

We summarize our discussion in the following result.

THEOREM 4. Consider the Q-learning algorithm and letQ*u = E[ciu]+/3'^/.jpij(u)V*.
Then, QiU(t) converges to Qiu, with probability I, for every i and u, in each of the follow-
ing cases:
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b) If3 = 1, <3i«(0) = 0, and all policies are proper.

c) If 0 — 1, Assumption 7 holds, Qiu(0) = 0, and if Q(t) is guaranteed to be bounded,
with probability 1.

We conclude by discussing further how to guarantee boundedness for undiscounted prob-
lems. One option is to enforce boundedness artifially using the "projection" method (Kush-
neretal., 1978). With this method, one projects the vector Q(t) onto a given bounded set B
whenever Q(t) becomes too large. We only need to choose a large enough set B so that
the fixed point of F is certain to be contained in B. This requires some prior knowledge on
the Markov decision problem being solved, but such knowledge is often available. Since
the projection method is a general purpose method, there is not much new that can be said
here and we do not provide any further details.

The lemma that follows covers another case in which boundedness is guaranteed.

LEMMA 9. Suppose that /3=1, Assumption 7 holds, and Qiu(0) =0. Furthermore,
suppose that all one-stage costs ciu are nonnegative with probability 1, and that Q(0) >
0. Then, the sequence {Q(t)} generated by the Q-learning algorithm is bounded with
probability I.

Proof: Given the assumption that ciu > 0, it is evident from Eq. (26) that if the algorithm
is initialized with a nonnegative vector Q(0) > 0, then Q(t) > 0 for all t. This establishes
a lower bound on each QiU(t).

Let us now fix a proper policy TT. We define a mapping F71", with components F*u, by
letting Ffu(Q) = 0, for every u £ U(l), and

Let P be the matrix whose (i, j)th entry is equal to p i j ( T T ( i ) ) , for i, j € S and i, j ^ 1.
Since policy TT is proper, we see that Pt converges to 0 as t converges to infinity. Since P
is a nonnegative matrix, the Perron-Frobenius theorem implies that there exists a positive
vector w and some 7 e [0,1) such that

Therefore, for any vectors Q and Q', we have

We conclude that there exists a positive vector v such that \\F^(Q}-Q'"\\V < 711Q - C?* 11 „
for all vectors Q, where Q71' is the unique fixed point of F*'. (In particular, viu = Wi for
every u £ U(i).) Compare now the definition (27) with the definition of F" to conclude that
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for every vector Q > 0, we have F(Q) < F*(Q). Using this and the triangle inequality,
we obtain

This establishes that F satisfies Assumption 6 and the result follows from Theorem 1.

•

We close this section by pointing out that the interest in Markov decision problems for
which not every stationary policy is proper is not purely academic. Consider a directed
graph in which the length of every arc (i, j) is a nonnegative random variable cij. We may
then be interested in the problem of finding a path, from a given origin to a given destination,
with the smallest possible expected arc length. If the expected arc costs E [ c i j ] were known,
this would simply be a shortest path problem. On the other hand, if the statistics of the
arc costs are unknown, Q-learning can be used because shortest path problems are special
cases of Markov decision problems in which every Pij(u) is either zero or 1. Notice that
not every policy will be proper, in general: for example, a policy may choose a cycle that
does not go through the destination and cycle forever around that cycle. On the other hand,
Assumption 7 is equivalent to requiring that every cycle have positive expected costs and
such an assumption is pretty much necessary for the shortest path to be well-posed. Once
this assumption is imposed, Theorem 4 and Lemma 9 imply that Q-learning will converge.

8. Concluding remarks

We have established the convergence of Q-learning under fairly general conditions. The
only technical problem that remains open is whether Assumption 7 alone is sufficient to
guarantee boundedness for undiscounted problems, thus rendering Lemma 9 unnecessary.

An interesting direction for further research concerns the convergence rate of Q-learning.
In some sense, Q-learning makes inefficient use of information, because each piece of
information is only used once. Alternative methods, that estimate the transition probabil-
ities, can be much faster, as demonstrated experimentally by Moore and Atkeson (1992).
It is an open question whether the method of Moore et al. (1992) has a provably better
convergence rate.

We finally point out that the tools in this paper (Theorem 3, in particular) can be used
to establish that the batch version of Sutton's (1988) TD(A) algorithm converges with
probability 1, for every value of A, thus strengthening the results of Dayan (1992) where
convergence was proved for the case A = 0. This is done by expressing TD(A) in the form
of Eq. (1) and then checking that the corresponding mapping F has the required contraction
properties. A proof along such lines has also been carried out by T. Jaakkola, M.I. Jordan,
and S. Singh.
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