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Abstract. The original and most widely studied PAC model for learning assumes a passive learner in the sense
that the learner plays no role in obtaining information about the unknown concept. That is, the samples are simply
drawn independently from some probability distribution. Some work has been done on studying more powerful
oracles and how they affect learnability. To find bounds on the improvement in sample complexity that can be
expected from using oracles, we consider active learning in the sense that the learner has complete control over
the information received. Specifically, we allow the learner to ask arbitrary yes/no questions. We consider both
active learning under a fixed distribution and distribution-free active learning. In the case of active learning,
the underlying probability distribution is used only to measure distance between concepts. For learnability with
respect to a fixed distribution, active learning does not enlarge the set of learnable concept classes, but can im-
prove the sample complexity. For distribution-free learning, it is shown that a concept class is actively learnable
iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We also con-
sider a form of distribution-free learning in which the learner knows the distribution being used, so that "distribution-
free" refers only to the requirement that a bound on the number of queries can be obtained uniformly over all
distributions. Even with the side information of the distribution being used, a concept class is actively learnable
iff it has finite VC dimension, so that active learning with the side information still does not enlarge the set of
learnable concept classes.
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1. Introduction

The PAC learning model (e.g., see Blumer et al., 1986; Valiant, 1984) provides a framework
for studying the problem of learning from examples. In this model, the learner attempts
to approximate an unknown concept from a set of positive and negative examples of the
concept. The examples are drawn from some unknown probability distribution, and the
same distribution is used to measure the distance between concepts. After some finite number
of examples, the learner is required only to output with high probability a hypothesis close
to the true concept. A collection of concepts, called a concept class, is said to be learnable
if a bound on the number of examples needed to achieve a certain accuracy and confidence
in the hypothesis can be obtained uniformly over all concepts in the concept class and all
underlying probability distributions.

One goal of studying such a formal framework is to be able to characterize in a precise
sense the tractability of learning problems. For the PAC model, Blumer et al. (1986) showed
that a concept class is learnable iff it has finite VC dimension, and they provided upper
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and lower bounds on the number of examples needed in this case. The requirement that
a concept class have finite VC dimension is quite restrictive. There are many concept classes
of practical interest with infinite VC dimension that one would like to be and/or feel should
be learnable. In fact, even some concept classes of interest in low-dimensional Euclidean
spaces are not learnable. For applications such as image analysis, machine vision, and
system identification, the concepts might be subsets of some infinite-dimensional function
space, and the concept classes generally will not have finite VC dimension. Hence, for
many applications the original PAC model is too restrictive in the sense that not enough
problems are learnable in this framework.

A natural direction to pursue is to consider extensions or modifications of the original
framework that enlarge the set of learnable concept classes. Two general approaches are
to relax the learning requirements and to increase the power of the learner-environment
or learner-teacher interactions. A considerable amount of work has been done along these
lines. For example, learnability with respect to a class of distributions (as opposed to the
original distribution-free framework) has been studied (Benedek & Itai, 1988; Kulkarni,
1989, 1991; Natarajan, 1988, 1989). Notably, Benedek and Itai (1988) first studied learn-
ability with respect to a fixed and known probability distribution, and characterized learn-
ability in this case in terms of the metric entropy of the concept class. Others have con-
sidered particular instances of learnability with respect to a fixed distribution. Regarding
the learner-environment interactions, in the original model the examples provided to the
learner are obtained from some probability distribution over which the learner has no con-
trol. In this sense, the model assumes a purely passive learner. There has been quite a
bit of work done on increasing the power of the learner's information-gathering mechanism.
For example, Angluin (1986, 1988) has studied a variety of oracles and their effect on learn-
ing; Amsterdam (1988) considered a model that gives the learner some control over the
choice of examples by allowing the learner to focus attention on some chosen region of
the instance space; and Eisenberg and Rivest (1990) studied the effect on sample complex-
ity of allowing membership queries in addition to random examples. Ben-David et al. (1990)
have studied a model in which the information received by the learner at each step consists
of an approximation of the distance from the learner's hypothesis to the true concept. They
obtained bounds on the sample size needed for learning in this model also in terms of metric
entropy.

In this article, we study the limits of what can be gained by allowing the most general
set of binary-valued learner-environment interactions, which give the learner complete con-
trol over the information gathering. Our focus is on the information (or sample) complex-
ity of learning as opposed to computational complexity. Our goal is to obtain bounds on
how much oracles can aid in learning as far as information complexity is concerned. (Of
course, oracles can also play a crucial role in reducing computational complexity as well,
but we do not consider this issue here.) We consider completely "active" learning in that
the learner is allowed to ask arbitrary yes/no (i.e., binary-valued) questions, and these ques-
tions need not be decided on beforehand. That is, the questions the learner asks can de-
pend on previous answers and can also be generated randomly. Many of the oracles pre-
viously considered in the literature are simply particular types of yes/no questions (although
those oracles that provide counterexamples are not). Both active learning with respect to
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a fixed distribution and distribution-free active learning are considered. Since we are con-
cerned with active learning, the probability distribution is not used to generate the examples,
but is used only to measure the distance between concepts.

Definitions of passive and active learning are provided in section 2. In section 3, active
learning with respect to a fixed distribution is considered. A simple information-theoretic
argument shows that active learning does not enlarge the set of learnable concept classes,
but as expected can reduce the sample complexity of learning. In section 4, distribution-
free active learning is considered. In this case, active learning can take place only in the
degenerate situation of a finite concept class. We also consider a form of distribution-free
learning in which we assume that the learner knows the distribution being used, so that
"distribution-free" refers only to the requirement that a bound can be obtained on the number
of yes/no questions required independent of the distribution used to measure distance be-
tween concepts. However, even in this case active learning surprisingly does not enlarge
the set of learnable concept classes, but does reduce the sample complexity as expected.

2. Definitions of passive and active learnability

The definitions below follow closely the notation of Blumer et al. (1986). Let X be a set
that is assumed to be fixed and known. X is sometimes called the instance space. Typical-
ly, X is taken to be either R" (especially R2) or the set of binary n-vectors. A concept is
a subset of X, and a collection of concepts C c 2X will be called a concept class. An
element x € X will be called a sample, and a pair (x, a) with x 6 X and a € {0, 1} will
be called a labeled sample. Likewise, x = (x\, .. ., xm) € 1C" is called an m-sample, and
a labeled m-sample is an w-tuple ( ( x 1 , a 1 } , ..., (xm, am)) where a, = a, if xt = Xj. For
x = (x\, ..., xm) € X™ and c 6 C, the labeled m-sample of c generated by x is given by
samc(x) = ((A:,, /c(jci)}, . . . , (xm, Ic(xm)}), where /<.(•) is the indicator function for the
set c. The sample space of C is denoted by Sc and consists of all labeled m-samples for
all c € C, all x € Xm, and all m > 1.

Let H be a collection of subsets of X. H is called the hypothesis class, and the elements
of H are called hypotheses. Let FCH be the set of all functions f:Sc-+H. Given a prob-
ability distribution P on X, the error of f with respect to P for a concept c € C and sample
x is defined as errorfcP(x) = P(cAh), where h = f(samc(x)) and cAh denotes the sym-
metric difference of the sets c and h. As is often done in the literature, we will be consider-
ing the case H = C throughout, so we will simply speak of learnability of C rather than
learnability of (C, H), and will use the notation Fc rather than FCH. Finally, in the defini-
tion of passive learnability to be given below, the samples used in forming a hypothesis
will be drawn from X independently according to the same probability measure P. Hence,
an m-sample will be drawn from X™ according to the product measure Pm. We can now
state the following definition of passive learnability for a class of distributions.

Definition 1 (Passive Learnability for a Class of Distributions) Let T be a fixed and
known collection of probability measures. The concept class C is said to be passively learn-
able with respect to 7> if there exists a function f € FC such that for every e, 6 > 0 there
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is a 0 < m = m(e, 5) < oo .y«c/i that for every probability measure P 6 P and every
c € C, if € X"1 is chosen at random according to Pm, then the probability that errorfcP(x)
< e is greater than 1 - 6 .

If P is the set of all probability distributions over some fixed a-algebra of X (which we
will denote by P *), then the above definition reduces to the version from Blumer et al.
(1986) of Valiant's (1984) original definition (without restrictions on computability) for learn-
ability for all distributions. If P consists of a single distribution, then the above definition
reduces to that used by Benedek and Itai (1988).

By active learning we will mean that the learner is allowed to ask arbitrary yes/no ques-
tions. Again, we will define learnability only for the case H = C. For a fixed distribution,
the only object unknown to the learner is the chosen concept. In this case, an arbitrary
binary question provides information of the type c € C0 where C0 is some subset of C.
That is, all binary questions can be reduced to partitioning C into two pieces and asking
to which of the two pieces c belongs. For distribution-free learning (or more generally,
learning for a class of distributions), the distribution P is also unknown. In this case, every
binary question can be reduced to the form "Is (c, P) 6 qT' where q is an arbitrary subset
of C x P , so that C and P can be simultaneously and dependently partitioned. Thus,
the information the active learner obtains is of the form ((q\, a\), . .., (qm, am)) where
q\; £ C X P and at = 1 if (c, P) € qt and a, = 0 otherwise. The qt correspond to the
binary valued (i.e., yes/no) questions and a,- denotes the answer to the question q: when
the true concept and probability measure are c and P, respectively. In general, <?,- can be
generated randomly or deterministically and can depend on all previous questions and
answers (q\, a\), . .., (qi~\, a /_ i ) . The qt are not allowed to depend explicitly on the
true concept c and probability measure P, but can depend on them implicitly through answers
to previous questions. Let q = (q\, ..., qm) denote a set of m questions generated in such
a manner, and let samc ,p(q) denote the set of m question and answer pairs when the true
concept and probability measure are c and P, respectively. Let SC p denote all sets of m
question and answer pairs generated in such a manner for all c € C, P € P , and m >
1. By an active learning algorithm we mean an algorithm A for selecting q\, ..., qm

together with a mapping/: 5cp -> C for generating a hypothesis from samC,P(q). In
general, A and/or f may be probabilisitic, which results in probabilistic active learning
algorithms. If both A and / are deterministic, we have a deterministic active learning
algorithm. Note that if the distribution P is known and is computable, then with a prob-
abilistic algorithm an active learner can simulate the information received by a passive
learner by simply generating random examples and asking whether they are elements of
the unknown concept.

Definition 2 (Active Learnability for a Class of Distributions) Let P be a fixed and
known collection of probability measures. C is said to be actively learnable with respect
to P if there exists a function f: Scf -> C and an algorithm A for selecting q such that
for every e, 6 > 0 there is a 0 < m(e, 6) < oo such that for every probability measure
P € P and every c€C,ifh = f(samCiP(q)) then the probability (with respect to any ran-
domness in A and f) that P(hAc) < e is greater than 1 - 6 .
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3. Active learning for a fixed distribution

In this section, we consider active learning with respect to a fixed and known probability
distribution. That is, P consists of a single distribution P that is known to the learner.
Benedek and Itai (1988) obtained conditions for passive learnability in this case in terms
of a quantity known as metric entropy.

Definition 3 (Metric Entropy) Let (Y, p) be a metric space. Define Af(e) = N(e, Y, p)
to be the smallest integer n such that there exists y1 yn € Y with Y = U?=1Be(y,-),
where Bf(y,) is the open ball of radius e centered at yt. If no such n exists, then N(e, Y,
p) = oo. The metric entropy of Y (often called the e-entropy) is defined to be Iog2 N(e).

N(e) represents the smallest number of balls of radius e that are required to cover Y. For
another interpretation, suppose we wish to approximate Yby a finite set of points so that
every element of Y is within e of at least one member of the finite set. Then N(e) is the
smallest number of points possible in such a finite approximation of Y. The notion of metric
entropy for various metric spaces has been studied and used by a number of authors (e.g.,
see Dudley, 1978; Kolmogorov & Tihomirov, 1961; Tikhomirov, 1963).

In the present application, the measure of error fl?Xci> C2) = P(c\&c-i) between two con-
cepts with respect to a distribution P is a pseudo-metric. Note that dP(\ •) is generally
only a pseudo-metric, since c\ and c2 may be unequal but may differ on a set of measure
zero with respect to P. For convenience, if P is a distribution we will use the notation #(€,
C, P) (instead of N(e, C, dp)), and we will speak of the metric entropy of C with respect
to P, with the understanding that the metric being used is dp(-, •).

Benedek and Itai (1988) proved that a concept class C is passively learnable for a fixed
distribution P iff C has finite metric entropy with respect to P, and they provided upper
and lower bounds on the number of samples required. Specifically, they showed that any
passive learning algorithm requires at least Iog2(l - $)N(2t, C, P) samples and that
(32/e)ln(W(e/2)/6) samples is sufficient. The following result shows that the same condi-
tion of finite metric entropy is required in the case of active learning. In active learning,
the learner wants to encode the concept class to an accuracy e with a binary alphabet, so
the situation is essentially an elementary problem in source coding from information theory
(Gallager, 1968). However, the learner wants to minimize the length of the longest codeword
rather than the mean codeword length.

Theorem 1A concept class Cis actively learnable with respect to a distribution P iffN(e,
C,P)< oo for all e > 0. Furthermore, [lo&Q ~ 5)M?e, C, P)~\ queries are necessary,
and |~ l°g2Cl — S)N(e, C, P)~] queries are sufficient. For deterministic learning algorithms,
[log2Af(e, C, P)~j queries are both necessary and sufficient.

Proof: First consider 8 = 0. [log2W(£, C, P)~| questions are sufficient, since one can
construct an e-approximation to C with N(e, C, P) concepts, then ask [log2Af(e, C, P)~|
questions to identify one of these N(e, C, P) concepts that is within e of the true concept.
riog2A?(e, C, P)~| questions are necessary, since by definition every e-approximation to

C has at least N(t, C, P) elements. Hence, with any fewer questions there is necessarily
a concept in C that is not e-close to any concept the learner might output.



28 S.R. KULKARNI, S.K. MITTER AND J.N. TSITSIKLIS

The essential idea of the argument above is that the learner must be able to encode N(e,
C, P) distinct possibilities and to do so requires [log2Af(e, C, P)~\ questions. Now, for
6 > 0, the learner is allowed to make a mistake with probability 8. In this case, it is suffi-
cient that the learner be able to encode (1 - S)N(e, C, P) possibilities, since the learner
could first randomly select (1 - S)N(e, C, P) concepts from an e-approximation of N(e,
C, P) concepts (each with equal probability) and then ask questions to select one of the
(1 — S)N(e, C, P) concepts, if there is one, that is e-close to the true concept. To show
the lower bound, first note that we can find N(2e) = N(2e, C, P) concepts c1, ..., cN(2()

that are pairwise at least 2e apart, since at least N(2e) balls of radius 2e are required to
cover C. Then the balls Bf(ct) of radius e centered at these c, are disjoint. For each /, if
c, is the true concept, then the learning algorithm must output a hypothesis h € Bf(Cj) with
probability greater than 1-8 . Hence, if k queries are asked, then

The integral in the above chain of equalities and inequalities is with respect to the distribu-
tion modeling any randomness in the algorithm A used to generate the questions. (We assume
that the necessary quantities are integrable with respect to this distribution.) The fourth
equality (i.e., where conditioning on c = ct is dropped) follows from the fact that the
hypothesis generated by the learner is independent of the true concept given the queries
and answers, and the second inequality follows from the fact that the fie(

c;) are disjoint.
Thus, since k is an integer, k > \\o%2(\ ~ S)N(2e, C, P)~\ .
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Finally, if fewer than N(e, C, P) possibilities are encoded, then some type of probabilistic
algorithm must necessarily be used, since otherwise there would be some concept that
the learner would always fail to learn to within e. •

Thus, compared with passive learning for a fixed distribution, active learning does not
enlarge the set of learnable concept classes, but as expected, fewer queries are required
in general. However, only a factor of 1/e, some constants, and a factor of 1/6 in the logarithm
are gained by allowing active learning, which may or may not be significant depending
on the behavior of N(e, C, P) as a function of e.

Note that in active learning very little is gained by allowing the learner to make mistakes
with probability 6. That is, there is a very weak dependence on 6 in the sample size bounds.
In fact for any 6 < 1/2, we have Iog2(l - S)N(2e, C, P) = log2W(2e, C, P) - Iog2 1/(1
- 8) > log2W(2e, C, P) - 1, so that even allowing the learner to make mistakes half the
time results in the lower bound differing from the upper bound and the bound for 6 = 0
essentially by only the term 2e versus e in the metric entropy. Also, note that theorem 1
is true for learnability with respect to an arbitrary metric and not just those induced by
probability measures.

4. Distribution-free active learning

Distribution-free learning (active or passive) corresponds to the case where P is the set
of all probability measures P * over, say, the Borel a-algebra. A fundamental result of
Blumer et al. (1986) relates passive learnability for all distributions (i.e., distribution-free)
to the Vapnik-Chervonenkis (VC) dimension of the concept class to be learned.

Definition 4 (Vapnik-Chervonenkis Dimension) Let C c 2X. For any infinite set S £
X, let IIC(S) = {5 n c : c € C}. 5 is said to be shattered by C iflic(S) = 2s. The Vapnik-
Chervonenkis dimension of C is defined to be the largest integer dfor which there exists
a set S c X of cardinality d such that S is shattered by C. If no such largest integer exists,
then the VC dimension of C is infinite.

Blumer et al. (1986) proved that a concept class C (satisfying certain measurability condi-
tions with which we will not concern ourselves) is learnable for all distributions iff C has
finite VC dimension, and they provided upper and lower bounds on the number of samples
required. Specifically, if C has VC dimension d < oo, they showed that max(l/2e log 1/6,
d(\ — 2(t + 6 - e6))) samples are necessary and max(4/e log 21 a, %dlt log 8d/e) samples
are sufficient for learnability, although since their work some refinements have been made
in these bounds (e.g., see Ehrenfeucht et al., 1989).

The case of distribution-free active learnability is a little more subtle than active learn-
ability for a fixed distribution. For both active and passive learning, the requirement that
the learning be distribution-free imposes two difficulties. The first is that there must exist
a uniform bound on the number of examples or queries over all distributions—i.e., a bound
independent of the underlying distribution. The second is that the distribution is unknown
to the learner, so that the learner does not know how to evaluate distances between con-
cepts. Hence, since the metric is unknown, the learner cannot simply replace the concept
class with a finite e-approximation as in the case of a fixed and known distribution.
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For passive learnability, the requirement that the concept class have finite VC dimension
is necessary and sufficient to overcome both of these difficulties. However, for active learn-
ing the second difficulty is severe enough that no learning can take place as long as the
concept class is infinite.

Lemma 1 Let C be an infinite set of concepts. If c1, ..., cn € C is any finite set of con-
cepts in C, then there exists cn+i € C and a distribution P such that dP(cn+l c,) > 1/2
for z = 1, .. ., n.

Proof: Consider all sets of the form b\ fl b2 D • • • fl bn where b( is either c; or c,. There
are at most 2" distinct sets B1, ..., B2n of this form. Note that the Bi are disjoint, their
union is X, and each c, for i = 1, . . . , n consists of a union of certain fi,. Since C is in-
finite, there is a set cn+1 6 C such that for some nonempty Bk, cn+l D Bk is nonempty
and cn+1 n Bk ^ Bk. Hence, there exist points x\, x2 € X with x\ € cn+1 H Bk and x2

€ Bk \ cn+l. Let P be the probability measure that assigns probability 1/2 to x\ and 1/2
to x2. For each i = 1, ..., n, either Bk c ct or Bk Pi c,- = 0. Thus, in either case, cn+iAc;

contains exactly one of x\ or x2 so that dp(cn+i, ct) = 1/2 for i = 1, . . . , « . •

Theorem 2 C is actively leamable for all distributions iff C is finite.

Proof: If C is finite it is clearly actively leamable, since the learner need only ask
flog2|C|"j questions where |C| is the cardinality of Cto decide which concept is the cor-

rect one.
If C is infinite we will show that C is not actively leamable by showing that, after finitely

many questions, an adversary could give answers so that there are still infinitely many
candidate concepts that are far apart under infinitely many remaining probability distribu-
tions. Since C is infinite, we can repeatedly apply the lemma above to obtain an infinite
sequence of concepts cb c2, ... and an associated sequence of probability measures Plt

P2, ... such that under the distribution Pi, the concept c, is a distance 1/2 away from all
preceding concepts—i.e., for each i, dP.(ch c;) = 1/2 for7 = 1, . . . , i - 1.

Now, any question that the active learner can ask is of the form "Is (c, P) € <??" where
q is a subset of C X J3. Consider the pairs (q, PI), (c2, P2), . . . . Either q or q (or both)
contain an infinite number of the pairs (ch P,). Thus, an adversary could always give an
answer such that an infinite number of pairs (c,, P,) remain as candidates for the true con-
cept and probability measure. Similarly, after any finite number of questions, an infinite
number of (c,, P,) pairs remain as candidates. Thus, by the property that dp.(ci cj) = 1/2
for7 = 1, ..., i — 1, it follows that for any e < 1/2 the active learner cannot learn the
target concept. •

Essentially, if the distribution is unknown, then the active learner has no idea about
"where" to seek information about the concept. On the other hand, in passive learnability
the examples are provided according to the underlying distribution, so that information
is obtained in regions of importance. Hence, in the distribution-free case, random samples
(from the distribution used to evaluate performance) are indispensable.
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Suppose that we remove the second difficulty by assuming that the learner has knowledge
of the underlying distribution. Then the learner knows the metric being used and so can
form a finite approximation to the concept class. In this case, the distribution-free require-
ment plays a part only in forcing a uniform bound on the number of queries needed. Cer-
tainly, the active learner can learn any concept class that is learnable by a passive learner,
since the active learner could simply ask queries according to the known distribution to
simulate a passive learner. However, the following theorem shows that active learning, even
with the side information as to the distribution being used, does not enlarge the set of learn-
able concept classes.

Theorem 3 If the learner knows the underlying probability distribution, then C is actively
learnable for all distributions iff C has finite VC dimension. Furthermore, [sup/>log2(l -
S)N(2e, C, P)~\ questions are necessary and rsup/Jog2(l - $)N(e, C, P)~\ questions are
sufficient. For deterministic algorithms, fsupplog7V(«, C, P)] questions are both necessary
and sufficient.

Proof: If the distribution is known to the learner, then the result of theorem 1 applies for
each distribution. Learnability for all distributions then simply imposes the uniform (up-
per and lower) bounds requiring the supremum over all distributions for both general (i.e.,
probabilistic) active learning algorithms and for deterministic algorithms. For the first part
of the theorem, we need the following result relating the VC dimension of a concept class
to its metric entropy: the VC dimension of C is finite iff suppN(e, C, P) < oo for all e
> 0 (e.g., see Benedek & Itai, 1988; Kulkarni, 1989, 1991, and references therein). The
first part of the theorem follows immediately from this result. •

Thus, even with this extra "side" information, the set of learnable concept classes is
not enlarged by allowing an active learner. However, as before, one would expect an im-
provement in the number of samples required. A direct comparison is not immediate, since
the bounds for passive learnability involve the VC dimension, while the results above are
in terms of the metric entropy. A comparison can be made using bounds relating the VC
dimension of a concept class to its metric entropy with respect to various distributions,
which provide upper and lower bounds to supPN(e, C, P). Upper bounds are more dif-
ficult to obtain, since these require a uniform bound on the metric entropy over all distribu-
tions. The lower bounds result from statements of the form that there exists a distribution
P (typically a uniform distribution over some finite set of points) for which N(e, C, P)
is greater than some function of the VC dimension. However, most previous lower bounds
are not particularly useful for small e—i.e., the bounds remain finite as e -> 0. This is
the best that can be obtained assuming only that C has VC dimension d < oo, since C
itself could be finite. The following result assumes that C is infinite but makes no assump-
tion about the VC dimension of C.

Lemma 2 Let C be a concept class with an infinite number of distinct concepts. Then for
each e > 0 there is a probability distribution P such that N(e, C, P) > l/(2e).
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Proof: First, we show by induction that given n distinct concepts, n - 1 points x\, ...,
xn-\ can be found such that the n concepts give rise to distinct subsets of x\, ..., xn-1.
This is clearly true for n = 2. Suppose it is true for n = k. Then for n = k + 1 concepts
cj, . . . , Ck+1, apply the induction hypothesis to c\, ..., ck to get x\, . .., xk-\, which
distinguish c\, ..., ck. ck+\ can agree with at most one of q, . . . , ck. Then another point
xk can be chosen to distinguish these two.

Now, let e > 0 and set n — [l/2ej . Let c,, . . . , cn be n distinct concepts in C, and
let xi, ..., JCB_! be n - 1 points that distinguish c{, ..., cn. Let P be the uniform distribu-
tion on *!, . . . , xn-\. Since the c, are distinguished by the ;c,, dp(ch Cj) > l/(n - 1) =
l/( [l^ej — 1) > 2e. Hence, every concept is within e to at most one of c^ . . . , cn so
that N(e, C, P) > n = \\l2t\. •

The following theorem summarizes the result of the lemma and prevous upper and lower
bounds obtained by others.

Theorem 4 Let C be a concept class with infinitely many concepts and let 1 < d < oo
be the VC dimension of C. For e < 1/4,

and for

Proof: The first term of the lower bound is from Kulkarni (1989, 1991), and the second
term of the lower bound follows from lemma 2. The upper bound is from Haussler (1990),
which is a refinement of a result from Pollard (1984) using techniques originally from Dudley
(1978). A weaker upper bound was also given in Benedek and Itai (1988). •

This theorem gives bounds on sup/Jog2Af(e, C, P), which can be used with theorem 3
to obtain bounds on the number of questions needed in distribution-free active learning
(with the side information of the distribution being used) directly in terms of e, 5, and
the VC dimension of C. As stated, the bounds are directly applicable to deterministic ac-
tive learning algorithms or for active learning with 6 = 0. For probabilistic algorithms
with 6 > 0, the quantity Iog2 1/(1 - 5) needs to be subtracted from both the lower and
upper bounds of theorem 4. Specifically, for distribution-free active learning (with side
information as to the distribution being used), max(2d(l/2 - 4e)2log2 e, Iog2 l/4e) - Iog2

1/(1 - 6) samples are necessary for e < 1/8, and <flog2(2e/e In 2e/e) + 1 - Iog2 1/(1 -
6) samples are sufficient for e < l/(2d). As with the bounds for fixed distribution active
learning, note the very weak dependence of the bounds on 6. The primary difference be-
tween the bounds for active (with side information) versus passive distribution-free learn-
ing in the 1/e and log(l/6) behavior of the passive learning bounds.
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5. Discussion

In this article we considered the effect on PAC learnability of allowing a rich set of learner-
environment interactions. Previous work along these lines has provided the learner with
access to various types of oracles. Many of the oracles considered in the literature answer
queries that are special cases of yes/no questions (although those oracles that provide counter-
examples are not of this type). As expected, the use of oracles can often aid in the learning
process. To understand the limits of how much could be gained through oracles, we have
considered an active learning model in which the learner chooses the information received
by asking arbitrary yes/no questions about the unknown concept and/or probability distribu-
tion. Our focus was on the information complexity of learning, although we recognize that
oracles can also play an important role in reducing the computational complexity of learn-
ing algorithms. In fact, our results indicate that sometimes (depending on the metric en-
tropy) the improvement in sample complexity may not be too significant, so that the com-
putational role may often be the primary benefit of using oracles.

For a fixed distribution, active learning does not enlarge the set of learnable concept
classes, but it does have lower sample complexity than passive learning. For distribution-
free active learning, the set of learnable concept classes is drastically reduced to the
degenerate case of finite concept classes. Furthermore, even if the learner is told the distribu-
tion but is still required to learn uniformly over all distributions, a concept class is actively
learnable iff it has finite VC dimension.

For completeness, we mention that results can also be obtained if the learner is provided
with "noisy" answers to the queries. The effects of various types of noise in passive learn-
ing have been studied (Angluin & Laird, 1988; Kearns & Li, 1988; Sloan, 1988). For ac-
tive learning, two natural noise models are random noise in which the answer to a query
is incorrect with some probability t\ < 1/2 independent of other queries, and malicious
noise in which an adversary gets to choose a certain number of queries to receive incorrect
answers. For random noise, the problem is equivalent to communication through a binary
symmetric channel. Specifically, the answer to each query can be considered as either a
0 ("no") or a 1 ("yes"). Getting noisy answers corresponds to communicating through a
noisy channel that transmits the correct value with probability 1 - 17, but with probability
•q transmits a 0 as a 1 or a 1 as a 0. This channel behavior is precisely the definition of
the standard example from information theory of a binary symmetric channel. Thus, stan-
dard results from information theory on the capacity and coding for such channels (Gallager,
1968) can be applied for this model of random noise. For malicious noise, some results
on binary searching with these types of errors (Rivest et al., 1980) can be applied. For
both noise models, the conditions for fixed distribution and distribution-free learnability
are the same as the noise-free case, but with a larger sample complexity. However, the
more interesting aspects of our results are the indications of the limitations of active learn-
ing, and the noise-free case makes stronger negative statements.

Finally, an open problem that may be interesting to pursue is to study the reduction in
sample complexity of distribution-free learning if the learner has access to both random
examples and arbitrary yes/no questions. This is similar to the problem considered in
Eisenberg and Rivest (1990), but there the learner could only choose examples to be labeled
rather than ask arbitrary questions. Our result for the case where the learner knows the
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distribution being used provides a lower bound, but if the distribution is not known, then
we expect that for certain concept classes much stronger lower bounds would hold. In par-
ticular, we conjecture that results analogous to those in Eisenberg and Rivest (1990) hold
in the case of arbitrary binary-valued questions, so that, for example, asking yes/no ques-
tions could reduce the sample complexity to learn a dense-in-itself concept class by only
a constant factor.
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