Spherical Coordinates

Last class, we said that \(\iiint \, da = 4\pi r^2 \) for a sphere because that’s the total surface area. Let’s go prove that using spherical coordinates. Take a small area element \(da \). The “height” of the patch is an arc with arc length \(r \, d\theta \), and the “width” is an arc with arc length \(r \sin \phi \, d\phi \). (In physics, \(\theta \) is the angle from the y-axis and \(\phi \) is the polar angle in the plane; this is opposite the mathematical convention.) Therefore, the area element is \(da = r^2 \sin \theta \, d\theta \, d\phi \) and the volume element is \(dv = r^2 \sin \theta \, dr \, d\theta \, d\phi \). (If you need a refresher on spherical coordinates, try to show that \(x = r \sin \theta \cos \phi \), \(y = r \sin \theta \sin \phi \), \(z = r \cos \theta \), and \(r^2 = x^2 + y^2 + z^2 \).)

Using this area element, we can verify:

\[
\iiint \, da = \int_0^{2\pi} \int_0^\pi \int_0^r r^2 \sin \theta \, d\theta \, d\phi \, dr = 2\pi \int_0^\pi \sin \theta \, d\theta \int_0^r r \, dr = 4\pi r^2 = A
\]

When finding the enclosed charge, it is also useful to know the following:

\[
\iiint \, dv = \int_0^{2\pi} \int_0^\pi \int_0^r r^2 \sin \theta \, dr \, d\theta \, d\phi = \frac{1}{3} \pi r^3 \int_0^{2\pi} \int_0^\pi \sin \theta \, d\theta \, d\phi = \frac{1}{3} \pi r^3 (4\pi) = \frac{4}{3} \pi r^3 = V
\]

Proof of Gauss’s Law

Now, for a proof of Gauss’s Law:

1. Take a point charge at the center of a Gaussian sphere. Assuming Coulomb’s law, we can write \(\iiint \vec{E} \cdot d\vec{a} = \int (q_i / r^2) da = (q_i / r^2) 4\pi r^2 = 4\pi q_i \).

2. Now take a point charge outside the Gaussian sphere. Draw a “wedge” from the charge to the sphere. Taking the solid angle \(d\Omega = \sin \theta \, d\theta \, d\phi \) (the solid angle of an entire sphere is \(\Omega = 4\pi \)), we can write \(da = r^2 \, d\omega \). Thus, \(\iiint \vec{E} \cdot d\vec{a} = -E_1 da_1 + E_2 da_2 = -(q_i / r^2) \int_0^\pi \int_0^{2\pi} \sin \theta \, d\theta \, d\phi = \frac{1}{3} \pi r^3 (4\pi) = \frac{4}{3} \pi r^3 = 0 \), since the solid angle is constant.

3. For a non-spherical surface, we can use a deformation argument. Take a small area element and draw the tangent plane. The flux through this element is \(\vec{E}_s \cdot d\vec{a}_s \). If we rotate this plane by an angle \(\theta \), then \(\vec{E}_s = \vec{E}_1 \) and \(d\vec{a}_s = d\vec{a}_1 / \cos \theta \). But \(\vec{E}_s \cdot d\vec{a}_s = E_s da_s \cos \theta = E_1 da_1 \). Thus, the flux is still the same, even if the Gaussian surface is not spherical.

4. Now take an arbitrary Gaussian surface \(S \) and an arbitrary continuous source distribution. Say that the Gaussian surface contains part of the source. We can represent the source distribution as a collection of point charges, and then instantly neglect the part of the source outside our surface. Now surround each point charge inside the surface with a small sphere. For each sphere, the flux through the sphere is \(\phi_i = 4\pi q_i \). Let \(S_i \) be the Gaussian surface excluding the sphere around \(q_i \). Any flux caused by \(q_i \) that enters \(S_i \) later exits \(S_i \), so \(q_i \) contributes no flux to \(S_i \). Thus, the contribution of \(q_i \) to the flux of \(S \) is \(4\pi q_i = 0 = 4\pi q_i \). Summing over all charges, we find that \(\sum \phi = 4\pi \sum q \).

Often, students confuse the source surface and the Gaussian surface. The source surface is a physical surface defined by the presence of charges. The Gaussian surface doesn’t exist — it’s just a mathematical construct used to probe the field, just like a test charge can probe an electric field at a point. Gauss’s law is always true, but it’s easiest for us to evaluate when \(|E| \) is constant along a surface, and when \(\vec{E} \) is parallel or perpendicular to \(\vec{n} \). For instance, a ring has lots of symmetry, but we can’t apply Gauss’s law because it doesn’t follow these guidelines. There is “not enough symmetry.” A finite cylinder also doesn’t work because of edge effects, but an infinite cylinder does. We know this because we can argue \(\text{a priori} \) by symmetry that the only possible \(\vec{E} \) field has to point radially outward; this means we can simply enclose the infinite cylinder with a larger (but finite) cylinder.

Homework: When the cylinder has radius \(R \), find the electric field at \(r < R \) and \(r > R \).
Homework

Let $r \leq R$. Draw as a Gaussian surface a cylinder of radius r and length l. The electric field is constant and outward along this cylinder, so the flux is $E A = E (2 \pi r l)$. The charge enclosed is $\rho V = \rho (\pi r^2 l)$. Gauss’s Law tells us that $2 \pi r l E = 4 \pi \rho r^2 l$, so $E = 2 \pi r \rho$. When $r > R$, we modify the enclosed charge formula to $\rho (\pi R^2 l)$, so $E = 2 \pi R^2 \rho / r$.