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Abstract

Given a set of conflicting arguments, there can ex-
ist multiple plausible opinions about which arguments
should be accepted, rejected, or deemed undecided. Re-
cent work explored some operators for deciding how
multiple such judgments should be aggregated. Here,
we generalize this line of study by introducing a fam-
ily of operators called interval aggregation methods,
which contain existing operators as instances. While
these methods fail to output a complete labelling in gen-
eral, we show that it is possible to transform a given ag-
gregation method into one that does always yield col-
lectively rational labellings. This employs the down-
admissible and up-complete constructions of Caminada
and Pigozzi. For interval methods, collective rationality
is attained at the expense of a strong Independence pos-
tulate, but we show that an interesting weakening of the
Independence postulate is retained.

Introduction
A conflicting knowledge base can be viewed abstractly as a
set of arguments (defeasible derivations), and a binary rela-
tion capturing conflicts among them, forming an argumen-
tation framework (AF) (Dung 1995). Given a set of con-
flicting arguments, there can exist multiple plausible ways
to identify (or label) which arguments should be accepted,
rejected, or deemed undecided (Baroni, Caminada, and Gi-
acomin 2011). The question we explore here is how to ag-
gregate the judgments of multiple agents who have different
opinions about how to evaluate a given set of arguments.

This problem of Judgment Aggregation (JA) has been ex-
plored extensively in classical logic (List and Puppe 2009).
But it was only recently that JA has been applied to collec-
tive argument evaluation (Caminada and Pigozzi 2011; Rah-
wan and Tohmé 2010). Early results showed that argument-
wise plurality voting cannot guarantee that the outcome
of aggregation is always rational (consistent)—thus simple
voting violates Collective Rationality (Rahwan and Tohmé
2010). On the other hand, the aggregation operators of Cam-
inada and Pigozzi are able to guarantee collective rationality,
but do so at the expense of the Independence property (Cam-
inada and Pigozzi 2011).
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In the present paper, we embark on a broader study of JA
in argumentation. We define a general family of aggregation
operators called interval methods and show that they contain
existing operators as instances. Interval methods always sat-
isfy a strong version of Independence, but will usually fail
Collective Rationality. But despite this important barrier, we
are able to fully axiomatize interval methods in terms of a
set of fundamental postulates. Then, building on Caminada
and Pigozzi’s down-admissible + up-complete (DAUC) con-
struction, we present an approach to transform any interval
method into one satisfying Collective Rationality while pre-
serving a weaker and more reasonable form of independence
known as Directionality.

Preliminaries
We assume a countably infinite set U of argument names,
from which all possible argumentation frameworks are built.

Definition 1 An argumentation framework (AF for short)
A “ pArgs,áq is a pair consisting of a finite set Args Ď U
of arguments and an attack relation áĎ Args ˆ Args .
Sometimes we use ArgsA and áA to denote the arguments
and attack relation of a given AF A.

An AF is evaluated by assigning one of the labels in, out
or undec to each argument in ArgsA, standing for accepted,
rejected and undecided respectively (Caminada 2006). We
define a unary “negation” operator on the set of labels by
setting  in “ out,  out “ in and  undec “ undec.
Given an AF A, an A-labelling is a function L : Args Ñ
tin, out, undecu. For each x P tin, out, undecuwe denote
by L´1pxq the inverse image of x under L, and given A Ď
ArgsA we denote by LrAs the restriction of L to A.

A rational evaluation should somehow respect the attack
relation, as captured by the notion of complete labelling.

Definition 2 Let A “ pArgs,áq be an AF and L be an A-
labelling. L is a complete A-labelling iff, for all a P Args:

• If Lpaq “ in then Lpbq “ out for all b P Args s.t. bá a.
• If Lpaq “ out then Lpbq “ in for some b P Args s.t.
bá a.

• If Lpaq “ undec then Lpbq ‰ in for all b P Args s.t.
bá a and Lpcq “ undec for some c P Args s.t. cá a.



An admissible A-labelling is one that satisfies the first
two conditions above. We denote the set of complete A-
labellings by ComppAq.

We assume a set of agents Ag “ t1, . . . , nu (with n ě 2)
is fixed. An A-profile is a sequence L “ pL1, . . . , Lnq as-
signing a complete A-labelling to each i P Ag . Given A Ď
ArgsA we denote by LrAs the profile pL1rAs, . . . , LnrAsq
(writing Lras rather than Lrtaus for the singleton case). For
each label x P tin, out, undecu and a P ArgsA we denote
the set of agents who voted for label x for a by V L

a:x, i.e.,
V L
a:x “ ti P Ag | Lipaq “ xu.
The central concept of this paper is the following.

Definition 3 An aggregation method is a function F that as-
signs to every AFA andA-profile L anA-labelling FApLq.

Postulates for aggregation methods
We start with some postulates for a good aggregation
method. Some are inspired by postulates in (Caminada and
Pigozzi 2011; Rahwan and Tohmé 2010), which in turn were
inspired by those familiar from the JA literature. We modify
them to account for allowing the AF to vary. Note that free
occurrences of A and L within the postulates are implicitly
universally quantified. Ideally, of course, we would like the
output too to be complete.

Collective Rationality FApLq P ComppAq.
Full Collective Rationality will turn out to be beyond the

reach of the the simplest aggregation methods. However, a
very weak version turns out to be relatively easy to satisfy.
We call A a 2-loop AF if it consists only of two arguments
that mutually attack each other, i.e., ArgsA “ ta, bu and
áA“ tpa, bq, pb, aqu for some distinct a, b P U .

Minimal Collective Rationality For any 2-loop AF A
we have FApLq P ComppAq.
Given an A-profile L “ pL1, . . . , Lnq, we say L1 is a

permutation of L if L1 “ pLσp1q, . . . , Lσpnqq for some per-
mutation σ on Ag .

Anonymity If L1 is a permutation of L then FApLq “
FApL

1q.

Unanimity If there is some A-labelling L such that
Li “ L for all i P Ag then FApLq “ L.

The idea behind the next postulate is that AFs that are
isomorphic should be treated the same when aggregating.
Given A1 “ pArgs1,á1q and A2 “ pArgs2,á2q, an
isomorphism from A1 to A2 is a bijection g : Args1 Ñ
Args2 such that, for all a, b P Args1 we have a á1 b
iff gpaq á2 gpbq. Such a g extends to a mapping be-
tween the A1-labellings and the A2-labellings. For any A1-
labelling L we define the A2-labelling gpLq by setting, for
all a P A2, rgpLqspaq “ Lpg´1paqq. The function g further
extends naturally to a mapping betweenA1-profiles andA2-
profiles by setting, for any A1-profile L “ pL1, . . . , Lnq,
gpLq “ pgpL1q, . . . , gpLnqq.

Isomorphism Suppose A1 and A2 are connected by
isomorphism g. Then, for any A1-profile L we have
gpFA1

pLqq “ FA2
pgpLqq.

A standard idea in aggregation is that the group evaluation
concerning some item should depend only on the individu-
als’ evaluations over that item and no others. Given we allow
the AF to vary, we strengthen this property somewhat.

AF-Independence If L1 and L2 are profiles over
A1 and A2 respectively and a P ArgsA1

X ArgsA2

then L1ras “ L2ras implies rFA1
pL1qspaq “

rFA2pL2qspaq.

This postulate implies the more commonly used version of
Independence (just put A1 “ A2). It roughly says that the
collective label of a depends only on Lras no matter what
other arguments might be present or absent in A.

Our first monotonicity postulate, in/out-Monotonicity,
says that if some agents change their individual labels of
some arguments in profile L so that they agree with the col-
lective labelling FApLq, assuming those collective labels are
in tin, outu, then the collective labelling does not change.

in/out-Monotonicity Let L, L1 beA-profiles such that
for all a P ArgsA and all i P Ag , (L1ipaq ‰ Lipaq
implies L1ipaq “ rFApLqspaq P tin, outu). Then
FApL

1q “ FApLq.

The intuition behind Strong in/out-Monotonicity is that
if some agents in L move their individual labels of some
arguments closer towards the collective label (and those col-
lective labels belong to tin, outu), then the resulting collec-
tive labelling remains unchanged. To formulate it we use the
notion of one label being between another two labels. Given
x, y, z P tin, out, undecu we say that y is between x and z
iff either y “ x or y “ z or [y “ undec and x ‰ z].

Strong in/out-Monotonicity Let L, L1 be A-profiles
such that for all a P ArgsA such that rFApLqspaq P
tin, outu and all i P Ag , L1ipaq is between Lipaq and
rFApLqspaq. Then FApL

1q “ FApLq.
The next postulate says the collective label on any argu-

ment never goes against the individual label of any agent
(Caminada and Pigozzi 2011).

Compatibility For all i P Ag and a P ArgsA we have
rFApLqspaq “  Lipaq implies rFApLqspaq “ undec.
Given any n-tuple pliq of labels the in/out-winner in pliq

is the label among tin, outu which appears more frequently
in pliq (if such a label exists). E.g. the in/out-winner in
pin, undec, out, undec, inq is in. If x is the in/out-winner
in pliq then we call  x the in/out-loser. A weaker version
of Compatibility can then be formulated as follows:
in/out-Plurality If x is the in{out-loser in
pLipaqqiPAg then rFApLqspaq ‰ x

Proposition 1 Let F be an aggregation method satisfying
Compatibility. Then
(i). F satisfies in/out-Plurality.
(ii). If F satisfies in/out-Monotonicity then it satisfies
Strong in/out-Monotonicity.

Interval aggregation methods
Now we describe the family of interval aggregation meth-
ods, which will include a number of interesting special cases



(and which are closely-related to the quota rules considered
in JA by (Dietrich and List 2007)). Formally, let Intn be
the set of intervals of non-zero length in t0, 1, . . . , nu (re-
call n is the number of agents), i.e., Intn “ tpk, lq | k ă
l, k, l P t0, 1, . . . , nuu. Let Y Ď Intn be some subset of
distinguished intervals in Intn . Then we define aggregation
method FY by setting, for eachA,A-labelling profile L and
a P ArgsA:

rFYA pLqspaq “

$

&

%

x if x P tin, outu and
p|V L

a: x|, |V
L
a:x|q P Y

undec otherwise

Definition 4 An interval aggregation method is an aggre-
gation method F such that F “ FY for some Y Ď Intn
satisfying (I1): p0, nq P Y .

By making different choices of Y we find some special
instances of interval methods.
Argument-wise plurality: Take the collective label of a to be
the label among tin, out, undecu that gets the most votes. If
there is a tie then take undec. This corresponds to YAWP “

tpk, lq P Intn | n ´ pk ` lq ă lu. We use FAWP to denote
FYAWP .
Majority: Take the collective label of a to be x if more than
half of the agents voted for it, otherwise take undec. YMaj “

tpk, lq P Intn | l ą n{2u. We use FMaj to denote FYMaj .
Sceptical initial: (Caminada and Pigozzi 2011) Take the
in/out winner if it is the unanimous choice among the
agents, otherwise undec. YScept “ tp0, nqu. We use F Scept

to denote FYScept .
Credulous initial: (Caminada and Pigozzi 2011) Take the
in/out-winner x whenever no agent voted for x, otherwise
undec. YCred “ tp0, lq P Intn | l ě 1u. We use FCred to
denote FYCred .
in/out-winner: Take the in/out-winner whenever it exists.
Yiow “ Intn. We use F iow to denote FYiow .

We obtain the following axiomatic characterisation.
Theorem 1 Let F be an aggregation method. Then F is an
interval aggregation method iff it satisfies: Minimal Collec-
tive Rationality, Anonymity, Unanimity, Isomorphism, AF-
Independence and in/out-Plurality.

Thus we see that most of the postulates from the previous
section are sound for the interval methods. The postulates
missing from Thm. 1 are the two Monotonicity postulates,
Compatibility and, most significantly, Collective Rational-
ity. None of these will hold in general for interval methods,
at least not without placing some extra restrictions on Y be-
yond only (I1). Looking first at in/out-Monotonicity we can
say the following:

Proposition 2 (i). There exists an interval method that does
not satisfy in/out-Monotonicity.
(ii). FAWP, FMaj, F Scept, FCred and F iow all satisfy
in/out-Monotonicity.

We obtain Strong in/out-Monotonicity for an interval
method FY if we assume Y satisfies an extra condition say-
ing that Y is closed under widening intervals:

pI2q If pk, lq P Y and s ď k, l ď t then ps, tq P Y.

Proposition 3 Let FY be an interval method. Then FY sat-
isfies Strong in/out-Monotonicity iff Y satisfies (I2).
Definition 5 If Y Ď Intn satisfies both (I1) and (I2)
then we say Y is widening. A widening interval method
is an aggregation method F such that F “ FY for some
widening Y .

Putting Thm. 1 and Prop. 3 together we can see that the
class of widening interval methods is characterised by the
six postulates of Thm. 1 plus Strong in/out-Monotonicity.

It can be checked that each of our previous examples of in-
terval methods, apart from YAWP, are widening and so yield
interval methods that satisfy Strong in/out-Monotonicity.
However if we want Compatibility to hold then we need to
place a further restriction on Y :

pI3q If pk, lq P Y then k “ 0.

Proposition 4 Let FY be an interval method. Then FY sat-
isfies Compatibility iff Y satisfies (I3).
Clearly, among our examples, YScept and YCred are the only
Y that satisfy (I3), which means that F Scept and FCred are
the only interval methods among our examples that satisfy
Compatibility. Looking more generally, combining the pre-
vious proposition with Thm. 1 and Prop. 3 (and recalling the
facts about Compatibility in Prop. 1) gives us the following
result.

Theorem 2 Let F be an aggregation method. Then the fol-
lowing are equivalent:
(i). F “ FY for some Y of the form tp0, tq | t ě lu for some
1 ď l ď n.
(ii). F satisfies Minimal Collective Rationality, Anonymity,
Unanimity, Isomorphism, AF-Independence, Compatibility
and in/out-Monotonicity

Regarding Collective Rationality, we know already from
(Caminada and Pigozzi 2011; Rahwan and Tohmé 2010) that
our examples of interval methods above fail to satisfy it. Is
there any requirement we can place on Y to ensure it? Un-
fortunately the answer is no, as the following impossibility
result (whose proof has a flavour of similar impossibility re-
sults commonly seen in JA, e.g., Thm. 1 of (List and Pettit
2002)) shows.

Theorem 3 There is no aggregation method (for any n ą 1)
satisfying all of Isomorphism, Anonymity, Unanimity, AF-
Independence and Collective Rationality.

Thus, given the basic requirements Isomorphism,
Anonymity and Unanimity, there is no hope to obtain both
of AF-Independence and Collective Rationality. We now
look at relaxing AF-Independence.

Weakening AF-Independence
One might argue that AF-Independence cannot be expected
to hold when part of the input to the aggregation explic-
itly contains information (in the form of the attack relation
áA) regarding dependencies between arguments. Instead
we might expect the following weaker version, inspired by



a similar postulate for argumentation semantics from (Ba-
roni and Giacomin 2007). The idea is that if we have a set
of arguments in A that is unattacked then we can aggregate
just that part without looking at the arguments outside the
set. Note A Ďf A1 indicates that ArgsA Ď ArgsA1 and
áA“áA1 XpArgsA ˆArgsAq.

Directionality Suppose A Ďf A1 and suppose ArgsA
is unattacked in A1. Then for any A1-profile L and a P
ArgsA we have rFA1pLqspaq “ rFApLrArgsAsqspaq.

Proposition 5 Every aggregation method F that satisfies
AF-Independence also satisfies Directionality.

Can we construct an aggregation method that satisfies
Directionality, Collective Rationality and some other de-
sirable postulates? We show the answer is yes, using the
down-admissible and up-complete constructions of (Cami-
nada and Pigozzi 2011). We begin with the down-admissible
construction, which uses the definition of the ‘committed-
ness’ relation Ď according to which L1 Ď L2 iff both
L´1
1 pinq Ď L´1

2 pinq and L´1
1 poutq Ď L´1

2 poutq.

Definition 6 ((Caminada and Pigozzi 2011)) Given an A-
labelling L, the down-admissible labelling of L, denoted by
çL, is the (unique) greatest element (under Ď) of the set of
all admissible A-labellings M such that M Ď L.

As described in (Caminada and Pigozzi 2011), it can be
arrived at by iteratively relabelling every argument that is
illegally in or illegally out with undec until no illegal in or
out labels remain. The result is a labelling that is admissible,
but not necessarily complete. To ensure a complete labelling
we need to additionally apply the up-complete operator.

Definition 7 ((Caminada and Pigozzi 2011)) Given an
admissible A-labelling L, the up-complete labelling of L,
denoted by äL, is the (unique) smallest element (under Ď)
of the set of all complete A-labellings M such that L Ď M .

To obtain äL we iteratively change every illegally undec
argument to in or out as appropriate (Caminada and Pigozzi
2011). We denote by ê L the composite operation of per-
forming the down-admissible followed by the up-complete
procedures on an A-labelling L.

Definition 8 Given any aggregation method F , the DAUC
version of F is the aggregation method pF defined by set-
ting, for any AF A and A-labelling profile L, pFApLq “
êpFApLqq.

For the special cases of interval methods F Scept and
FCred this procedure was studied in detail in (Caminada and
Pigozzi 2011). Their DAUC versions were called the scep-
tical and super-credulous aggregation methods respectively
there. We lose AF-Independence as expected. But we can
show that some postulates satisfied by the initial method F
can be inherited by pF .

Proposition 6 Let F be any aggregation method. For each
of the following postulates, if F satisfies that postulate then
so does pF : Anonymity, Unanimity, Isomorphism, Direction-
ality, Compatibility.

Corollary 1 Let F be an interval method. Then pF satis-
fies Collective Rationality, Anonymity, Unanimity, Isomor-
phism and Directionality.

Hence we have established that, for every interval method
F , pF satisfies four of the six postulates that characterised
the interval methods in Thm. 1, plus a weaker version (Di-
rectionality) of a fifth (AF-Independence). What about the
remaining postulate from there, i.e., in/out-Plurality? From
Props. 4 and 6 we know that if Y satisfies (I3) then pFY will
satisfy Compatibility and hence in/out-Plurality. Thus (I3)
is sufficient to obtain in/out-Plurality. Surprisingly, it turns
out this condition is also necessary.

Proposition 7 Let FY be an interval method. The pFY sat-
isfies in/out-Plurality iff Y satisfies (I3).

One last question concerns the circumstances under which
pFY will satisfy (Strong) in/out-Monotonicity. Since for in-
terval methods we have that Strong in/out-Monotonicity
holds iff Y is widening, one might expect that an analogous
equivalence is preserved for the class of DAUC versions of
the interval methods. However this remains open for now.
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