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Abstract 

 

This chapter introduces a novel notion of temporal interaction diagrams for 

distributed and parallel programming. An interaction diagram is a graphical view of 

computation processes and communication between different entities in distributed 

and parallel processes. It can be used for the specification, implementation and testing 

of interaction policies in distributed and parallel systems. Expressing interaction 

diagrams in a linear form, known as fragmentation, facilitates automation of design 

and testing of such systems. Existing interaction diagram formalisms lack the 

flexibility and capability of describing more general temporal order constraints. They 

only support rigid temporal order, and hence have limited semantic expressiveness.  

We propose an improved interaction diagram formalism in which more general 

  



temporal constraints can be expressed. This enables us of capturing multiple valid 

interaction sequences using a single interaction diagram. 
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INRODUCTION 

Various attempts have been made to formalize interaction among computational entities, such as 

distributed, parallel, object-oriented systems and multi-agent systems (Hoare, 1985; Magee et al, 

1995; Ronnquist & Low, 1996; Koskimies et al, 1996; Ronnquist & Low, 1997; Kinny, 1999; 

Chen et al, 2002; Bauer, 1999; Bauer et al, 2001).  Traditionally, the system design stage involves 

a description of the steps taken in processing a particular task. In distributed systems, however, 

the implementation requires a clear picture of the separate computational threads of different 

processes. In parallel systems, it would be very helpful to be able to express the computation flow 

descriptions for different processes. Interaction diagrams are designed to support the 

representation and processing of these mingling activities. The linear representation of these 

diagrams facilitates the automation of the processes of diagram manipulation for design, report 

generation and testing. In particular, testing can be performed by comparing execution traces 

against specifications expressed in terms of interaction diagrams. 

However, existing interaction diagram formalisms support quite rigid temporal order 

constraints only. An execution trace is said to be valid if it satisfies the interaction diagram. In 

other words, there is no way of specifying multiple valid traces without writing multiple versions 

of fixed execution traces. This can become a difficult job, especially in systems with 

  



sophisticated interactions. In such systems, the number of valid interactions can be quite large 

and there is a demand to more concisely express such flexibility in a single interaction diagram. 

Our research is a step towards achieving this goal.  

In this chapter, we give an overview of existing interaction diagram formalisms and present 

an enhancement of a particular framework in such a way as to support more flexible interaction 

specification. The chapter is organized as follows. In the next section, we present an overview of 

an existing interaction diagram framework and introduce the basic notation to be used throughout 

this chapter. Then we introduce our novel extension. After that, an example demonstrating the 

merit of our framework is presented. Then we discusses current and future trends in interaction 

diagram frameworks. Finally, we conclude and summarise our ideas and results. 

BACKGROUND 

In this section, we present a particular interaction diagram model proposed in (Ronnquist & Low, 

1996). The work described in this chapter is an extension of this framework. An interaction 

diagram is a graphical representation of the computation threads and communications in a 

distributed system and the like. It is a graph showing each process symbolically as one or more 

vertical bars, and the messaging between processes as horizontal arrows between these bars. A 

sample interaction diagram is shown in Figure 1, describing three processes A, B and C and the 

message sequences among them. There are a number of properties that are worth mentioning with 

respect to the meaning of this interaction diagram according to the formalism in (Ronnquist & 

Low, 1996). 

 

  



 

Figure 1. Simple Interaction Diagram 

A fragmentation is an algebraic representation of an interaction diagram. In order to convert 

an interaction diagram into a fragmentation, we need to decompose it into its graphical elements, 

which correspond to fragments.. Figure 2 shows some types of these fragments. These fragments 

include the beginning of a process, the end of a process, a process sending a message, and a 

process receiving a message. Underneath every fragment is its corresponding algebraic form. 

Algebraic atoms can be used (forming a fragmentation) to describe a particular interaction 

diagram. 

 

Figure 2. Graphical elements (fragments) 

  



There are two types of fragmentation. However, we are only interested in computation flow 

fragmentation (Ronnquist & Low, 1996), which orders the fragments by grouping those of the 

same process together. Each process’s fragments are ordered according to a top-to-bottom 

sequence (or temporal sequence). This represents the computation flow of a process. The 

computation flow fragmentations for Figure 1 are as follows. 

For process A: <beg(A), snd(A,m1), rcv(A,m4), end(A)> 

For process B: <beg(B), rcv(B,m1), snd(B,m2), rcv(B,m3), snd(B,m4), end(B)> 

For process C: <beg(C), rcv(C,m2), snd(C,m3), end(C)> 

According to Ronnquist and Low (1996), when actions concern a single process, the order of 

actions has significance for the interpretation of the diagram. The meaning of a single process 

computation flow is that the order in which the fragments occur reflects the order in which the 

corresponding actions take place. In other words, they state the exact temporal order in which 

the fragments or messages should take place. There is no mechanism to express the temporal 

constraints between different fragments. This is a severe limitation to the expressiveness of the 

framework. What we would like to achieve is a formal framework for supporting more flexibility 

in the temporal constraints. 

 

Figure 3. Single process diagram 

  



In order to explain the limitation more clearly, we will give a simple example of one process. 

Suppose we would like to express the following temporal order constraints on the events of the 

diagram in Figure 3, where an event may be snd or rcv. 

We will use a coffee making machine as an example for illustration. Suppose one process 

needs to perform the following tasks: 

• First, send a message to the resources process requesting sugar and coffee (call this event a1). 

• Then, receive a message from the resources process indicating sugar is ready (call this event 

a2). Also receive another message from the resources process indicating coffee is ready (call 

this event a3). It does not matter which of these acknowledgements occurs first, but they both 

need to be completed before moving to the next step. 

• Now, send a message to the water process requesting hot water to be poured in the cup (call 

this event a4). 

More abstractly, we have the following constraints: 

• a1 must be before a2, a3 and a4 

• the order of a2 and a3 is not important 

• a4 must take place after both a2 and a3. 

In fact, we can see the problem as follows. In a parallel system design and communication 

specification stage, instead of specifying a single valid execution sequence that must be followed, 

we may like to specify a number of valid sequences. Recall that interaction diagrams can be used 

for checking execution traces against specified order. In the example above, the designer’s 

intention is to treat both event sequences a1, a2, a3, a4 and a1, a3, a2, a4 as valid. Using the 

  



old formalism, we need to provide two different (rigid) interaction diagrams. If the execution 

trace satisfies one of these diagrams, then the trace is correct. This technique becomes less 

practical in more complex settings where the number of possible valid sequences of event is 

large. In such a situation, a separate interaction diagram needs to be provided for each valid 

sequence, and checking needs to be carried out against all interaction diagrams until one (or 

none) matches. In the next section, we present an extension to the existing framework which 

supports more general and flexible constraints. 

PROPOSED ENHANCEMENTS 

In this section, we propose the enhancement of the current interaction diagram formalism as 

follows. We would like to distinguish between two types of temporal order constraints; namely, 

groups of events among which the order is important, and groups of events among which the 

order is not important. 

 

Figure 4. Ordering fragments 

We will extend the set of graphical elements by including the fragments shown in Figure 4. A 

couple of fragments, corresponding to the ‘<’ and ‘>’ symbols (we will call them angular 

brackets), represent the start and end of a group of fragments among which the top-to-bottom 

  



order is the actual temporal order (that is as in the original formalism). This temporal order also 

states that, in addition to the specified temporal order, no external event is allowed to interleave 

with the enclosed events. The other couple of fragments, corresponding to the ‘[’ and ‘]’ symbols 

(we call them square brackets), represent the start and end of a group of fragments among which 

the top-to-bottom order does not necessarily reflect the actual temporal order. Throughout the 

paper, we will use the term “bracket” to refer to all types of brackets. 

 

Figure 5. Extended single process diagram 

A sample interaction diagram using some of the proposed fragments is shown in Figure 5. 

This interaction diagram expresses the temporal constraints mentioned in the previous section, 

which the previous formalism failed to express. Simply, the temporal order of the events within 

the square brackets are not important. However, event a1 must precede this group, and a4 must 

take place after it. The following is the corresponding modified computation flow fragmentation. 

(Note that a1, a2, etc, are placeholders for normal fragments such as snd and rcv). 

< beg(A), a1, [ a2, a3 ], a4, end(A) > 

  



Note that this fragmentation is semantically equivalent to the following fragmentation (that is, 

changing the order of events inside the square brackets does not affect the meaning of the 

diagram): 

< beg(A), a1, [ a3, a2 ], a4, end(A) > 

These fragmentations have the following properties: 

• An opening fragment of a particular type should appear before any closing fragment of that 

type. 

• At any stage of parsing the fragmentation, the number of opening fragments must be greater 

than or equal to the number of corresponding closing fragments of the same type. 

• At the end of the interaction diagram (or the corresponding fragmentation), the number of 

opening and closing fragments should be equal (that is each opening fragment should have a 

corresponding closing fragment). 

• Overlapping groups are not permitted, that is if a bracket of group g1 opens, and within that a 

bracket of group g2 opens, the closing bracket of group g2 must close before the closing 

bracket of group g1 does. That is each bracket is matched with the nearest corresponding 

bracket. 

• An entity is either an atomic event or a group of entities enclosed within a matched pair of 

brackets. All entities are treated the same with respect to the higher-level group they belong 

to. 

• The temporal relation between any two events is determined by the type of the nearest 

complete pair of brackets (angular or square) which contains them. 

  



EXAMPLE AND OBSERVATIONS 

In this section, we show another example to further illustrate our notation. We will exploit the 

supply chain automation domain. This domain is a typical example of situations in which there is 

a need for flexible specification of multi-process interactions. Suppose we have five processes: 

• Process A: Representative of a personal computer (PC) manufacturing company. This 

company does not manufacture all computer parts, but rather purchases them from known 

partners (shown below). There are partners from which this party purchases motherboards, 

hard disks, and computer cases. 

• Processes B, C1, and D: Representatives of manufacturers for PC motherboard, hard disks, 

and computer cases, respectively. 

• Process C2: Representative of the manufacturing plant associated with process C1. 

 
Figure 6 shows the interactions between the different processes, that is different messages 

passed between them. For simplicity, we do not include angular brackets at the beginning and the 

end of every process. The intuition behind the diagram with respect to process A is that before 

sending the order for computer cases, A first needs to order and receive motherboards and hard 

disks. This may be because it is very costly to store computer cases, and hence it would be more 

efficient to order them after all other components have been received. This way, computer 

assembly would take place as soon as the cases arrive. Intuitively, no deliveries should take place 

unless an order has been placed. This is reflected in the fact that no confirmation message can be 

received before the order. Moreover, ordering motherboards and ordering hard disks can take 

place in any order. That is, it does not matter which order process is performed first since 

assembly will not take place until the receipt of cases. 

  



 

Figure 6. PC manufacturing example 

Now let us consider processes C1 and C2. After receiving a request for hard disk delivery 

through message m3, C1 must submit the order information to its manufacturing plant. C1 also 

needs to send additional technical specifications circulated internally from its design team (also 

represented by C1). It does not matter in what order these requests take place, but it is only after 

receiving both messages that the manufacturing plant can start manufacturing. This is why m9 

can only be sent after receiving both m7 and m8. Note that according to the diagram, there is 

  



nothing to prevent messages m7 and m8 from being sent in one order and received in another. 

For example, C1 might send m7 followed by m8, but due to network problems, C2 might 

receive m8 before m7. Processes B and D only need to receive orders before they confirm 

delivery. The computation flow fragmentations of the system in Figure 6 are as follows. 

<beg(A), [ <snd(A,m1), rcv(A,m2)>, <snd(A,m3), rcv(A,m4)> ], snd(A,m5), rcv(A,m6), end(A)> 

<beg(B), rcv(B,m1), snd(B,m2), end(B)> 

<beg(C1), rcv(C1,m3), [ snd(C1, m7), snd(C1, m8) ], rcv(C1, m9, snd(C1,m4), end(C1)> 

<beg(D), rcv(D,m5), snd(D,m6), end(D)> 

<beg(C2), rcv(C2,m7), rcv(C2, m8), snd(C2,m9), end(C2)> 

Observation 1 

Recall that the power of our framework stems from its ability to capture multiple valid execution 

or interaction sequences in a single diagram. Following are some interaction sequences that 

satisfy the diagram presented in Figure 6. 

1. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B, m2), 

rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m7), rcv(C2, m7), snd(C1, m8), 

rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A, m4), snd(A, m5), rcv(D, 

m5), snd(D, m6), rcv(A, m6), end(A), end(B), end(C1), end(C2), end(D) 

2. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B, m2), 

rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m7), snd(C1, m8), rcv(C2, m7), 

rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A, m4), snd(A, m5), rcv(D, 

m5), snd(D, m6), rcv(A, m6), end(A), end(B), end(C1), end(C2), end(D) 

  



3. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B, m2), 

rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m8), snd(C1, m7), rcv(C2, m7), 

rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A, m4), snd(A, m5), rcv(D, 

m5), snd(D, m6), rcv(A, m6), end(A), end(B), end(C1), end(C2), end(D) 

4. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(B, m2), rcv(A, m2), snd(A, m1), 

rcv(B, m1), snd(A, m3), rcv(C1, m3), snd(C1, m8), snd(C1, m7), rcv(C2, m7), 

rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A, m4), snd(A, m5), rcv(D, 

m5), snd(D, m6), rcv(A, m6), end(A), end(B), end(C1), end(C2), end(D) 

Interaction sequences 2 and 3 differ from sequence 1 in the relative order for messages m7 and 

m8 which are highlighted in bold. Sequence 4 differs from sequence 3 in the order of the sending 

and receiving of messages m1 and m2 (that is in the order of the processes of ordering hard disks 

and motherboards). Note that the above are only examples of some valid sequences. Other valid 

sequences include all other combinations of orderings of interaction between process A and C1 

with the interaction between C1 and C2. Also, processes can start and terminate in different 

orders as long as each process is created before it starts sending or receiving messages and 

terminates at the very end. For example, it does not matter which of beg(C2) or begin(D) takes 

place first. 

We have just seen that using the, relatively simple, diagram presented in Figure 6, we are able 

to specify a large variety of valid interaction sequences among processes (or objects or agents). 

We do not have to specify multiple separate interaction diagrams to cater for all these sequences. 

This results in significant saving of time and space. 

 

  



Observation 2 

Note, that in the above fragmentation, the process of ordering motherboards must completely 

finish (that is the request as well the reply must both take place), before the process of ordering 

hard disks starts. This seems unnatural. One alternative approach is to replace the following 

notation: 

[ <snd(A,m1), rcv(A,m2)>, <snd(A,m3), rcv(A,m4)> ] 

with the following: 

< [ snd(A,m1), snd(A,m3)], [rcv(A,m2), rcv(A,m4) ] >  

which means that sending out the first two orders can happen in any order, and receiving the 

corresponding responses may also happen in any order, with the only condition being that both 

orders should be sent out before any order gets received. In reality, on the other hand, we might 

want to express that they can both happen in any order as long as no reply occurs before a request 

without disallowing a response to be received before the second order is sent. This is one of the 

limitations of this formalism. This is due to the fact that we do not allow interleaving between 

events belonging to different bracket pairs. We treat all events within a bracket pair as a single 

entity with respect to all other events outside that pair. 

CURRENT AND FUTURE TRENDS 

Software engineering practitioners face many challenges in the twenty first century. With the rate 

at which software systems are scaling up, and with the necessity of extensive interaction among 

distributed software and computer systems, there is an urgent need for sound software 

engineering frameworks that allow people to deal with such complexity. In distributed systems, it 

  



is very important to have efficient tools for the design, manipulation, deployment and testing of 

distributed computational entities. In Koskimies et al (1996), for example, ‘scenario diagrams’ 

have been used to study the interactions among object-oriented systems in dynamic object 

models. SCED (Koskimies et al, 1998) is a tool for using scenario diagrams for specifying object 

systems and generating state machines for describing the behaviour of each object from the 

scenario diagram specification. 

Low et al (1997) presented the interaction diagram framework on which this work was based. 

They have built a tool for specifying interaction diagrams among multiple computational threads. 

They showed how an interaction diagram may be represented in different types of symbolic 

notations (called fragmentations). They presented a tool for translating an interaction diagrams 

into fragmentations and vice versa. 

Interaction diagrams also have many important applications in multi-agent systems (Jennings, 

2001; Wooldridge et al, 2000; Wooldridge, 1999). Jennings and Wooldridge (1998) proposed that 

an intelligent agent is capable of social behaviour; that is, capable of communicating with other 

agents in the system. In this context, there is a need for formalising such interaction in multi-

agent systems. Such formalisation would be useful for designing and testing multi-agent systems, 

as well as visualising the computation flow of each agent and communication among agents. 

Bauer et al (2001) presented an extension of the unified modelling language (UML), a de 

facto standard for object-oriented analysis and design, by adapting it for modelling protocols in 

multi-agent interaction, resulting in the Agent UML framework. Huget (2002a) used this 

framework to specify interaction in a supply chain management domain. Furthermore, Huget 

  



(2002b) presented a framework for communicating UML interaction protocol diagrams among 

agents using an XML-based language. 

We envisage many important development in the field of interaction frameworks in the next 

few years. Frameworks will emerge to facilitate different levels of interaction among computer 

systems. There is an urgent need for standardising methodologies for specifying interaction such 

that interaction specifications become more portable. Algorithms need to be put into place for 

manipulating interaction diagrams and for checking the validity of interaction traces. 

Furthermore, there will be a need for formal verification of the computational properties of those 

algorithms. 

CONCLUSION 

Existing interaction diagram formalisms and their corresponding linear notations (known as 

fragmentations) require different strict interaction diagrams for different execution sequences. 

This is because each interaction diagram is capable of expressing only a single, strict valid 

execution sequence. In this chapter, we have presented a formalism for describing flexible 

interaction diagrams which are able to express many possible execution sequences using one 

interaction diagram. Our formalism describes interaction diagrams which have a mix of two types 

of temporal relationships between events in a process, namely ordered and unordered temporal 

relationships. An ordered temporal relationship means that events should take place in the order 

specified while an unordered temporal relationship means that the order of executing two events 

is irrelevant. We have shown how combinations of these two types of relationships could be used 

to represent more complicated scenarios through a linear fragmentation. 
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