
A Study of an Approach to the Collective Iterative Task Allocation Problem

Christian Guttmann
Clayton School of Information Technology, Monash University

VICTORIA 3800, Australia
christian.guttmann@gmail.com

Iyad Rahwan
British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
irahwan@acm.org

Michael Georgeff
e–Health Research Unit, Monash University

VICTORIA 3800, Australia
michael.georgeff@med.monash.edu.au

Abstract
A major challenge in the field of Multi-Agent Systems is

to enable autonomous agents to allocate tasks efficiently.
This paper extends previous work on an approach to the
collective iterative task allocation problem where a group
of agents endeavours to make the best allocations possible
over multiple iterations of proposing, selection and learn-
ing. We offer an algorithm capturing the main aspects of
this approach, and then show analytically and empirically
that the agents’ estimations of the performance of a task and
the type of group decision policy play an important role in
the performance of the algorithm.

1 Introduction

Assigning agents to tasks is a challenging problem in
the coordination of Multi-Agent Systems (MAS), where each
agent is autonomous and has its own unique knowledge of
the agents and tasks involved [2]. This problem is prevalent
in a wide range of applications, such as network routing,
crisis management, logistics, computational grids, and col-
laborative student support environments [3, 1].

This paper addresses the problem of Collective Iterative
Task Allocation (CITA) which involves allocating tasks to
teams. We view each team as a unit, and thus are not con-
cerned with the internal coordination within teams. More-
over, we do not assume that agents know the performance of
different teams accurately. Instead, we assume each agent
has estimations of the performance of different teams. The
agents refine their estimations after selecting a particular
team and acquiring information of its actual performance
(e.g., through observation). Following other work, which
argued that estimations of other agents’ performance can
improve individual agent decision-making [5], we hypoth-
esise that such estimations are useful in making collective
decisions about allocating tasks to teams.

Our first question, then, is how to select a team to a given
task (a phase we call selection) using various individual
agents’ proposals which are based on their estimations of
the performance of different teams (a phase we call propos-
ing). To this end, we offer an approach based on group de-
cision policies, where each agent contributes (e.g., through
proposing) to the decision as to which team should be se-
lected for a given task (Section 2). After a team is selected
using the group decision policy, agents’ individual estima-
tions of that team’s performance are updated (a phase we
call learning), and is taken into account in subsequent al-
locations. We examine two specific policies: the majority
policy which selects the team proposed by the majority of
agents; and the maximum policy which selects the team pro-
posed with the highest estimated performance.

Our second question concerns the conditions under
which the iterative execution of proposing, selection and
learning processes converges to optimal or near optimal al-
locations. For the purpose of this paper, we consider the
case of invariable team performance (i.e., a team’s perfor-
mance is the same every time it performs a particular task).1

In Section 3, we analyse two aspects of the performance of
our approach based on [4]: the quality of the final (con-
verged) allocation; and the number of rounds required to
converge. We show that these aspects are influenced by
the agents’ estimations of the performance of teams (e.g.,
they are optimistic); and the type of group decision policy.
For example, we prove that if agents are completely opti-
mistic, then we are guaranteed to converge to an optimal
solution. Further, if agents are optimistic then the algorithm
will require no greater number of rounds to converge to op-
timal solutions than an exhaustive approach. Our empirical
analysis (Section 4) shows that, under less restrictive condi-

1In previous work [6], we presented empirical results in the case of vari-
able team performance. But this paper offers stronger analytical properties
about the performance of the algorithm. Also note that in related work [4],
the performance of agents is often implicitly assumed to be constant.

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.97

367

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.97

365

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.97

363

tions, the maximum policy converges to better allocations,
but when the number of rounds is limited, then the majority
policy outperforms the maximum policy.

2 A Formal Framework to Study an Ap-
proach to the Collective Iterative Task Al-
location (CITA) Problem

We now define the main components of our approach.
Definition 1. A set of Tasks is denoted by T = {t1, . . . , ts}
with s = |T |.

A task defined in T can be assigned to an agent team.
Definition 2. A set of Agent Teams is denoted by
AT = {at1, . . . , atp} with p = |AT |, where atj ∈ AT is
an individual team.
Definition 3. A set of Agents is denoted by
A = {a1, . . . , aq} with q = |A|, where ai ∈ A is an
individual agent.

The true performance of a team atj for var-
ious tasks is referred to as a team’s capabil-
ity: C(atj) = {V (atj , t1), . . . , V (atj , ts)}, where
V : AT × T → R+ is a value representing the perfor-
mance of a team for a task (the value 0 corresponds to
being unable to perform a task). The capability of a
team can only be estimated (a capability is only specified
for illustrative purposes and empirical studies). Each
agent ai ∈ A maintains models Mai

to estimate the
capabilities of teams and each agent is able to execute
Reasoning Processes RPai

using these models.
Definition 4. Mai

are the Models main-
tained by agent ai. Models are expressed by
Mai

= {Mai
(at1), . . . ,Mai

(atp)} with p being
the number of teams in AT . A specific model
of a team atj is defined by a set of estimations
Mai

(atj) = {V̂ai
(atj , t1), . . . , V̂ai

(atj , ts)}, where
· t1, . . . , ts are the tasks defined in T (Definition 1).
· atj is a team in AT (Definition 2).
· V̂ai

(atj , tk) is an estimation of team atj’s true task
performance V (atj , tk).

Definition 5. RPai
are ai’s Reasoning Processes.

• For each agent ai and task tk, the INITIALISE pro-
cess returns a set of Models Mai

.
• For each agent ai and task tk, the PROPOSE pro-

cess returns a proposal defining a team and its esti-
mated performance: proposalai

= 〈atj , V̂ai
(atj)〉.

• For each agent ai, task tk and team atj , the UP-
DATE process returns a set of updated models M ′

ai

after it performs task tk.
We introduce the notion of a group decision policy. Upon

receiving a proposal from each agent, the policy P is ap-
plied to determine a team for a task.
Definition 6. Policy P is denoted by
P (proposalsA) = atselected, where atselected is the
team selected by the policy P and proposalsA =
{proposala1

, . . . , proposalaq
}.

INPUT: Task tk ∈ T , Teams AT , Agents A, Policy P
OUTPUT: Team atj ∈ AT

1. ANNOUNCE task tk ∈ T
2. INITIALISEai

(Mai
, tk) (∀ai ∈ A)

3. Repeat
(a) proposalsA =

⋃
ai∈A PROPOSEai

(Mai
, tk)

(b) atselected = P (proposalsA)
(c) UPDATEai

(Mai
, performance(atselected, tk))(∀ai ∈ A)

4. Until a termination criterion is satisfied

Figure 1. Assignment Algorithm.

Assignment Algorithm: The assignment algorithm pre-
sented in Figure 1 uses parameters based on the Defini-
tions 1–6 and works as follows. In step 1, a task is an-
nounced to all agents A, and each agent then initialises its
models about each team for the announced task (step 2).

The loop (steps 3a–3c) involves proposing teams, se-
lecting a team and learning from the performance of the
selected team. This loop is called an assignment round
ri with i being the i’th iteration of the loop. In step 3a,
each agent proposes a team and its estimated performance
for the announced task, and these proposals are stored in
proposalsA. In step 3b, a trusted agent atrusted uses the
proposalsA and the policy P to select a team atselected for
the task. After the selected team atselected performs the task,
each agent uses the UPDATE process to refine its models
(step 3c) based on information of the performance of the
selected team: performance(atselected, tk). An assignment
round is repeated until the algorithm satisfies a termination
criterion (step 4).

When the algorithm terminates, the output of the algo-
rithm is the team that performed the task better than the
teams selected previously. Let AT KnownSoFar = {ati ∈
AT : ati = atrt

, rt ≤ rcurrent, where rcurrent is the
current round}. That is, if the algorithm is currently
in round rcurrent, then AT KnownSoFar is the set of teams
that have been selected in rounds r1, . . . , rcurrent. Let
atBestSoFar = argmax

atl∈AT KnownSoFar

V (atl, tk) be the team with the

highest true performance of all teams in AT KnownSoFar.

3 Analytical Properties

This section reports on our analytical findings pertaining
to the solution quality and then the computational require-
ments of the algorithm (Figure 1).

3.1 Optimal Solution: Complete Optimism

We will first define an agent that does not underestimate
the performance of any team in AT .

Definition 7. Optimistic Agent. An agent ai is optimistic
about the performance of a team atj if and only if it does
not underestimate the performance of a team atj for a

368366364

given task. That is, the INITIALISE and UPDATE pro-
cesses (Definition 5) of this agent return models Mai

where
V̂ai

(atj) ≥ V (atj) : ∀atj ∈ AT .2 In a completely opti-
mistic group of agents, each agent is optimistic about the
performance of all teams.

There are various situations where agents are completely
optimistic. For example, assume that agents have to assign a
team to run a marathon, but have only observed the running
performance of teams for distances shorter than that of a
marathon. Assume that teams need more time on average
as the distance of a run increases. If agents extrapolate their
estimations of the running performance of shorter distances,
they will have overestimations of the performance of teams
for running a marathon.

The first theorem demonstrates that a completely opti-
mistic group of agents plays an important role in guaranty-
ing to find an optimal solution with our algorithm. We call
this theorem the sufficient condition, because the algorithm
finds an optimal solution regardless of the group decision
policy used.
Theorem 1. Optimality under Complete Optimism:
Sufficient Condition. If

(A) a group of agents A is completely optimistic (Def-
inition 7),

(B) each agent proposes a team with an estimation
higher than V (atBestSoFar) (if an agent does not have an
estimation of a team higher than V (atBestSoFar), then it
proposes any team),

(C) the algorithm does not terminate if
¬∃〈atj , V̂ (atj)〉 ∈ proposalsA such that
V̂ (atj) ≤ V (atBestSoFar),

then if the algorithm terminates it will terminate with an
optimal solution.

Proof. The theorem is proven by contradiction, i.e., we as-
sume that if the algorithm terminates, then we have found a
suboptimal team atBestSoFar.

1. If the team atBestSoFar is not an optimal team, then there
must be a team at∗, such that V (at∗) > V (atBestSoFar).

2. According to (C), if the algorithm terminates, we know
that ∃〈atj , V̂ (atj)〉 ∈ proposalsA such that V̂ (atj) ≤
V (atBestSoFar). Assume that a′ ∈ A is the agent that
made this proposal.

3. According to (B), we know that
V (atBestSoFar) ≥ V̂a′(atj) for all atj ∈ AT . In
particular, we know that V (atBestSoFar) ≥ V̂a′(at∗).

According to 1., V (at∗) > V (atBestSoFar), and accord-
ing to 3. V (atBestSoFar) ≥ V̂a′(at∗). So, we know that
V (at∗) > V̂a′(at∗). However, this is a contradiction, be-
cause we assumed that no agent underestimates the perfor-
mance of any team according to (A).

2For clarity of exposition, from now on we assume a fixed task tk and
remove tk from the notation (e.g., V̂ai (atj) instead of V̂ai (atj , tk)).

The power of Theorem 1 is that the algorithm eventually
finds an optimal solution despite the decision policy used.

3.2 Defining Two Policies: Pmax and Pmaj

We will consider two policies, Pmax and Pmaj.

To define Pmax, we denote a set V proposalsA

which are the estimations specified in proposalsA:
V̂ proposalsA

= {V̂ai
(atj)|〈atj , V̂ai

(atj)〉 ∈ proposalsA}.
The maximum policy behaves as an optimisation func-

tion as it always selects the team proposed with the highest
estimated performance.

Definition 8. Maximum Policy. Pmax(proposalsA) = atj ,
where team atj is selected from set
AT max = {atmax|〈atmax, V̂max〉 ∈ proposalsA, where
V̂max = argmax

V̂i∈V̂ proposalsA

(V̂i)}.

Another important policy is the majority policy which
selects the team that is preferred by the majority of
agents. As opposed to the maximum policy, the advan-
tage of the majority policy is that it can prevent select-
ing a team that has been proposed with an unrealisti-
cally high estimation which is far removed from the true
performance of that team. To define the policy Pmaj,
we denote a set of the teams specified in proposalsA:
AT proposalsA

= {atj |〈atj , V̂ai
(atj)〉 ∈ proposalsA}.

Definition 9. Majority Policy. Pmaj(proposalsA) = atj ,
where team atj is selected from set AT maj =
{atmaj| argmax

atmaj∈AT proposalsA

|{ai : 〈atmaj, V̂ai
(atmaj)〉 ∈

proposalsA}|}.

Using Theorem 1 and any of the policies, we know that
the algorithm will find an optimal solution.

Corollary 1. Optimality with Pmax and Pmaj. Under the
conditions (A) – (C) introduced for Theorem 1, we know
that using Pmax and Pmaj will find with an optimal solution,
if the algorithm terminates.

Proof. The proof follows from Theorem 1.

3.3 Number of Assignment Rounds

The computational requirement is an important feature
of the performance of a coordination algorithm [4]. In our
study, this requirement is measured by the number of as-
signment rounds required to reach a solution until a termi-
nation criterion is satisfied. Note that the theorems in this
section do not rely on the assumption of complete optimism
(Definition 7) as is the case for Theorem 1.

Termination Criterion: In this paper, we con-
sider a termination criterion that will terminate the

369367365

algorithm if all proposed estimations of the per-
formance of the selected team are not greater than
atBestSoFar. That is, the algorithm terminates if
∀ai ∈ A : 〈atselected, V̂ai

(atselected)〉 ∈ proposalsA such
that V̂ai

(atselected) ≤ V (atBestSoFar). Provided that the same
team is not assigned more than once, the algorithm will
eventually terminate, because the set of teams is finite (in
the worst case after all teams have been selected once).
In future research, we will prove optimality of more
efficient termination criteria. For example, under complete
optimism, we can terminate the algorithm (and find an
optimal solution) if only one proposal of the selected team
is not greater than V (atBestSoFar).

Basic Assumptions: In order to develop proofs of the
computational requirement of our algorithm, we make as-
sumptions pertaining to the PROPOSE and UPDATE pro-
cesses of individual agents (Definition 5). For the PRO-
POSE process, we assume that agents are task-rational,
i.e., each agent proposes the team with the highest estimated
performance according to its models, argmax

atj∈AT
V̂ai

(atj). We

also assume that each agent uses an UPDATE process that
replaces an estimated value with the value that represents
the observed performance (performance(atj)) of the se-
lected team. We assume that the observed performance
(after execution) equals the true performance of an agent
so that performance(atj) = V (atj). If team a atj has per-
formed a task, then the estimation V̂ ′

ai
(atj) is updated with

team atj’s true performance V (atj). The UPDATE pro-
cess does not update models of teams other than atj .

Exhaustive Procedure: As a benchmark, consider an
exhaustive procedure which assigns each team at least once
until accurate performance estimations of all teams are ob-
tained. This procedure will find the optimal allocation.
However, an optimal team could be assigned in the first
attempt, but we only know this after all teams have been
tested. This section shows that our algorithm finds an op-
timal solution in no greater number of rounds than the ex-
haustive procedure.

The following result identifies conditions which deter-
mine the number of rounds until the algorithm converges to
an optimal solution with Pmax. Informally, if there exists
an agent that estimates the performance of m teams (of n
teams) higher than the true performance of an optimal team,
and if the performance of an optimal team is higher than the
estimated performance of the other n − m teams, then an
optimal solution is found in exactly m rounds. Let AT ∗ ⊆
AT be a set of teams such that ∀at∗j ∈ AT ∗,∃ai ∈ A with

V̂ai
(at∗j) ≥ V (at′), where at′ is an optimal team.

Theorem 2. Maximum Policy: Assignment Rounds.
If max

ak∈A
V̂ak

(at′) ≥ V (at′) and V (at′) ≥
max

al∈A,at′′∈|AT−AT∗|
V̂al

(at′′), then Pmax is guaranteed

to find an optimal team at′ in exactly |AT ∗| rounds.

Proof. Pmax selects the team with the highest proposed per-
formance, and we know that |AT ∗| teams have higher es-
timations than the true and estimated performance of an
optimal team, but perform a task worse than an optimal
team. Each team in AT ∗ is selected before an optimal team,
since V̂ai

(atj) > V (atj),∀atj ∈ AT ∗. Since these teams
have a true performance that is lower than the estimated
performance of an optimal team, each of them will be se-
lected once and then not be selected again. The other teams
AT ∗ − AT will never be selected as their estimations are
lower than that of an optimal team and the teams in AT ∗.
Thus, exactly |AT ∗| teams perform the task, after which the
algorithm terminates with an optimal team.

This theorem implies that in the best case an optimal so-
lution can be found in only one round. The theorem also
implies that an optimal solution can be found if the max-
imum number of rounds is not greater than those required
for the exhaustive procedure.

Theorem 3. Majority Policy: Assignment Rounds. If the
majority of agents estimate the performance of m teams
(of all n teams) higher than the performance of the opti-
mal team, and if the majority of agents estimates the perfor-
mance of the optimal team higher than its true performance,
then Pmax finds the optimal solution in m rounds.

(The proof is omitted due to space limitations.)
If we know that agents are optimistic in a given domain,

we can use the assignment algorithm to exploit the above
property in reducing the number of rounds required to find
an optimal solution. That is, Theorems 2 and 3 enable us to
make statements about the computational requirements of
our algorithm. For example, the theorems show that if we
have prior knowledge of the agents’ estimations, then we
can determine an acceptable upper bound on the number of
reassignments required. Another useful insight is that if we
know that the majority of agents is not optimistic about an
optimal team (but we have at least one agent that is opti-
mistic about an optimal team), then we are guaranteed to
find an optimal team with Pmax.

4 Empirical Study

This section presents an empirical study to investigate
the interaction of agents’ initial estimations and the true per-
formance of teams, and the maximum and majority policy.
We compare the performance of the assignment algorithm
(using the termination criterion introduced in Section 3.3)
with benchmark settings which make optimal and random
assignments. Finally, we investigate the convergence be-
haviour of the algorithm for the two policy.

4.1 Experimental parameters

We simulate the assignment algorithm under different
simulation settings consisting of four experimental parame-
ters which are assigned a range of values in the simulations.

370368366

• Model Initialisation (MI) defines four types of agents
with different estimations of each team’s performance:
Low, Medium, High and Mixed-estimating agents. For
the purpose of this paper, we restrict the range of
performance values from 0 (worst performance) to 1
(optimal performance). This range is divided evenly
for distributions that represents low (mean = 0.25),
medium (mean = 0.5) and high-estimating (mean =
0.75) teams.3 A standard deviation of 0.1 covers ap-
proximately 98% of a distribution around its mean be-
fore it overlaps with the mean of the other distribu-
tions. The distribution for mixed-performing agents
has a mean of 0.5 and deviation of 0.25.

• Capability (C) defines four types of teams with dif-
ferent capabilities: Low, Medium, High and Mixed-
performing teams. The types of teams are based on
the same four types of distributions used for the exper-
imental parameter MI.

• Policy (P) defines two types of group decision poli-
cies: maximum and majority. These two group deci-
sion policies are guaranteed to converge to an optimal
solution if agents are optimistic (Section 3.1).

• Group Size (GS) defines the number of agents: 5, 10,
20, 40 and 50. These values are expected to show a
representative trend of our results for varying popula-
tions of agents. We assume that agents assign a task to
each other A = AT .

4.2 Simulation Settings

We constructed a TAP4 setting for each combination of
the experimental parameters (Capability (C)×Model Initial-
isation (MI)×Policy (P)×Group Size (GS)=4×4×2×5=160).

To evaluate the outcome of a TAP setting, we con-
structed two benchmark settings, EXHAUSTIVE and RAN-
DOM. Each benchmark setting represents an opposing ex-
treme on a scale that measures the number of assignments
(to learn the performance of the selected team) required un-
til a solution is found. At one extreme is a procedure used
in the EXHAUSTIVE setting which requires as many assign-
ments as there are teams to find an optimal solution. At the
other extreme is a procedure in the RANDOM setting that
requires no assignment to provide a random solution.

4.3 Simulation Run of Settings

The simulation is first populated with a certain number
of agents (and consequently, teams) as specified by the pa-
rameter group size GS. The agents’ models that estimate the
performance of teams are initialised as specified by the MI

3In future work, we will vary the distribution means to represent other
types of agents. For example, extremely low or high-estimating agents will
be simulated with a mean of 0.1 (low) and 0.9 (high).

4The term TAP is based on the main components of our approach:
Tasks, Agents, and Policy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

T
a
s
k

P
e
r
f
o
r
m
a
n
c
e

TAP
Exhaustive

Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

T
a
s
k

P
e
r
f
o
r
m
a
n
c
e

TAP
Exhaustive

Random

(a) C=Low-Performance (b) C=Medium-Performance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

T
a
s
k

P
e
r
f
o
r
m
a
n
c
e

TAP
Exhaustive

Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

T
a
s
k

P
e
r
f
o
r
m
a
n
c
e

TAP
Exhaustive

Random

(c) C=High-Performance (d) C=Mixed-Performance

Figure 2. Average performance (Pmax)

parameter. The simulated true performance of teams is ini-
tialised as specified by the C parameter. The performance
estimated in the agents’ models are likely to be different to
the true performance (the capability) of each team. The pa-
rameter P determines the type of group decision policy used
in a simulation run. The simulation run is completed if the
termination criterion is satisfied (Section 3.3).

The following information is stored upon termination of
a simulation run. The solution quality is measured by the
performance of the team that has been computed by the pro-
cedure applied in each setting (the measured performance of
the team is the value obtained from its simulated capabili-
ties). The computational requirements are measured by
the number of assignments required to find a solution.

4.4 Results and Analysis

The purpose of this experiment is to examine the perfor-
mance of the assignment algorithm empirically under dif-
ferent simulation settings (Section 4.1). We have simulated
each TAP setting (C×MI×P×GS=4×4×2×5=160) and each
benchmark setting, RANDOM and EXHAUSTIVE. This sec-
tion only plots results obtained for settings with 50 teams as
the results provide patterns similar to those obtained with
GS=5, 10, 20 or 40. We haven chosen to only plot the most
significant results about the performance of the algorithm.

For each of the 162 simulation settings, the results are
averaged over 1000 simulation runs, because these results
showed stable and continuous patterns. These results are
statistically significant as indicated by a 95% Confidence
Interval (CI). The CI was calculated by multiplying 1.96
with the Standard Error (degrees of freedom is 1000).
Results of Benchmark Settings: Figure 2 plots the average
performance against model initialisation MI (low, medium,
high, and mixed-estimating agents) when the capability C
of teams is (a) low, (b) medium, (c) high, and (d) mixed (re-

371369367

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

N
u
m
b
e
r

o
f

R
o
u
n
d
s

TAP
Exhaustive

Random

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

N
u
m
b
e
r

o
f

R
o
u
n
d
s

TAP
Exhaustive

Random

(a) C=Low-Performance (b) C=Medium-Performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

N
u
m
b
e
r

o
f

R
o
u
n
d
s

TAP
Exhaustive

Random

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

mixed-
 estimation

high-
 estimation

medium-
 estimation

low-
 estimation

N
u
m
b
e
r

o
f

R
o
u
n
d
s

TAP
Exhaustive

Random

(c) C=High-Performance (d) C=Mixed-Performance

Figure 3. Average number of rounds (majority
policy), measure for random setting is 0 (not
shown in figures)

sults of TAP settings are indicated by light grey bars). As
expected, the results obtained from the EXHAUSTIVE set-
ting correspond to an upper benchmark (medium grey bars
in Figure 2) and requires as many assignments as there are
teams (Figure 3). The simulation results of the RANDOM

setting correspond to a lower benchmark which averages the
task performance of randomly assigned teams (dark grey
bars in Figure 2) and requires no assignments (Figure 3).
As seen from Figure 2, the average performance obtained
for the EXHAUSTIVE setting is always better than that ob-
tained for the TAP and RANDOM settings.
Solution Quality (Average Task Performance): As seen
from Figure 2, settings with high-estimating agents find bet-
ter solutions than those found in settings where agents have
low, medium or mixed estimations. In fact, a more gen-
eral pattern is that the higher the estimations of agents, the
higher the quality of the solution. The reason for this ef-
fect is that agents with high estimations are only satisfied
with the allocation if the team’s performance is higher than
their estimations. In contrast, settings with low-estimating
agents are satisfied with the performance as soon as they
are below their estimations. These results correspond to our
theoretical studies (Section 3).

Settings with low-estimating agents find solutions worse
than those found by medium, high or mixed-estimating
agents. In fact, when teams have a high performance, but
the agents’ initial estimations are low, the average perfor-
mance of the best believed teams in the TAP settings is
as low as the performance of teams selected in the RAN-
DOM setting, Figure 2(c). The reason is that low-estimating
agents are satisfied with a low-performing team if its per-
formance is slightly better than their estimations.
Number of Assignment Rounds: As seen from Figure 3,

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

A
v
e
r
a
g
e

t
r
u
e

p
e
r
f
o
r
m
a
n
c
e

o
f

s
e
l
e
c
t
e
d

a
g
e
n
t

Round

Maximum Policy
Majority Policy

Figure 4. Performance of selected team against
the round in which it was selected

TAP settings always require fewer assignment rounds than
those required in the EXHAUSTIVE setting, but more than
those required in the RANDOM setting. More rounds are
required in TAP settings with high-estimating agents than
with low or medium-estimating agents. Low-estimating
agents require the least number of rounds to find a solution.

Unlike the majority policy, the maximum policy
requires more rounds with mixed-estimating agents
(MI=mixed-estimation) than with medium-estimating
agents (MI=mixed-estimation), Figure 2. Plots for settings
with Pmax are omitted due to space limitations. This
observation suggests that the type of distribution used for
the MI parameter plays an important role in converging
to optimal solutions and should be investigated in future
research. This is explained by the fact that the distribution
of the parameter MI=mixed-estimation has a larger stan-
dard deviation than the distribution used for the parameter
MI=medium-estimation. Hence, each agent’s estimations
are further apart and the maximum policy is likely to
explore a larger range of agents than for estimations which
are closer.
Convergence Behaviour: Figure 4 shows the average
performance measured against the number of assign-
ment rounds (for MI=mixed-estimations and C=mixed-
performance). The maximum policy increases the average
performance of teams in each round steadily and the perfor-
mance appears to be linear to the number of rounds. The
team proposed by only one agent is selected in each round
until no agent believes that any team has a better perfor-
mance than the currently selected team. In TAP settings
where the majority policy is applied the algorithm con-
verges faster to a local maximum than in settings where the
maximum policy is applied. This is explained by the effect
that the best guesses of the majority of agents is tested and
not only the best guess of one agent. As seen in Figure 4,
optimistic initial values encourages exploration, an obser-
vation commonly made in the single agent reinforcement
learning literature [7].

372370368

The algorithm converges significantly faster with the ma-
jority policy, but eventually finds solutions that are worse
than those found with the maximum policy. Similarly,
settings with the maximum policy converge significantly
slower but eventually find better solutions than those found
with the maximum policy.

5 Related Research

Enabling agents to assign tasks to teams autonomously
is a long standing problem in the MAS community [2].
Market-driven allocation algorithms assume that each agent
knows best its own performance when it bids for a partic-
ular task [1]. A well-known market-driven scheme is the
Contract Net Protocol (CNP) which is based on a contract
metaphor [8]. Each contractor provides information about
how well it performs the task in question, and the manager
then selects the contractor that makes the highest bid. The
CNET protocol focuses on the bidding and rewarding part
of making assignments, while our approach is concerned
with the use of agents’ beliefs of team performance in se-
lecting an optimal team.

Perhaps the best-known agent modelling technique
to coordinate agents uses a decision-theoretic approach
whereby each agent makes decisions to maximise its own
payoff by recursively estimating the payoff of collabora-
tors [5]. A key difference is that agents described in [5]
maintain models of how other agents make decisions, and
not how well other agents perform tasks. Also, agents in [5]
do not make group decisions as done in our research.

It is worth noting that our work differs from ex-
isting research on Multi-Agent Reinforcement Learn-
ing (MARL) [7]. Most work on MARL focuses on multiple
agents that execute tasks individually and use Reinforce-
ment Learning (RL) to coordinate their actions, taking into
account various configurations (e.g., if agents can observe
each others’ actions). In our work, agents jointly select a
team which then executes a given task. We are not con-
cerned with the internal coordination within such team, but
in its overall performance. Our work is similar to a single
agent RL problem, but with a crucial difference. Instead
of a single agent deciding what action to perform based on
its own changing estimations, we deal with how multiple
agents jointly decide what team to select based on multi-
ple estimations. Thus, our group decision policy, combined
with the agents’ individual estimations of the performance
of various teams, together define the way the whole MAS
learns. To our knowledge, no existing RL or MARL frame-
work uses this kind of encoding of adaptation through group
decision policies such as the majority or maximum policy.

6 Conclusion

This paper presents a formal framework of an approach
to the Collective Iterative Task Allocation (CITA) problem,
and a theoretical and empirical study of this framework. In

the theoretical study, we proved that the algorithm is guar-
anteed to terminate with an optimal solution if agents are
completely optimistic. We verified optimality of two poli-
cies in particular: the maximum policy Pmax (which selects
a team with the highest value) and the majority policy Pmaj

(which selects a team that has been proposed most often by
agents). We also proved that using estimations of several
independent optimistic learners converges the algorithm to
an optimal solution in fewer assignment rounds than testing
each team once. At best, our algorithm will find an optimal
solution in one round and at worst, the algorithm will find an
optimal solution in no greater number of rounds than an ex-
haustive procedure. The empirical analysis extends this the-
oretical insight and shows that the larger the number of op-
timistic agents, the better the solution quality. Reducing the
number of rounds requires low-estimating agents (but also
means that random task allocations provide a similar solu-
tion quality). The maximum policy Pmax should be selected
over the majority policy Pmaj as Pmax finds better solutions
than Pmaj. However, if the number of assignment rounds is
limited or not known, Pmaj should be selected over Pmax.

Much future research is required to fully understand the
efficiency of our approach. For example, in order to reach
optimal solutions fast, we need to identify the conditions
under which certain criteria terminate the algorithm as soon
as we know that an optimal solution has been found. We
also need to consider transaction costs as a means to ter-
minate the algorithm if the potential costs outweigh the ex-
pected gain of allocating more teams.

References

[1] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaı̂tre,
N. Maudet, J. Padget, S. Phelps, J. A. Rodrı́guez-Aguilar, and
P. Sousa. Issues in multiagent resource allocation. Informat-
ica, 30:3–31, 2006.

[2] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in co-
operative distributed problem solving. IEEE Transactions on
Knowledge and Data Engineering, 1(1):63–83, 1989.

[3] L. Garrido, K. Sycara, and R. Brena. Quantifying the utility
of building agents models: An experimental study. In Agents-
00/ECML-00 Workshop on Learning Agents, Barcelona,
Spain, 2000.

[4] B. P. Gerkey and M. J. Mataric. A formal analysis and tax-
onomy of task allocation in multi-robot systems. Robotics
Research, 23(9):939–954, September 2004.

[5] P. J. Gmytrasiewicz and E. H. Durfee. Rational communi-
cation in multi-agent environments. Autonomous Agents and
Multi-Agent Systems, 4(3):233–272, 2001.

[6] C. Guttmann and I. Zukerman. Agents with limited model-
ing abilities: Implications on collaborative problem solving.
Journal of CSSE, 21(3), 2006.

[7] T. Sandholm. Perspectives on Multiagent Learning. Ar-
tificial Intelligence (Special Issue on Multiagent Learning),
171:382–391, 2007.

[8] R. G. Smith. The contract net protocol: High-level commu-
nication and control in a distributed problem solver. IEEE
Transactions on Computers, 29(12):1104–1113, 1980.

373371369

