
Chapter 19
The Argument Interchange Format

Iyad Rahwan and Chris Reed

1 Introduction

While significant progress has been made in understanding the theoretical proper-
ties of different argumentation logics and in specifying argumentation dialogues,
there remain major barriers to the development and practical deployment of argu-
mentation systems. One of these barriers is the lack of a shared, agreed notation
or “interchange format” for argumentation and arguments. In the last years a num-
ber of different argument mark-up languages have been proposed in the context
of tools developed for argument visualisation and construction (see [10] for a re-
view). Thus, for example, the Assurance and Safety Case Environment (ASCE)1

is a graphical and narrative authoring tool for developing and managing assurance
cases, safety cases and other complex project documentation. ASCE relies on an
ontology for arguments about safety based on claims, arguments and evidence [8].
Another mark-up language was developed for Compendium,2 a semantic hypertext
concept mapping tool. The Compendium argument ontology enables construction
of networks, in which nodes represent issues, positions and arguments.

The analysis and study of human argument has also prompted the development of
specialised argument mark-up languages and tools. Two particularly relevant devel-
opments in this direction are ClaiMaker [5] and AML [18]. ClaiMaker and related
technologies [5] provide a set of tools for individuals or distributed communities to
publish and contest ideas and arguments, as is required in contested domains such
as research literatures, intelligence analysis, or public debate. This system is based
on the ScholOnto ontology [4], which can express a number of basic reasoning

Iyad Rahwan
British University in Dubai, UAE & University of Edinburgh, UK, e-mail: irahwan@acm.org

Chris Reed
University of Dundee, UK e-mail: chris@computing.dundee.ac.uk

1 http://www.adelard.co.uk/software/asce/
2 http://www.compendiuminstitute.org/tools/compendium.htm

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 383
DOI 10.1007/978-0-387-98197-0 19, c© Springer Science+Business Media, LLC 2009

384 Iyad Rahwan and Chris Reed

schemes (causality, support) and relationships between concepts found in scholarly
discourse (e.g. similarity of ideas, taxonomies of concepts, etc.). The argument-
markup language (AML) used by the Araucaria system [18] is an XML-based lan-
guage designed for the markup of analysed human argument. The syntax of AML
is specified in a Document Type Definition (DTD) which imposes structural con-
straints on the form of valid AML documents. AML was primarily produced for use
in the Araucaria tool, though has more recently been adopted elsewhere.

These various attempts at providing argument mark-up languages share two ma-
jor limitations. Firstly, each particular language is designed for use with a specific
tool (usually for the purpose of facilitating argument visualisation) rather than for fa-
cilitating inter-operability of arguments among a variety of tools. As a consequence,
the semantics of arguments specified using these languages is tightly coupled with
particular schemes to be interpreted in a specific tool and according to a specific un-
derlying theory. Thus, for example, arguments in the Compendium concept mapping
tool are to be interpreted in relation to a rigorous theory of issue-based information
systems. Clearly, in order to enable true interoperability of arguments and argument
structures we need an argument description language that can be extended beyond
a particular argumentation theory, enabling us to accommodate a variety of argu-
mentation theories and schemes. Another limitation of the above argument mark-up
languages is that they are primarily aimed at enabling users to structure arguments
through diagrammatic linkage of natural language sentences. Hence, these mark-up
languages are not designed to process formal logical statements such as those used
within multi-agent systems. For example, AML imposes structural limitations on
well formed arguments, but provides no semantic model. Such a semantic model is
an important requirement in order to enable the automatic processing of argument
structures by heterogeneous software agents.

In order to address these limitations, a group of researchers interested in ‘ar-
gument and computation’ gathered for a workshop3 whose aim was to sketch an
Argumentation Interchange Format (AIF) which consolidates –where possible– the
work in argumentation mark-up languages and multi-agent system frameworks by
focusing on two main aims:

• to facilitate the development of (closed or open) multi-agent systems capable of
argumentation-based reasoning and interaction using a shared formalism;

• to facilitate data interchange among tools for argument manipulation and argu-
ment visualization.

This article describes and analyzes the main components of the draft specification
for AIF. It must be remarked that AIF as it stands represents a consensus ‘abstract
model’ established by researchers across fields of argumentation, artificial intelli-
gence and multi-agent systems. In its current form, this specification is intended
as a starting point for further discussion and elaboration by the community, rather
than an attempt at a definitive, all encompassing model. In order to demonstrate the
power of the proposed approach, we describe use cases which show how AIF fits

3 AgentLink Technical Forum Group meeting, Budapest, Hungary, September 2005.

19 The Argument Interchange Format 385

into some argument-based tools and applications. We also illustrate a number of
concrete realisations or ‘reifications’ of the proposed abstract model.

2 The Core AIF

In this section, we briefly describe the first AIF draft specification, as reported in
more detail elsewhere [6] and subsequently formalised in [16, 14].

The core AIF has two types of nodes: information nodes (or I-nodes) and scheme
nodes (or S-nodes). These are represented by two disjoint sets, NI ⊂ N and NS ⊂
N, respectively. Information nodes are used to represent propositional information
contained in an argument, such as a claim, premise, data, etc. S-nodes capture the
application of schemes (i.e. patterns of reasoning). Such schemes may be domain-
independent patterns of reasoning, which resemble rules of inference in deductive
logics but broadened to include non-deductive inference. The schemes themselves
belong to a class, S, and are classified into the types: rule of inference scheme,
conflict scheme, and preference scheme. We denote these using the disjoint sets SR,
SC and SP, respectively. The predicate (uses : NS× S) is used to express the fact
that a particular scheme node uses (or instantiates) a particular scheme. The AIF
thus provides an ontology for expressing schemes and instances of schemes, and
constrains the latter to the domain of the former via the function uses, i.e., ∀n ∈
NS,∃s ∈ S such that uses(n,s).

The present ontology has three different types of scheme nodes: rule of inference
application nodes (or RA-nodes), preference application nodes (or PA-nodes) and
conflict application nodes (or CA-nodes). These are represented as three disjoint
sets: NRA

S ⊆ NS, NPA
S ⊆ NS, and NCA

S ⊆ NS, respectively. The word ‘application’
on each of these types was introduced in the AIF as a reminder that these nodes
function as instances, not classes, of possibly generic inference rules. Intuitively,
NRA

S captures nodes that represent (possibly non-deductive) rules of inference, NCA
S

captures applications of criteria (declarative specifications) defining conflict (e.g.
among a proposition and its negation, etc.), and NPA

S are applications of (possibly
abstract) criteria of preference among evaluated nodes.

The AIF specification does not type its edges. The (informal) semantics of edges
can be inferred from the types of nodes they connect. One of the restrictions is
that no outgoing edge from an I-node can be linked directly to another I-node. This
ensures that the type of any relationship between two pieces of information must be
specified explicitly via an intermediate S-node.

Definition 19.1. (Argument Network) An argument network Φ is a graph consist-
ing of:

– a set N = NI ∪NS of vertices (or nodes); and

– a binary relation
edge−−→: N×N representing edges.

where �(i, j) ∈ edge−−→ where both i ∈NI and j ∈NI

386 Iyad Rahwan and Chris Reed

p → q p → q

r→

p

qMP1 MP1

(a) Simple argument (b) Attack among two simple arguments

r

MP2

neg1

A1

A2

p

q

neg2

–p

Fig. 19.1 Examples of simple arguments; S-Nodes denoted with a thicker border

A simple argument can be represented by linking premises to a conclusion.

Definition 19.2. (Simple Argument) A simple argument, in network Φ and schemes
S, is a tuple 〈P,τ,c〉 where:

– P⊆NI is a set of nodes denoting premises;
– τ ∈NRA

S is a rule of inference application node;
– c ∈NI is a node denoting the conclusion;

such that τ edge−−→ c, uses(τ,s) where s ∈ S, and ∀p ∈ P we have p
edge−−→ τ .

Following is a description of a simple argument in propositional logic, depicted in
Figure 19.1(a).

Example 19.1. (Simple Argument)

The tuple A1 = 〈{p, p→ q},MP1,q〉 is a simple argument in propositional lan-
guage L, where p, (p→ q) ∈ NI are nodes representing premises, and q ∈ NI is a
node representing the conclusion. In between them, the node MP1 ∈ NRA

S is a rule
of inference application node (i.e., RA-node) that uses the modus ponens natural
deduction scheme, which can be formally written as follows: uses(MP1,∀A,B ∈
L A A→B

B).

An attack or conflict from one information or scheme node to another informa-
tion or scheme node is captured through a CA-node, which captures the type of
conflict. The attacker is linked to the CA-node, and the CA-node is subsequently
linked to the attacked node. Note that since edges are directed, each CA-node cap-
tures attack in one direction. Symmetric attack would require two CA-nodes, one
in each direction. The following example describes a conflict between two simple
arguments (see Figure 19.1(b)).

Example 19.2. (Simple Arguments in Conflict)

19 The Argument Interchange Format 387

Recall the simple argument A1 = 〈{p, p→ q},MP1,q〉. And consider another
simple argument A2 = 〈{r,r→¬p},MP2,¬p〉. Argument A2 undermines A1 by sup-
porting the negation of the latter’s premise. This (symmetric) propositional conflict
is captured through two CA-nodes: neg1 and neg2, both of which insantiate a conflict
scheme based on propositional contraries.

3 An Extended AIF in RDF

In this section, we present a brief description of an implementation of an extended
AIF ontology which may be used as a seed for a variety of Semantic Web argument
annotation tools. The ontology is described in detail in a recent joint paper with other
colleagues [16]. It enables the annotation of arguments using RDF, and is based on
the AIF, extended with Walton’s account of argumentation schemes [22].

3.1 Representing Argument Schemes

Recall that schemes are forms of argument, representing stereotypical ways of draw-
ing inferences from particular patterns of premises to conclusions. We consider the
set of schemes S as themselves nodes in the argument network. And we introduce a
new class of nodes, called forms (or F-nodes), captured in the set NF ⊆N. Two dis-
tinct types of forms are presented: premise descriptors and conclusion descriptors,
denoted by NPrem

F ⊆ NF and NConc
F ⊆ NF , respectively. As can be seen in Figure

19.2, we can now explicitly link each node in the actual argument (the four un-
shaded nodes at the bottom right) to the form node it instantiates (the four shaded
nodes at the top right).4 Notice that here, we expressed the predicate ‘uses’ with the

edge
fulfilsScheme−−−−−−−→: NS×S.

Since each critical question corresponds either to a presumption or an exception,
we provide explicit descriptions of the presumptions and exceptions associated with
each scheme. To express the scheme’s presumptions, we add a new type of F-node
called presumption, represented by the set NPres

F ⊆ NF , and linked to the scheme

via a new edge type,
hasPresumption−−−−−−−−→: S×NPres

F . This is shown in the three (shaded)
presumption nodes at the bottom left of Figure 19.2. As for representing exceptions,
the AIF offers a more expressive possibility. In just the same way that stereotypical
patterns of the passage of deductive, inductive and presumptive inference can be
captured as rule of inference schemes, so too can the stereotypical ways of charac-
terising conflict be captured as conflict schemes. Conflict, like inference, has some
patterns that are reminiscent of deduction in their absolutism (such as the conflict
between a proposition and its complement), as well as others that are reminiscent

4 To improve readability, we will start using typed edges. All typed edges will take the form
type−−→,

where type is the type of edge, and
type−−→⊆ edge−−→.

388 Iyad Rahwan and Chris Reed

of non-deductive inference in their heuristic nature (such as the conflict between
two courses of action with incompatible resource allocations). Thus, exceptions can
most accurately be presented as conflict scheme descriptions (see top left of Fig-
ure 19.2).

Finally, in Walton’s account of schemes, some presumptions may be implicitly
or explicitly entailed by a premise. While the truth of a premise may be questioned
directly, questioning associated with the underlying presumptions can be more spe-
cific, capturing the nuances expressed in Walton’s characterisation. This relation-

ship, between is captured explicitly using a predicate (entails−−−→: NPrem
F ×NPres

F).

Definition 19.3. (Presumptive Inference Scheme Description) A presumptive in-

ference scheme description is a tuple 〈PD,α,cd,Ψ ,Γ ,
entails−−−→〉 where:

– PD⊆NPrem
F is a set of premise descriptors;

– α ∈ SR is the scheme;
– cd ∈NConc

F is a conclusion descriptor.
– Ψ ⊆NPres

F is a set of presumption descriptors;
– Γ ⊆ SC is a set of exceptions; and

–
entails−−−→⊆NPrem

F ×NPres
F

such that:

– α hasConcDesc−−−−−−−→ cd;

– ∀pd ∈ PD we have α hasPremiseDesc−−−−−−−−−→ pd;

– ∀ψ ∈Ψ we have α hasPresumption−−−−−−−−→ ψ;

– ∀γ ∈ Γ we have α hasException−−−−−−−→ γ;

With the description of the scheme in place, we can now show how argument struc-
tures can be linked to scheme structures. In particular, we define a presumptive
argument, which is an extension of the definition of a simple argument.

Definition 19.4. (Presumptive Argument) A presumptive argument based on pre-

sumptive inference scheme description 〈PD,α,cd,Ψ ,Γ ,
entails−−−→〉 is a tuple 〈P,τ,c〉

where:

– P⊆NI is a set of nodes denoting premises;
– τ ∈NRA

S is a rule of inference application node;
– c ∈NI is a node denoting the conclusion;

such that:

– τ edge−−→ c; ∀p ∈ P we have p
edge−−→ τ;

– τ fulfilsScheme−−−−−−−→ α; c
fulfilsConclusionDesc−−−−−−−−−−−→ cd; and

–
fulfilsPremiseDesc−−−−−−−−−−→⊆ P×PD corresponds to a one-to-one correspondence from P to
PD.

19 The Argument Interchange Format 389

Conclusion descriptor:
A may plausibly be
taken to be true

Presumptive inference scheme:
Argument from expert opinion

Premise descriptor:
E is an expert in
domain D

Premise descriptor:
E asserts that A is
known to be true

Presumption:
E is credible as
an expert source

Presumption:
E’s testimony
does imply A

Presumption:
E is an expert in the
field that A is in

hasPresumption
entails

hasConclusionDescription

hasPremiseDesc

Conflict scheme:
Conflict from testimonial
inconsistency

Premise descriptor:
Other experts disagree

Conflict scheme:
Conflict from bias

Premise descriptor:
Speaker is biased

hasPremiseDescription

hasPremiseDescription hasException

hasException

Allen says that
Brazil has the
best football team

Allen is an
expert in sports

RA-node

Brazil has the best
football team

supportssupports

CA-node

CA_Node_attacks

Allen is biased attacks

fulfilsP
rem

iseD
esc fulfilsPremiseDesc fulfilsPremiseDesc

fulfilsScheme

fulfilsC
onclusionD

esc

hasConclusion

Allen is not an
expert in sport

CA-nodeattacks

I-node or one of its sub-types

S-node or one of its sub-types

F-node or one of its sub-types

Scheme or one of its sub-types

underminesPresumption

Underlined: Node type

Fig. 19.2 An argument network showing an argument from expert opinion, two counter-arguments
undermining a presumption and an exception, and the descriptions of the schemes used by the
argument and attackers. A: Brazil has the best football team: Allen is a sports expert and he says
so; B: But Allen is biased, and he is not an expert in sports!

3.2 Implementation in ArgDF

We implemented our extended ontology using RDF and RDFS [2], and call the
resulting ontology AIF-RDF. In summary, we view elements of arguments and
schemes (e.g. premises, conclusions) as RDF resources, and connect them using
binary predicates as described earlier.

ArgDF5 is a Semantic Web-based system that uses the AIF-RDF ontology. The
Sesame RDF repository offers the central features needed by the system, namely:
(i) uploading RDF and RDFS single statements or complete files; (ii) deleting RDF
statements; (iii) querying the repository using the Semantic Web query language
RQL; and (iv) returning RDF query results in a variety of computer processable
formats including XML, HTML or RDF.

Creating New Arguments: The system presents the available schemes, and al-
lows the user to choose the scheme to which the argument belongs. Details of the
selected scheme are then retrieved from the repository, and the form of the argument
is displayed to the user, who then creates the conclusion followed by the premises.

Support/Attack of Existing Expressions: The expressions (i.e. premises or
conclusions) in the repository can be displayed, supported or attacked. When a
user chooses to support an existing premise through a new argument/scheme, this
premise will be both a premise in one argument, and a conclusion in another. Thus,
the system enables argument chaining. If the user chooses to attack an expression,
on the other hand, s/he will be redirected to choose an appropriate conflict scheme,

5 ArgDF is a proof-of-concept prototype and can be accessed at: http://www.argdf.org

390 Iyad Rahwan and Chris Reed

and create a new argument whose conclusion is linked to the existing conclusion via
a conflict application node (as in Example 19.2).

Searching through Arguments: The system enables users to search existing
arguments, by specifying text found in the premises or the conclusion, the type of
relationship between these two (i.e. support or attack), and the scheme(s) used. For
example, one can search for arguments, based on expert opinion, against the ‘war
on Iraq,’ and mentioning ‘weapons of mass destruction’ in their premises. An RQL
query is generated in the background.

Linking Existing Premises to a New Argument: While creating premises sup-
porting a given conclusion through a new argument, the user can re-use existing
premises from the system. This premise thus contributes to multiple arguments in
a divergent structure. This functionality can be useful, for example, in Web-based
applications that allow users to use existing Web content (e.g. a news article, a legal
document) to support new or existing claims.

Attacking Arguments through Implicit Assumptions: With our account of
presumptions and exceptions, it becomes possible to construct an automatic mecha-
nism for presuming. ArgDF allows the user to inspect an existing argument, allow-
ing the exploration of the hidden assumptions (i.e. presumptions and exceptions) by
which its inference is warranted. This leads the way for possible implicit attacks
on the argument through pointing out an exception, or through undermining one
of its presumptions (as shown in Figure 19.2). This is exactly the role that Walton
envisaged for his critical questions [22]. Thus, ArgDF exploits knowledge about
implicit assumptions in order to enable richer interaction between the user and the
arguments.

Creation of New Schemes: The user can create new schemes through the inter-
face of ArgDF without having to modify the ontology. This feature enables a variety
of user-created schemes to be incorporated, thus offering flexibility not found in any
other argument-support system.

4 The AIF in Description Logic

In ArgDF, the actual arguments are specified by instantiating nodes, while actual
schemes are created by instantiating the “scheme” class. Then, argument instances
(and their constituent parts) are linked to scheme instances (and their part descrip-
tors) in order to show what scheme the argument follows.

From the above, it is clear that ArgDF’s reification of the AIF causes some redun-
dancy at the instance level. Both arguments and schemes are described with explicit
structure at the instance level. As a result, the property “fulfilsScheme” does not
capture the fact that a S-node represents an instantiation of some generic class of
arguments (i.e. scheme). Having such relationship expressed explicitly can enable
reasoning about the classification of schemes.

19 The Argument Interchange Format 391

In this section, we present another AIF-based ontology, which captures schemes
as classes of arguments explicitly. The AIF model is reified by interpreting schemes
as classes and S-nodes as instances of those classes; in this case, the semantics of
the “uses” edge can be interpreted as “instance – o f ”.

We formalise the new ontology using Description Logics (DLs) [1], a family of
logical formalisms that have initially been designed for the representation of concep-
tual knowledge in Artificial Intelligence. DL knowledge representation languages
provide means for expressing knowledge about concepts composing a terminology
(TBox), as well as knowledge about concrete facts (i.e. objects instantiating the
concepts) which form a world description (ABox). Since Description Logics are
provided with a formal syntax and formal model-theoretic semantics, sound and
complete reasoning algorithms can be formulated. Our summary here of AIF in
OWL-DL draws upon [15].

4.1 The ontology

At the highest level, three concepts are identified: statements that can be made (that
correspond to AIF I-nodes), schemes that describe arguments made up of statements
(that correspond to AIF S-nodes) and authors of those statements and arguments
(formerly just properties in AIF). All these concepts are disjoint.

Scheme) T hing Statement) T hing Author) T hing
Author) ¬Scheme Author) ¬Statement Statement) ¬Scheme

As with the ArgDF reification of AIF, different specialisations of scheme are identi-
fied; for example the rule scheme (which describes the class of arguments), conflict
scheme, preference scheme etc.

RuleScheme) Scheme Con f lictScheme) Scheme Pre f erenceScheme) Scheme

Each of these schemes can be further classified. For example, a rule scheme may be
further specialised to capture deductive or presumptive arguments. The same can be
done with different types of conflicts, preferences, and so on.

DeductiveArgument) RuleScheme LogicalCon f lict)Con f lictScheme
InductiveArgument) RuleScheme PresumptivePre f erence) Pre f erenceScheme
PresumptiveArgument) RuleScheme LogicalPre f erence) Pre f erenceScheme

A number of properties (or roles in DL terminology) are defined, which can be used
to refer to additional information about instances of the ontology, such as authors
of arguments, the creation date of a scheme, and so on. The domains and ranges of
these properties are restricted appropriately and described below.

�) ∀creationDate.Date �) ∀creationDate−.Scheme
�) ∀argTitle.String �) ∀argTitle−.RuleScheme
�) ∀authorName.String �) ∀authorName−.Author
Scheme) ∀hasAuthor.Author Scheme)= 1creationDate
RuleScheme)= 1argTitle

392 Iyad Rahwan and Chris Reed

To capture the structural relationships between different schemes, their components
should first be classified. This is done by classifying their premises, conclusions,
assumptions and exceptions into different classes of statements. For example, at the
highest level, we may classify statements as declarative, comparative or imperative,
etc.

DeclarativeStatement) Statement ImperativeStatement) Statement
ComparativeStatement) Statement . . .

Actual statement instances have a property that describes their textual content.

�) ∀claimText.String �) ∀claimText−.Statement

When defining a particular RuleScheme (i.e. class of arguments), we capture the
relationship between each scheme and its components. Each argument has exactly
one conclusion and at least one premise (which are, themselves, instances of class
“Statement”). Furthermore, presumptive arguments may have assumptions and ex-
ceptions.

RuleScheme) ∀hasConclusion.Statement RuleScheme)≥ 1hasPremise
RuleScheme)= 1hasConclusion PresumptiveArgument) ∀hasAssumption.Statement
RuleScheme) ∀hasPremise.Statement PresumptiveArgument) ∀hasException.Statement

4.2 Example

With this in place, it becomes possible to further classify the above statement types
to cater for a variety of schemes. For example, to capture the scheme for “Argument
from Position to Know,” the following classes of declarative statements need to be
defined (each class is listed with its property formDescription6 that describes its
typical form).
PositionToHaveKnowledgeStmnt) DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt) DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt) DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

LackO f ReliabilityStmnt) DeclarativeStatement

formDescription : “E is not a reliable source”

Now it is possible to fully describe the scheme for “Argument from Position to
Know.” Following are the necessary and sufficient conditions for an instance to be
classified as an argument from position to know.
ArgFromPositionToKnow≡ (PresumptiveArgument *∃hasConclusion.KnowledgePositionStmnt *

∃hasPremise.PositionToHaveKnowledgeStmnt *∃hasPremise.KnowledgeAssertionStmnt)

ArgFromPositionToKnow) ∃hasException.LackO f ReliabilityStmnt

Other argument schemes (e.g. argument from analogy, argument from sign, etc.) can
be defined in the same way.

6 formDescription is an annotation property in OWL-DL. Annotation properties are used to add
meta-data about classes.

19 The Argument Interchange Format 393

4.3 Representing Conflicts Among Arguments

Conflict among arguments are captured through different specialisations of
Con f lictScheme such as GeneralCon f lict and ExceptionCon f lict.

ExceptionCon f lict)Con f lictScheme GeneralCon f lict)Con f lictScheme

GeneralCon f lict instances capture simple symmetric and asymmetric attacks among
arguments while ExceptionCon f lict instances represent exceptions to rules of infer-
ence. The definition of Con f lictScheme and Statement classes have been extended
to include the appropriate restrictions on properties used to represent attacks among
different arguments.

Con f lictScheme) ∀con f Attacks.(Statement +RuleScheme) Statement) ∀attacks.Con f lictScheme
Con f lictScheme) ∀isAttacked.Statement Statement) ∀con f IsAttacked.Con f lictScheme
Con f lictScheme) ∀underminesAssumption.Statement

Figures 19.3(a) to 19.3(d) illustrate how instances of Con f lictScheme and the re-
lated properties are used to represent four different types of conflicts among argu-
ments, namely, asymmetric attacks (a), symmetric attacks (b), undermining assump-
tions (c) and attacking by supporting existing exceptions (d).

In these figures, argument instances are denoted by Argn, premises are denoted
by PXn, conclusions by CX, assumptions by AsmXn, exceptions by ExcpXn and
instances of general conflict and exception conflict as GCn and EC1 respectively
where X = {A, B, C, ...} and n represents the set of natural numbers {1,2,3,...}.

5 Reasoning over Argument Structures

In this section, we describe two ways in which the expressive power of Description
Logic and its support for reasoning can be used to enhance user interaction with
arguments. The features discussed here were implemented in a pilot system called
Avicenna, utilizing the DL-compatible Web Ontology Language (OWL) .

5.1 Automatic Classification of Schemes and Arguments

In this section, we describe the general inference pattern behind classification of
argument schemes (and their instances). This inference is based on the statement hi-
erarchy and the conditions defined on each scheme. Two examples of this inference
are also provided.

Consider two specialisations (sub-classes) of PresumptiveArgument :
PresScheme1 and PresScheme2. An instance of the first scheme, PresScheme1,
might have an instance of CA class as its conclusion and premises from classes
(PA1,PA2, ...,PAn), where classes CA and (PA1,PA2, ...,PAn) are specialisations
of the class Statement. Similarly, PresScheme2 has members of CB class as its

394 Iyad Rahwan and Chris Reed

(b) Symmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

A1

GC2

isAttacked

PB1

PB2
CB

Arg2

A2

confIsAttacked

(a) Asymmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

hasPremise

hasPremise

hasConclusion

hasPremise

hasPremise

hasConclusion

attacks

A1

GC1

PB1

PB2
CB

Arg2

hasPremise

hasPremise

hasConclusion

hasPremise

hasPremise

hasConclusion

A2

confAttacks

attacks confAttacks

(c) Undermining an assumption

PA1

PA2
CA

Arg1

hasPemiser

hasPremise

hasConclusion

A1

GC3

PB1

PB2

CB

Arg2

A2

confAttacks

AsmA1

hasAssumption

underMinesAssumption

attacks

(d) Attacking through supporting an exception

PA1

PA2

CA

Arg1

hasPremise

hasPremise hasConclusion

A1
EC1

PB1

PB2Arg2

hasConclusion

A2

confAttacks

ExcpA1

/CB

hasException

attacks

Instance of Statement or one of its sub-classes

Instance of Presumptive Argument Scheme or one of its
sub-classes

Instance of Conflict Scheme or one of its sub-classes

hasPremise

hasPremise

hasPremise

hasPremise

hasConclusion

Fig. 19.3 Representation of different types of attack among arguments

conclusion and its premises are from classes (PB1,PB2, ...,PBm where CB and
(PB1,PB2, ...,PBm) are specialisations of Statement and m >= n. Let us assume that
a relationship exists between CA and CB, that they are either referring to the same
class or else that the latter is a specialisation of the former, i.e., (CB≡CA)∨ (CB)
CA).
We also assume a relationship exists among the premises of these two schemes in a
way that for every premise class of PresScheme1, there is a corresponding premise
class in PresScheme2 that is either equal to or is a specialisation of the premise class
in PresScheme1 (the opposite does not hold as we have allowed that PresScheme2
could have greater number of premises than PresScheme1), i.e. ∀x ∈ 1,2, ...m,∀y ∈
1,2, ...,n,(PBx ≡ PAy)∨ (PBx) PAy).

19 The Argument Interchange Format 395

The necessary and sufficient conditions on PresScheme1 and PresScheme2 are de-
fined as:

PresScheme1≡ (PresumptiveArgument *∃hasConclusion.CA*∃hasPremise.PA1*∃hasPremise.PA2*
∃hasPremise.(...)*∃hasPremise.PAn)

PresScheme2≡ (PresumptiveArgument *∃hasConclusion.CB*∃hasPremise.PB1*∃hasPremise.PB2*
∃hasPremise.(...)*∃hasPremise.PBm)

Considering the statement hierarchy and the necessary and sufficient conditions de-
fined on each class, PresScheme2 is inferred by the description logic reasoner as
the sub-class of PresScheme1 in case the number of premises in PresScheme2 is
greater than number of premises in PresScheme1 (i.e. m > n). In case the number of
premises are the same (i.e m = n), and at least one of the premises of PresScheme2
is a specialisation of a premise in PresScheme1 and/or the conclusion CB is a spe-
cialisation of CA, PresScheme2 is also inferred as the sub-class of PresScheme1.

Following the above explanation, due to the hierarchy of specialisation among
different descriptors of scheme components (statements) as well as the necessary
and sufficient conditions defined on each scheme, it is possible to infer the classifi-
cation hierarchy among schemes.

An interesting example is offered by the specialisation relationship that can be
inferred between “Fear Appeal Argument” and “Argument from Negative Conse-
quences”.

Scheme 1 Argument From Negative Consequences

– Premise: If A is brought about, bad consequences will plausibly occur.
– Conclusion: A should not be brought about.
– Critical Questions

1. How strong is the probability or plausibility that these cited consequences will
(may, might, must) occur?

2. What evidence, if any, supported the claim that these consequences will (may,
might, must) occur if A is brought about?

3. Are there consequences of the opposite value that ought to be taken into ac-
count?

Scheme 2 Fear Appeal Argument

– Fearful situation premise: Here is a situation that is fearful to you.
– Conditional premise: If you carry out A, then the negative consequences por-

trayed in this fearful situation will happen to you.
– Conclusion: You should not carry out A.
– Critical Questions

1. Should the situation represented really be fearful to me, or is it an irrational
fear that is appealed to?

2. If I don’t carry out A, will that stop the negative consequences from happen-
ing?

396 Iyad Rahwan and Chris Reed

3. If I do carry out A, how likely is it that the negative consequences will happen?

The necessary and sufficient conditions of the “Argument from Negative Conse-
quences” are detailed as:

ArgNegatvieConseq≡ (PresumptiveArgument *
∃hasConclusion.ForbiddenActionStmnt *
∃hasPremise.BadConsequenceStmnt)

Likewise, for “Fear Appeal Argument”:

FearAppealArg≡ (PresumptiveArgument *∃hasConclusion.ForbiddenActionStmnt *
∃hasPremise.Fear f ulSituationStmnt *∃hasPremise.FearedBadConsequenceStmnt)

The statements are defined below. Note that the “Feared Bad Consequence” state-
ment is a specialization of “Bad Consequence” statement, since it limits the bad
consequence to those portrayed in the fearful situation.
BadConsequenceStmnt) DeclarativeStatement

formDescription : “If A is brought about, bad consequences will plausibly occur”

ForbiddenActionStmnt) DeclarativeStatement

formDescription : “A should not be brought about”

Fear f ulSituationStmnt) DeclarativeStatement

formDescription : “Here is a situation that is fearful to you”

FearedBadConsequenceStmnt) BadConsequenceStmnt

formDescription : “If you carry out A, then the negative consequences portrayed

in this fearful situation will happen to you”

As a result of classification of schemes into hierarchies, instances belonging to a
certain scheme class will also be inferred to belong to all its super-classes. For ex-
ample, if the user queries to return all instances of “Argument from Negative Con-
sequences,” the instances of all specializations of the scheme, such as all argument
instances from “Fear Appeal Arguments” are also returned.

5.2 Inferring Critical Questions

In this section we describe the general inference pattern behind inference of critical
questions from an argumentation scheme’s super-classes and provide an example.

In the previous section we described an assumption about two specialisations of
PresumptiveArgument, PresScheme1 and PresScheme2 and the fact that
PresScheme2 was inferred to be the sub-class of PresScheme1. Each of these
schemes might have different assumptions and exceptions defined on their classes.
For example, PresScheme1 has AsmA1 and AsmA2 as its assumptions and ExcA1
as its exception. PresScheme2 has AsmB1 and ExcB1 as its assumption and excep-
tion respectively. AsmA1, AsmA2, AsmB1, ExcA1 and ExcB1 are specialisations of
Statement class. The the necessary conditions defined on classes PresScheme1 and
PresScheme2 are:

PresScheme1) ∃hasAssumption.AsmA1

PresScheme1) ∃hasAssumption.AsmA2

PresScheme1) ∃hasException.ExcA1

19 The Argument Interchange Format 397

PresScheme2) ∃hasAssumption.AsmB1

PresScheme2) ∃hasException.ExcB1

Since PresScheme2 has been inferred by the reasoner as the specialization (sub-
class) of PresScheme1, a query to the system to return all assumptions and excep-
tions of PresScheme2, is able to return all those explicitly defined on the scheme
class (i.e. AsmB1 and ExcB1) as well as those defined on any of its super-classes (in
this case: AsmA1, AsmA2 and ExcA1).

Since the schemes are classified by the reasoner into a hierarchy, if certain as-
sumptions or exceptions are not explicitly stated for a specific scheme but are
defined on any of its super-classes, the system is able to infer and add those as-
sumptions and exceptions to instances of that specific scheme class. Since critical
questions enable evaluation of an argument, inferring additional questions for each
scheme will enhance the analysis process.

Consider the critical questions for “Fear Appeal Argument” and “Argument from
Negative Consequences” given in the previous section. These critical questions are
represented in the ontology through the following statements:
IrrationalFearAppealStmnt) DeclarativeStatement

formDescription : “It is an irrational fear that is appealed to”

PreventionO f BadConsequenceStmnt) DeclarativeStatement

formDescription : “If A is not carried out, this will stop the negative consequences from happening”

OppositeConsequencesStmnt) DeclarativeStatement

formDescription : “There are consequences of the opposite value that ought to be taken into account”

StrongConsequenceProbabilityStmnt) DeclarativeStatement

formDescription : “There is a strong probability that the cited consequences will occur”

ConsequenceBackU pEvidenceStmnt) DeclarativeStatement

formDescription : “There is evidence that supports the claim that these

consequences will occur if A is brought about.”

The necessary conditions on “Argument from Negative Consequences” that define
these critical questions are:
ArgNegatvieConseq) ∃hasException.OppositeConsequencesStmnt

ArgNegatvieConseq) ∃hasAssumption.StrongConsequenceProbabilityStmnt

ArgNegatvieConseq) ∃hasAssumption.ConsequenceBackU pEvidenceStmnt

Likewise, the necessary conditions on “Fear Appeal Argument” are:
FearAppealArg) ∃hasException.IrrationalFearAppealStmnt

FearAppealArg) ∃hasAssumption.PreventionO f BadConsequenceStmnt

FearAppealArg) ∃hasAssumption.StrongConsequenceProbabilityStmnt

“Fear Appeal Argument” is classified as a sub-class of “Argument from Negative
Consequences.” The critical questions 2 and 3 of “Argument from Negative Conse-
quences” have not been explicitly defined on “Fear Appeal Argument”, but can be
inferred through reasoning.

398 Iyad Rahwan and Chris Reed

6 Current Issues and Future Directions

The AIF will come into its own as it demonstrates that it can be used to build bridges
between applications, and, perhaps, between theories. Work with the Araucaria dia-
gramming tool [18] has demonstrated (at least in the specific area of linguistic analy-
sis) how carefully designed representation can support analysts working in different
traditions, and to a certain extent can help reuse across domains. At the time of writ-
ing, Araucaria has in the region of 10,000 users. Some few of these submit analyses
using a number of different analytical techniques (Toulmin schema, argumentation
schemes, Wigmore charts, etc.) to a centralised corpus. Though there are analysed
arguments from an enormous range of domains, one that is particularly interest-
ing is the legal domain. Wigmore charts were designed specifically for analysis of
cases and are rarely used in other domains. The Toulmin-schema is rooted in legal
analysis though is now much more widely used. Walton’s approach to argumenta-
tion schemes has generic application, though one that encompasses use in law [23].
These various degrees of specificity to the legal domain counterbalance the number
of analysts working in each tradition (relatively few using Wigmore, many more
using Walton argumentation schemes). As a result, the part of the corpus that might
be said to encompass examples from the legal domain has a theoretically diverse
basis. Despite this diversity, that part of the corpus has been successfully used in an
unrelated project investigating discourse markers in legal argumentation [13]. What
has made this possible is the underlying unifying representation.

This example shows in microcosm what the AIF is trying to do right across com-
putational uses of argument. Though it is still early days, there are a number of
systems, tools and techniques that are working, planning or considering implemen-
tation to support AIF. We provide a brief overview of a number of them here to give
an indication of the range of potential applications, and the types of role that AIF
might play.

Argkit and Dungine. Argkit7 is designed to be a reusable, plug and play code-
base for developing and linking together applications that use argument, and partic-
ularly those that have a requirement for processing abstract argument [20]. In a com-
pelling demonstration, South has shown how the Dungine component, which per-
forms computations according to Dung acceptability semantics, can be connected
to Araucaria to compute acceptability of real arguments on the fly. Though there are
theoretical challenges with connecting models of abstract and concrete argumenta-
tion, this proof of concept demonstrator shows how the two areas of research might
be harmonised. Argkit plans have scheduled integration of AIF as a way to support
such integration more broadly across other sources of both concrete and abstract
argumentation.

Araucaria. The analysis tool, Araucaria [18], has a large user base, but is now
suffering from limitations of its underlying representation and increasingly dated in-
terface and interaction metaphors. A large-scale rewrite is underway, which provides

7 http://www.argkit.org

19 The Argument Interchange Format 399

AIF support: an early alpha is available with reusable code modules for processing
AIF resources.

Rationale. Rationale [21] is a highly polished commercial product for argument
visualisation in a primarily educational context, which has been recently comple-
mented by a new product from the same company, Austhink Software Pty Ltd8,
providing related functionality targeted at a commercial context. Rationale, in par-
ticular, has explored interaction with resources that Araucaria produces and vice
versa. From Austhink’s commercial point of view, the cost of developing an AIF
component (even if low) would need to be offset against value; that value will only
be clear when there is a critical mass of other systems and environments that can
work with AIF. This is perhaps an inevitable part of the relationship between aca-
demic and commercial sides of research in argumentation.

Compendium. Compendium is similar to Rationale in a number of ways in that
it is a polished tool with its origins in a research programme but now mature with
a wide user-bases supported by the Compendium Institute9, run by the Open Uni-
versity. Compendium focuses not just on arguments, but on a wide range of se-
mantic types (issues, decisions, etc.). It has been used with other tools, such as
Araucaria, which can provide embedded support for building the fine-grained struc-
ture of arguments which form components of Compendium maps. Compendium has
also made use of Araucaria’s argumentation scheme representation, by automati-
cally importing the various “schemesets” that capture the definitions of schemes
offered by various authors. The import makes those same definitions available as
templates to Compendium users10. Richer integration with more detailed models of
these schemes would be made possible by AIF import along these same lines.

Cohere. Cohere is an ambitious project that aims to bring Compendium-like
flexibility in ‘sense-making’ to a broad online audience. Though it supports a very
broad range of semantic relationships between componets, it has a particular fo-
cus on those that might be considered argumentative. As a part of its mission to be
“an idea management tool”11, Buckingham Shum states that, “A key priority is to
provide Argument Interchange Format compatibility” [3] to provide smooth inter-
operability with both other tools in the space (such as those listed here) and also to
provide Cohere with structured access to additional argument resources.

Carneades. The Carneades system is both a framework for reasoning about ar-
guments and a system that implements that framework. Carneades is sited squarely
within an AI & Law context [9], and has already worked to integrate with the Legal
Knowledge Interchange Format, LKIF. At its core, however, lies argumentation-
based representation and reasoning at both concrete and abstract levels (though,
interestingly in regards to the latter not using Dung’s popular approach [7]). As a
result, the Carneades work is exploring the possibility of using AIF as a mechanism
for exporting and importing argument structures from other systems.

8 http://www.austhink.com
9 http://compendium.open.ac.uk/institute
10 http://compendium.open.ac.uk/compendium-arg-schemes.html
11 http://kmi.open.ac.uk/technologies/cohere

400 Iyad Rahwan and Chris Reed

ArguGRID. ArguGRID is a large EU project funded under FP7. Though its
goals cover a broad spectrum of activity, models of argumentation lie at its centre.
The project aims to use argumentation to provide semantically rich processes for
negotiating services across grid networks – see e.g. [11]. Drawing heavily upon
abstract argumentation models, it needs AIF to develop far enough that it provides
strong support for abstract argumentation before AIF can play an important role. In
the meantime, AIF remains on the roadmap of development for ArguGRID systems.

AAC. The Arguing Agents Competition is a new collaboration that aims to pro-
vide an open, competitive environment in which agents can compete in their ability
to argue successfully [24]. It aims to be similar in spirit to the leading example set
by the Trading Agent Competition12. As the AAC is currently under development,
it has been designed to use AIF from the outset. This represents the first significant
test case for AIF’s suitability for autonomous reasoning (as opposed to human-in-
the-loop processing).

InterLoc. Interloc is an online educational environment for structuring peda-
gogic discourse and debate [17]. Its rich representations of argument, and strongly
typed dialogue games are well suited to what AIF can offer. Initial explorations are
under way to explore potential uses of AIF in the Interloc project, but there is a
significant challenge: Interloc focuses heavily upon the design and execution of a
number of sophisticated and intricate dialogue games for structuring interactions
online. AIF in its simplest form, presented here, does not support dialogue at all.

6.1 Dialogue in AIF

Though discussed at the initial AgentLink meeting in Budapest, argumentation dia-
logue was deprioritised against the more basic requirement of being able to represent
“monologue”: it is first necessary to be able to handle relatively static knowledge
structures (such as those represented in abstract argumentation frameworks) before
going on to tackle how those structures are updated and modified. The problem is
that very many systems and use cases for the AIF involve dialogue.

The first step in introducing dialogue into the AIF is presented in [12], which
shows how protocol application steps can be introduced into the AIF framework.
[19] goes on to show how both dialogue game descriptions, and the actual dialogues
they govern can be represented in a common extension to AIF, called AIF+. The
aim is to allow specifications of dialogue games to be represented in a way that is
analogous to argument scheme representations, and to allow instantiated dialogues
to be analagous to argument instantiations. The challenge lies in ensuring that the
instantiations of dialogues are connected in appropriate ways to instantiations of
arguments, according to the rules of the appropriate dialogue game. Both [12] and
[19] are, however, rather preliminary, and many issues remain to be resolved.

12 http://www.sics.se/tac

19 The Argument Interchange Format 401

7 Conclusion

The current AIF specification and its reifications mark a starting point. As expe-
rience with AIF grows, and different systems and research programmes make call
upon it, the specification will inevitably shift to accommodate the broadening de-
mands. Extensions to handle dialogue represent and early example of this broaden-
ing – albeit one that has been anticipated from the outset.

Unfortunately, this shifting poses two distinct problems: one in the short term,
and one in the longer term. The first problem is one of bootstrapping. With a num-
ber of teams working to implement slightly different reifications of the AIF, tracking
versions to ensure at least some compatibility is becoming tricky. To some extent,
the core of AIF is stabilising, and as reference implementations become available,
code reuse will become more common, and compatibility will be improved. The
second, related problem, concerns the process of solidification by which the AIF
settles into stability. It is important that this solidification not happen too early: the
AIF must support the theories and systems that are being developed right across
the community. But on the other hand, it must also not happen to late, or we risk
fragmentation and a loss of coherence, which is the raison d’être of the specifica-
tion. Currently, the balance is being successfully struck informally through personal
networks and regular communication. If AIF starts to scale, a control system that is
less lightweight may be necessary to maintain stability of at least a common core.

Finally, [16] present a vision of a World Wide Argument Web of interconnected
arguments and debates, founded upon the AIF. Though it leaves many questions
unanswered it does present a challenging goal for development not only of AIF
components but also large-scale infrastructure for supporting online argumentation.
The WWAW vision has the potential to draw together a number of different initia-
tives in the space allowing each to find a wider audience and more practical utility
than they might individually, which would be a true measure of success for the AIF.

Acknowledgements The authors are grateful to Steve Willmott, Peter McBurney, and AgentLink
III for initiating and organising the Technical Forum “Towards a Standard Agent-to-Agent Argu-
mentation Interchange Format,” and to all those who contributed to the initial AIF specification
that it produced.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The De-
scription Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

2. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation REC-rdf-schema-20040210, World Wide Web Consortium (W3C), Febru-
ary 2004.

3. S. Buckingham Shum. Cohere: Towards Web 2.0 argumentation. In P. Besnard, S. Doutre, and
A. Hunter, editors, Proceedings of the 2nd International Conference on Computational Models
of Argument (COMMA), pages 97–108. IOS Press, Amsterdam, The Netherlands, 2008.

402 Iyad Rahwan and Chris Reed

4. S. Buckingham Shum, E. Motta, and J. Domingue. ScholOnto: An ontology-based digital li-
brary server for research documents and discourse. International Journal of Digital Libraries,
3(3):237–248, 2000.

5. S. Buckingham Shum, V. Uren, G. Li, B. Sereno, and C. Mancini. Modelling naturalistic argu-
mentation in research literatures: Representation and interaction design issues. International
Journal of Intelligent Systems, Special Issue on Computational Modelling of Naturalistic Ar-
gumentation, 22(1):17–47, 2007.

6. C. I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,
G. Vreeswijk, and S. Willmott. Towards an argument interchange format. The Knowledge
Engineering Review, 21(4):293–316, 2007.

7. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

8. L. Emmet and G. Cleland. Graphical notations, narratives and persuasion: a pliant systems
approach to hypertext tool design. In HYPERTEXT 2002, Proceedings of the 13th ACM Con-
ference on Hypertext and Hypermedia, June 11-15, 2002, University of Maryland, College
Park, MD, USA, pages 55–64, New York, USA, 2002. ACM Press.

9. T. F. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and burden of
proof. Artificial Intelligence, 171(10–15):875–896, 2007.

10. P. A. Kirschner, S. J. B. Schum, and C. S. Carr, editors. Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making. Springer Verlag, London, 2003.

11. P.-A. Matt, F. Toni, T. Stournaras, and D. Dimitrelos. Argumentation-based agents for epro-
curement. In AAMAS ’08, pages 71–74, 2008.

12. S. Modgil and J. McGinnis. Towards characterising argumentation based dialogue in the
argument interchange format. In I. Rahwan and P. Moraitis, editors, Proceedings of the 4th
International Workshop on Argumentation in Multi-Agent Systems (ArgMAS), volume 5384 of
Lecture Notes in Computer Science. Springer Verlag, 2008. to appear.

13. M. F. Moens, E. Boiy, R. M. Palau, and C. Reed. Automatic detection of arguments in legal
texts. In Proceedings of the International Conference on AI & Law (ICAIL-2007), 2007.

14. I. Rahwan. Mass argumentation and the Semantic Web. Journal of Web Semantics, 6(1):29–
37, 2008.

15. I. Rahwan and B. Banihashemi. Arguments in OWL: A progress report. In P. Besnard,
S. Doutre, and A. Hunter, editors, Proceedings of the 2nd International Conference on Com-
putational Models of Argument (COMMA), pages 297–310, Amsterdam, Nethrelands, 2008.
IOS Press.

16. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web.
Artificial Intelligence, 171(10–15):897–921, 2007.

17. A. Ravenscroft. Promoting thinking and conceptual change with digital dialogue games. Jour-
nal of Computer Assisted Learning, 23(6):453–465, 2007.

18. C. Reed and G. Rowe. Araucaria: Software for argument analysis. International Journal of
AI Tools, 14(3–4):961–980, 2004.

19. C. Reed, S. Wells, J. Devereux, and G. Rowe. AIF+: Dialogue in the Argument Interchange
Format. In P. Besnard, S. Doutre, and A. Hunter, editors, Proceedings of the 2nd International
Conference on Computational Models of Argument (COMMA), pages 311–323. IOS Press,
Amsterdam, The Netherlands, 2008.

20. M. South, G. Vreeswijk, and J. Fox. Dungine: A Java Dung reasoner. In P. Besnard, S. Doutre,
and A. Hunter, editors, Proceedings of the 2nd International Conference on Computational
Models of Argument (COMMA), pages 360–368, Amsterdam, Nethrelands, 2008. IOS Press.

21. T. van Gelder. The rationale for rationale. Law, Probability and Risk, 6(1–4):23–42, 2007.
22. D. Walton. Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah NJ, 1996.
23. D. Walton. Legal Argumentation and Evidence. Penn State Press, University Park, PA, 2002.
24. T. Yuan, J. Schulze, J. D. C., and Reed. Towards an arguing agents competition: Building

on Argumento. In Working Notes of the 8th Workshop on Computational Models of Natural
Argument (CMNA-2008), 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

