Program and Course Code	Computing & Information Science CIS507				
Course Title	Design and Analysis of Algorithms				
Credit Hours	3				
Instructor	lyad Rahwan				
Contact	Email : irahwan [at] masdar.ac.ae Tel. +971 2 810 9134				
Information					
Office Hours	ТВА				
Bulletin Course	This is an advanced programming course, focusing on				
Description	techniques for the design and analysis of efficient				
	algorithms, emphasizing methods useful in practice.				
	Topics include sorting; search trees, heaps, and				
	hashing; divide-and-conquer; dynamic programming;				
	greedy algorithms; graph algorithms; and shortest				
	paths. Advanced topics may include network flow;				
	approximation algorithms; and NP-completeness.				
Pre-requisites	Knowledge of computer programming; undergraduate				
	algorithms and data structures; undergraduate				
	discrete mathematics; basic probability theory.				
Co-requisites	None				
Course	(i) Describe and use major algorithmic				
Objectives	techniques (divide-and-conquer, dynamic				
(Learning	programming, linear programming, greedy				
Outcomes of the	paradigm, graph algorithms) and cite				
course)	problems for which each technique is				
	suitable;				
	(ii) Argue the correctness of algorithms using				
	inductive proofs and loop invariants;				
	(iii) Evaluate and compare different algorithms				
	using worst-, average-, and best-case				
	analysis.				
	(IV) Explain the difference between tractable and				
	intractable problems, and identify the basic				
	complexity classes, such as P, NP and NP-				
	complete;				
	(V) Use reduction techniques between				
	algorithmic problems;				
	(VI) Explain the basic properties of randomized				
	algorithms and methods for analyzing them.				

Wee	Course Topics and Contents		
k			
1	Review: Asymptotic notation, elementary data structures		
2	Review: Divide-and-conquer, Search		
3	Review: Sorting (Heap sort, Quick sort, Priority queues,		

	Counting sort)	
4	More sorting and searching	
5	Hashing	
6	Shortest path algorithms	
7	Randomized Algorithms	
8	Mid-semester break	
9	Greedy algorithms	
10	Dynamic Programming	
11	Max flow min cut, and matching algorithms	
12	Linear Programming	
13	NP, P, and NP-Completeness	
14	NP-Complete problems	
15	Approximation algorithms and inapproximability	
16	Final Exam	

Relationship of course objectives to program outcomes				
Program Outcome 1	Use and apply current technical concepts and practices in core computing and information technologies.			
Program Outcome 2	Analyze a problem, and identify and define the computing requirements appropriate to its solution.			
Program Outcome 3	Design, implement, and evaluate computer- based systems, processes, components, and programs both in teams and individually to meet desired outcomes.			

Course Grading	
A mid-term exam	20 %
A final exam	40 %
Four home work assignments	10 % each
Total	100 %

Assignment	Handed	Due	Торіс
1	Week 3	Week 5	E.g. Asymptotic analysis
2	Week 5	Week 7	E.g. Sorting and searching
3	Week 9	Week 10	E.g. Randomized algorithms
4	Week 13	Week 15	E.g. Linear and dynamic programming

Class/Laboratory schedule and Methodology								
Class	The	class	meets	15	weeks,	2	lectures	per
	wee	k, 90 n	ninutes	each	۱.			

Laboratory	
Teaching and learning methodologies	A combination of white board use, Power-point slide presentation, and interactive class discussions to encourage student participation and enhance the learning.

Course Materials	
Textbooks	T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms. MIT Press, 3rd Edition, 2009
Recommended Readings	 S. Skiena. The Algorithm Design Manual. Springer, 2nd edition, 2008 J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2005 S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill, 2006 M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. Wiley, 5th edition, 2010 J. Edmonds. How to Think About Algorithms. Cambridge University Press, 2008 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Incompleteness. V. H. Freeman, 1979 O. Goldreic. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008 C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009
resources	