
The Knowledge Engineering Review, Vol. 26:1, 61–69. & Cambridge University Press, 2011
doi:10.1017/S0269888910000421

Logical mechanism design

I Y AD RAHWAN 1, 2 and KATE LARSON3

1Computing & Information Science Program, Masdar Institute of Science & Technology, Abu Dhabi, UAE;
2The Media Lab, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA;

e-mail: irahwan@acm.org;
3Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada;

e-mail: klarson@cs.uwaterloo.ca

Abstract

Game theory is becoming central to the design and analysis of computational mechanisms in

which multiple entities interact strategically. The tools of mechanism design are used extensively to

engineer incentives for truth revelation into resource allocation (e.g. combinatorial auctions) and

preference aggregation protocols (e.g. voting). We argue that mechanism design can also be useful

in the design of logical inference procedures. In particular, it can help us understand and engineer

inference procedures when knowledge is distributed among self-interested agents. We set a

research agenda for this emerging area, and point to some early research efforts.

1 Introduction

Game theory is becoming increasingly important in the design and analysis of computational

mechanisms in which multiple entities interact strategically. In particular, the tools of mechanism

design are now used extensively to engineer incentives for truth revelation in multi-agent inter-

action, such as auctions and preference aggregation.

However, the design of logical inference procedures has traditionally focused on pure com-

putational and semantic properties, such as inference efficiency, or soundness and completeness

with respect to different semantics. A common assumption is that all logical formulas are available

a priori. This is analogous to assuming that all bids are truthfully known before determining the

winners in an auction, or assuming that true agent preferences are available before applying a

voting rule. It is somewhat surprising that, to date, no systematic investigation of incentives for

truth revelation has been applied in the context of logical inference, which can be seen as a

mechanism for aggregating logical formulas.

To illustrate the importance of incentives in logical reasoning, consider a trial in which multiple

parties have different pieces of information relevant to the final judgment. On the one hand, the

judgment must be logical, taking into account how various pieces of information support or

contradict one another. On the other hand, the parties with whom this information resides often

have conflicting preferences about the final outcomes: the judge wants to make the most informed

judgment possible, the plaintiff wants to win the case, and the defendant wants to be acquitted.

The crucial aspect here is that the choice of what information each party reveals (e.g. which

witnesses to summon, which documents to present) is influenced by strategic considerations, such

as one’s own preferences, one’s expectations of what information others have, and one’s expec-

tations of how the judge will reason with the information presented. As such, lawmakers face the

challenge of designing rules of judgment that balance two requirements: (i) the requirement of

deriving logical conclusions from the information available; (ii) the requirement of minimizing

potential strategic manipulation.

The need to balance logical and strategic considerations goes beyond the courtroom. In the

grand visions of the Semantic Web (Berners-Lee et al., 2001) and multi-agent systems (Shoham

and Leyton-Brown, 2008) communities, computerized agents will be able to exchange high-level

declarative knowledge, in the form of logical statements. This high-level communication poten-

tially enables sophisticated forms of coordination, negotiation and knowledge exchange. However,

it also raises questions about the strategic behavior of the agents involved.

Against this background, we argue that the design of logical inference procedures can greatly

benefit from a game-theoretic perspective, which complements the perspective of correctness in

inference. Just as an auction (or a voting rule) is a rule that maps the revealed bids (or preferences)

of different agents into a social outcome by allocating resources, an inference procedure can map

logical formulas revealed by different agents into logical conclusions (see Figure 1). The question

then becomes: how do we engineer inference procedures that achieve soundness and completeness

even when knowledge is distributed among self-interested agents?

A general answer to the above question requires a new paradigm that marries logic and game

theory in a new way. Our aim here is to motivate such a paradigm by exploring the main issues it

must address. We introduce some key concepts which can be useful in its development. Finally, we

point to some recent efforts.

2 Overview of mechanism design

We give a brief overview of mechanism design. See (Nisan et al., 2007: Ch. 9) for more details.

Given a set of self-interested agents, denoted by I, let yiAQi denote the type of agent i, drawn

from some set of possible types Qi. The type represents the private information (e.g. preferences)

of the agent. Agent i’s preferences over outcomes O are expressed by a utility function

ui : O � Yi ! R, such that i prefers outcome o1 to o2 when uiðo1; yiÞ4 uiðo2; yiÞ.
When agents interact, we say that they are playing strategies. A strategy for agent i, si (yi), is a plan

that describes what actions the agent will take for every situation. We let Si denote the set of all

possible strategies for agent i. When it is clear from the context, we will drop the yi in order to simplify

the notation. A strategy profile s ¼ ðs1ðy1Þ; . . . ; sIðyI ÞÞ denotes the outcome that results when each

agent i is playing strategy si (yi). As a notational convenience, let: s�iðy�iÞ ¼ ðs1ðyiÞ; . . . ; si� 1ðyi� 1Þ;
siþ 1ðyiþ 1Þ; . . . ; sIðyI ÞÞ and thus s5 (si, s2i). We then interpret ui((si, s2i), yi) to be the utility of agent i

with type yi when all agents play strategies specified by strategy profile (si(yi), s2i(y2i)).

Since the agents are all self-interested, they will try to choose strategies that maximize their own

utility, taking into account the possible strategies of other agents. The solution concepts in game

theory determine the outcomes that will arise if all agents are rational and strategic. The most well-

known solution concept is the Nash equilibrium. A strategy profile sl ¼ ðsl1 ; . . . ; slI Þ is a Nash

equilibrium if no agent has an incentive to change their strategy, given that no other agent

changes. Formally, 8i;8s0i; uiðsli ; sl�i; yiÞ � uiðs0i; sl�i; yiÞ.

bid

bid

bid

formula

formula

formula

JudgeAuctioneer

Auction mechanism

(a) (b) (c)

Logical mechanism

preference

preference

preference

Electoral
office

Voting mechanism

winner
Group

preference conclusion

Figure 1 Logical mechanism analogous to auction or voting mechanism

62 I . RAHWAN AND K . LAR SON

A stronger solution concept in game theory is the dominant-strategy equilibrium. A strategy si is

said to be dominant if, by playing it, the utility of agent i is maximized no matter what strategies

the other agents play formally: 8s�i; 8s0i; uiðsli ; s�i; yiÞ � uiðs0i; s�i; yiÞ. A dominant-strategy equi-

librium is a strategy profile where each agent is playing a dominant strategy. This is a very robust

solution concept since it makes no assumptions about what information the agents have available

to them, and nor does it assume that agents know that all other agents are rational.

The problem that mechanism design studies face is how to ensure a desirable system-wide outcome

by designing the right kind of game. The desirable outcome is captured by a social choice function,

which depends on the true agent types. A social choice function is a rule f : Y1 � . . . � YI ! O,
which selects some outcome f ðyÞ 2 O, given the agent types y ¼ ðy1; . . . ; yIÞ.

Recall that the types of agents (the y0is) are private. If we ask agents to reveal their type, they

may find that they are better off if they do not reveal their type truthfully, since by lying they may

be able to cause the social choice function to choose an outcome that they prefer. Instead of

trusting the agents to be truthful, we use a mechanism to try to reach the correct outcome.

A mechanismM ¼ ðS; gð�ÞÞ defines the set of allowable strategies that agents can choose, with

S ¼ S1 � . . .� SI where Si is the strategy set for agent i, and an outcome function g(s) that

specifies an outcome o for each possible strategy profile s ¼ ðs1; . . . ; sIÞ 2 S. This defines a game in

which agent i is free to select any strategy in Si, and, in particular, will try to select a strategy which

will lead to an outcome that maximizes its own utility. We say that a mechanism implements social

choice function f if the outcome induced by the mechanism is the same outcome that the social

choice function would have returned if the true types of agents were known.

Formally, we say that a mechanismM ¼ ðS; gð�ÞÞ implements social choice function f if there

exists an equilibrium s* such that 8y 2 Y; gðslðyÞÞ ¼ f ðyÞ. Although the definition of a

mechanism puts no restrictions on the strategy spaces of the agents, an important class of

mechanisms is direct-revelation mechanisms (or simply direct mechanisms), in which Si 5 Qi for all

i, and g(y)5 f(y) for all yAQ. In other words, a direct mechanism is one where the strategies of the

agents are to announce a type, y0i, to the mechanism. Although it is not necessary that y0i ¼ yi, the
important Revelation Principle states that if a social choice function, f(�) can be implemented, then

it can be implemented by a direct mechanism where every agent reveals their true type. In such a

situation, we say that the social choice function is incentive compatible (or truthfully implemen-

table); that is, if the direct mechanism M ¼ ðY; gð�ÞÞ has an equilibrium ðy1; . . . ; ynÞ. If the

equilibrium concept is the dominant-strategy equilibrium, then the social choice function is

strategy-proof.

3 Logic as (game-theoretic) mechanism

Modern logic is the study of formal systems of inference. Syntax specifies what configurations of

symbols are allowed in the logical language (call it L). Semantics maps syntactic expressions to

structures representing their meaning (e.g. possible truth value assignments in propositional logic,

relational structures in predicate logic, possible world structures in modal logic, etc.). In addition

to syntax and semantics, a logic also often comes with an inference calculus (also known as

inference procedure, or proof theory).

Abstractly, any logic can be described in terms of a language L defining a set of legal formulas

2L, a semantic entailment relation �: 2L � 2L defining logical consequence between formulas, and

(if needed) an inference procedure A that corresponds to F. For more details on this general-

ization of logic, the reader may refer to the discussion of ‘logical systems’ by Gabbay (1995).

When we design a procedure A, we traditionally want to (at least) achieve two things. First, we

want to prove that A is sound with respect to F, meaning that SAa implies SFa. Second, we

want to prove that A is complete, meaning that SFa implies SAa. To simplify the notation, we

can overload the operator F (respectively A) such that we can express S1FS1 (respectively

S1AS1) if and only if 8aAS2 we have S1Fa (respectively S1Aa). In this way, operators F and A
can be seen as functions that return the set of all entailed (respectively inferred) formulas.

Logical mechanism design 63

Suppose a knowledge base is distributed among a set of agents. An entailment relation F over

L can be seen as a social choice function that we wish to implement in equilibrium. Inference

procedure A becomes a mechanism that maps revealed formulas to a set of entailed formulas.

These inferred formulas constitute the outcome of mechanism A. In this way, we can talk of a

(direct-revelation) logic-based mechanism as follows.

DEFINITION 1. (direct logic-based mechanism) Given a language L, inference procedure A, and set

of agents I, we can define a direct logic-based mechanism ‘M ¼ ðS1; . . . ;SI ; ‘Þ
where:

1. Si � 2L are the alternative sets of formulas agent I can reveal (i.e. their strategy space); and

2. ‘: 2L ! 2L is an outcome rule making conclusions from the formulas revealed by agents.

This enables us to propose a new criterion for an inference procedure to satisfy: that it

implements the desired semantics in equilibrium (this subsumes soundness and completeness).

DEFINITION 2. (implementation of semantics) Let L be a logical language and F be a semantic

entailment relation over L, and let I be a set of agents with knowledge bases

K1; . . . ;KI specified as sets of formulas in L. A logical inference procedure A
implements semantics F if using mechanism ‘M, 8y 2 Y and there exists an equi-

librium sl ¼ ðK�1; . . . ;K�I Þ such that:

ðK�1 [. . . [K�I Þ ‘ c if and only if ðK1 [. . . [KI Þ � c

for any arbitrary formula c 2 L, where Q is the type space of all agents.

The above definition leads to a corresponding property of the semantics itself, namely a logical

version of implementable social choice functions.

DEFINITION 3. (Proof-Theoretic Implementability) Given the language L, semantics F is proof-

theoretically implementable if there exists an inference procedure A whose corre-

sponding logic-based mechanism ‘M implements F in equilibrium.

To summarize, traditionally, when logicians design semantic entailment relations, they mainly

focus on purely logical properties (e.g. compactness, consistency, maximality of models, intui-

tiveness, existence of efficient proof theories). Proof-theoretic implementability provides a new

criterion for coming up with semantics in the first place, since semantics that is not implementable

may not be desirable in the first place1. We refer to the problem of achieving proof-theoretic

implementability as the logical mechanism design (LMD) problem.

4 Key challenges

We outline open questions that we believe are crucial to develop a comprehensive theory of LMD.

4.1 Specifying agent preferences

The first step in LMD is to identify what drives agent decision-making about what formulas to

reveal, that is, their preferences as captured by a space of possible types Q. Work on auctions often

represents preferences using the notion (borrowed from economics) of a utility function that maps

outcomes to real numbers. Analysis then proceeds assuming preference relations with some

interesting structure – for example, diminishing marginal returns captured by utility function

convexity. While such classical utility functions make sense in the context of consumer decision-

making, it is not immediately clear if they are appropriate for an LMD setting.

1 Note that one can easily define a qualified version of this condition, requiring F to be proof-theoretic

implementable for a class of agent preferences or a restricted strategy space.

64 I . RAHWAN AND K . LAR SON

In LMD, preferences could indeed be driven by economic gains. For example, suppose agent B

sues agent A for damages. B would clearly be happier if the judge concluded predicate Compen-

sate(A,B, $1000) than, say, :CompensateðA;BÞ. However, in other domains, such as politics,

agents may be driven by very different non-monetary incentives. An agent may simply be inter-

ested in convincing the judge (i.e. mechanism) that a particular formula must be concluded (e.g.

Innocent(A)), regardless of how this is achieved, or whether it is actually true.

Alternatively, an agent may wish to appear knowledgeable, by ensuring that everything they

says gets accepted. Such agent may withhold formulas if they believe that they may not end up

being concluded by the logical mechanism. In the context of argumentation, this has been dubbed

‘acceptability maximizing preferences’ (Rahwan and Larson, 2008). Another familiar political

example is when an agent mainly aims to make the opposition look bad, that is, in ensuring that

the formulas revealed by others do not end up in the conclusion set.

In general, there is a need to systematically map the space of preference relations in the context

of LMD, and to identify the various realistic structures these preferences may have. This is crucial

for driving any useful subsequent analysis in LMD.

4.2 Translating classical concepts and properties

Social choice theory and mechanism theory have seen significant advancement in the last few

decades, especially as they intersect with computer science (Nisan et al., 2007). The literature

contains many well-known positive and negative results, which hold under a variety of conditions.

These conditions make restrictions on the structure of agent preferences (e.g. single-peaked pre-

ferences) and the structure of the domain (e.g. feasible combinations of bids in an auction). There

is an opportunity to translate many of these results to LMD.

But before one can translate existing theoretical results, we first need to translate the various

conditions under which such results hold into the problem of logical mechanism design. These

include both structural conditions as well as desirable properties. In terms of structural conditions,

what does it mean to have single-peaked or quasi-linear preferences in a logical mechanism? Does it

even make sense to talk of budget balance when treating logical formulas? In terms of desirable

properties, what is the precise meaning of properties like independence, Pareto efficiency, anon-

ymity or systematicity, in the context of LMD? Does independence of irrelevant alternatives make

sense in the context of logical mechanism design, and if so, how is it defined?

4.3 Impossibility and possibility results

There is an urgent need to identify precisely which social choice functions cannot be implemented.

Such impossibility results not only help us avoid the fruitless pursuit of mechanisms, but they also

motivate the need for specialized mechanisms that work under more restrictive conditions.

One important question is whether well-known classical (propositional and first-order) and

non-classical (e.g. non-monotonic or argumentation-based) semantic entailment relations are

truthfully implementable by any mechanism.

If a given semantic entailment relation is not implementable, follow-up questions are: what

restrictions are needed for it to be implementable? Can these restrictions be characterized in terms

of structural properties of the underlying logical theory (e.g. the possible models/worlds of the

theory)? Such restrictions may be attributed to the properties of the domain in which agents

operate. A related question is whether restrictions that guarantee truth revelation can be char-

acterized by the way in which the theory’s formulas are distributed among the agents, or by the

structure of the agents’ preferences.

4.4 The role of computational complexity

The role of computational complexity in preventing strategic manipulation in voting has been

highlighted recently (Conitzer et al., 2007). This important insight shows that while manipulation

Logical mechanism design 65

(through dishonest information revelation) may sometimes be possible in theory, it may be

computationally very difficult to achieve.

An important open question is to investigate whether computational hardness can also be

effective in making logical mechanisms truthful. Answering this question could benefit from the

wealth of computational complexity results in the underlying logical reasoning (associated with

the logical inference procedure) as well as the complexity of the strategic game-theoretic reasoning

imposed by the multi-agent encounter.

5 Early examples of logical mechanism design

5.1 Glazer and Rubinstein’s argumentation rules

Although based in economics rather than logic, Glazer and Rubinstein were among the first to

allude to the problem of LMD (Glazer and Rubinstein, 2001). In particular, they explored the

mechanism design problem of constructing rules of debate that maximize the probability that a

listener reaches the right conclusion given the arguments presented by two debaters.

Glazer and Rubinstein studied a very restricted setting, in which the world state is described by

a vector o ¼ ðw1; . . . ;w5Þ, where each ‘aspect’ wi has two possible values: 1 and 2. If wi 5 j for

jA{1, 2}, we say that aspect wi supports outcome Oj. Presenting an argument amounts to revealing

the value of some wi. The setting is modeled as an extensive form game and analyzed. In particular,

the authors investigate various combinations of procedural rules (stating in which order and what

sorts of arguments each debater is allowed to state) and persuasion rules (stating how the outcome

is chosen by the listener). In terms of procedural rules, the authors explore: (1) one-speaker debate

in which one debater chooses two arguments to reveal; (2) simultaneous debate in which the two

debaters simultaneously reveal one argument each; and (3) sequential debate in which one debater

reveals one argument followed by one argument by the other. Glazer and Rubinstein investigate a

variety of persuasion rules. For example, in one-speaker debate, one rule analyzed by the authors

states that ‘a speaker wins if and only if he presents two arguments from {a1, a2, a3} or {a4, a5}’. In

a sequential debate, one persuasion rule states that ‘if debater D1 argues for aspect a3, then debater

D2 wins if and only if he counter-argues with aspect a4’.

The kinds of rules studied by Glazer and Rubinstein are clearly arbitrary, and do not follow the

well-known principle of logical inference. Having said that, the work is a valuable demonstrator of

how LMD could work, and a testimony to the importance and difficulty of the LMD problem.

5.2 Strategy-proofness of belief merging

A perfect early example of LMD research is work on strategic properties of belief merging

operators. Examples include work by Everaere et al. (2007) and by Chopra et al. (2006). Here, we

will focus on the former as a representative.

Essentially, a belief merging operator D takes as input a belief profile E ¼ fK1; . . . ;Kng con-
sisting of one set of formulas Ki per agent, and a set of integrity constraints m. Agents’ beliefs may

contradict one another. The operator outputs a merged knowledge base Dm(E), which is a set of

consistent formulas that also satisfy the integrity constraints. Hence, D can be seen as an entail-

ment relation FD that makes conclusions on the basis of given information. Thus, ð
V

K1
Þ ^ . . . ^

ð
V

Kn
Þ ^ ð

V
mÞ�D c denotes that formula c should be concluded from all information available. We

can also think of an analogous proof procedure AD. One can then ask whether an agent i has the

incentive to mis-report its knowledge base Ki to cause the procedure AD to generate conclusions

preferred by i. This is clearly an LMD problem.

Everaere et al. (2007) investigated the strategy-proofness of many operators from the literature

on merging multiple knowledge bases expressed in propositional logic. These operators include

different distance-based (e.g. based on the Hamming distance between interpretations of the

propositions) and syntax-based operators (e.g. selecting the maximum number of formulas while

maintaining consistency). The preferences of an agent are represented using a ‘satisfaction index’,

66 I . RAHWAN AND K . LAR SON

which captures the utility of a particular merging outcome. Three preference criteria are explored:

the weak drastic index gives 1 if the result of the merging process is consistent with the agent’s own

base, and 0 otherwise; the strong drastic index gives 1 if the agent’s base is a logical consequence of

the result of the merging process, and 0 otherwise; and the probabilistic index is based on the

compatibility degree between the merged base and the agent’s own base measured using a ratio

involving the number of models (assuming uniformly distributed outcomes).

The authors show that none of the merging operators they explore is strategy-proof in general.

Then they explore various restrictions that achieve strategy-proofness: (1) restricting the number

of agents; (2) restricting the number of models satisfying each agent’s base; (3) adding additional

integrity constraints that must be satisfied by the output; (4) restricting the strategy space (e.g. not

allowing lying).

5.3 Argumentation mechanism design

Another recent example of LMD is work on argumentation mechanism design (ArgMD; Rahwan

and Larson, 2008; Rahwan et al., 2009). This work defined an LMD problem in the context of

Dung’s theory of abstract argumentation (Dung, 1995), in which a set of (potentially conflicting)

formulas is seen as a set of defeasible inferences, or arguments. An argumentation framework is

simply a pair AF ¼ hA;*i where A is a set of arguments and *� A�A is a defeat relation

between arguments. This abstraction is quite powerful, since it has been shown to generalize a

variety of non-monotonic logics, including extension-based approaches such as default logic and

many varieties of logic programming semantics.

Various semantics have attempted to characterize ‘correct’ argumentation-based reasoning

within an abstract argumentation framework. Given an argumentation framework hA;*i,
semantics determines whether or not the argument can be accepted. Hence, for some a 2 A, we
can write hA;*i � a to denote that argument a should be accepted. Once a desirable semantics is

defined, the aim is then to find an algorithmic inference procedure A that corresponds to it.

Rahwan et al. defined the LMD problem for argumentation frameworks, given that A is

distributed among multiple agents. They identified conditions under which the well-known

grounded semantics can be truthfully implemented, in the sense of Definitions 2 and 3 (Rahwan

and Larson, 2008; Rahwan et al., 2009).

6 Logical mechanism design vs. logic games and judgment aggregation

Here, we clarify how the LMD agenda differs from related research agendas.

6.1 Early work on logic and games

The history of logic and game theory can be traced at least to the work on game semantics, which

was pioneered by logicians such as Lorenzen (1961). Although many specific instantiations of this

notion have been presented in the literature, the general idea is as follows. Given some specific

logic, the truth value of a formula is determined through a special-purpose, multi-stage dialog

game between two players, the verifier and falsifier. The formula is considered true precisely when

the verifier has a winning strategy, while it will be false whenever the falsifier has the winning

strategy. Similar ideas have been used to implement dialectical proof theories for defeasible rea-

soning (e.g. Prakken & Sartor, 1997).

There is a fundamental difference between the aims of game semantics and the mechanism

design approach we advocate here. In game semantics, the goal is to interpret (i.e. characterize the

truth value of) a specific formula by appealing to a notion of a winning strategy. As such, each

player is carefully endowed with a specific set of formulas to enable the game to characterize

semantics correctly (e.g. the verifier may own all the disjunctions in the formula, while the falsifier

is given all the conjunctions).

Logical mechanism design 67

In contrast, logical mechanism design is about designing the rule of inference itself to achieve

correct reasoning when the theory is distributed among self-interested players who may have

incentives to manipulate the outcome to their individual advantage. Game semantics has no

similar notion of strategic manipulation by hiding formulas or lying.

6.2 Judgment aggregation

Recent years have seen interest in the field of judgment aggregation (List and Puppe, 2009): the

problem of aggregating a set of individual judgments on interconnected logical sentences, to

produce a collective judgment. Judgment aggregation is illustrated by the discursive dilemma, in

which three agents have different judgments about propositions P, Q, ðP ^QÞ2R and R. Sup-

pose individual judgments of the agents are as shown in the table.

P Q ðP ^QÞ2R R

Ag1 1 1 1 1

Ag2 1 0 1 0

Ag3 0 1 1 0

Majority 1 1 1 0

If we apply majority voting over each proposition, a majority accepts P, Q and ðP ^QÞ2R,

yet a majority rejects R. This example exemplifies more fundamental problems and many

impossibility results (List and Puppe, 2009).

The agenda of LMD we advocate here is distinct from the agenda of judgment aggregation. In

judgment aggregation, judgments are given over given formulas (e.g. propositional sentences (List

and Puppe, 2009) or arguments (Rahwan and Tohmé, 2010)). In LMD, however, the formulas

themselves are contributed by the agents. Hence, the challenge is not of extracting agents’ pre-

ferences over how to evaluate existing structured logical theories, but rather the extraction of the

theory itself from the agents.

7 Conclusion

We have set out a new research agenda that we dub ‘LMD’. This agenda complements the existing

fertile area of research at the intersection between game theory and logic. We formalized the LMD

problem by defining the mechanism design problem in terms of logical semantics and inference

procedures. We highlighted the emerging LMD theme in some recent work in the economics,

belief revision and argumentation communities. We also outlined some key open challenges in this

emerging field.

We believe that LMD will become increasingly important, particularly in the context of open

knowledge-based systems, such as strategic knowledge sharing on the Semantic Web. LMD will

play an important role in designing truthful logical mechanisms for symbolic knowledge sharing

on the Web, akin to what auction mechanisms have done for electronic commerce.

References

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The semantic web. Scientific American 29–37.

Chopra, S., Ghose, A. & Meyer, T. 2006. Social choice theory, belief merging, and strategy-proofness.

Information Fusion 7, 61–79.

Conitzer, V., Sandholm, T. & Lang, J. 2007. When are elections with few candidates hard to manipulate?

Journal of the ACM 54(3), 14.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence 77(2), 321–358.

Everaere, P., Konieczny, S. & Marquis, P. 2007. The strategy-proofness landscape of merging. Journal of

Artificial Intelligence Research 28, 49–105.

68 I . RAHWAN AND K . LAR SON

Gabbay, D. M. 1995. What is a logical system?. InWhat is a Logical System?Gabbay, D. M. (ed.). Clarendon

Press, 179–216.

Glazer, J. & Rubinstein, A. 2001. Debates and decisions: on a rationale of argumentation rules. Games and

Economic Behavior 36, 158–173.

List, C. & Puppe, C. 2009. Judgment aggregation: a survey. In The Oxford Handbook of Rational and Social

Choice, Anand, P., Pattanaik, P. & Puppe, C. (eds). Oxford University Press.

Lorenzen, P. 1961. Ein dialogisches konstruktivitätskriterium. In Infinitistic Methods. Pergamon Press,

193–200.

Nisan, N., Roughgarden, T., Tardos, E. & Vazirani, V. V. (eds). 2007. Algorithmic Game Theory. Cambridge

University Press.

Prakken, H. & Sartor, G. 1997. Argument-based logic programming with defeasible priorities. Journal of

Applied Non-classical Logics 7, 25–75.

Rahwan, I. & Larson, K. 2008. Mechanism design for abstract argumentation, In 7th International Joint

Conference on Autonomous Agents & Multi Agent Systems, AAMAS’2008, Padgham, L., Parkes, D.,

Mueller, J. & Parsons, S. (eds). Estoril, Portugal, 1031–1038.

Rahwan, I. & Tohmé, F. 2010. Collective argument evaluation as judgement aggregation. In 9th International

Joint Conference on Autonomous Agents & Multi Agent Systems, AAMAS’2010, Toronto, Canada.

Rahwan, I., Larson, K. & Tohmé, F. 2009. A characterisation of strategy-proofness for grounded argu-

mentation semantics In Proceedings of the 21st International Joint Conference on Artificial Intelligence

(IJCAI), Pasadena CA, USA, 251–256.

Shoham, Y. & Leyton-Brown, K. 2008. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press.

Logical mechanism design 69

