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Participants in 

negotiation often lack 

information about 

each others’ goals, 

but are reluctant 

to reveal their own 

goals. Decision-

theoretic reasoning 

using machine-

learned models of 

negotiations can 

outperform humans 

in anticipating goal 

revelation.

diplomatic relations.1,2 Often, this lack of 
information about the participants’ underly-
ing interests prevents the parties from reach-
ing beneficial agreements, or from reaching 
agreements altogether. To date, evidence 
about the effect of information exchange on 
human negotiation is inconclusive: while it 
can lead to more equitable outcomes among 
the negotiation parties,3 it might also result 
in the exploitation of a vulnerable party.4

As an example, consider a hypothetical 
scenario in which friends in an online so-
cial network need to agree on a restaurant 
for dinner. All of them share the common 
goal of enjoying their activity, but they also 
have individual preferences that might con-
flict with each other. One of the friends 
might insist on eating at a place that’s far 
away, so she might reveal that she’s gluten 

intolerant, and that her preferred restaurant 
is gluten free. However, revealing her inter-
ests might also have a cost: the rest of the 
group might suggest a gluten-free restaurant 
that’s nearer, but that the person in question 
doesn’t like.

A negotiation protocol can allow peo-
ple to reveal their goals—and request oth-
ers to do the same—at fixed points during 
a repeated negotiation process. The one 
we designed was inspired by interest-based  
negotiation protocols designed for computa-
tional agents that allow participants to ex-
change information about their underlying 
objectives.5

The Colored Trails Game
We evaluated our protocol empirically using Col-
ored Trails (CT; www.eecs.harvard.edu/ai/ct),  

This article describes the use of computer-based protocols for facilitat-

ing and modeling human negotiations in strategic settings where the 

parties lack information about each other’s goals and incentives. Such set-

tings are endemic in many negotiation contexts, from electronic commerce to 
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a free testbed that pro-
vides an analog to the 
ways in which goals, tasks, 
and resources interact in 
the real world. CT con-
sists of a computer board 
game in which partici-
pants take turns propos-
ing take-it-or-leave-it of-
fers to each other under 
time constraints.

CT was developed for 
investigating the decision 
making that arises in task 
settings, where the key 
interactions are among 
goals, the tasks required 
to accomplish those goals, 
and the resources needed 
to perform the tasks. The 
empirical investigations 
described in this article 
used a particular config-
uration of CT played by  
two players on a 5 ×  5 
board of colored squares. 
Each player had a desig-
nated goal square and a 
piece on the board, ini-
tially located in one of the 
non-goal squares.

At a CT game’s onset, 
players received a set of 
seven colored chips cho-
sen from the same pal-
ette as the squares. To 
move a piece into an ad-
jacent square, a player 
must turn in a chip of the 
same color as the square. 
Players have a full view of 
the board and each others’ chips and 
positions, but they can only see their 
own goal location.

A CT game comprises three phases. 
In the communication phase, players 
alternate between one of two roles: 
proposer players can offer some sub-
set of their chips to be exchanged 
with some subset of the chips of  

responder players, and responder play-
ers can in turn accept or reject pro-
posers’ offers. If no offer is made or 
if each offer is declined, both players 
are left with their initial allocation 
of chips. The game controller pre-
vents players from offering chips they 
don’t have or from asking for chips 
the other player doesn’t have. In the 

exchange phase, the game 
controller enforces chip 
exchanges (if an agree-
ment is reached). Finally, 
in the movement phase, 
the game controller au-
tomatically moves both 
players as close as possi-
ble to the goal square.

The scoring function 
for each player depends 
solely on individual per-
formance: 100 points for  
reaching the goal, 10 
points for each chip left in 
a player’s possession, and 
15 points deducted for 
any square in the shortest 
path between a player’s 
final position and goal 
square (in case the goal 
isn’t reached). We chose 
these parameters so that 
getting to the goal was 
by far the most important 
component, but if a player 
couldn’t do that, he or 
she could get as close as 
possible. The score each 
player received if no offer 
was made was identical to 
the score each player re-
ceived if the responder re-
jected the offer.

Figure 1 shows snap-
shots of the CT GUI for the 
interest-based protocol 
of one of the games used 
in our experiment. The 
main window panel in Fig-
ure 1a includes the board 

game—the goal square—represented 
by an icon displaying the symbol Gme, 
and two icons, me and O, represent-
ing the location of the two players on 
the board at the game’s onset. The 
bottom part of the main window 
panel shows the players’ chip distri-
butions. In the game shown here, the 
me player can get to the goal square 

Figure 1. Snapshot of a Colored Trails (CT) game using an 
interest-based negotiation protocol. The (a) main and pending 
offer panels and (b) decision-support tool offer players a wide 
list of options.

(a)

(b)

IS-28-02-Gal.indd   75 6/5/13   3:33 PM



76  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

M a c h i n e  L e a r n i n g

using the path outlined 
on the board, but the O 
player lacks the chips to 
get to the goal (note that 
the O goal isn’t shown 
here). The me player has 
received an offer: one 
purple chip in exchange 
for one green chip. The 
proposer uses the “pro-
pose exchange” panel to 
make the offer or to ask 
for the other player’s goal. 
The “path finder” panel 
in Figure 1b provides  
decision-support tools for 
use during the game. Spe-
cifically, it displays a list 
of suggested paths to the 
goal, the missing chips re-
quired to fulfill a particu-
lar path, the surplus chips 
left over once a potential 
path has been fulfilled, 
and the best position the 
agent can reach relative 
to its scoring function. 
These paths are optimized 
for a given chip distribu-
tion and player, as queried 
by the player, such that 
they represent the best 
route given a player’s ob-
jectives. Players can view 
this information for the 
chip set currently in their 
possession or for any hy-
pothetical chip set.

Our study adapts and compares 
two negotiation protocols from the 
literature in CT. One is called position- 
based negotiation, wherein each ne-
gotiator’s communication is l im-
ited to proposing exchanges based on 
their own statically-defined positions. 
The other, interest-based negotiation, 
allows negotiators an additional layer 
of communication to exchange infor-
mation about the goals that motivate 
them to negotiate.10

In both the interest- and the  
position-based protocols we adapted 
for CT, neither player can see the 
other’s goal at the game’s onset, and 
players are randomly allocated as 
proposers or responders.

In the position-based protocol, 
once a responder receives an offer, it 
can accept it, in which case the of-
fer is realized, both players automati-
cally move toward the goal, and the 
game ends. If the responder rejects 

the offer, the game con-
troller reverses the play-
ers’ roles, and the new 
proposer player (formerly 
the responder) can make 
an offer to the new re-
sponder player (formerly 
the proposer). Figure 2a 
shows a state-based repre-
sentation of this protocol.

The interest-based pro-
tocol is an extension of 
the position-based pro-
tocol that allows players, 
in a controlled fashion, to 
ask about and reveal their 
goals. Once a responder 
receives an offer from the 
proposer, he has the op-
tion to ask the proposer 
for her goal, in addition 
to rejecting or accepting 
the offer. If the responder 
chooses not to ask for the 
goal, the game proceeds 
as in the position-based 
negotiation case. If the 
responder chooses to ask 
the proposer for her goal,  
the proposer now has the  
option to agree to reveal 
her goal or to make an-
other of fer to the re -
sponder, which is effec-
tively a rejection of the 
revelation request. Re-
sponders can ask propos-
ers for their goals numer-

ous times, but once a goal is revealed, 
it can’t be asked about or revealed 
again. Goal revelations are always 
truthful. It isn’t possible to misreport 
a player’s goal in this game. Figure 2b 
shows a state-based representation.

Empirical Methodology
For the remainder of this article, 
we’ll refer to the session involving the  
interest-based negotiation protocol 
as the IBN condition and the session  

Figure 2. Two alternative protocols for repeated negotiation: 
(a) a position-based negotiation (PBN) protocol, with the goal 
revelation disallowed, and (b) an interest-based negotiation (IBN) 
protocol, with the goal revelation allowed.
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i nvolv ing a  pos it ion-
based negotiation proto-
col as the PBN condition. 
Twenty-two subjects par-
ticipated in the experi-
ment, drawn from a pool 
of students and adults re-
siding in the Boston area; 
12 people participated in 
the IBN condition, and 10  
in the PBN condition. Each 
person received an identi-
cal 30-minute tutorial on 
CT and played a series of 
games in succession.

Subjects’ scores weren’t revealed at 
any point during the experiment—we 
identified each subject with a serial 
number. The participants sat in front 
of a terminal for the entire length of 
the experiment and could not see or 
speak to any of the other participants 
(we obtained approval from Har-
vard’s Institutional Review Board on 
the use of human subjects). No sub-
ject was paired up with any other 
subject more than once, and sub-
jects weren’t told about the identity 
of their counterparts. We paid par-
ticipants in a manner consistent with 
their aggregate scores in all the games 
they played. Between games, play-
ers engaged in a neutral activity that 
didn’t affect their payment (answer-
ing questions about their mood), de-
signed to minimize the effects of past 
games on future performance.

We generated the games played 
from a distribution to meet the fol-
lowing criteria: at least one player 
could reach a goal, possibly indepen-
dently, or by some exchange with the 
other player; and it wasn’t possible 
for both players to reach their respec-
tive goals independently. This ensures 
that it’s worthwhile for players to ne-
gotiate. For each game, we recorded 
the board and chip settings, as well as 
the actions of both players and their 
associated scores in the game.

Results
We analyzed 65 games played in 
both conditions. In 14 of them, play-
ers were codependent (both players 
needed each other to get to the goal), 
and in the other 51, one of the players 
needed the other player. Most IBN 
games didn’t feature a single goal rev-
elation. However, when they were so-
licited (76 percent of the offers), play-
ers revealed their goals more often 
than not. In 39 games, one goal was 
revealed—in 10 games, two goals 
were revealed, making for a total 
of 59 revelations. In all, at least one 
goal was revealed in 43 percent of the 
games.

Figure 3 shows the average benefit 
to participants in the IBN condition 
(left entry) and the PBN condition 
(right entry) when playing the same 
65 games. The benefit to a player in 
a game is defined as the difference be-
tween the final score in the game and 
the no-negotiation alternative score, 
computed using the scoring function 
described earlier. If no agreement is 
reached, a player’s benefit is zero. The 
results are measured with respect to 
the games in which one or two goals 
were revealed in the IBN condition 
(marked “goal revelations”) and the 
total set of games played in both con-
ditions (marked “all games”).

As Figure 3 shows, for those games 
with at least one goal revelation, the 

combined average bene-
fit for players in the IBN 
condition (49 points) was 
significantly larger than 
the average benefit for 
players in the PBN con-
dition (32 points, paired  
t-test t(29) = 1.7; p = 0.04).  
Not shown in the figure 
is the lack of a significant 
difference in the players’ 
benefit in the two condi-
tions for those games for 
which there was no rev-

elation. However, when considering 
all games (including those for which 
there was no revelation), the com-
bined average benefit for players in 
the IBN condition (72 points) was 
significantly larger than the bene-
fit for players in the PBN condition 
(62 points, paired test t(64) = 1.60;  
p = 0.04).

Next, we did a pair-wise compari-
son between the number of games 
that reached agreement in both con-
ditions. Our analysis revealed that 16 
of the games that resulted in agree-
ment in the IBN condition failed to 
reach agreement in the PBN condi-
tion. In contrast, only seven of the 
games that succeeded in the PBN 
condition failed to reach agreement 
in the IBN condition, and this dif-
ference was statistically significant:  
c2(1; N = 65) = 3.92; p = 0.04. We can 
thus conclude that goal revelation had 
a positive effect on the performance of 
players in the IBN condition, in that 
it led to higher scores and agreement  
ratios as compared to the correspond-
ing games in the PBN condition.

The Effect of players’ 
Dependency relationships
Table 1 shows the benefit to players 
as a function of their dependency re-
lationships and the number of goal 
revelations. Across both conditions, 
the benefit for dependent players was 

Figure 3. Average benefit in the IBN/PBN condition. The benefit 
to a player in a game is defined as the difference between the 
final score in the game and the no-negotiation alternative score.
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consistently higher than for indepen-
dent players. When one or two revela-
tions occurred, the dependent player 
in the IBN condition gained signifi-
cantly more benefit than in the PBN 
condition (56 points versus 35 points, 
SE = 2.3; t(26) = 2; p = 0.02). (The 
difference in benefit between the in-
dependent player in the IBN and PBN 
condition (-9 versus -15) wasn’t sta-
tistically significant.) The overall ben-
efit to independent players in the IBN 
condition was significantly higher 
than in the PBN condition (15 versus 
-2 points, SE = 2.3; t(48) = 2.3; p = 
0.01). This is primarily due to their 
significant gain of 19 points over 
their PBN scores in IBN games where 
no goals were revealed.

a Decision-Theoretic paradigm 
for Goal revelation requests
To demonstrate the significance of our 
study for agent designers, we used a 
decision-theoretic approach to make 
goal-request decisions in the game. The 
model integrates standard machine- 
learning techniques for predicting and 
emulating people’s goal-revelation be-
havior. We refer to participants who 
queried their partners about their 
goal as “goal solicitors” and to par-
ticipants who subsequently revealed 

their goal as “goal revealers.” Let g 
denote a CT game, and let NNAS(g) 
denote the no-negotiation alternative 
score for the solicitor S. Let PO g p( , )S

i i  
denote the score for the solicitor 
that’s associated with a proposal p 
at round i in g. The benefit to the so-
licitor for this proposal is defined as 
B g p PO g p NNA g( , ) : ( , ) ( )S
i i

S
i i

S= − .
Consider a solicitor that’s reason-

ing about whether to ask the other 
participant to reveal its goal after re-
ceiving some offer pi at round i. The 
outcome of this decision depends on 
whether the other participant agrees 
to reveal its goal. Figure 4 shows this 
reasoning process as a decision tree 
from the viewpoint of the solicitor 
agent. The leaves of the tree repre-
sent the expected benefit to the solici-
tor from offers in round i + 1 in case 
the other participant revealed its goal 
in round i (denoted B g p rev( , , )S

i i i1 1+ + )  
or didn’t reveal its goal in round i  
(denoted B g p rev( , , )S

i i i1 1+ + ). If the solicitor 
decides not to ask the other partici-
pant to reveal its goal, it receives the 
benefit B g p( , )S

i i  that’s associated with 
the offer pi.

The expected benefit to the solicitor 
from asking the other participant to 
reveal its goal is defined as

 
 = ⋅

+ ⋅

+ +

+ + + +

EU g ask

P g rev B g p rev

P g rev B g p B g p rev

( , )

: ( ( , ) ( , , )

( , ) ( , , ( , , ).

S
i

R
i

S
i i i

R
i

S
i i

S
i i i

1 1

1 1 1 1  

 (1)

The expected benefit to the solici-
tor for not asking to receive the goal 
is just the benefit of the offer it’s given 
in round i:

EU g ask B g p rev( , ) : ( , , ).S
i

S
i i i=

The optimal strategy for the solicitor 
is to make a goal revelation request at 
round i if EU g ask EU g ask( , ) ( , ).S

i
S

i>

There are two challenges to using 
this decision tree to make a goal rev-
elation request. First, the other play-
er’s revelation decision in round i + 1 
isn’t known to the solicitor at round i.  
We addressed this by employing a 
naive Bayes classifier to estimate the 
likelihood that the other participant 
will reveal its goal in game g at round i.  
This is represented by the probabil-
ity PR(g, revi). For each game g, the 
features for this classifier represented 
the information that was available 
to the solicitor at round i. These fea-
tures included NNAS(g) (the no- 
negotiation alternative score for the  
solicitor), BS(g, pi) (the solicitor’s benefit  
from the proposal at round i), and 
the round number i. The second chal-
lenge is that the proposals in round 
i + 1 aren’t known to the solicitor 
at round i. We addressed this by es-
timating the benefit of these offers, 
analyzing data collected on the of-
fers made during the games. We com-
puted the expected performance of 
the solicitor agent from using the tree 
to decide whether to ask the other 
participant for its goal. We limited 
this evaluation to making goal re-
quests after receiving the first offer in 
the game. The performance was mea-
sured as the expected benefit from of-
fers made or received by the solicitor, 
given the solicitor’s decision whether 
to request the other’s goal. We used 
the naive Bayes classifier to estimate 
the probability PR(g, revi).

We compared the performance of 
the tree-using solicitor to that of peo-
ple, by simulating human behavior in 
the game. To this end, we constructed 
naive Bayes classifiers for emulat-
ing people’s goal-request and goal-
revelation behavior. The features for 
the classifier for emulating people’s 
goal-request behavior included the  

Figure 4. Decision tree for goal-
revelation requests.

Goal request

N Y

Y N

Bi  (g, pi)S

B i+1(g, pi+1, revi)S B i+1(g, pi+1, revi)S

Reveal (PR(g, rev i))

Table 1. Average benefit in IBN/PBN conditions for different player  
dependencies (significant difference in bold).

Goal revelations

All games0 1, 2

Independent player 19/0 –9/–15 15/–2

Dependent player 49/59 56/35 40/50
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no-negotiating alternative score for 
the solicitor NNAS, and the benefit to 
the solicitor associated with the offer 
at round i, B g p( , )S

i i . The features for 
the classifier for emulating people’s 
goal-revelation behavior represented 
information that was available to the 
other participant (the “potential re-
vealer”) at round i. These features 
included the no-negotiating alterna-
tive score for the potential revealer 
NNAR, and the benefit to the poten-
tial revealer associated with the offer 
at round i, B p rev( , )R

i i i .
We measured people’s performance 

by computing the expected benefit 
from offers in the second round, us-
ing an Expectimax tree.6 This tree 
has an identical structure to the de-
cision tree in Figure 4, but the prob-
ability of asking and revealing goals 
were computed using the emulation 
models described earlier.

We evaluated the decision tree by 
using it to make goal-revelation re-
quests. For each of the games, we 
computed the expected utility to so-
licitors using the decision-theoretic 
paradigm described earlier. We com-
pared this expected utility with that 
incurred by people, using the emu-
lation model to compute the likeli-
hood that people actually reveal their 
goals. A computer agent using the 
decision-theoretic paradigm would 
choose not to ask for goal revelation 
in a game if the likelihood of revela-
tion was lower than 44 percent. We 
used 10-fold cross validation to learn 
the parameters for the classifiers; all 
the classifiers achieved precision and  
recall measures above 70 percent, 
significantly better than random 
guessing. The average benefit to goal  
solicitors using the decision-theoretic 
model to make decisions was -5.04, 
which was significantly higher than 
the average benefit to people (-6.4,  
t-test, p = 0.03). This shows that com-
bining decision-theoretic modeling 

with standard machine-learning tech-
niques can form the basis of an agent 
design for making decisions with 
people in our setting of choice.

Our results establish the role 
of IBN protocols as mecha-

nisms of cooperation in settings 
of incomplete information. It also 
demonstrates the efficacy of us-
ing decision-theoretic and standard  
machine-learning techniques to com-
putationally model people’s behavior 
in such settings. We found that, gen-
erally, dependent players are likely to 
reveal their goals when asked, and 
this information usually isn’t abused 
by solicitors. Indeed, they choose to 
use this information as a tool for as-
sisting the revealers. The resulting net 
gain to goal revealers also increases 
the social benefit of both partici-
pants. Solicitors generally dislike ask-
ing for others’ goals and choose to 
do so mainly in cases where there are 
few other avenues open for beneficial 
exchanges.

There are few empirical studies of 
human negotiation strategies in re-
peated interactions, so our study is 
significant. Ariel Rubinstein7 pro-
vided a theoretical model for pre-
scribing negotiating strategies that 
are optimal under certain conditions. 
Other work in psychological litera-
ture about strategic interaction has 
focused on specific domains (seller-
buyer disputes8 or completely ab-
stract settings such as the prisoner’s 
dilemma). Jeffrey Loewenstein and 
Jeanne Brett9 conducted a study that 
studied how goal framing prior to the 
negotiation procedure affects strat-
egy revision. But none of these works  
compared the effects of goal revela-
tion directly within repeated negotia-
tion. Work in automated negotiation 
in AI has proposed algorithms for ar-
gumentative strategies that support or  

attack the different positions of par-
ties in a negotiation.10,11 This work 
directly extends these studies by 
showing that argumentative-type pro-
tocols are advantageous to people.

But ultimately, our study is sig-
nificant for the study of computer- 
mediated negotiation in two ways. 
First, it shows that computer systems 
can facilitate people’s goal revelation  
decisions in negotiation, let them 
reach more beneficial agreements, and 
improve their overall performance. 
Second, it demonstrates the efficacy 
of using computational approaches 
to model people’s goal-revelation be-
havior when negotiating under incom-
plete information.
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