An Approach for Argumentation-based
Reasoning Using Defeasible Logic in
Multi-Agent Programming Languages

Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Pontifical Catholic University of Rio Grande do Sul - PUCRS
Postgraduate Programme in Computer Science — School of Informatics (FACIN)
Porto Alegre — RS — Brazil
alison.panisson@acad.pucrs.br,
{felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. Argumentation systems are intimately related to nonmono-
tonic reasoning, of which defeasible reasoning is one widely-known ap-
proach. For example, the literature points out defeasible logic (a partic-
ular formalisation of defeasible reasoning) as a practical platform upon
which to develop an argumentation system. In this paper, we develop
an approach to endow AgentSpeak agents with argumentative capabili-
ties using defeasible reasoning, aiming in future work the development of
multi-agent applications where agents interact through argumentation-
based dialogues. We demonstrate the viability of our approach through
an implementation in the Jason platform.

Keywords: Argumentation-based reasoning, Agent-oriented program-
ming language, Defeasible reasoning

1 Introduction

Argumentation has received significant interest in the multi-agent system com-
munity in recent years because it give us means for allowing an agent to reconcile:
(i) conflicting information within itself; (ii) its informational state with new per-
ception of the environment; and (iii) conflicting information from multiple agents
through communication [I].

Argumentation can be divided into two main lines of research in the multi-
agent community [I] (i) argumentation focused on reasoning (nonmonotonic rea-
soning) over incomplete, conflicting, or uncertain information, where arguments
for and against certain conclusions (beliefs, goals, etc.) are constructed and com-
pared; and (ii) argumentation focused on communication/interaction between
agents that allows the exchange of arguments to justify a stance and to provide
reasons that defend claims.

In this work we use defeasible reasoning as a platform for the development of
argumentation systems, as argued in [2], where we develop argumentation-based
reasoning using an adaptation of defeasible-prolog (d-Prolog for short), which is

2 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

a practical implementation of defeasible logic formalism. Our work differs of the
literature in the sense that the argumentation-based reasoning is part of agent’s
reasoning. We argue that this approach allows more flexibility and transparency
in the development of such agents with argumentative capabilities.

The remainder of this paper is organized as follows. In the next section,
we present a background of the concepts and technologies used throughout
the paper. Section [3| then describes the relation between defeasible reasoning
and argumentation, where we describe some work which are related to our and
that make the link between this concepts. Section [4] describes our approach of
argumentation-based reasoning based in defeasible reasoning and the adapta-
tion of defeasible logic formalist and its implementation in an agent-oriented
programming language. In the final section of this paper, we make some final
remarks and discuss possible directions for future work.

2 Background

In this section we describe the main concepts and technologies involved in
our work. We begin with agent-oriented programming language giving focus
to AgentSpeak language extension found in Jason platform, which is the lan-
guage used to make our approach within the practice. Then we present defeasi-
ble reasoning concepts using the defeasible logic formalism and d-Prolog (logical
implementation of defeasible logic). Then we describe argumentation, includ-
ing concepts and definitions necessary for understanding the remainder of this

paper.

2.1 Agent-oriented Programming Languages

In the agent-oriented programming paradigm, the agents are computational en-
tities with autonomous behaviour (i.e., able to make decisions and act without
direct human intervention on unexpected circumstances). These computational
entities are situated in an environment that they are able to sense (through
sensors), act upon it (through effectors), and communicate through message
passing.

One of the most studied architectures for cognitive agents is the BDI (Beliefs-
Desires-Intentions) architecture which provides a particular structure for agent
internal states based on “mental attitudes”. The internal state of a BDI agent is
formed by: (i) Beliefs that represent the information about the world (including
itself and other agents) available to that agent; (ii) Desires representing the
motivations of the agent, i.e., the states of the environment that the agent would
like to reach; and (iii) Intentions which are desires that the agent is committed
to achieve by following particular plans of action.

There exist many agent-oriented programming languages and platforms, such
as Jason, Jadex, Jack, AgentFactory, 2APL, GOAL, Golog, and MetateM, as
pointed out in [3]. Those languages differ in the agent architecture used, in the

An Approach for Argumentation-based Reasoning 3

form of communication/interaction between them, and also on the programming
paradigms that inspired or underlie each language.

Among the languages mentioned above, AgentSpeak(L), the language on
which Jason [4] is based, is one of the best-known languages inspired by the BDI
architecture. AgentSpeak(L) is an abstract logic-based agent-oriented program-
ming language introduced by Rao [5], and subsequently extended and formalised
in a series of papers by Bordini, Hiibner, and various colleagues.

AgentSpeak(L) is based in the Procedural Reasoning System (PRS) (Fig-
ure [1]) where the agents are equipped with a library of pre-compiled plans. Plans
in PRS have the following components: (i) a goal — the post-condition of the
plan (the things that it achieves); (ii) a context — the pre-condition for the plan,
defining what must be true of the environment in order for the plan to be suc-
cessful; and (iii) a body — the ‘recipe’ part of the plan — it may contain a list of
actions and sub-goals in order to achieve the main goal.

Sensor input Interpreter Action output

R S
Intentions

Fig. 1. The Procedural Reasoning System (PRS) ([4]).

Plans in AgentSpeak(L) have the following format:
triggering_event : context <- body.

where the triggering_event represents a new agent goal (or belief), which is to
be pursued and has the format !goal(Parameter), the context has preconditions
needed to perform that plan to achieve that goal, and the body is a sequence of
actions and sub-goals (which trigger others events and the use of other plans)
to achieve the goal.

In particular, the main AgentSpeak(L) extensions available in Jason (a Java-
based platform for the development of multi-agent systems), according to [4],
and relevant to our current and future work are:

4 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

— Strong negation: Strong negation helps the modeling of systems where
uncertainty cannot be avoided, allowing the representation of things that
the agent believes to be true, believes to be false, and things that the agent
is ignorant about;

— Belief annotations: One interesting characteristic present in Jason is that
it automatically generates annotations for all beliefs in the belief base about
the source from where the belief was obtained (sensing the environment, com-
munication with other agents, or a mental note created by the agent itself).
The annotation has the following format: likes(john, music)[source(john)],
stating that the source of the belief that john likes music is agent john itself.

— Speech-act based communication: Jason uses performatives based on
speech acts in its communication language, which goes well with the avail-
ability of formal semantics of mental attitudes for the Jason extension of
AgentSpeak;

Strong negation is useful in this work for writing defeasible rules and contra-
dictory information. Belief annotations and speech-act based communication are
useful in our future work, as we intend to use the reasoning mechanism presented
in this paper in agent communication/interaction.

As mentioned above, the communication between agents is via message pass-
ing, and Jason’s communication is based on speech acts and is performed by the
pre-defined internal action ‘.send’ that has the following format:

.send(receiver, illocutionary_force, propositional _content)

where receiver is the name of an agent (each agent has a unique individual name
in the multi-agent system) or a list of agent names, for whom the message is being
sent. The propositional_content is a term in AgentSpeak (a literal, triggering
event, plan, or a list of literals or plans). The illocutionary_force denotes the
intention of the sender (often called performative), as in speech-act theory. The
formal semantics of receiving such messages is given in [6], and a complete list
of all the illocutionary forces available can be found in [4].

New illocutionary forces can be easily added, as well as the effects that each
will have on the agent’s mental state. In Jason, agent plans can be written in
AgentSpeak to give semantics to new performatives, hence providing an elegant
and transparent way for programming agents that are capable of argumentation-
based communication.

2.2 Defeasible Reasoning

Defeasible reasoning is a simple and efficient approach to nonmonotonic reason-
ing where the objective is to formalise nonmonotonic inferences of the type “birds
generally fly”. Such inferences hold only if a defeasible theory contains no rule
inferring contrary information, which will be explained throughout this section
using a specific formalisation of defeasible reasoning called defeasible logic [7g].

Knowledge in a defeasible theory is organised as facts, rules, and a “superior-
ity” relation. Rules are separated into strict rules, defeasible rules, and defeaters:

An Approach for Argumentation-based Reasoning 5

— Facts: facts are indisputable statements (e.g., “Alison is a graduate stu-
dent”);

— Strict rules: strict rules are rules in the classical logic sense, where if the
premises are indisputable (i.e., facts) then so is the conclusion (e.g., “grad-
uate students are students”).

— Defeasible rules: defeasible rules are rules that can be defeated by contrary
evidence (e.g., “graduate students usually study hard”).

— Defeaters or undercutting defeaters: defeaters are rules that are used to
prevent some conclusions from being derived rather than to draw particular
conclusions;

— Superiority relation: superiority relation is a binary relation between rules
which defines whether a rule is superior to another, and is used in case
applying the rules would lead to contradicting conclusions.

Conclusions can be derived strictly or defeasibly. A conclusion is strictly de-
rived if it is derived using only strict rules and facts contained in the knowledge
base. A conclusion is defeasibly derived if it is derived using any clauses of the
knowledge base including defeasible rules [9].

As defeasible rules represent disputable knowledge, it can be defeated by
contrary evidence (provided by other rules). The two types of defeat are: (i)
rebut, where the conclusion of the rule is defeated because another rule derives
the negation of that conclusion (i.e., a contrary conclusion can be obtained
through another rule); and (ii) undercut, where the conclusion of the rule cannot
be derived because an applicable defeater rule concludes the contrary (recall that
the defeater cannot be used to conclude anything, it just prevents the conclusion
of the contrary).

An answer to a query in a defeasible knowledge base can be of five types [9]:

— definitely yes: meaning that a conclusion is proved using only facts and

strict rules, and therefore cannot be withdrawn when new knowledge is added

to the available theory;

definitely no: meaning that the negation of the queried conclusion can be

proved using facts and strict rules;

presumably yes: meaning that the conclusions can be defeasibly proved,

so it might need to be withdrawn when new knowledge becomes available;

— presumably no: meaning that the negation of the query can be defeasibly
proved, that is, although the query cannot be presently concluded, it might
be concluded if new knowledge becomes available.

— cannot tell: it is not possible to answer the query either affirmatively or
negatively (because both the queried formula and its conclusion can be defea-
sibly derived and the superiority relation does not favour one or the other).

Defeasible logic is an nonmonotonic logic introduced by Nute [7I8] as a way
to formalise defeasible reasoning. Defeasible logic was made practical in the
d-Prolog programming language [9] (an extension of Prolog based on defeasi-
ble logic). Defeasible logic and defeasible Prolog (d-Prolog for short) have all

6 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

types of knowledge representation mechanisms defined in the theory of defeasi-
ble reasoning, including facts, strict rules, defeasible rules, undercutting rules or
defeaters, and superiority relation, as described above.

The representation in d-Prolog of defeasible rules and defeaters is possible
through the introduction of the new binary infix functors :=and : = , respectively.
It also introduces strong negation with the functor neg, which differs from the
negation-as-failure operator not. D-Prolog also introduces a type of defeat by
specificity, where more specific conclusions defeat more general ones. This is
exemplified by the well-known Tweety triangle:

flies(X) := bird(X).
neg flies(X) := penguin(X).
bird(X) := penguin(X).
penguin(tweety) .

All clauses in the example are defeasible rules. If we make a query for whether
“tweety flies” using ?- flies(tweety) in d-Prolog, the answer will be “presum-
ably no” because the rule for penguin is more specific than the rule for bird. The
specificity is defined by two inferences where it is tested for the two rules in
conflict whether one of them can be derived from the other, and if that is the
case, that which is derived from the other is defeated for being less specific. In
this example, a rule with a penguin premise is more specific than one requiring
bird to be inferred because the rule bird(X) := penguin(X) says that normally
penguins are birds, hence the class of penguins is more specific than that of birds
(membership to the latter can be inferred from membership to the former).

Another characteristic of defeasible logic is having the so called “preempt-
ing defeaters” [9] or “ambiguity blocking” [2], where defeasible rules that are
rebutted by a superior rule are no longer available to rebut other rules.

An example of preempting defeaters is the knowledge base represented by IT
below (where we use = to refer to defeasible inferences):

a=bx=ce
b=ce= —c
c=>dy= —e
a
T

Y

II =

In this example, we may conclude d using the inferences {a, a = b, b =
¢, ¢ = d}, although there is a derivation {x, = e, e = —¢} which rebuts
the rule that concludes c¢; this rule (the rule that derives —c) is defeated by rule
{y, y = —e} which prevents the use of that rule to rebut the inference of d.

2.3 Argumentation

Argumentation can be seen as the principled interaction of different, potentially
conflicting arguments, for the sake of arriving at a consistent conclusion [IJ.

An Approach for Argumentation-based Reasoning 7

The survey presented in [I] states that argumentation in multi-agent systems
has two main lines of research: (i) autonomous agent reasoning, such as belief
revision and decision-making under uncertainty; and (ii) as a vehicle for facilitat-
ing multi-agent interaction, because argumentation naturally provides tools to
designing, implementing and analysing sophisticated forms of interaction among
rational agents.

According to [I], argumentation lends itself naturally to two main sorts of
problems encountered in multi-agent systems:

— Forming and revising beliefs and decisions: Argumentation provides
means for forming beliefs and decisions on the basis of incomplete, con-
flicting, or uncertain information. This is because argumentation provides
a systematic means for resolving conflicts among different arguments and
arriving at consistent, well-supported standpoints;

— Rational interaction: Argumentation provides means for structuring di-
alogues between participants that have potentially conflicting viewpoints.
In particular, argumentation provides a framework for ensuring that inter-
action among agents respects certain principles (e.g., consistency of each
participant’s statements).

As a reasoning mechanism, argumentation provides an alternative way to
mechanise nonmonotonic reasoning. Argument-based frameworks view the prob-
lem of nonmonotonic reasoning as a process in which arguments for and against
certain conclusions are constructed and compared. Nonmonotonicity arises from
the fact that new premises may enable the construction of new arguments to
support new beliefs, or stronger counterarguments against existing beliefs. As
the number of premises grows, the set of arguments that can be constructed from
those premises grows monotonically. However, because new arguments may over-
turn existing beliefs, the sets of beliefs may grow nonmonotonically [I].

Generally, argumentation is treated abstractly, where the content of individ-
ual arguments is not relevant and an overall structure of the relations between
arguments is used instead. Abstract argumentation frameworks have their ori-
gins in [10], which studies the acceptability of arguments. In [I0], the focus is on
the attack relation between arguments, and the sets of arguments that defend its
members, representing the ones that, given a set of arguments, are acceptable.

These systems are not concerned with the content of the arguments, nor
where the relation of attack comes from (based on that structure). They con-
cern in describing, given the set of arguments and the attack relation, which
arguments are acceptable and under which conditions. Abstract argumentation
systems also focus in the set of arguments that are mutually defensive, and thus
cannot be attacked. Such set of arguments is referred to as being admissible.

In argumentation framework, an argument is a pair (S, C'), where S denotes
the Support and C denotes the Conclusion, meaning that C' is supported by S.
Arguments can be defeated (a.k.a. attacked) by other arguments. Defeat between
arguments can be of two types: rebut and undercut, as defined below.

8 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Definition 1 (Rebut). Let (S1,C1) and (S, Cs) be two arguments. Argument
(51, Cy) rebuts argument (Sa, Ca) iff Cy is equivalent to the negation of Cy (i.e.,
Cl = _\CQ).

Definition 2 (Undercut). Let (S1,C1) and (S2,Cs) be two arguments. Argu-
ment (S1,C1) undercuts argument (S2,Cs) iff C1 is equivalent to the negation
of a formula contained in Sy (i.e., Ip.p € So and C1 = —p).

An abstract argumentation framework is defined as a tuple (A4, R) with a
set of arguments (A) and a binary relation (R) that defines an attack relation
between the arguments.

The status of an argument depends on its justification state, where an argu-
ment is justified if it survives the attacks (or has no argument attacking it, or
the set of argument defends it from the attacks) and it is rejected otherwise. The
formal methods that describe this evolution (whether an argument turns out as
justified or not) are called argumentation semantics.

Dung, in [I0], proposed four well-established semantics for abstract argumen-
tation systems:

— complete extension/semantics: E is a complete extension iff F is admissible
and every arguments in .S (the set of arguments) is acceptable;

— grounded extension/semantics: grounded semantics is best explained by the
process of building it incrementally from unattacked arguments. The at-
tacked arguments are suppressed, and the process is repeated until no new
unattacked arguments arise after a deletion step. The set of all unattacked
arguments identified up to that point is the grounded extension;

— stable extension/semantics: a stable extension attacks all arguments not in-
cluded in it;

— preferred extension: is the maximum set of arguments in that argumentation
framework that defends itself from attacks.

Other definitions found in [I0] are:

— A set of arguments S is conflict free if there are no arguments A and B in
S such that A attacks B.

— An argument A is an acceptable argument if, for all arguments that attack
A, the set of arguments S defends A.

— A conflict-free set of arguments S is admissible iff each argument in S is
acceptable with respect to S.

3 Defeasible Logic and Argumentation

Several works considering reasoning mechanisms based on argumentation can
be found in the literature ([ITJI2T3IT4T5]), most of them based on abstract ar-
gumentation systems at the theoretical level. Recently, Berariu [16] presents an
approach for defeasible reasoning to implement argumentation-based reasoning
in BDI agent. The author argues that, given the scarcity of practical work in

An Approach for Argumentation-based Reasoning 9

the area of argumentation-based reasoning, it is now time to address the chal-
lenge of putting such well-structured abstract theory into practice, proving its
usefulness in real applications. Thus, the system developed in [I6] extends the
Jason platform with a module for argumentation, which is decoupled from the
BDI reasoning cycle, operating in a customised belief base of the agent.

There are three key aspects of the system developed by Berariu [16]. First,
the approach does not interfere in the execution of plans, creation of goals,
or agent’s commitments. Second, the argumentation module provides general
argumentation and not just for a specific need of a particular application. With
it, the agent is capable of nonmonotonic argumentation-based reasoning and can
participate in dialogues and negotiation if the strategies and protocol which the
agent must follow are programmed in it (but no example is given). Finally, as an
instantiation of the latest instantiation of Dung’s abstract formalism presented
by Prakken’s in [I7], the work has two kinds of inferences: strict and defeasible
rules (as defined in Section and it uses the extension-based semantics, where
the arguments’ justification is defined:

justified: corresponds to skeptical justification (the argument belongs to all
extensions);

defensible: corresponds to credulous justification (the argument belongs to at
least one extension);

overruled: arguments that cannot be justified and are rejected.

Also, in [16], a number of special beliefs are used in the belief base represent-
ing specific elements of the argumentation formalism.

— defeasible and strict rules are represented using the
predicates defeasible_rule(RuleName, RuleT ext) and
strict_rule(RuleName, RuleText) respectively.

— contradictory and contrary information are represented with the predicates
contradictory(Literall, Literal2) and contrary(Literall, Literal2) respec-
tively.

These rules are then used in conjunction with a series of queries in the agent
belief based, as follows. An agent queries the argumentation module with the
belief why(Proposition) and the response is in format of a belief because(X,Y)
with X being either in or out. The possible responses are:

— because(out, unknown) : the proposition is not in KB (Knowledge Base);

— because(in, Premise(premise_type)) : the proposition is a premise, and is
not the result of any form of reasoning;

— because(out, ~Proposition) : the proposition is not in the KB, but its nega-
tion is an acceptable argument;

— because(in, ~Preposition) : the proposition is not in the KB, but its negation
is an overruled argument;

— because(in, Rule) : the proposition is accepted and is the result of applying
the rule Rule;

10 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

— because(out, ListOfDefeats) : returns a list the conclusions of the arguments
that defeated the proposition;

The resulting system is quite significant, but it suffers from a key limitation.
The fact that the reasoning mechanism to be a decoupled module and it to
work with addition and reaction to beliefs limits its potential. It makes the
programming agents more difficult, where it is necessary predict reactions of
adding beliefs (response of module).

We found in the literature reasons for using defeasible logic [7I§] and its
practical implementation of defeasible Prolog [9] (d-Prolog for short) as argu-
mentation systems. We demonstrate that an adaptation of d-Prolog allows the
implementation of argumentation-based reasoning in agent-oriented program-
ming language, with all characteristics of [I6] and, further, the approach allows
the agents reasoning about such rules (defeasible and strict rules) during the
executions of plans to achieve their goals as well as to query if an argument is
acceptable or not at runtime.

In [2], a significant link between defeasible reasoning and argumentation is es-
tablished, where Dung-like argumentation semantics is given for defeasible logic,
providing a Dung-like argumentation system. The author argues that defeasible
reasoning provides an efficient implementation platform for argumentation sys-
tems. The argumentation semantics proposed is for classical defeasible logic (as
in [7l8]) and provides an ambiguity blocking argumentation system. The paper
presents the usual pieces of an argumentation system: logical language and def-
initions of argument, conflict between arguments, and the status of arguments.
The language is the same as defeasible logic (presented in Section . Argu-
ments of the type (R, h) are formed by a set of rules R that have as consequent
the literal h.

The types of arguments depend on the rules used:

— A supportive argument is a finite argument where no defeaters are used;
— A strict argument is an argument in which only strict rules are used;
— An argument that is not strict is called defeasible.

In [2] the characterisation of conclusions of defeasible logic in argumentation
terms also is defined (being p a literal):

— if p is strictly proved there is a strict supportive argument for p;

if p is not strictly proved there is no strict argument for p;

if p is defeasibly derived there is a supportive argument for p;

if p is not defeasible derived there is no supportive argument for p.

The definition of attack is usual, where defeasible arguments can attack or
undercut other defeasible arguments and can be attacked or undercut by strict
arguments (strict argument cannot be attacked). The paper defines the so called
defeasible semantics which determines whether an argument is accepted or re-
jected in order to capture defeasible provability in defeasible logic [7U8] with
ambiguity blocking (in original defeasible logic). This is formally defined below.

An Approach for Argumentation-based Reasoning 11

Definition 3. An argument A for p is acceptable in a set of arguments S if A
is finite, and: (a) A is strict, or (b) every argument attacking A is undercut by
S (i.e., it is proved that the premises of all the arguments that attack A cannot
be proved, the so called ambiguity blocking).

This definition is achieved with ambiguity blocking, also called preempting
defeaters defined in Section [2.2

Definition 4. An argument A is rejected by the sets of arguments S and T when
A is not strict and: (a) a proper subargument of A is in S, or (b) it is attacked
by an argument supported by T (i.e., the attacking argument must be supported
by the set of justified arguments).

The authors in [2], also, compare defeasible semantics with the grounded
semantic defined by Dung in [I0] and they define that:

— if an argument A is justified under grounded semantics, then A is justified
under defeasible semantics;

— if an argument A is rejected under grounded semantics, then A is rejected
under defeasible semantics;

— if a literal p is justified under grounded semantics, then p is justified under
defeasible semantics;

— if a literal p is rejected under grounded semantics, then p is rejected under
defeasible semantics.

4 The approach for argumentation-based reasoning using
defeasible logic

We have implemented defeasible reasoning (defeasible logic more specifically) in
Jason through a set of Prolog-like rules that had to be modified in order to be
processed in Jason (e.g., the cut operator is not available). We have adapted the
rule presentation representing defeasible and strict knowledge to a form similar
to the approach in [16], as follows:

Facts: facts are represented as in the d-Prolog implementation of defeasible
logic, where “Alison is a graduate student” is represented by a simple pred-
icate such as grad_student (alison);

Strict Rules: the strict rules are represented as a special predicate
strict_rule(Head,Body), where for example “graduate students are stu-
dents” is represented as strict_rule(student (X),grad_student(X)); the
body can also be a list of predicates;

Defeasible Rules: the defeasible rules are represented as a special pred-
icate defeasible_rule(Head,Body), where “graduate student usually
studies hard” is represented as defeasible_rule(studies_hard(X),
grad_student (X)) ; as above, the body can also be a list rather than a single
predicate.

12 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Defeater: the defeaters are represented with the predicate
undercut_rule (Head,Body);

Superiority relation: the superiority relation is represented as
sup (Rule; , Ruley) where Rule; is superior who Rules.

Another predicate is used to declare the complement of a proposition, for
example, good is the complement of bad, in our representation we use the pred-
icate comp(good, bad) to define the complement. The adaptation of d-Prolog
follows the example presented below. The rules are based in logic and the formal
semantic and syntax of AgentSpeak language extension used can be found in [4].

strict_der(Content) :- Content.

strict_der([Content]):- strict_der(Content).

strict_der([First|Rest]):- strict_der(First) & strict_der(Rest).

strict_der(Content) :- strict_rule(Content,Condition) &
strict_der(Condition).

In this example we demonstrate the derivation of Strict rules, where first is
checked if the queried content is a premise, after if it is a list of one element,
after if it is a list of more elements, and finally if it is the Head of a strict rule
and if the Condition (which derives the Content) is also strictly derived. These
rules permits the agent queries if a content is strictly derived in its knowledge
base (remember that strict knowledge is indisputable known).

From our implementation the agent can query if it has an argu-
ment to some proposition using the predicate strict_der(proposition) and
de feasible_der(proposition) depending on whether the agent needs to have a
strict or defeasible argument, respectively. Each rule used can be stored in a
logical variable, as in logic programming, which characterizes the argument con-
struction and, this argument, is which justify the derivation.

As described in Section [3] this implementation has a well-defined semantics
called defeasible semantics which defines the acceptability of the arguments.
The adaptation of d-Prolog does not change this semantics and the status of
any argument can be defined by this formalisation.

4.1 Example

An agent has submitted a paper to AAMAS conference and believes that its
paper will be accepted, so it will buy its ticket to Paris because it has an argument
that conclude go to Paris to present the paper.

de feasible_rule(go_to_paris_to_present(X), accepted(X)).
de feasible_rule(accepted(X), submited(X)).
submited(paper).

The plan to buy a ticket has the following format (in Jason platform):

+ouyTicket(paris) : defeasible_der(go_to_paris_to_present(paper))
<- buyTicket(paris).

An Approach for Argumentation-based Reasoning 13

Before the agent to buy its ticket, its coauthor informs it that the paper was
submitted without a required field and this will invalidate its submission and so
it will not go to Paris. The new knowledge received is:

strict_rule(—go_to_paris_to_present(X), —accepted(X)).
strict_rule(—accepted(X), incomplete(X)).
incomplete(paper).

The new information changes the conclusion of go to Paris to present the
paper, and so the above plan no longer applies. The above example demonstrates
our implementation, where more sophisticate reasoning are allowed, but to a
simple example we argue that this is sufficient.

5 Conclusion

We have implemented argumentation-based reasoning using defeasible reasoning
(defeasible logic more specifically) in an agent-oriented programming language
based in BDI architecture. We used the AgentSpeak language extension of Jason
to implement our approach through Prolog-like rules adapting d-Prolog, which
is an implementation of the defeasible logic formalism.

Defeasible logic provides a platform to develop argumentation systems, as
argued in [2], and defines the defeasible semantics which specifies the accept-
ability of arguments in these systems. We use this formalization to implement
argumentation-based reasoning using defeasible reasoning in agent oriented pro-
gramming language. In our approach the agents can query the existence of ar-
guments and the acceptability of arguments in their own reasoning during the
execution of plans and during the communication. So, the programming of such
agents becomes more flexible and transparent.

We intend, as future work, to explore the argumentation-based reasoning de-
veloped in this work for agent interaction, where semantics for performatives,
such as in the work presented in [6], can make direct reference to this reason-
ing mechanism, as well as it can refer to agent attitudes as defined in work
such as [I8[T9]. Agent attitudes define how rigorous an agent is in accepting or
asserting any proposition, depending on the arguments the agent has for that
proposition. We have already taken the first steps towards that direction in [20].

Acknowledgements

Part of the results presented in this paper were obtained through research on a
project titled “Semantic and Multi-Agent Technologies for Group Interaction”,
sponsored by Samsung Eletronica da Amazonia Ltda. under the terms of Brazil-
ian federal law No. 8.248/91.

14 Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini
References
1. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Con-

10.

11.

12.

13.

14.

15.

16.

text and recent developments. In Maudet, N., Parsons, S., Rahwan, 1., eds.:
ArgMAS. Volume 4766 of Lecture Notes in Computer Science., Springer (2006)
1-16

Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation se-
mantics for defeasible logic. J. Log. Comput. 14(5) (2004) 675-702

Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming: Languages, Tools and Applications. 1st edn. Springer Publishing Company,
Incorporated (2009)

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European workshop on Modelling autonomous agents
in a multi-agent world : agents breaking away: agents breaking away. MAAMAW
’96, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (1996) 42-55

Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
J. Artif. Int. Res. 29(1) (June 2007) 221-267

Nute, D.: Handbook of logic in artificial intelligence and logic programming. In
Gabbay, D.M., Hogger, C.J., Robinson, J.A., eds.: Handbook of logic in artificial
intelligence and logic programming. Oxford University Press, Inc., New York, NY,
USA (1994) 353-395

Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming, Oxford University Press (2001) 353-395

Nute, D.: Defeasible Prolog. Research report (University of Georgia. Artificial In-
telligence Programs). Artificial Intelligence Programs, University of Georgia (1993)
Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321-357

Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. In: Proceedings of Bth International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado (2000)

Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. Ann. Math. Artif. Intell. 34(1-3) (2002) 197-215

Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. Artif. Intell. 171(10-15) (jul
2007) 855-874

Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93 (1997)
63-101

Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning.
In Nakashima, H., Wellman, M.P., Weiss, G., Stone, P., eds.: AAMAS, ACM (2006)
347-354

Berariu, T.: An argumentation framework for bdi agents. In Zavoral, F.; Jung, J.J.,
Badica, C., eds.: Intelligent Distributed Computing VII. Volume 511 of Studies in
Computational Intelligence. Springer International Publishing (2014) 343-354

17.

18.

19.

20.

An Approach for Argumentation-based Reasoning 15

Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1(2) (2011) 93-124

Parsons, S., McBurney, P.: Argumentation-based dialogues for agent coordination.
group decision and negotiation. Group Decision and Negotiation (2004)

Parsons, S., Wooldridge, M., Amgoud, L.: An analysis of formal inter-agent dia-
logues. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1. AAMAS, New York, NY, USA, ACM (2002)
394-401

Panisson, A.R., Meneguzzi, F., Fagundes, M.S., Vieira, R., Bordini, R.: Formal
semantics of speech acts for argumentative dialogues. In: Proceedings of the Thir-
teenth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. AAMAS ’14 (2014)

	Argumentation-base reasoning in BDI agent
	Introduction
	Background
	Agent-oriented Programming Languages
	Defeasible Reasoning
	Argumentation

	Defeasible Logic and Argumentation
	The approach for argumentation-based reasoning using defeasible logic
	Example

	Conclusion

