Towards an Argumentative Approach for Repair
of Hybrid Logics Models

Anca Goron', Adrian Groza!, Sergio Alejandro Gémezt and Ioan Alfred Letiaf

TIntelligent Systems Group
Department of Computer Science
Technical University of Cluj-Napoca
Baritiu 28, 400391, Cluj-Napoca, Romania
EMAIL: {Anca.Goron,Adrian.Groza,letia}@cs.utcluj.ro
! Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, ARGENTINA
EMAIL: sag@cs.uns.edu.ar

Abstract. We propose an argumentation approach for hybrid logics
model update. Argumentation theory is used to assist the process of
updating the model. We view a Hybrid Kripke model as a description
of the world that we are interested in. The update on this Kripke model
occurs when the system has to accommodate some newly desired prop-
erties or norm constraints. When the model fails to verify a property, a
defeasible logic program is used to analyze the current state. Depending
on the status of the arguments, the system can warrant four primitive
operations on the model: updating state variables, adding a new transi-
tion, removing a transition, or adding a new state. A running scenario
is presented showing the verification of an unmanned aerial vehicle, by
interleaving reasoning in Defeasible Logic Programming and the Hybrid
Logic Model Checker.

1 Introduction

Model checking tools lack mechanisms to assist the user in the revision of a
Kripke model. We propose to integrate model checking and structured argumen-
tation towards supporting automated change of the model. The main application
of our proposal is in the field of autonomous systems, by empowering agents with
self-verification capabilities after they have updated the world model.

Safety assurance and compliance to safety standards-based methods of cer-
tification such as DO-178B [15] or HACCP [14] may prove to be a real chal-
lenge when we deal with adaptive systems, in which we consider with continu-
ous changes and without a strict behavioral model. Traditional methods, which
are mainly based on previous experiences and lessons learned from other sys-
tems are not effective in this case. Argument-based safety cases offer a plausible
alternative basis for certification in these fast-moving fields [15].

Assuring safety in complex technical systems is a crucial issue [10] in sev-
eral critical applications like air traffic control or medical devices. Autonomous
agents, as embodied by entities such as unmanned aerial vehicles (UAVs), un-
manned ground vehicles (UGVs), or software-agents, are expected to be compli-
ant with a set of requirements and specifications. An air traffic control system is
a system where accidents are mainly produced by human errors. Such accidents
can be avoided by verifying the safety for the air control system in a logical
manner in order to produce support for human air controllers to make rationally
justified decisions.

Our hypothesis is that argumentation can be used to assure safety in complex
critical systems by providing guidance to update the model of the world in case
of contradictory information.

We will further use Hybrid Logics (HLs) [1, 6] for formalizing safety cases such
that they can be further subjected to a complete verification. Although Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL) are generally used in
such cases, we consider HL. as a better alternative due to the higher degree of
expressivity and with the advantages it brings along through the inclusion of
nominals and specific operators such as @ and the | binder. All the automatic
verifications in our approach are to be performed by the model checker HLMC!,
that implements the model checking algorithms for the hybrid logics MCLite
and MCFull [8]. The argumentative reasoning is performed in DeLP [9].

The rest of the paper is structured as follows. In Section 2 we present the
fundamentals of model checking with Hybrid Logics and argumentation with
Defeasible Logic Programming. In Section 3 we combine argumentation and
model checking for implementing model update in Hybrid Logics. In Section 4
we present a case study where our approach is applied to model repair in an un-
manned aerial vehicle. In Section 5 we discuss related work. Finally, in Section 6
we conclude the paper and outline possible future research lines.

2 Technical Instrumentation

2.1 Model Checking with Hybrid Logics

Model checking [13] refers to the problem of verifying, given a certain model,
whether different properties hold for that model. Properties are represented using
formulas usually specified in different types of logic languages such as Linear
Temporal Logics, Description Logics or Hybrid Logics, while the model is given
as a labeled graph known as a Kripke structure.

Temporal logics (TL) (see [8] for details) extend propositional logics with
temporal operators future F, past P, until U, since S, so that with the set of
propositional symbols P = {pi,pa, ...}, the syntax of temporal logic is the one
below

p:=T|pl-p|eAp|Fo|Pp|eUp|pSp
The dual of P is Ha = =P—« and the dual of F is Ga = =F-a.

! Available at http://luigidragone.com/software/hybrid-logics-model-checker/

The semantics of TL is presented in Figure 1, where M = (M, R,V) is a
Kripke structure, m € M, and g is an assignment.

MmpET

M,mEp if meV(p) forpeN

M,m E —p iff M,mEop

M,mpE Ay iff M,mEpand M,mEvY

M, m | Fop it Im' (m,m') € RAM,m | p)
M, m | Py it Im' (m,m') € RAM,m | p)

M, m E Uy if 3Im' (m,m') € RAM,m' E pA

vm” ((m,m”) € RA(m",m') e R—M,m” | 1))
M, m = ¢Sy it Im' (m,m') € RAM,m’ |E pA

vm” ((m,m’) € RA(m/,m") e R—M,m’ Ev))

Fig. 1. Semantics for temporal logic.

Hybrid logics (HL) extend temporal logics with special symbols that name
individual states and access states by name [1]. With nominal symbols N =
{i1,12,...} called nominals and 8., = {1, z2,...} called state variables the
syntax of hybrid logics is shown below.

e:=TLli|z| Qx| z.@]| Iz

With i € N, 2 € Wyar, t € NUWgyn,, the set of state symbols Weyrm, = NU Wiy,
the set of atomic letters Aies = PUN, and the set of atoms A = PUNU Wy,
the operators @, |, 3 are called hybrid operators.

Definition 1. A hybrid Kripke structure M consists of an infinite sequence of
states my, mo, ..., R a family of binary accessibility relations on M and a val-
uation function V' that maps ordinary propositions and nominals to the set of
states in which they hold, i.e. M = ((my,ma...), R, V).

In the graph-based representation of M, the nodes correspond to the sequence
of states brought about by different modalities represented as links between
states. Each state is labeled by a different nominal, while links are labeled by
the relation connecting two states.

Figure 2 presents the semantics of hybrid logic used in our approach, where
the hybrid logic operator @; is used to shift the evaluation point to the state
named by the nominal or state variable t, the downarrow binder | = to assign
the state variable x to the current state of evaluation and the existential binder
Jx to refer to some state in the model M using the state variable x.

Ezample 1 (Safe landing). A landing is considered safe if all possible major risks
are identified and managed. For this case here we will consider wind speed,
remaining fuel and critical failure as possible risks. To ease the validation process,

M,g,m Ea iff me(V,gl(a),ac A
Mvgym ': @t(p iff Mvg7m, ': @, where [‘/7 g](t) = {ml}vt € Wsym

MgwkElze iff Mgn,wkEe
M, g,m | Jz. iff there is m’ € M such that M, g%,,w | ¢

Fig. 2. Semantics for hybrid logic.

we will assume that the sensors used to measure the required data are failure-
free and the two streams of sensor data received return accurate information.
We know that a flight has always clearance to land no matter the wind speed
and remaining fuel criteria if it has had a critical failure:

1 z.critical_failure([F|z — [clearence]) (1)

The formula states that if there is a state in which critical failure is encoun-
tered, then for all upcoming states, clearance should be selected.

Denying the clearance to land for a flight implies that it is forbidden to land
as long as there is no critical failure and viceversa.

(—(clearence)) — forbidden U critical_failure (2)

We also know that a flight is allowed to land at time 7" on runway A if the
wind is calm on runway A at time T and it is forbidden if it is windy at that
time. A runway is windy at time 7T if the wind speed is greater than 15 knots.
Exceptionally a flight is not forbidden to land on a windy runway if it has fuel
trouble. A flight is considered to have fuel trouble if its remaining fuel allows it
to fly less than 15 minutes, otherwise the flight has no fuel trouble:

I z(windSpeed > speedipreshoid)(Qz(forbidden) — remainingFuel < fuelihreshold)
(3)
We also know that the wind speed, the remaining fuel and critical failure are
measured values and the measures are considered accurate (measured — T).

[windSpeed > speedipreshold] — measured (4)
[remainingFuel < fuelihreshoid] — measured (5)
[critical _failure] — measured (6)

One can observe that knowing that formulas (4), (5), respectively (1) will
always denote valid values as the measurements are considered accurate, then
also formula (3), respectively (2) and (6) can be validated.

2.2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [9] provides a language for knowledge
representation and reasoning that uses defeasible argumentation [5,2] to de-
cide between contradictory conclusions through a dialectical analysis. Codifying
knowledge by means of a DeLLP program provides a good trade-off between ex-
pressiveness and implementability for dealing with incomplete and potentially
contradictory information. In a defeasible logic program P = (II, A), a set IT of
strict rules P <+ Q1,...,Q,, and a set A of defeasible rules P —< Q1,...,Qn
can be distinguished.

Definition 2. An argument (A, H) is a minimal non-contradictory set of ground
defeasible clauses A of A that allows to derive a ground literal H possibly using
ground rules of II.

Since arguments may be in conflict (concept captured in terms of a logi-
cal contradiction), an attack relationship between arguments can be defined.
A criterion is usually defined to decide between two conflicting arguments. If
the attacking argument is strictly preferred over the attacked one, then it is
called a proper defeater. If no comparison is possible, or both arguments are
equi-preferred, the attacking argument is called a blocking defeater. In order to
determine whether a given argument A is ultimately undefeated (or warranted),
a dialectical process is recursively carried out, where defeaters for A, defeaters
for these defeaters, and so on, are taken into account. Given a DeLLP program
P and a query H, the final answer to H w.r.t. P takes such dialectical analysis
into account. The answer to a query can be: yes, no, undecided, or unknown.

Ezample 2 (Safety landing).

The main system safety verification is clearance for landing denoted by the
literal clearance(ID, A,T) meaning that flight I D has clearance to land on run-
way A at time T'. For flight f701 we know that the wind speed at runway r01
is 3 knots at time 10. For the prospective decision clearance(f701,r01,10) there
exists a warranted argument (A;, clearance(f701,r01,10)) where:

clearance(f701,101,10) —
~ forbidden (f701,101,10),
A = runway(r01), flight(f701) ,
~ forbidden(f701,101,10) —< calm(r01,10)
calm(r01,10) — wind_speed(r01,3,10),3 < 15

meaning that flight f701 has permission to land on runway r01 because it is a
calm runway as the wind speed is only 3 knots at time 10.

3 Interleaving Argumentation and Model Checking

Given a Kripke structure M and a formula ¢, with M- F ¢, the task of model
repair is to obtain a new model M’ such that M’ F ¢. We consider the following
primitive update operations [18].

Definition 3 (Primitive update operations). Given M = (S, R, L), the up-
dated model M = (S’, R, L) is obtained from M by:

1. (PU1) Adding one relation element: S' =S, L' = L, and R’ = RU{(s;, s;)}
where (s;,s;) € R for two states s;,sj € S.

2. (PUy) Removing one relation element: 8" = S, L’ = L, and R' = R\
{(84,85)} where (si,85) & R for two states s;,s; € S.

3. (PUs) Changing labeling function in one state: S = S, R = R, s* €
SL'(s*) # L(s*), and L'(s) = L(s) for all states s € S\ {s*}.

4. (PUy) Adding one state: 8" = SU{s*},s ¢ S, R' =R, Vs € S,L'(s) = L(s).

Our task is to build an argumentative based decision procedure that takes
as input a model M and a formula ¢, it outputs a model M’ where ¢ is satisfied.
The task addressed here focuses on a situation on which the specification of the
model is not consistent. Consider the following two “rules of the air” [16]:

R3: Collision Avoidance — “When two UAVs are approaching each other
and there is a danger of collision, each shall change its course by
turning to the right.”

Ry4: Navigation in Aerodrome Airspace — “An unmanned aerial vehicle
passing through an aerodrome airspace must make all turns to the
left unless [told otherwise].”

Let

alter_course(uavy , right) — aircraft(uavy), aircraft(uavg)
collision_hazard(uavy , uavs)

collision_hazard(uavy , uavg) — approaching_head_on(uavy, uavg),
distance(uavy , uavg, X), X < 1000

As =

in the argument (As, alter_course(uavy, right)), a collision hazard occurs when
two aerial vehicles uav; and uavy approach head on, and the distance between
them is smaller than a threshold. The collision hazard further triggers the ne-
cessity to alter the course to the right, according to the R3 specification. Let

alter_course(uavy , left) — aircraft(uavy), nearby(uavy , aerodrom),
As = change_direction_required (uav;)
change_direction_required(uav;) — collision_hazard(uavy , uavg)

in the argument (As, alter_course(uavy, left)), if a change of direction is re-
quired in the aerodrome airspace, the direction should be altered to the left. A
possible conflict occurs between arguments (As, alter_course(uavy, right)) and
(A4, ~alter_course(uavy , right)) where:

Ay = { ~alter_course(uavy , right) — alter_course(uavy, left) } .

The command (As, ~ alter_course(uavy, left)) conveyed from the ground con-
trol system to change direction to the right acts as a defeater for the argument

As, where (notice that strict rules should not form part of argument structures
as they are not points of attack, we abuse the notation here just for emphasis):

As = { ~ alter_course(uavy, left) < conveyed_command_course(uavy, right) }

Assume that the current model M satisfies the specification Rs. The problem
is how to repair M with the model M’ which also satisfies R4. Our solution starts
by treating rules Rs and R4 as structured arguments. The conflict between them
are solved by a defeasible theory encapsulated as DeLLP program, which outputs
a dialectical tree of the argumentation process. The information from this tree is
further exploited to decide which primitive update operations PU; are required
to repair the model.

Firstly, consider the uav; is in the obstacle detect od € S state, where S is
the set of states in M with the labeling function L(od) = {uavs, —a}. It means
that wav; has detected another aerial vehicle uavy. Assume that in this state
the DeLP program will warrant the opposite conclusion a. This triggers the
application of the primitive operation PUs which updates the labeling function
L(od) = {uavy, ~a} with L'(od) = {uavs, a}.

Secondly, assume that the DeLLP program based on the state variables uavs,
and —a and the nominal od infers a relation r; between od and another nominal
1 € N of the model. The repair consists of applying the operation PU; on M,
where the relation set R’ is extended with a relation between the two states ob
and i: R = RU{(od,4)}. The reasoning mechanism is possible because hybrid
logic provides the possibility to directly refer to the states in the model, by means
of nominals.

Thirdly, the program can block the derivation of a relation r between the
current state and a next state. For instance, if L(od) = {uavg, a} and the argu-
ment Az succeeds, the transition between state od and state turn_right can be
removed. Formally, R’ = R\ {(od, turn_right)}.

Fourthly, if the DeLP program warrants, based on the current state variable
and available arguments, a nominal ¢ which does not appear in S, the set of
states is extended with this state: S" = S U {i}.

These four heuristics are illustrated in the following section, by verifying the
specifications in hybrid logics on the updated models.

4 Model Repair for an Unmanned Aircraft Vehicle

4.1 Illustrative Example

We consider the scenario presented in [17], referring to the safe insertion of
an Unmanned Aircraft Vehicle (UAV) into the civil air traffic. The scope is to
demonstrate that safety requirements are being met by such an UAV so that
they do not interfere or put in danger human controlled aircrafts. A mission is
considered safe if all the major risks for the UAV are identified and managed
(e.g. collision with other objects or human-piloted aircrafts and loss of critical

functions). An UAV comes equipped with an autonomous control system, re-
sponsible for decision making during the mission and keeps a communication
link open with a ground-base system (GBS), which provides all the required co-
ordinates for the UAV. The autonomous decision making performed by the UAV
control system must consider the general set of safety regulations imposed to a
UAS during a mission at all times.

We propose a solution for modeling such Unmanned Aircraft Systems (UASs)
in compliance to the set of safety regulations. We will zoom over the following
subset of the “Rules of the Air” dealing with collision avoidance:

R1: Obstacle Detection — “All obstacles must be detected within an ac-
ceptable distance to allow performing safely the obstacle avoidance
maneuver”

Rs: Obstacle Avoidance — “All obstacles must be avoided by performing
safely a slight deviation from the preestablished path and an immediate
return to the initial trajectory once all collision risks are eliminated.”

Rs: Collision Avoidance — “When two UAVs are approaching each other
and there is a danger of collision, each shall change its course by
turning to the right.”

The first rule states that all obstacles (e.g. human-controlled aircrafts, other
UAVs, ete.) that are interfering with the initial trajectory of the UAV must be
signaled within a certain limit of time such that to allow avoidance maneuvers
to be performed by the UAV in safe conditions. The avoidance maneuver as
shown by rules Ry and R3 consists of a slight change of the initial path to the
right such that to allow the safe avoidance of the approaching UAV followed by
a repositioning on the initial trajectory.

4.2 Kripke Model for the Unmanned Aerial Vehicle

We will further represent the behavior of the UAV noted by uav, captured in an
obstacle avoidance scenario. The following states will be considered in construct-
ing the Kripke model: path-following (pf), obstacle detection(od), turn left(¢l)
and turn right(¢r). To each state we will attach the boolean state variable uavs,
which will indicate the presence or absence of another approaching UAV. In the
path-following state pf, the UAV wuawv; performs a waypoint following maneuver,
which includes periodical turns to the left or to the right. The appearance of an
obstacle (uav — T) leads to the transition of the UAV into obstacle detection
state od and from there in turn right tr state as part of the obstacle avoidance
maneuver, followed by a return to the initial path-following state.
The initial model My is presented below:

MO = <{Od7 tTv tlvpf}a

{7“077“177“2,7“3,7“477“577“6}7

{(pfa {—VLLG/UQ}), (Odv {’LLG/UQ}), (tT, {"’LLG/UQ}), (tlv {_"U,G/UQ})}>
The corresponding hybrid Kripke structure is illustrated in Figure 3.

ro Lo{—~uavy}

Ls{—uavy}

Fig. 3. Kripke Model for the UAV.

4.3 Verifying Compliance to Safety Regulations

Once the modeling of the UAS is done, we have to verify whether the mentioned
safety regulations hold for this model. To be able to perform model checking, we
will further express the two safety regulations using hybrid logics:

R; : [Next]|(od) — tr (7)

The above formula corresponds to the first safety regulation R; and states
that once the od (Obstacle Detect) state is reached then the immediate transition
step should be done towards an avoidance maneuver state, for our case here, state
tr, meaning that the obstacle was detected in time and it allowed the avoidance
maneuver to be safely performed.

Ry : [Next|(tr Vitl) — pf (8)

The formula corresponding to safety regulation Ry states that all the next
transitions from the TurnRight or TurnLeft state should always lead to the
PathFollow state.

The formula below corresponding to safety regulation R3 states that if an-
other UAV is detected in the od (Obstacle Detect) state then all next transitions
should be done towards the state ¢r (TurnRight):

R3 : Q,quavy — ([Next]od — tr) 9)

Model checking is performed to verify whether the formulas hold or not for
that model. To perform the model checking automatically, the Kripke structure
corresponding to the UAS model is translated into an XML file and given as
input for the Hybrid Logic Model Checker (HLMC) [8]. Each formula in HL is
also given as input to the HLMC. Once the tests are performed for each formula
against the Kripke model, we can complete the verification of the model. The
result confirms that the modeled Kripke structure of the UAS complies with the
defined safety regulations.

4.4 Adapting the Model to New Specifications

We consider again the UAV scenario and we will present a solution for modeling
the existing UAS to include the introduction of new rules. For this, we will
consider the initial set of rules extended by a newly adopted norm for UAVs
navigating in an Aerodrome Airspace:

Ry: Navigation in Aerodrome Airspace — “An unmanned aerial vehicle
passing through an aerodrome airspace must make all turns to the
left [unless told otherwise].”

As a first step we will check whether the existing UAS model complies to the
new regulation R4. For this we will express the new rule as a HL. formula and
we will add to each possible state the boolean variable a, which will become true
when the UAV enters an aerodrome airspace:

Ry : Qa — ([Next]i — (—tr)) (10)

The formula states that all transitions from the states in which the state
variable aerodrome a holds should not lead to the tr (TurnRight) state, the
only state which is forbidden when navigating inside the aerodrome space. Since
the only states from which turns are possible are pf and od, we will consider only
this subset for model checking. One can observe that the formula does not hold
for the existing model. Considering that the aerodrome a state variable is true in
the od (Obstacle Detect) state, one can observe that the only allowed transition in
the current model is to the tr (TurnRight) state. Therefore, the existing model
does not comply to the new regulation. Moreover, from the pf state transitions
are possible to the ¢! (TurnLeft) state, but also to the tr (TurnRight) states.
We argue that the existing model could be extended to include also the new
rules without having to construct a new model from the beginning. Although
different solutions were proposed for Kripke Model repairing [4], we propose a
solution based on argumentation for extending the model such that it complies
to the updated set of regulations.

As a first step in our approach, we represent several possible extensions to the
Kripke Model as defeasible arguments and include them in DeLLP for choosing
the best possible solution between different conflicting arguments. The proposed

solution does not only eliminate the complexity of proposed repair/updating
algorithms [4], but it allows the system to adapt to new information in a faster
and more efficient manner.

Going back to our example, one can observe that there is no possibility for
the UAV to go into the tl state once it has reached the od state, but only to the
tr state. Since inside the aerodrome space, only turns to the left are permitted,
then the link connecting od and ¢r (r4) should be taken out from the model.

We will consider a new argument (Asg, alter_course(uavy, left)), which sug-
gests updating rule R3 by allowing the obstacles to be avoided to the left, instead
of to the right when inside the aerodrome space, where:

alter_course(uavy , left) — aircraft(uavy), aircraft(uavg)
collision_hazard(uavy , uavg)nearby(uavy , aerodrom)

collision_hazard(uavy , uave) —= approaching_head_on(uav;, uavg),
distance(uavy , uavg, X), X < 1000

As =

We argue that for compliance to the new regulations, we only need to change
all the links in the model to point from the od and pf states only to the tl state
instead of tr state to avoid the collision.

Therefore, we need to perform the following PU operations for updating the
model:

1. (PUs) Remove the relation elements (od, tr) and (pf,tr) such that we have:
S'=S8,L' =L,and R = R\ {(od,tr), (pf,tr)}

2. (PU;y) Add the relation element (of, tl) such that we have: §” = §', L = L/,
and R” = R'U{(od,tl)}

However, the remove operation should be necessary only when that specific
relation element causes a conflict between two arguments. In our case, if we
consider arguments As, sustaining the application of the initial rule Ry and Ag,
sustaining a slight modification of the rule Ry for navigation in aerodrome space,
one can see that they do not attack each other as they offer solutions for different
contexts: the Ag argument refers to collision avoidance outside the aerodrome
space, while the Ag argument considers the case of collision avoidance when
the UAV is nearby an aerodrome. A similar reasoning applies for the transition
(pf,tr), which will be possible only when the state variable a does not hold at
pf. Therefore, the PUs step can be left out and the updating of the model can
be done only through a PU; operation. The decision to turn left or turn right
will be taken in accordance to the value of the state variable a, which indicates
the presence or absence of an aerodrome in the vicinity of the UAV.

We illustrate the update operation by adding a link r7 from the od state
to the tl state. Additionally, we attach to each state the boolean state variable
a, such that it allows the UAV to perform only those transitions that comply
to the set of regulations in different contexts, respectively inside or outside the
aerodrome space. One can observe that if the UAV reaches the od state, then it
will decide to perform the transition to the next state that has the same value for
the state variable a as the od state. Therefore, if the UAV wav; detects another

approaching UAV wavy and it is outside the aerodrome space (—a), it will look
for the next possible state that has the same value for the a state variable. As
one can see from Figure 4, the state that complies to this condition is tr. Also,
if uwavy is in the pf state and the state variable a holds at that state, then the
possible transitions will be tl or od.

If uav, reaches the od state, while in the vicinity of an aerodrome, it will
perform a transition to the tl state, where the state variable a also holds. If uawvy
reaches pf then it will perform a transition to either ¢l or od states. The other
transitions from the model are not dependent on the state variable a, therefore
they will remain the same as in the initial model. By adding the condition —a
for reaching state tr, we can avoid transitions to that state when a holds for the
model.

The updated model M is presented below:

Ml = <{Od7 tTv tlvpf}a

{T07T17T25 3,74, T57T67T7}5

{(pfa {_'UQUQ}>’ (Oda {UG‘UQ})’ (tT, {—VLLG/UQ, _‘a})v (tlv {ﬁuav2})}>

0 e Ls{-uav,—a}

Fig. 4. Extended Kripke model for the UAV compliant with the new regulation.

By checking next the Ry, R, R3 and R4 formulas against M, the results
returned by HLMC showed that they hold for the updated model.

The illustrated example captures a simple scenario for UAV missions, but we
argue that more complex conflicting situations can be handled by the presented
argumentation framework.

5 Discussion and Related Work

A tighter connection between argumentation frameworks and model checking
is given by means of modal logic. Basic notions of argumentation theory like
acceptability, admissibility, complete or stable extensions have been formalized
in the modal logic K extended with universal modality [11]. Consequently, the
relationship between dialogue games and model checking games has been fur-
ther investigated, where model checking games have been used to prove that an
argument belongs to a certain extension of the argumentation framework. Our
research is in the line opened by Grossi [12,11] on interleaving argumentation
theory with modal logics. The approach of Grossi translates an argumentation
framework into a Kripke structure, while in our case we use structured arguments
aiming at automatic model repair.

An orthogonal connection between model checking and argumentation theory
is given by assurance cases in the Goal Structuring Notation (GSN). In this
software engineering related approach, the arguments use the outputs of model
checking as evidence to support general claims (or goals) like safety in different
operative contexts. Thus, the safety argumentative cases in GSN is based on
arguments on top of model checking. In our case, after each argumentation step,
the new model is verified against the available specifications.

Program verification is used in [7] to prove that a rational agent always acts
in line with the specifications and never chooses actions it believes that lead to
unsafe situations. Hence, the verification regards the decisions of the agent and
not the effects of these decisions in the environment. Thus an agent behavior
is considered safe if all the available relevant information has been used to take
the best decision for the moment. The computation tree logic is applied on the
BDI model to verify sentences like: “the agents choose action they believe to be
good”, or “the agents never select an intention they believe will lead to something
bad”. In our case, the checker would verify that a proper argumentation tree has
been generated for each decision, where “proper” means that the dialectical tree
should satisfy specific requirements.

Checking of temporal properties of a model has been the focus of many re-
search work. Linear Temporal Logics has been widely used in this direction.
However, the advantages it brings on what it concerns the use of temporal oper-
ators is sometimes shadowed by the limitations encountered on what it concerns
the knowledge and state based representation of the model. It lacks mechanisms
for naming states, for accessing states by names, and for dynamically creating
new names for states [8]. Hybrid Logics [13] comes as a solution in this direc-
tion as it allows to refer to states in a truly modal framework, mixing features

from first-order logics and modal logics. But hybridization is not simply about
quantifying over states. Rather, hybridization is about handling different type
of information in a uniform way [3]. This is useful in model checking where we
need to combine different types of information to be verified against a model.

6 Conclusion

In this paper we presented preliminary work on applying argumentation theory
to the task of model repair. We proposed using Defeasible Logic Programming
for hybrid logics model update. In particular we view a Hybrid Kripke model
as a description of the world that we are interested in and the update on this
Kripke model occurs when the system has to accommodate some newly desired
properties or norm constraints. The argumentation theory then acts as a control
mechanism during the adaptive process. The main application of our approach
is in autonomous systems, which should safely adapt their behavior to the new
specifications. We presented a case study where our proposal is applied to as-
sisting the flight decisions in an unmanned aerial vehicle. As part of our current
research work we are formalizing these preliminary ideas, considering also com-
munication between unmanned aerial vehicles.

Acknowledgments

Part of this work was supported by the Romania-Argentina Bilateral Agreement
entitled “ARGSAFE: Using argumentation for justifying safeness in complex
technical systems” (MINCYT-MECTS Project RO/12/05) and Universidad Na-
cional del Sur, Argentina. Adrian Groza is supported by the intern research
project at Technical University of Cluj-Napoca, Romania: "GREEN-VANETS:
Improving transportation using Car-2-X communication and multi agent sys-
tems”.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 821-868. Elsevier Amsterdam (2007)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in Artificial Intelligence. Artif.
Intell. 171(10-15), 619-641 (2007)

3. Blackburn, P., Tzakova, M.: Hybrid languages and temporal logic. Logic Journal
of IGPL 7(1), 27-54 (1999)

4. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S., Katsaros, P.: Abstract model
repair. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods, Lecture Notes
in Computer Science, vol. 7226, pp. 341-355. Springer Berlin Heidelberg (2012)

5. Chesnevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32(4), 337-383 (Dec 2000)

6. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking trun-
cated paths. Journal of Logic and Computation 21(6), 1217-1256 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Communica-
tions of the ACM 56(9), 84-93 (2013)

Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application
to semistructured data). Journal of Applied Logic 4, 279-304 (2006)

Garcia, A., Simari, G.: Defeasible Logic Programming an Argumentative Approach.
Theory and Prac. of Logic Program. 4(1), 95-138 (2004)

Graydon, P., Habli, I., Hawkins, R., Kelly, T., Knight, J.: Arguing conformance.
Software, IEEE 29(3), 50-57 (2012)

Grossi, D.: On the logic of argumentation theory. In: Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems: Volume 1
- Volume 1. pp. 409-416. AAMAS ’10, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2010)

Grossi, D.: Argumentation in the view of modal logic. In: Argumentation in Multi-
Agent Systems, pp. 190-208. Springer (2011)

Lange, M.: Model checking for hybrid logic. Journal of Logic, Language and Infor-
mation 18(4), 465-491 (2009)

Letia, I.A., Groza, A.: Compliance checking of integrated business processes. Data
Knowl. Eng. 87, 1-18 (2013)

Rushby, J.: A safety-case approach for certifying adaptive systems. In: In ATAA
Infotech@Aerospace Conference, American Institute of Aeronautics and Astronau-
tics, John Rushby (2009)

Webster, M., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certifi-
cation of autonomous unmanned aircraft systems. In: Computer Safety, Reliability,
and Security, pp. 228-242. Springer (2011)

Webster, M., Fisher, M., Cameron, N., Jump, M.: Model checking and the certifica-
tion of autonomous unmanned aircraft systems. Tech. Rep. ULCS-11-001, Depart-
ment of Computer Science, University of Liverpool, Liverpool, United Kingdom
(2011)

Zhang, Y., Ding, Y.: CTL model update for system modifications. J. Artif. Intell.
Res.(JAIR) 31, 113-155 (2008)

