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Abstract

We study an investor’s optimal consumption and portfolio choice problem when he is con-

fronted with two possibly misspecified submodels of stock returns: one with IID returns and the

other with predictability. We adopt a generalized recursive ambiguity model to accommodate

the investor’s aversion to model uncertainty. The investor deals with specification doubts by

slanting his beliefs about submodels of returns pessimistically, causing his investment strategy

to be more conservative than the Bayesian strategy. This effect is especially strong when the

submodel with a low Bayesian probability delivers a much smaller continuation value. Unlike

in the Bayesian framework, the hedging demand against model uncertainty may cause the in-

vestor’s stock allocation to decrease sharply given a small doubt of return predictability, even

though the expected return according to the VAR model is large. Adopting the Bayesian strat-

egy can lead to sizable welfare costs for an ambiguity-averse investor, especially when he has a

strong prior of return predictability.
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1. Introduction

One of the most debated questions in recent financial research is whether asset returns or equity

premia are predictable.1 This question is of significant importance for portfolio choice. If asset

returns are independently and identically distributed (IID) over time, then the optimal asset allo-

cation is constant over time (Merton (1969) and Samuelson (1969)). However, if asset returns are

predictable, then the optimal asset allocation depends on the investment horizon and the predic-

tive variables (Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999) and Kim and

Omberg (1996)). Economists have different views on whether asset returns are predictable. Welch

and Goyal (2008) argue that the existing empirical models of predicting asset returns do not outper-

form the simple IID model both in sample and out of sample, and thus are not useful for investment

advice. Campbell and Thompson (2008) argue that the empirical models of predictability can yield

useful out-of-sample forecasts if one restricts parameters in economically justified ways. Cochrane

(2008) points out that poor out-of-sample performance is not a test against the predictability of

asset returns.

While many estimation models deliver significant variations in expected returns, the predictive

relation is statistically weak and unstable. The estimated predictability coefficient is typically not

quite significant and R2 is generally low. In addition, the sample period and predictive variables are

important for regression performance. This suggests that the estimation models may be misspec-

ified. The contrast between the economic significance of various return predictability models and

their marginal statistical significance presents a dilemma for investors. The significant variation in

expected returns predicted by these models implies aggressive market timing strategies, which can

be very costly if they turn out to be wrong.

How should a long-term investor make consumption and portfolio choice decisions when facing

alternative possibly misspecified models of asset returns? To address this question, we build a

dynamic model in which an investor is concerned about model misspecification and averse to model

uncertainty.2 Following most papers in the portfolio choice literature, we consider a simple environ-

ment in which the investor allocates his wealth between a risky stock and a risk-free bond with a

constant real interest rate. We depart from this literature and the rational expectations hypothesis

by assuming that there are two submodels of the stock return process: an IID model and a vector

autoregressive (VAR) model. For simplicity, we adopt the (demeaned) dividend yield as the single

predictive variable in the VAR estimation and abstract away from parameter uncertainty. The

investor is unsure which one is the true model of the stock return, and thus faces a model selection

problem. The investor can learn about the asset return model by observing past data.

The standard Bayesian approach to this learning problem is to impose a prior over the possible

1For an example, see the July 2008 issue of the Review of Financial Studies.
2Our notion of model uncertainty is in the sense of Knightian uncertainty or ambiguity in that no known probabil-

ities are available to guide choices. A classical example to illustrate ambiguity and ambiguity aversion is the Ellsberg
Paradox (Ellsberg (1961)).
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stock return submodels. The posteriors and likelihoods are derived by Bayesian updating. They

can be reduced to a single predictive distribution by Bayesian averaging. One can then solve

the investor’s decision problem using this predictive distribution in the standard expected utility

framework (see Barberis (2000), Pastor and Stambaugh (2012), Wachter and Warusawitharana

(2009), and Xia (2001)). We depart from this Bayesian approach in that we assume that posteriors

and likelihoods cannot be reduced to a predictive distribution in the investor’s utility function. This

irreducibility of compound distributions captures attitudes towards model uncertainty or ambiguity,

as discussed by Segal (1987), Klibanoff, Marinacci, and Mukerji (2005, 2009), Hansen (2007), Seo

(2009), Hayashi and Miao (2011) and Ju and Miao (2012). The standard Bayesian approach implies

ambiguity neutrality.

To accommodate model ambiguity and ambiguity aversion, we adopt a recursive ambiguity

utility model recently proposed by Hayashi and Miao (2011) and Ju and Miao (2012), who generalize

the model of Klibanoff, Marinacci, and Mukerji (2005, 2009). This generalized recursive ambiguity

model is tractable in that it is smooth and allows for flexible parametric specifications, e.g., a

homothetic functional form, as in Epstein and Zin (1989). We may alternatively interpret this

utility model as a model of robustness in that the investor is averse to model misspecification

and seeks robust decision making. We find that an ambiguity-averse investor slants his beliefs

towards the submodel of stock returns that delivers the lowest continuation value. The endogenous

evolution of these pessimistic beliefs has important consequences in the consumption and portfolio

choice decision and welfare implications.

We calibrate the ambiguity aversion parameter using thought experiments related to the Ells-

berg Paradox (see Halevy (2007) and the references cited therein). Our calibrated value is consistent

with the experimental finding reported by Camerer (1999), which suggests that the ambiguity pre-

mium is typically about 10 to 20 percent of the expected value of bets. We use our calibrated value

of the ambiguity aversion parameter, the standard value of risk aversion parameter, and economet-

ric estimates of the stock return process to solve an ambiguity-averse investor’s decision problem

numerically. We refer to the optimal stock allocation rule for an ambiguity-averse investor as the

robust strategy. We compare this robust strategy with three other investment strategies widely

studied in the literature: the IID strategy, the VAR strategy, and the Bayesian strategy. The IID

and VAR strategies refer to the optimal investment strategies when the investor knows for sure

that the stock return follows an IID model and a VAR model, respectively. The Bayesian strategy

refers to the optimal investment strategy under Epstein-Zin utility in the Bayesian framework.3

We show that the robust stock allocation depends on the investment horizon, the beliefs about

the model of stock returns, and the predictive variable. Compared to the Bayesian strategy with

identical values of the intertemporal elasticity of substitution and the risk aversion parameter, the

robust strategy is more conservative in that it recommends an ambiguity-averse investor to hold less

3Assuming that the investor maximizes expected utility from next-period wealth, Kandel and Stambaugh (1996)
study myopic strategy in a Bayesian framework.
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stocks than a Bayesian investor, inducing more nonparticipation in the stock market. To understand

the differences between the Bayesian and the robust strategies, we first review the portfolio rule

under the Bayesian strategy studied by Xia (2001) for the case of parameter uncertainty. The

Bayesian stock demand can be decomposed into a myopic demand and an intertemporal hedging

demand. The myopic demand depends on the expected return, which is the weighted average of

the expected returns from the two submodels of stock returns. The hedging demand can be further

decomposed into two components. The first component is the hedging demand associated with

the predictive variable. This component is analyzed by Campbell and Viceira (1999) and Kim

and Omberg (1996) in settings without model uncertainty. The second component is the hedging

demand against model uncertainty. High realized returns lead the Bayesian investor to shift his

posterior beliefs towards (away from) the VAR model when the predictive variable is sufficiently

large (small), which may make this hedging demand negative (positive).

What makes the robust strategy different from the Bayesian strategy is that an ambiguity-

averse investor effectively makes investment decisions using endogenously distorted beliefs, instead

of the actual predictive distribution. For a given nondegenerate prior, the distortion in beliefs is

large when the difference in continuation values under the two submodels of stock returns is large.

In this case, an ambiguity-averse investor is concerned about the potential large utility loss due

to model misspecification and hence shifts his beliefs towards the submodel that delivers a lower

continuation value. Consequently, both the myopic and the hedging demands implied by the robust

strategy can be quite different from those implied by the Bayesian strategy.

Given a nondegenerate prior, large differences in continuation values under the VAR and IID

submodels of stock returns occur when the predictive variable takes relatively high or low values,

causing large differences between the expected returns under the two submodels. If the submodel

that delivers a significantly worse outcome has a small Bayesian probability, then the distorted

belief is very sensitive to small changes in the Bayesian posterior, inducing a large negative hedging

demand against model uncertainty. This negative hedging demand lowers stock allocation signifi-

cantly. For example, when the predictive variable takes a large value and the Bayesian probability

of the VAR model is high, a small shift of the Bayesian belief towards the VAR model following

a high realized stock return causes a much larger shift of the distorted belief. Thus, the negative

hedging demand against model uncertainty under the robust strategy is much larger than that

under the Bayesian strategy. Consequently, an ambiguity-averse investor’s stock demand may be

only half as much as the Bayesian investor’s or less, and is even lower than what is delivered under

the IID strategy.

An important finding of our paper is that the robust and the Bayesian strategies may deliver

different market timing behavior and different stock allocations over time, both quantitatively and

qualitatively. First, take a sufficiently small prior probability of the IID model as given. The stock

allocation rises with the predictive variable under the Bayesian strategy but declines with it under

the robust strategy for a wide range of values of the predictive variable. Second, take a sufficiently
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large value of the predictive variable as given. If the investor believes that the stock return follows

the VAR model for sure, then he would invest all his wealth in the stock. According to the Bayesian

approach, the investor’s stock allocation should decrease monotonically as his prior probabilities

of the IID model rises. In contrast, we show that a very small prior probability of the IID model

can lead an ambiguity-averse investor to decrease his stock allocation sharply and then to increase

it gradually as the prior probability of the IID model rises. The large negative hedging demand

against model uncertainty under the robust strategy plays a key role in these two results.

To evaluate the welfare cost of adopting the Bayesian strategy for an ambiguity-averse investor,

we compute the wealth compensation that leaves him indifferent between adopting the Bayesian

and the robust strategies. We find that welfare costs depend crucially on the values of the predictive

variable and the prior probabilities. They are large when the predictive variable takes large values

and the prior probability of the VAR model is large. In this case, the welfare costs are more than

15 percent of initial wealth.

We emphasize that our findings of large welfare costs and large differences between the Bayesian

and robust strategies are empirically relevant and apply to ambiguity-averse investors with strong

priors about the VAR model of stock returns. This model seems to be favored in the data, but

there is still a small Bayesian probability that the IID model is on the table in a finite sample of

data. In addition, the dividend-price ratio – the predictive variable used in our study – rose in

recent years, especially during the recent recession.

Our paper is related to a large literature on the portfolio choice problem (see Campbell and

Viceira (2002) and Wachter (2010) for a survey). In addition to the papers cited above, other

papers using the Bayesian framework include Brennan (1998), Brandt, Goyal, Santa-Clara, and

Stroud (2005), Detemple (1986), Dothan and Feldman (1986), Gennotte (1986), Gollier (2004),

and Veronesi (1999), among others. These papers often study parameter uncertainty and do not

consider investors’ aversion to model uncertainty.

Our paper is more closely related to the literature on applications of ambiguity aversion prefer-

ences to the study of the portfolio choice problem (e.g., Cao, Wang, and Zhang (2005), Garlappi,

Uppal, and Wang (2007), Maenhout (2004), and Uppal and Wang (2003)). This literature typically

applies either the multiple-priors approach or the robust control approach. Some papers use one

of these approaches to study equilibrium asset prices (e.g., Anderson, Hansen, and Sargent (2003),

Chen and Epstein (2002), Epstein and Miao (2003), and Epstein and Wang (1994), Liu, Pan, and

Wang (2005)). Boyle, Garlappi, Uppal, and Wang (2010) and Cao, Han, Hirshleifer, and Zhang

(2011) use other models of ambiguity. All these papers do not allow for learning.

Epstein and Schneider (2007) and Miao (2009) introduce learning to the recursive multiple-

priors model. Unlike the present paper, they study a portfolio choice problem in which investors

are ambiguous about the mean stock return. Campanale (2011) also applies the multiple-priors

approach to quantitatively explain the stock market participation rates. Hansen (2007) and Hansen
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and Sargent (2007a,b) develop models of learning in the robust control framework. Hansen and

Sargent (2010) apply this framework to the study of the equilibrium price of model uncertainty.

They emphasize that fragile beliefs cause time-varying uncertainty premium. They refer to fragile

beliefs as responsiveness of pessimistic probabilities to the arrival of news, as determined by the

state dependent value functions that define what the consumer is pessimistic about. In our partial

equilibrium model, these fragile beliefs have important impact on portfolio choice decisions. In a

general equilibrium setup, Ju and Miao (2012) use the generalized recursive ambiguity utility model

to study the implications of fragile beliefs for asset pricing.

To the best of our knowledge, the present paper provides a first dynamic portfolio choice model

in which investors face a model selection problem using the generalized recursive ambiguity utility

model. As discussed in Hayashi and Miao (2011) and Ju and Miao (2012), this utility model

includes some other models of ambiguity as special cases, e.g., the recursive expected utility model

of Epstein and Zin (1989), the recursive smooth ambiguity model of Klibanoff, Marinacci, and

Mukerji (2009), the recursive multiple-priors model of Epstein and Wang (1994) and Epstein and

Schneider (2003), and the robust control model of Hansen and Sargent (2001, 2007b).

In particular, when the ambiguity aversion parameter approaches infinity, our generalized am-

biguity model approaches the limit of a version of the multiple-priors utility model. In this case,

the investor follows the worst-case scenario by adopting either the IID strategy when the predictive

variable is sufficiently large, or the VAR strategy when the predictive variable is sufficiently small.

This portfolio rule is the extreme case of our model.

The rest of the paper proceeds as follows. Section 2 presents the recursive ambiguity model.

Section 3 presents an ambiguity-averse investor’s decision problem. Section 4 conducts calibration.

Section 5 analyzes dynamic asset allocations. Section 6 conducts welfare costs analysis. Section 7

concludes. Appendices collect proofs and numerical methods.

2. Recursive Ambiguity Preferences

In this section, we introduce the recursive ambiguity utility model adopted in our paper. In a static

setting, this utility model delivers essentially the same functional form that has appeared in some

other papers, e.g., Chew and Sagi (2008), Ergin and Gul (2009), Klibanoff, Marinacci, and Mukerji

(2005), Nau (2006), and Seo (2009).4 These papers provide various axiomatic foundations and

interpretations. Our adopted dynamic model is based on Ju and Miao (2012) and is axiomatized

by Hayashi and Miao (2011). It is closely related to Klibanoff, Marinacci, and Mukerji (2005,

2009). Here we focus on the utility representation and refer the reader to the preceding papers for

axiomatic foundations.

4See Epstein (2010) for a recent critique of this model and Klibanoff, Marinacci and Mukerji (2012) for a reply.
Also see Hayashi and Miao (2011) for a related discussion.
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2.1. Utility

We start with a static setting in which a decision maker’s ambiguity preferences over consumption

are represented by the following utility function:

v−1

(∫
Π
v ◦ u−1

(∫
S
u (C) dπ

)
dµ (π)

)
, ∀C : S → R+, (1)

where u and v are increasing functions and µ is a subjective prior over the set Π of probability

measures on S that the decision maker thinks possible. When we define ϕ = v ◦ u−1, the utility

function in (1) is ordinally equivalent to the smooth ambiguity model of Klibanoff, Marinacci, and

Mukerji (2005):

Eµϕ (Eπu (C)) . (2)

A key feature of this model is that it achieves a separation between ambiguity, identified as

a characteristic of the decision maker’s subjective beliefs, and ambiguity attitude, identified as a

characteristic of the decision maker’s tastes. Specifically, ambiguity is characterized by properties

of the subjective set of measures Π. Attitudes towards ambiguity are characterized by the shape of

ϕ, while attitudes towards pure risk are characterized by the shape of u. In particular, the decision

maker displays risk aversion if and only if u is concave, while he displays ambiguity aversion if and

only if ϕ is concave or, equivalently, if and only if v is a concave transformation of u. Note that

there is no reduction between µ and π in general. It is this irreducibility of compound distribution

that captures ambiguity (Segal (1987)). When ϕ is linear, the decision maker is ambiguity neutral

and the smooth ambiguity model reduces to the standard expected utility model.

We now embed the static model (1) in a dynamic setting. Time is denoted by t = 0, 1, 2, ..., T,

where T is finite. The state space in each period is denoted by S. At time t, the decision maker’s

information consists of history st = {s0, s1, s2, ..., st} with s0 ∈ S given and st ∈ S. The decision

maker ranks adapted consumption plans C = (Ct)t≥0 , where Ct is a measurable function of st. The

decision maker is ambiguous about the probability distribution on the full state space ST . This

uncertainty is described by an unobservable parameter z in the space Z. The parameter z can be

interpreted in several different ways. It could be an unknown model parameter, a discrete indicator

of alternative models, or a hidden state that evolves over time in a regime-switching process.

The decision maker has a prior µ0 over the parameter z. Each parameter z gives a probability

distribution πz over the full state space. The posterior µt and the conditional likelihood can be

obtained by Bayes’ Rule. Following Jun and Miao (2012), we adopt the specification:

u (c) =
c1−γ

1− γ
, γ > 0, ̸= 1, (3)

v (x) =
x1−η

1− η
, η > 0, ̸= 1, (4)
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and consider the following homothetic recursive ambiguity utility function:

Vt (C) =
[
C1−ρ
t + β

{
v−1Eµtv ◦ u

−1Eπz,t [u (Vt+1 (C))]
}1−ρ] 1

1−ρ
, VT+1 = 0 (5)

where β ∈ (0, 1) is the subjective discount factor, 1/ρ is the elasticity of intertemporal substitution

(EIS), and γ and η are the coefficients of constant relative risk aversion and ambiguity aversion,

respectively. If η = γ, the decision maker is ambiguity neutral and (5) reduces to the standard

time-additive expected utility model. In this case, the posterior µt and the likelihood distribution

πz,t can be reduced to a predictive distribution, which is the key idea underlying the Bayesian

analysis. The decision maker displays ambiguity aversion if and only if η > γ. The coefficient

of relative ambiguity aversion may be measured by |(η − γ) / (1− γ)| , which is the coefficient of

relative risk aversion of ϕ (x) = v ◦ u−1 (x) = [(1− γ)x]
1−η
1−γ / (1− η) , x ∈ R.

When the decision maker displays infinite ambiguity aversion (η → ∞), we deduce from

Klibanoff, Marinacci, and Mukerji (2005) that (5) converges to a version of the recursive multiple-

priors model of Epstein and Schneider (2007):

Vt (C) = min
z

{
C1−ρ
t + βEπz,t

[
V 1−γ
t+1 (Ct+1)

] 1
1−γ

} 1
1−ρ

. (6)

In this case, the decision maker has multiple priors with Dirac measures and a single likelihood.

We may alternatively interpret the utility model defined in (5) as a model of robustness in

which the decision maker is concerned about model misspecification, and thus seeks robust decision

making. Specifically, each distribution πz describes an economic model. The decision maker is

ambiguous about which is the right model specification. He has a subjective prior µ0 over alternative

models. He is averse to model uncertainty, and thus evaluates different models using a concave

function v. We may also interpret u and v in (5) as describing source-dependent risk attitudes

(Chew and Sagi (2008)). That is, u captures risk attitudes for a given model distribution πz and

v captures risk attitudes towards model uncertainty.

2.2. How Large is Ambiguity Aversion Parameter?

Any new utility model other than the standard expected utility model will inevitably introduce some

new parameters. A natural question is: How does one calibrate these parameters? In general, there

are two approaches. First, one may derive equilibrium implications using the new utility model,

and then use market data to estimate preference parameters by matching moments or using other

econometric methods (e.g., Hansen and Singleton (1982)). Second, one may use experimental or

field data to estimate the new preference parameters, like the standard way to elicit the risk aversion

parameter. In our recursive ambiguity utility model (5), the new parameter is the ambiguity

aversion parameter η. We will follow the second approach to calibrate this parameter in the static
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setting (1).5 We acknowledge that this calibration strategy from static experimental evidence might

also be to some extent inconsistent with the dynamic setting with learning and predictability (see

Leippold et al. (2008) and Ju and Miao (2012)).

We elicit the ambiguity aversion parameter by introspection using thought experiments related

to the Ellsberg Paradox. Consider the following experiment similar to that in Halevy (2007).6

Suppose there are two urns. One urn contains 50 black balls and 50 white balls. The other urn

contains 100 balls, either all black or all white. But the exact composition is unknown to the

subjects. Subjects are asked to place a bet on the color of the ball drawn from each urn. The bet

on the second urn is placed before the color composition is known. If a bet on a specific urn is

correct, the subjects win a prize of d dollars. Otherwise, the subjects do not win or lose anything.

The experiments reported in Halevy (2007) show that most subjects prefer to bet on the first urn

over the second urn. Halevy (2007) also uses the Becker-DeGroot-Marschack mechanism to elicit

the certainty equivalent of a bet. As a result, one can compute the ambiguity premium as the

difference between the certainty equivalents of the bet on the first and the second urns. We can

then use the ambiguity premium to calibrate the ambiguity aversion parameter η.

Formally, we define the ambiguity premium as

u−1

(∫
Π

∫
S
u (c) dπdµ (π)

)
− v−1

(∫
Π
v

(
u−1

(∫
S
u (c) dπ

))
dµ (π)

)
. (7)

We then evaluate the bet in the previous experiment using the following parametric form: Let u

and v be given by (3) and (4), respectively. Let w be the decision maker’s wealth level. Suppose the

subjective prior µ = (0.5, 0.5) for the bet.7 For the bet on the second urn, Π has two probability

measures over the ball color: (0, 1) and (1, 0). We then derive the ambiguity premium as

(
0.5 (d+ w)1−γ + 0.5w1−γ

) 1
1−γ −

(
0.5 (d+ w)1−η + 0.5w1−η

) 1
1−η

, (8)

for η > γ. We may express the ambiguity premium as a percentage of the expected value of the bet

(d/2). Clearly, the size of the ambiguity premium depends on the size of a bet or the prize-wealth

ratio d/w. Table 1 reports the ambiguity premium for various parameter values. Panel A considers

the prize-wealth ratio of 1%. Panel B considers a smaller bet, with the prize-wealth ratio of 0.5%.

[Insert Table 1 Here.]

5Anderson, Hansen, and Sargent (2003) advocate to use model detection error probabilities to calibrate the absolute
ambiguity aversion parameter θ for ϕ (x) = −e−

x
θ in equation (2). They interpret θ as a robustness parameter. Because

our model is different from their model, we have not followed their calibration approach.
6See Strzalecki (2010) for a similar experiment. In an axiomatized model, he suggests the same approach as ours

to calibrate the ambiguity aversion parameter.
7Strictly speaking the bet deals with objective lotteries and the subjective probability measure may not be the

same as the objective measure. Seo’s (2009) utility model can accommodate the bet discussed in the paper. His
utility model gives the same expression as (8) for the ambiguity premium.
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Camerer (1999) reports that the ambiguity premium is typically in the order of 10-20 percent

of the expected value of a bet in the Ellsberg Paradox type experiments. Halevy (2007) finds a

similar value. Table 1 Panel A shows that the implied ambiguity premium falls in this range when

the ambiguity aversion parameter η is in the range of 50-90 and when the risk aversion parameter

γ is between 0 and 10. Our calibration depends crucially on the size of the bet. In experimental

studies, researchers typically consider small bets. For example, Halevy (2007) considers the prize

money of 2 or 20 Canadian dollars. It is likely that these prizes account for a very small fraction of

a subject’s wealth. In Panel B, when the prize-wealth ratio drops to 0.5%, even larger values of η

are needed to match the ambiguity premium from experimental studies. In our quantitative study

below, we focus on γ ∈ {2, 5, 10}. Based on the results from Table 1, we take three values (60, 80,

100) for η.

3. Decision Problem

We consider an investor’s consumption and portfolio choice problem in a finite-horizon discrete-

time environment. Time is denoted by t = 0, 1, ..., T. The investor is endowed with initial wealth

W0 in period zero, and his only source of income is his financial wealth. In each period t, he decides

how much to consume and how much to invest in the financial markets. We assume that there is

no bequest motive, so the investor consumes all his wealth CT =WT in period T .

3.1. Investment Opportunities

There are two tradeable assets: a risky stock and a risk-free bond. The stock has gross real stock

return Rt+1 from t to t + 1. The risk-free bond has a constant gross real return Rf each period.

Define log returns rt+1 = log (Rt+1) and rf = log (Rf ). Observing data of the risk-free rate, the

stock return and a predictive variable xt, the investor faces the following two model specifications:

• Model 1 (IID):

rt+1 − rf = m1 + εr1,t+1, (9)

xt+1 = ρ1xt + εx1,t+1, (10)

where the expected return (m1) is constant, and ε1,t+1 =
[
εr1,t+1, ε

x
1,t+1

]′
is normally dis-

tributed white noise with mean zero and covariance matrix:

Ω1 =

[
(σr1)

2 σrx1
σrx1 (σx1)

2

]
. (11)

• Model 2 (VAR):

rt+1 − rf = m2 + bxt + εr2,t+1, (12)
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xt+1 = ρ2xt + εx2,t+1, (13)

where the conditional expected return (m2 + bxt) varies with the predictive variable, and

ε2,t+1 =
[
εr2,t+1, ε

x
2,t+1

]′
is normally distributed white noise with mean zero and covariance

matrix

Ω2 =

[
(σr2)

2 σrx2
σrx2 (σx2)

2

]
. (14)

Assume that ε1,t+1 is independent of ε2,t+1. We estimate the parameters of both models using

the same historical data, which implies m1 = m2, ρ1 = ρ2 and σx1 = σx2 . Hence, we will drop the

subscripts for m, ρ and σx in the remainder of the paper. But generally σrx1 ̸= σrx2 and σr1 ̸= σr2 so

that the above two model specifications are not nested.

More generally, xt may be a vector of predictive variables. In our empirical application in

this paper, we will focus on the cases with a single predictive variable. The investor faces model

uncertainty because he is concerned that both of the above two models of stock returns may be

misspecified. He does not know which of these two models generates the data. He can learn about

the true model by observing past data. During the process of learning, he is averse to model

uncertainty. To capture his aversion to model uncertainty, we adopt the recursive ambiguity model

presented in Section 2 and assume that the investor’s utility function is given by (5).

Alternatively, one may assume a regime switching structure in which the degree of return

predictability is time-varying and agents learn about the regime over time. For example, Veronesi

(1999, 2000) and Ju and Miao (2012) assume that aggregate consumption follows a regime switching

process in general equilibrium models. By contrast, this paper assumes that the agent faces two

submodels of stock returns in a partial equilibrium framework and has ambiguous beliefs about

which one is the true model.

One may also assume that both of the two submodels of stock returns contain predictability,

but with different properties in the error distribution of stock returns and/or dividend yields.8 To

the extent that the two submodels would deliver large difference in continuation value, the results

of the paper will likely hold overall.

3.2. Bayesian Posterior Dynamics

Let µt = Pr
(
z = 1|st

)
denote the posterior probability that Model 1 is the true model for the

return process, given the history of data st = {(r0, x0) , (r1, x1) ..., (rt, xt)}. By Bayes’ Rule, we can

derive the evolution of µt :

µt+1 =
µtL1,t+1

µtL1,t+1 + (1− µt)L2,t+1
, (15)

8See Camponovo et al. (2012) for a justification of this approach.
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where for st+1 = [rt+1, xt+1]
′ ,

Lz,t+1 =
1

2π |Ωz|1/2
exp

[
−1

2
(st+1 −mz,t)

′Ω−1
z (st+1 −mz,t)

]
, z = 1, 2 (16)

and

m1,t = [rf +m, ρxt]
′ , (17)

m2,t = [rf +m+ bxt, ρxt]
′ . (18)

The intuition for how the investor updates his Bayesian beliefs after observing the data of the

predictive variable and the stock return is as follows. The expected return is constant according

to the IID model, but it depends on the predictive variable in the VAR model. Assume that the

volatilities of returns are similar in the two models (which is true in our estimation below). If

the predictive variable is above average (i.e., xt > 0), the VAR model will predict above average

returns. A high realized return will be more likely in the VAR model than in the IID model.

Thus, the observation of a high stock return makes the investor revise downward his belief about

the IID model (µt+1). However, if the predictive variable is below average (i.e., xt < 0), then the

observation of high stock return is more consistent with the IID model, causing the investor to

revise µt+1 upward. This updating process is important for understanding the hedging demand

analyzed in Section 5.1.

3.3. Optimal Consumption and Portfolio Choice

Let Wt and ψt denote respectively the wealth level and the portfolio share of the stock in period t.

We can then write the investor’s budget constraint as

Wt+1 = Rp,t+1 (Wt − Ct) , (19)

where

Rp,t+1 = Rt+1ψt +Rf (1− ψt)

is the portfolio return. We suppose that there are short-sale and margin restrictions such that

ψt ∈ [0, 1] . Otherwise, wealth and consumption may be negative when ψt is negative or larger

than 1 because Rt+1 can go to positive infinity or zero. The investor’s problem is to choose a

consumption plan {Ct}Tt=0 and a portfolio plan {ψt}
T
t=0 so as to maximize his utility given by

(5). We derive the investor’s decision problem using dynamic programming. In each period t, the

investor’s information may be summarized by three state variables: wealth level Wt, the predictive

variable xt, and the Bayesian belief µt. Let Jt (Wt, xt, µt) denote the value function. Then it satisfies
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the Bellman equation:

Jt (Wt, xt, µt) = max
Ct>0,ψt∈[0,1]

[
C1−ρ
t + β

{
µt

(
E1,t

[
J1−γ
t+1

(
Wt+1, xt+1, µt+1

)]) 1−η
1−γ

(20)

+ (1− µt)
(
E2.t

[
J1−γ
t+1

(
Wt+1, xt+1, µt+1

)]) 1−η
1−γ

} 1−ρ
1−η

 1
1−ρ

,

subject to the budget constraint (19), the dynamics of xt (10) or (13), and the Bayesian belief

dynamics (15). Here, E1,t is the conditional expectation operator conditioned on information avail-

able in period t, when the IID model (Model 1) is the true model for the stock return rt+1. In this

case, we substitute equations (9)-(10) for (rt+1, xt+1) into (15), and then substitute the resulting

expression for µt+1 into E1,t

[
Jt+1

(
Wt+1, xt+1, µt+1

)]
. Similarly, E2,t is the conditional expectation

operator conditioned on information available in period t, when the VAR model (Model 2) is the

true model for the stock return rt+1. In this case, we substitute equations (12)-(13) for (rt+1, xt+1)

into (15), and then substitute the resulting expression for µt+1 into E2,t

[
Jt+1

(
Wt+1, xt+1, µt+1

)]
.

In Appendix A (also see Ju and Miao (2012)), we derive the following Euler equation when the

optimal portfolio weight ψ∗
t is an interior solution in (0, 1):

Et [Mz,t+1 (Rt+1 −Rf )] = 0, t = 0, 1, . . . , T − 1, (21)

where Mz,t+1 denotes the pricing kernel for the recursive smooth ambiguity utility model, which is

given by:

Mz,t+1 =

(
β

(
Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

−1

p,t+1

Ez,t

(β(Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

p,t+1

− η−γ
1−γ

. (22)

In period T, the investor consumes all his wealth CT = WT and the portfolio choice has no conse-

quence. When γ = η, the investor is indifferent to ambiguity and the model reduces to the standard

expected utility model. We then obtain the familiar Euler equation for the power utility function.

When the investor is averse to model ambiguity, the standard pricing kernel is distorted by a mul-

tiplicative factor in (22). To interpret this distortion, we normalize the multiplicative factor and

show in Appendix A that the Euler equation can be written as:

0 = µ̂tE1,t

(β(Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

−1

p,t+1 (Rt+1 −Rf )

 (23)

+(1− µ̂t)E2,t

(β(Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

−1

p,t+1 (Rt+1 −Rf )

 ,

12



where µ̂t is given by:

µ̂t =
µt
(
R1
t (Jt+1)

)−(η−γ)

µt
(
R1
t (Jt+1)

)−(η−γ)
+ (1− µt)

(
R2
t (Jt+1)

)−(η−γ) , (24)

and the term

Ri
t(Jt+1) ≡ Ei,t

[
J1−γ
t+1

] 1
1−γ

gives the certainty equivalent continuation value associated with submodel i. We interpret µ̂t as

the distorted belief about the IID model.

Equation (23) implies that an ambiguity-averse investor makes decisions as if he has distorted

beliefs µ̂t in a Bayesian framework. We shall emphasize that µ̂t is endogenous (preference depen-

dent) in our model and cannot be generated from a Bayesian posterior according to (15) using

any prior µ0 given the history of data st. In addition, the pricing kernel (22) cannot be generated

from any Bayesian model. Thus, our model cannot be reduced to a Bayesian framework and is not

equivalent to any recursive expected utility model.

Equation (24) is key to understanding how an ambiguity-averse investor’s belief is distorted.

We rewrite it as:

µ̂t =
µt

µt + (1− µt)
(
R2

t (Jt+1)

R1
t (Jt+1)

)−(η−γ) . (25)

Suppose that the investor obtains higher certainty equivalent continuation value when data are

generated by the VAR model than by the IID model, i.e., R2
t (Jt+1) > R1

t (Jt+1). If η > γ, then

equation (25) implies that µ̂t > µt. That is, an ambiguity-averse investor attaches more weight on

the IID model than does a Bayesian investor. The opposite is true when the IID model generates

a higher certainty equivalent continuation value. Thus, the ambiguity-averse investor expresses his

concerns about model misspecification by slanting his beliefs towards the “worse model,” the one

that implies a lower certainty equivalent continuation value.

Equation (25) also shows that the amount of distortion in beliefs is large when the difference

between the certainty equivalent continuation values under the two submodels of stock returns is

large (holding µt fixed). This case happens when the conditional expected return under the VAR

model is far from the unconditional mean; that is, when xt takes large positive or negative values.

The amount of distortion is especially large when the Bayesian belief also favors the submodel

with a higher certainty equivalent continuation value. For example, when xt takes a large positive

value and µt is small, the Bayesian belief attaches a high probability to the VAR model of the

stock return which gives a much higher expected stock return than the IID model. In this case,

an ambiguity-averse investor is concerned that the IID model might be the true model of the stock

return, which may generate a large utility loss. He then pessimistically slants his belief heavily

toward the IID model, generating a high µ̂t. When xt takes a large negative value and µt is large,
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the ambiguity-averse investor fears that the VAR model is the true model of the stock return

and hence adjusts his belief about the IID model downward aggressively. In both cases, the large

distortions in beliefs lead to large differences in investment strategies between an ambiguity-averse

investor and a Bayesian investor.

Does a more ambiguity-averse investor invest less in the stock? Not necessarily, as shown by

Gollier (2011) in a static portfolio choice model. The intuition is simple. The effect of ambiguity

aversion is reflected by a pessimistic distortion of beliefs about the model of the stock return

process. A change of the subjective distribution of asset payoffs may not induce the investor to

demand the asset in a monotonic way. For example, Rothchild and Stiglitz (1971) show that an

increase in the riskiness of an asset’s payoffs does not necessarily reduce the demand for this asset

by all risk-averse investors. In our dynamic portfolio choice problem, we cannot derive analytical

results of an ambiguity-averse investor’s portfolio choice, we thus use numerical solutions to conduct

comparative static analyses.

4. Calibration

In order to provide quantitative predictions, we need to calibrate parameters and solve the calibrated

model numerically. In Section 4.1, we discuss how to estimate models of stock returns specified in

Section 3.1. In Section 4.2, we then calibrate preference parameters. In Appendix B, we present

the numerical method.

4.1. Data and Model Estimation

There is a large literature documenting that stock returns are forecastable (see references cited in

Campbell and Thompson (2008) and Welch and Goyal (2008)). The predictive variables include

valuation ratios, payout ratios, short rates, slope of the yield curve, consumption-wealth-income

ratio, and other financial variables.

Researchers typically use a VAR system as in (12)-(13) to capture predictability. We estimate

this system and the IID model (9)-(10) using annual data for the U.S. stock market over the period

1927-2010. For stock returns, we use the log returns (cum-dividend) of the CRSP value-weighted

market portfolio (including stocks from the NYSE, AMEX and NASDAQ). We roll over the 90 Day

T-Bill return series from the CRSP Fama Risk-Free Rate file to compute the annual risk-free rates.

All nominal quantities are deflated using the Consumer Price Index (CPI). We find the mean real

risk-free rate rf = 0.0078. Panel A of Figure 1 plots the realized excess log returns (rt − rf ) over

the sample.

[Insert Figure 1 Here.]

Following the portfolio choice literature (e.g. Barberis (2000), Campbell and Viceira (2002),
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Xia (2001)), we choose the dividend yield as the predictive variable. We take the demeaned log

dividend yield (ldy) as xt in the regression. We compute it as the log difference between cum- and

ex-dividend returns of the CRSP value-weighted market portfolio. The demeaned series is plotted

in Panel A of Figure 1. This panel reveals that the log dividend yield dropped significantly during

the 1990s. Lettau and Van Nieuwerburgh (2008) argue that this change is a structural break in the

mean of dividend yields.

We estimate both the IID and the VAR models using the maximum likelihood method, with

the restriction that the unconditional means of the excess log stock returns and payout yields equal

their sample means. Table 2 reports the estimation results. We take the point estimates as our

parameter values in the IID and the VAR models. We use these parameter values to conduct

numerical analyses below.

[Insert Table 2 Here.]

Table 2 shows that the estimates of the persistence parameter ρ of the predictive variables are

identical to the OLS estimates and hence are identical in both the IID model and the VAR model.

In addition, the estimates of the volatility parameter σx are also identical in these two models. In

the IID model, even though the expected excess stock return is constant over time, the innovation

of the excess stock return is negatively correlated with that of the predictive variable.

In the VAR model, when using the log dividend yield (ldy) as the return predictor, we obtain

results similar to those reported in the literature (e.g., Cochrane (2008)). The coefficient b is 0.122,

with standard error 0.048. The R-squared is 6.26%. Moreover, the estimate of the coefficient b

is sensitive to the sample period. When estimated using 30-year moving windows (see Figure 1

of Lettau and Van Nieuwerburgh (2008)), the coefficient fluctuates between 0 and 0.5, and drops

substantially towards the late 1990s. These features highlight the statistical uncertainty confronting

investors who try to use dividend yields to predict stock returns.

The expected excess returns generated by the predictor have three properties. First, the volatil-

ity of the expected excess return is high (20.25 percent). Second, the persistence of the expected

returns is quite high. Since the predicted excess returns are assumed to be linear functions of the

predictor, they inherit the persistence of the predictor. Third, the correlation between unexpected

returns and innovations in expected returns is negative (−0.6223). The negative correlation means

that stock returns are mean-reverting: An unexpected high return today reduces expected returns

in the future, and thus high short-run returns tend to be offset by lower returns over the long

run. This negative correlation is what generates intertemporal hedging demand for the stock by

long-term investors. The predictive variable summarizes investment opportunities. The correlation

between the stock return and the predictive variable measures the ability of the stock to hedge time

variation in investment opportunities.

In Panel B of Figure 1, we plot the Bayesian posterior probabilities of the IID model using the
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historical data of stock returns and log dividend yields from 1927 to 2010. The prior in 1927 is set

at 0.25, 0.5 and 0.75, respectively. The three series of posterior probabilities all trend downward

over time, suggesting that the data is overall more consistent with time-varying expected returns.

For the log dividend yield, the posterior probability of the IID model is about 0.014 towards the end

of the sample when the prior is 0.5, and the rise in posterior probabilities in the 1990s is consistent

with the poor performance of the dividend yield as a predictor during that time.

Although Panel B of Figure 1 shows that historical data favor the VAR model over a long

sample period from 1927-2010, there is a small probability that the IID model is on the table for a

finitely-lived investor. In particular, the posterior about the IID model wanders in (0, 1) and is still

positive, when the prior of the IID model is 0.5. Since different model specifications imply drastically

different dynamics of stock returns, concerns about model misspecification, sample biases, and out-

of-sample performances will expose a finitely-lived investor to considerable model uncertainty. We

will show in Section 6 that the welfare costs of ignoring model uncertainty is sizable, even though

there is a small prior probability that the IID model is on the table.

Trojani et al. (2013) point out that a robust estimation approach is potentially important

to estimate a model explicitly seen by ambiguity-averse investors as potentially misspecified. In

particular, the difference in estimated utilities implied by the maximum likelihood and robust

estimators can be as large as the difference in utility between an ambiguity-averse agent and an

expected utility maximizer knowing the model parameters. Our paper’s results below are robust to

these features because they depend on the difference in continuation value under the IID and VAR

submodels, which is likely large for the given sample when predictive regressions are estimated by

robust methods.9

4.2. Preference Parameters

We need to assign values to preference parameters β, γ, ρ, and η. We set β = 0.99 so that it is

approximately equal to 1/(1+ rf ). We set γ = 5, ρ = 0.5, and η = 80 as the benchmark parameter

values. For comparison, we also consider γ ∈ {2, 5, 10} . These values are commonly used in

the macroeconomics and finance literature. Following Bansal and Yaron (2004), we set ρ = 0.5,

implying EIS is equal to 2.10 There is no independent study of the ambiguity aversion parameter

η in the literature. We use the hypothetical experiment described in Section 2.2 to calibrate this

parameter. As discussed there, we take η ∈ {60, 80, 100}. When η = γ, our model reduces to

the standard Epstein-Zin model in the Bayesian framework. Finally, we consider a T = 40 years

investment horizon.

9We thank an anonymous referee for making this point to us.
10We have also considered various other values of ρ and found the optimal stock allocation is not sensitive to

changes in ρ. This result is available upon request. Campbell and Viceira (1999) find a similar result.
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5. Dynamic Asset Allocation

In this section, we analyze how learning under ambiguity affects dynamic asset allocation. We

first examine its effects on the hedging demand, and compares that with the hedging demand for

a Bayesian investor with Epstein-Zin preferences. We then study how learning under ambiguity

alters the market timing, uncertainty, and horizon effects often analyzed in the Bayesian framework.

Following most papers in the portfolio choice literature, we focus on the case in which the dividend

yield is the single predictive variable in this section.

[Insert Figure 2 Here.]

Before studying the portfolio implications, we first plot the distorted belief µ̂0 as a function of

the prior belief µ0 and the predictive variable x0 for an ambiguity-averse investor with a 40 year

investment horizon. Consistent with the intuition discussed in Section 3, µ̂0 is slanted upward

in favor of the IID model when the VAR model predicts high expected returns (x0 is large), and

downward in favor of the VAR model when the VAR model predicts low expected returns. In

contrast, there is relatively little distortion in beliefs when the predictive variable is close to its

mean.

The most significant distortion in beliefs occurs in two regions: (i) when the prior probability

of the VAR model is high (µ0 close to 0) and the expected return according to the VAR model is

also high (x0 is large); (ii) when the prior probability of the VAR model is low (µ0 is close to 1)

and the expected return according to the VAR model is low (x0 is small). In these regions, the

distorted belief µ̂0 is very sensitive to small changes in µ0. As discussed earlier, these are the cases

where the submodel that is deemed unlikely delivers particularly unfavorable outcomes relative to

the other submodel. These results are crucial for understanding the investment strategy of the

ambiguity-averse investor.

5.1. Portfolio Weights and Hedging Demand

As explained in Section 2, we can interpret our ambiguity model as a model of robustness. To

distinguish from other popular investment strategies studied in the literature and in the analysis

below, we refer to an ambiguity-averse investor’s optimal investment strategy as the robust strategy.

Let ψ∗
t be his optimal stock allocation in period t. We define ψMt as his myopic demand for the

stock, which is the optimal portfolio weight when the investor behaves myopically by choosing a

stock allocation to maximize the utility derived from his wealth in the next period. We then define

the ambiguity-averse investor’s hedging demand as ψHt ≡ ψ∗
t − ψMt .

The top panel of Table 3 reports the total stock demand ψ∗
0 of an investor with T = 40 years

investment horizon and with various values of risk aversion and ambiguity aversion parameters

(γ, η). Because ψ∗
0 is a function of the state vector (µ0, x0) , we also report the values of ψ∗

0 at
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various values of (µ0, x0) . When γ = η, the investor is ambiguity neutral and our model reduces to

the Epstein-Zin model in the Bayesian framework. In this case, we denote the total stock demand

as ψB0 and refer to this investment strategy as the Bayesian strategy.

[Insert Table 3 Here.]

The bottom panel of Table 3 reports the stock demands when the stock return is described

by the IID model (9)-(10) and the VAR model (12)-(13), respectively. The former investment

strategy corresponds to the case with µ0 = 1 and is studied by Merton (1969, 1971) and Samuelson

(1969). The latter corresponds to the case with µ0 = 0 and is similar to that derived in Campbell

and Viceira (1999) with the difference that we have imposed short-sale and margin constraints to

ensure nonnegative wealth. We refer to these two investment strategies as the IID strategy and the

VAR strategy, respectively. As is well known from these studies, the stock demand under the IID

strategy is constant over time. By contrast, the stock demand under the VAR strategy depends

on the investment horizon and the predictive state variable. In particular, it increases with the

predictive variable reflecting the market timing effect.

The top panel of Table 3 reveals that the risk aversion parameter γ has larger effects on the

optimal stock allocation than the ambiguity aversion parameter η. The optimal stock allocation is

very sensitive to the risk aversion parameter γ and decreases significantly when γ increases from 2

to 10. By contrast, the optimal stock allocation is less sensitive to the ambiguity aversion parameter

η, especially when the investor’s uncertainty about submodels is low (i.e. µ0 is close to 0 or 1), and

decreases with η for various values of the state variables (µ0, x0) considered in Table 3.

The difference between the robust and Bayesian strategies can be large. For example, an

ambiguity-averse investor with the ambiguity aversion parameter η = 80 and the risk aversion

parameter γ = 5 invests 42.6% of his wealth in the stock, which is about 20 percentage points less

than that for a Bayesian investor with Epstein-Zin utility with γ = η = 5, when they both assign

identical prior probabilities, µ0 = 0.1, to the IID submodel of stock returns and when the demeaned

predictive variable x0 = x30 ≡ 0.4504.11

Next, we turn to the analysis of the hedging demand. We decompose it into two components.

The first hedge component is associated with changes in the predictive variable xt. This component

has been analyzed by Campbell and Viceira (1999) and Kim and Omberg (1996). Recall that

the shock to the predictive variable is negatively correlated with the shock to future stock returns

(i.e., σrx < 0). This negative correlation implies that stocks tend to have high returns when

their expected future returns fall. Since the investor is normally long in stocks for large values of

the predictive variable, a decline in the expected future returns represents a deterioration of the

investment opportunity set. Since an investor with high risk aversion (γ > 1) wants to hedge the

risk of deteriorating investment opportunities by holding assets that deliver increased wealth when

11One standard deviation of xt is σx/
√

1− ρ2 = 0.4504.
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investment opportunities are poor, he has a positive hedging demand.12 If the expected excess

return (or xt) becomes sufficiently negative, the investor has an incentive to short stocks so that

the no short-sale constraint binds.

The second hedge component reflects the agent’s incentive to hedge against model uncertainty

(or changes in µt). This hedge component is negative and large when xt takes large positive

or negative values. The intuition is as follows. To hedge against the change in the investment

opportunity set, the investor wants to sell (buy) assets with payoffs positively (negatively) correlated

with it. When the investor observes a large positive value of xt, an unexpectedly high stock return

induces the investor to attach more weight on the VAR model as discussed in Section 3.2. The

persistence in xt then implies that returns are more likely to be high for a while. Thus, the future

investment opportunity set is positively correlated with the stock return, which induces a negative

hedging demand for the stock associated with model uncertainty. Conversely, if xt takes a large

negative value, an unexpectedly high stock return induces the investor to attach more weight on the

IID model. This also represents an improvement in investment opportunities because the expected

return under the IID model is higher than the VAR model when xt takes a large negative value.

As a result, the investor also has a negative hedging demand if xt takes a large negative value.

Although a similar decomposition appears in the standard Bayesian analysis (e.g., Xia (2001)),

ambiguity aversion affects both hedge components quantitatively, causing significant differences

between the robust and the Bayesian strategies. The component of the hedge demand against model

uncertainty is especially important in our model. As we have seen in Figure 2, concerns about model

misspecification lead to a pessimistic distortion in beliefs. When xt is large, an unexpectedly high

stock return not only shifts the Bayesian belief µt towards 0, but also lowers the distorted belief µ̂t.

When µt is sufficiently small, the investor is highly concerned about model misspecification, which

is reflected in the large and sensitive change of µ̂t with respect to small changes in µt (see Figure

2). Thus, a small change in µt induced by a change in stock returns can lead to a large change

in the distorted belief µ̂t, which amplifies the negative hedging demand against model uncertainty.

Similarly, the hedging demand against model uncertainty is also amplified when xt takes a large

negative value and µt is close to 1. Thus, we expect the difference between the robust strategy and

the Bayesian strategy to be most significant in these two cases.

[Insert Table 4 Here.]

To examine the hedging component quantitatively, we present the total hedging demand as a

percentage of the total stock demand for various values of (γ, η) and for various values of (µ0, x0)

in Table 4.13 The rows with γ = η correspond to the Bayesian strategy.

Table 4 reveals two interesting results. First, compared to the myopic demand, the hedging

12As discussed by Campbell and Viceira (1999) and Kim and Omberg (1996), an investor with low risk aversion
γ < 1 has a different hedging behavior. Here, we do not study the case with γ < 1.

13We are unable to present the two hedge components separately, because they do not admit analytical expressions.
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demand typically accounts for a small fraction of the total stock demand. In particular, for small

values of the risk aversion parameter and large values of predictive variables (e.g., γ = 2 and x0 > 0),

the myopic demand under both the Bayesian and the robust strategies accounts for almost all the

stock demand. The total hedging demands under both the Bayesian and the robust strategies are

relatively large when µ0 is small. In addition, they are negative when x0 takes a large positive value

and µ0 is small, reflecting the fact that the hedge component associated with model uncertainty

dominates the hedge component associated with changes in the predictive variable. The opposite

result holds when x0 takes a large negative value and µ0 is large.

Second, when the investor attaches a high prior on the VAR model (e.g., µ0 = 0.1) and when

the predictive variable takes a high value (e.g., x0 = 0.4504), an ambiguity-averse investor may

take a much larger short hedging position than a Bayesian investor. For example, the total hedging

demand is −16.7% of the total stock demand for an ambiguity-averse investor with γ = 5 and

η = 80, while it is 0.7%, 0.3% and −0.9 for a Bayesian investor with γ = 5, 5.764, and 10,

respectively. For the Bayesian investor, the negative hedging demand against model uncertainty is

dominated by the positive hedging demand against changes in the predictive variable. In addition,

the ambiguity-averse investor reduces his short hedging position quickly as the prior on the IID

model increases. For example, when µ0 increases from 0.1 to 0.9 given x0 = x30 = 0.4504, the

ambiguity-averse investor with γ = 5 and η = 80 reduces his short hedging position sharply from

16.7 to 0.5 percent of the total stock demand. By contrast, the Bayesian investor with γ = η = 5

changes his hedging position from 0.7 to −2.7 percent of the total stock demand.

5.2. Comparison with Epstein-Zin Utility

The fact that an ambiguity-averse investor chooses a more conservative investment strategy than

a Bayesian investor under the same values of relative risk aversion and intertemporal elasticity of

substitution is not surprising. However, it does beg the question of whether a high degree of risk

aversion for a Bayesian investor will have the same effect on the stock allocation as does ambiguity

aversion. We answer this question by computing the stock allocations for a Bayesian investor with

Epstein-Zin utility whose risk aversion parameter is selected to match the average portfolio weight

(about 33.3%) for an ambiguity-averse investor with γ = 5 and η = 80, conditional on µ0 = 0.5

(the average is taken with respect to the stationary distribution of x). The calibrated risk aversion

parameter is 5.764.

The results are shown in the last row of the top panel of Table 3 and 4. Conditional on

µ0 = 0.5, even though the initial average portfolio weight is identical, the robust strategy (with

γ = 5, η = 80) recommends more conservative stock allocations than the Bayesian strategy when

the dividend yield takes extreme values, e.g., x10 or x30, but more aggressive stock allocations for

middle values of dividend yields. The same feature also applies when the probability of the IID

model is low (e.g., when µ0 = 0.1). Results in Table 4 show that the cause of these differences is
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the difference in the hedging demand.

To further demonstrate the different portfolio implications of the Epstein-Zin utility and the

recursive smooth ambiguity utility under uncertainty about return predictability, we plot in Figures

3 and 4 the robust strategy with γ = 5 and η = 80 and the Bayesian strategy with Epstein-Zin

utility under various values of the risk aversion parameter γ. We fix the EIS at 1/ρ = 2 for all

strategies (the portfolio allocation is not sensitive to different values of EIS).

[Insert Figures 3-4 Here.]

Figure 3 shows that, when compared to the Bayesian strategy that has the same average portfolio

weight conditional on µ0 = 0.5 (achieved with the Epstein-Zin utility under γ = 5.764), the robust

strategy recommends more conservative stock allocations for extreme values of dividend yields and

more aggressive stock allocations for middle values of dividend yields than the Bayesian strategy

when µ0 is close to 0.5. As µ0 moves away from 0.5, the differences in the two strategies become

larger, with the robust strategy becoming more conservative than the Bayesian strategy whenever

the submodel of returns that is considered less likely predicts significantly lower expected returns

(i.e., when µ0 is small and x0 is large, or when µ0 is large and x0 is small).

Although a sufficiently high risk aversion parameter for the Epstein-Zin utility can reduce the

portfolio weight to the same level as the robust strategy for a particular initial state (µ0, x0) or to

the same initial average level, there are significant quantitative differences in the portfolio weights

in some states. We get similar results in Figure 4 when we fix the dividend yield and examine

the changes in portfolio weight against the beliefs. These numerical results show that one cannot

quantitatively replicate the portfolio strategy of an ambiguity-averse investor by using a model with

Epstein-Zin utility and higher risk aversion.

In addition, when µ0 is small (see Panels A and B of Figure 3), there are cases where the

stock allocation under the robust strategy decreases with the dividend yield, but the opposite is

true under the Bayesian strategy in the Epstein-Zin model for various values of the risk aversion

parameter. Also, when the dividend yield is high (see Panel D of Figure 4), the portfolio weight

decreases monotonically with µ0 for the Epstein-Zin utility with various values of γ, yet under

the robust strategy it falls sharply for small values of µ0 and then increases as µ0 increases. These

results are all due to the large negative hedging demand against model uncertainty analyzed before.

Although we do not have a theoretical proof, this non-monotonic pattern in portfolio weight never

happens in the Epstein-Zin model for a wide range of preference parameters we have examined.

5.3. The Market Timing Effect

An important implication of return predictability for the portfolio choice is market timing. That

is, the optimal stock allocation may depend on the current value of the predictive variable. Figure

5 shows the market timing effect by plotting the optimal stock allocation against the predictive

21



variable for various values of prior probabilities of the IID model of the stock return process. We

consider five investment strategies: the IID strategy, the VAR strategy, the Bayesian strategy with

γ = η = 5, the robust strategy with γ = 5 and η = 80, and the multiple-priors strategy with γ = 5

and η = ∞.

As is well known, the IID strategy does not have any market timing effect. The VAR strategy

advises the investor to invest more in the stock when the value of the predictive variable is higher.

In particular, for intermediate values of the predictive variable, the stock demand is approximately

linear, confirming the approximate analytical solution derived by Campbell and Viceira (1999).

When the predictive variable takes sufficiently large values, the investor invests all his wealth in the

stock because expected excess returns are too high. When the predictive variable takes sufficiently

small values, the investor does not hold the stock because expected excess returns are too low.14

By contrast, the Bayesian strategy implies that the optimal stock allocation first increases

with the predictive variable and then decreases with it. Xia (2001) obtains a similar result in

the Bayesian framework with parameter uncertainty. The intuition is that the negative hedge

component associated with model uncertainty dominates the positive hedge component associated

with the predictive variable, when the predictive variable takes sufficiently high values.

Compared to the Bayesian strategy, our robust strategy is more conservative in the sense that

it recommends the investor to invest less in the stock. In particular, the robust strategy curve

is obtained by bending the Bayesian strategy curve downward. When the demeaned predictive

variable takes low and negative values, an ambiguity-averse investor is more likely to not participate

in the stock market than a Bayesian investor. A similar result appears in the multiple-priors model

(e.g., Epstein and Schneider (2007)). When the demeaned predictive variable is close to zero, the

IID and VAR models of the stock returns are similar, and hence deliver similar continuation values

to the investor. As a result, the Bayesian and the robust strategies offer very similar portfolio

advice to the investor.

When the demeaned predictive variable takes large positive values, the robust strategy rec-

ommends a smaller stock allocation than both the VAR strategy and the Bayesian strategy. This

difference is particularly significant when µ0 is small, because, as we discussed before, the distortion

in beliefs is large when the predictive variable takes a large value and µ0 is small, which leads to

large (negative) hedging demand against model uncertainty. Panel A of Figure 5 shows that when

the predictive variable x0 is two standard deviations above the mean and when the prior probability

attached to the IID model is 0.05, the stock allocation advised by the Bayesian strategy is more

than twice as large as that advised by the robust strategy. Similarly, the stock allocation under

the robust strategy is again significantly lower than that under the Bayesian strategy when the

predictive variable takes a small value and µ0 is large.

[Insert Figure 5 Here.]

14Recall that we have imposed the short-sale and margin (borrowing) constraints such that ψt ∈ [0, 1] .
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Importantly, the robust strategy also implies qualitatively different market timing behavior than

the Bayesian strategy in some states. Figure 5 shows that there is a region of states (µ0 is not too

high and x0 is positive and not too large) such that the stock allocation under the Bayesian strategy

increases with the predictive variable, while the stock allocation under the robust strategy decreases

with it. This difference is particularly large for small µ0. The intuition is that in those states the

large negative hedging demand against model uncertainty under the robust strategy dominates the

positive hedging demand against changes in the predictive variable, but the opposite is true under

the Bayesian strategy.

Figure 5 also presents the investor’s investment strategy when he displays infinite ambiguity

aversion with his utility function given by the recursive multiple-priors model (6). This figure

illustrates that a more ambiguity-averse investor does not necessarily invest less in the stock. The

extremely ambiguity-averse investor invests according to the worst-case scenario. In particular,

he does not invest in the stock for sufficiently low values of the predictive variable because at

these values the VAR model of stock returns gives a lower continuation value. The investor invests

according to the IID strategy for sufficiently high values of the predictive variable because at

these values the IID model gives a lower continuation value. As a result, the portfolio rule of an

investor with infinite ambiguity aversion is constant whenever the value of the predictive variable

is sufficiently above average, which is qualitatively different from the robust strategy in our model.

Only for intermediate values of the predictive variable, the investor times the market by increasing

his stock allocations when the current value of the predictive variable increases.

5.4. The Uncertainty Effect

How does the investor’s stock allocation change when he has different initial prior over the IID

model of the stock return process? Figure 6 plots this uncertainty effect for the Bayesian strategy

with γ = η = 5 and the robust strategy with γ = 5 and η = 80 at various values of the predictive

variable. Panel A of this figure shows that under both strategies the investor does not invest in

the stock when he believes that the stock return is more likely to follow the VAR model (i.e., µ0

is small) and when the demeaned predictive variable takes a large negative value. In this case, the

stock is likely to have a negative expected excess return, and hence the short-sale constraint binds.

As the prior probability of the IID model rises, the investor starts to invest more in the stock, while

the robust strategy advises less stock allocation than the Bayesian strategy. Panel B has a similar

feature except that the short-sale constraint does not bind because the predictive variable takes a

larger value.

Panel C plots the case where the demeaned predictive variable takes one standard deviation. It

shows that under both the robust and the Bayesian strategies the investor starts with 100 percent

allocation of initial wealth in the stock when the prior probability of the VAR model is 1. As the

prior probability of the IID model rises, the investor starts to invest less in the stock. Again, the
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robust strategy advises less stock allocation than the Bayesian strategy.

Panel D of Figure 6 shows that the investor invests all his wealth in the stock when he believes

the stock return follows the VAR model (µ0 = 0) and when the predictive variable is two-standard-

deviation above the mean. In this case, the expected excess return under the VAR model is much

higher than under the IID model. Surprisingly, even if there is a very small prior probability

that the stock return follows the IID model, an ambiguity-averse investor will decrease his stock

allocation sharply from 100 percent to about 35 percent. This dramatic drop in the stock allocation

is due to the fact that the investor becomes extremely concerned about model misspecification

when the predictive variable takes a large value, and when the VAR model has a high Bayesian

probability. In this case, the hedging demand against model uncertainty can be quite large and

negative (see the discussion in Section 5.1 and Table 4). As the ambiguity-averse investor raises

his prior beliefs about the IID model, he gradually reduces his short hedging positions and starts

to invest more in the stock. This result is in sharp contrast to that obtained in the Bayesian

framework: Conditional on a high value of the predictive variable, a Bayesian investor decreases

his stock allocation monotonically when his prior probability of the IID model rises, which is mainly

driven by the fact that the expected stock return falls as more probabilities are assigned to the

lower IID return.

[Insert Figure 6 Here.]

5.5. The Horizon Effect

When stock returns are predictable, the optimal stock allocation depends on the investment horizon.

Figure 7 presents the horizon effect for the VAR strategy, the Bayesian strategy with γ = η = 5,

and the robust strategy with γ = 5 and η = 80, when we fix the belief at the value µt = 0.1 and

xt at a value in {−0.4504, 0, 0.4504} over time. Under the assumption of the VAR strategy, the

investor has complete confidence that the stock return follows the VAR model. In this case, because

the shocks to the expected returns and to the future returns are negatively correlated, the stock

appears to be less risky for a longer investment horizon. Thus, the VAR strategy recommends the

investor to invest more in the stock when he faces a longer investment horizon.

However, if the investor faces model uncertainty, the stock allocation may not be monotonically

increasing in the investment horizon. Consistent with Xia’s (2001) finding, the stock allocation

under the Bayesian strategy may decrease with the investment horizon. This case happens when

the predictive variable takes a high value as shown in panel C of Figure 7. The intuition is the

following: The horizon effect depends crucially on the intertemporal hedging demand. As we discuss

earlier, this hedging demand consists of two components having effects on opposite directions. When

the investment horizon is longer, the hedging component associated with model uncertainty is more

important. Because this hedge component is negative when the predictive variable takes a large

positive value, the investor invests less in the stock when he has a longer investment horizon.
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[Insert Figure 7 Here.]

Figure 7 reveals that the robust strategy implies a similar horizon effect to that under the

Bayesian strategy. The difference is that the robust strategy recommends a smaller stock alloca-

tion over time than the Bayesian strategy. The intuition is that an ambiguity-averse investor is

more concerned about model uncertainty and hence the hedging component associated with model

uncertainty is more negative. When the predictive variable x0 is equal to zero, the VAR model

and the IID model are very similar and hence both the robust strategy and the Bayesian strategy

advise similar stock allocations, as shown in Panel B of Figure 7. By contrast, when x0 = 0.4504,

the difference in continuation values between the IID and the VAR models is large, causing a large

difference in stock allocations between the Bayesian and the robust strategies, as shown in Panel

C of Figure 7.

6. Welfare Costs of Suboptimal Investment Strategies

In the previous section, we have shown that the robust strategy may give very different advice to

an ambiguity-averse investor than other popular investment strategies such as the IID strategy,

the VAR strategy, and the Bayesian strategy. These strategies maximize expected utility and are

not optimal to an ambiguity-averse investor. An important question is the following: How costly

is it to an ambiguity-averse investor if he does not follow the robust strategy when facing model

uncertainty? To study this question, we suppose that an ambiguity-averse investor follows one

of the preceding suboptimal investment strategies given that he has an ambiguity utility function

defined in (5). We then compute this investor’s value function under a suboptimal investment

strategy and compare it with the value function under the optimal robust investment strategy.

Let the initial value function implied by the suboptimal strategy k be Jk0 (W0, x0, µ0) , where

k ∈ {1, 2, 3} indexes one of the preceding three investment strategies. As is standard in the literature

(e.g., Campbell and Viceira (1999) and Xia (2001)), we define the welfare cost as the percentage

wealth compensation ∆k needed to leave the ambiguity-averse investor indifferent between the

suboptimal investment strategy and the optimal robust investment strategy, i.e.,

Jk0

(
W0

(
1 + ∆k

)
, x0, µ0

)
= J0 (W0, x0, µ0) , (26)

where J0 is the initial value function of an ambiguity-averse investor. Note that the welfare cost

∆k depends on the initial state (x0, µ0) . In Appendix B, we describe the method to compute the

welfare cost. For space limitation, here we only report the welfare cost of following the Bayesian

strategy rather than the robust strategy in Figure 8. Xia (2001) has already studied the welfare

implications for a Bayesian investor by comparing the IID, VAR, and Bayesian strategies. We do

not repeat this analysis here.15

15In results not reported here, we have computed welfare costs of adopting each of these investment strategies for
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[Insert Figure 8 Here.]

Figure 8 shows that welfare costs are sizable for small prior probabilities µ0 of the IID model

and large values of the predictive variable x0. In particular, Panel A of Figure 8 shows that welfare

costs can exceed 15 percent when an ambiguity-averse investor with (ρ, γ, η) = (0.5, 5, 60) adopts a

Bayesian strategy with (ρ, γ, η) = (0.5, 5, 5) by ignoring model ambiguity. Panel B shows that when

the ambiguity aversion parameter is increased to η = 100, welfare costs rise even higher. These high

welfare costs happen precisely when the investor believes that it has a high probability that the

stock return follows the VAR model and when the predictive variable takes high values. This result

is consistent with Figures 2–6. As we discussed earlier, for the state vector (µ0, x0) in that region,

the robust and the Bayesian strategies have both large qualitative and quantitative differences.

The intuition is that in that region the IID model of stock returns delivers a lower continuation

value to the investor, which leads him to slant his beliefs towards the IID model because of his

pessimistic behavior. Even though the Bayesian posterior favors the VAR model in the data as

shown in Figure 1, there is always a small probability that the IID model is on the table in a finite

sample of data. Concerning about model misspecification that may lead to a large utility loss,

the slanted subjective beliefs about the IID model can be far apart from the Bayesian beliefs. For

example, when µ0 = 0.04, the distorted belief µ̂0 ranges from about 0.2 to 0.6 when x0 takes values

between one and two standard deviations as shown in Figure 2. These large differences in beliefs

cause the large differences in investment strategies.

Figure 8 also shows that the welfare costs are also impressive (about 3 to 7 percent) for large

values of µ0 and small values of x0, although they are not as large as those in the previous case.

The intuition is similar. For this region of states, the VAR model leads to a smaller continuation

value because it implies small expected stock returns. The ambiguity-averse investor slants his

beliefs toward the VAR model, causing µ̂0 to be smaller than µ0 as shown in Figure 2.

For the remaining region of states, welfare costs are very small because both the IID and VAR

models of stock returns give similar continuation values to the investor. Model misspecification

does not lead to too large utility losses so that the investor is less concerned about it.

7. Conclusion

Whether the stock return is predictable is highly debated. In this paper, we study an investor’s

optimal consumption and portfolio choice problem when he is confronted with two possibly mis-

specified models of stock returns: the IID model and the VAR model. The investor does not know

which one is the true model and fears that both models may be misspecified. He learns about the

stock return model under ambiguity and his learning problem departs from the standard Bayesian

an ambiguity-averse investor using different measures of dividend yields and different parameter values. We find that
weflare costs of adopting the VAR strategy are extremely large. These results are available upon request.
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approach. He copes with the specification doubts by slanting his beliefs pessimistically. We find

that an ambiguity-averse investor’s robust investment strategy is qualitatively and quantitatively

different from some other investment strategies studied in the literature. In particular, the robust

strategy is more conservative than the Bayesian strategy. This effect is especially large for suffi-

ciently high or low values of the predictive variable. For low values of the predictive variable, an

ambiguity-averse investor is more likely to not participate in the stock market. For high values, the

robust strategy recommends much smaller stock holdings than the Bayesian strategy or the VAR

strategy.

In addition, when the prior probability of the IID model is small, there is a region of states such

that the robust strategy advises the investor to decrease his stock allocation with the predictive

variable while the Bayesian strategy advises the opposite. Another interesting finding is for the

case in which the predictive variable takes large values. In this case, even a small prior probability

of the IID model can lead an ambiguity-averse investor to decrease his stock allocation sharply

and then increase it gradually as the prior probability of the IID model rises. This is in contrast

to the Bayesian strategy which implies that the stock allocation decreases monotonically with the

prior probability of the IID model. The key intuition is that the ambiguity-averse investor slants

his belief heavily towards the IID model and this distorted belief is sensitive to small changes in

Bayesian probability. As a result, the hedging demand against model ambiguity is negative and

large when his prior probability of the IID model is small and when the predictive variable takes a

large value.

We also find that the welfare cost of adopting the Bayesian strategy for the ambiguity-averse

investor can be sizable. It is more than 15 percent of his initial wealth when the predictive variable

takes large values and when the prior probability of the IID submodel of stock returns is small. We

emphasize that our results of large welfare costs and large differences between the Bayesian and the

robust strategies are meaningful because they happen in the empirically relevant region of states

and apply to ambiguity-averse investors with strong priors about the VAR submodel.

In our model, we have assumed that the investor knows the parameters in the submodels of

stock returns. It would be interesting to extend our model to incorporate uncertainty about these

parameters. Such an extension would significantly complicate our analysis. We leave this extension

for future research.
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Appendices

A Proofs of Results in Section 3.3

We conjecture the value function takes the form:

Jt (Wt, xt, µt) =WtGt (xt, µt) , GT = 1. (A.1)

where Gt is a function to be determined. We substitute this conjecture into the Bellman equation

(20) to derive:

WtGt (xt, µt) = max
Ct>0,ψt∈[0,1]

[
C1−ρ
t + β

{
µt

(
E1,t

[
W 1−γ
t+1 G

1−γ
t+1

(
xt+1, µt+1

)]) 1−η
1−γ

(A.2)

+ (1− µt)
(
E2,t

[
W 1−γ
t+1 G

1−γ
t+1

(
xt+1, µt+1

)]) 1−η
1−γ

} 1−ρ
1−η

 1
1−ρ

.

We substitute the budget constraint (19) into the above Bellman equation to obtain:

WtGt (xt, µt) = max
Ct,ψt

[
C1−ρ
t + β (Wt − Ct)

1−ρHt (ψt, xt, µt;Gt+1)
] 1

1−ρ
, (A.3)

where we define

Ht (ψt, xt, µt;Gt+1) =

{
µt

(
E1,t

[
(Rt+1ψt +Rf (1− ψt))

1−γ G1−γ
t+1

(
xt+1, µt+1

)]) 1−η
1−γ

(A.4)

+ (1− µt)
(
E2,t

[
(Rt+1ψt +Rf (1− ψt))

1−γ G1−γ
t+1

(
xt+1, µt+1

)]) 1−η
1−γ

} 1−ρ
1−η

.

We use the first-order condition for Ct to derive(
Ct

Wt − Ct

)−ρ
= βHt (ψt, xt, µt;Gt+1) . (A.5)

Solving yields a linear consumption rule:

Ct = atWt, (A.6)

where we define

at =
1

1 + (βHt (ψt, xt, µt;Gt+1))
1/ρ

. (A.7)
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We may equivalently write the portfolio choice problem as

max
ψt∈[0,1]

1

1− ρ
Ht (ψt, xt, µt;Gt+1) . (A.8)

In an interior solution, the optimal portfolio weight ψt satisfies the following first-order condition:

0 = µt

(
E1,t

[
(Rt+1ψt +Rf (1− ψt))

1−γ G1−γ
t+1

(
xt+1, µt+1

)])− η−γ
1−γ

(A.9)

×
{
E1,t

[
(Rt+1ψt +Rf (1− ψt))

−γ G1−γ
t+1

(
xt+1, µt+1

)
(Rt+1 −Rf )

]}

+(1− µt)
(
E2,t

[
(Rt+1ψt +Rf (1− ψt))

1−γ G1−γ
t+1

(
xt+1, µt+1

)])− η−γ
1−γ

×
{
E2,t

[
(Rt+1ψt +Rf (1− ψt))

−γ G1−γ
t+1

(
xt+1, µt+1

)
(Rt+1 −Rf )

]}
.

Substituting the consumption rule (A.6) into the Bellman equation (A.3), we obtain:

Gt (xt, µt) =
[
a1−ρt + β (1− at)

1−ρHt (ψt, xt, µt;Gt+1)
] 1

1−ρ

=
[
1 + (βHt (ψt, xt, µt;Gt+1))

1/ρ
] ρ

1−ρ
= a

−ρ
1−ρ

t =

(
Ct
Wt

) −ρ
1−ρ

. (A.10)

Substituting this equation into (A.9), we obtain:

0 = µt

E1,t

(Rt+1ψt +Rf (1− ψt))
1−γ

(
Ct+1

Wt+1

)− ρ(1−γ)
1−ρ

− η−γ
1−γ

(A.11)

×

E1,t

(Rt+1ψt +Rf (1− ψt))
−γ
(
Ct+1

Wt+1

)− ρ(1−γ)
1−ρ

(Rt+1 −Rf )



+(1− µt)

E2,t

(Rt+1ψt +Rf (1− ψt))

(
Ct+1

Wt+1

)− ρ(1−γ)
1−ρ

− η−γ
1−γ

×

E2,t

(Rt+1ψt +Rf (1− ψt))
−γ
(
Ct+1

Wt+1

)− ρ(1−γ)
1−ρ

(Rt+1 −Rf )

 .

Using the budget constraint and (A.6), we obtain:

Wt+1 = (Wt − Ct)Rp,t+1 = Rp,t+1Ct
1− at
at

. (A.12)
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So we have

Eµt


Ez,t

R 1−γ
1−ρ

p,t+1

(
Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

− η−γ
1−γ

Ez,t

β(Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

R
1−γ
1−ρ

−1

p,t+1 Rt+1


 (A.13)

= Eµt

Ez,t

R 1−γ
1−ρ

p,t+1

(
Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

− η−γ
1−γ

Ez,t

β(Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

R
1−γ
1−ρ

−1

p,t+1 Rf

 .

Multiply (A.13) by ψt and use ψtRt+1 = Rp,t+1 − (1− ψt)Rf to obtain

Eµt

Ez,t

R 1−γ
1−ρ

p,t+1

(
Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

− 1−η
1−γ

(A.14)

= Eµt

Ez,t

R 1−γ
1−ρ

p,t+1

(
Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

− η−γ
1−γ

Ez,t

β(Ct+1

Ct

)− ρ(1−γ)
(1−ρ)

R
1−γ
1−ρ

−1

p,t+1 Rf

 .

Using (A.6), we can rewrite (A.5) as(
1− at
at

)ρ
= βHt (ψt, xt, µt;Gt+1) . (A.15)

Using (A.12) , we can rewrite (A.10) as:

Gt+1(xt+1, µt+1) =

(
Ct+1

Ct

)− ρ
1−ρ

R
ρ

1−ρ

p,t+1

(
1− at
at

) ρ
1−ρ

. (A.16)

Substitute equation (A.16) into the definition of Ht on the right hand side of (A.15) and simplify

to obtain:

β
1−η
1−ρEµt

(
Ez,t

[(
Ct+1

Ct

)−ρ(1−γ)/(1−ρ)
(Rp,t+1)

1−γ
1−ρ

]) 1−η
1−γ

= 1. (A.17)

Then, we can write (A.13) as

Eµt

Ez,t

R 1−γ
1−ρ

p,t+1

(
β

(
Ct+1

Ct

)−ρ
) 1−γ

1−ρ

− η−γ
1−γ

Ez,t

(β(Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

−1

p,t+1 Rt+1



= Eµt

Ez,t

R 1−γ
1−ρ

p,t+1

(
β

(
Ct+1

Ct

)−ρ
) (1−γ)

(1−ρ)

− η−γ
1−γ

Ez,t

(β(Ct+1

Ct

)−ρ
) (1−γ)

(1−ρ)

R
1−γ
1−ρ

−1

p,t+1 Rf

 = 1.
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This equation can be written as the Euler equation

Et[Mz,t+1Rt+1] = Et[Mz,t+1Rf ] = 1,

where the pricing kernel is given by equation is given by

Mz,t+1 =

(
β

(
Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

−1

p,t+1

Ez,t

(β(Ct+1

Ct

)−ρ
) 1−γ

1−ρ

R
1−γ
1−ρ

p,t+1

− η−γ
1−γ

. (A.18)

We then obtain:

Et[Mz,t+1 (Rt+1 −Rf )] = 0. (A.19)

By defining the distorted beliefs about the IID model µ̂t as:

µ̂t =

µt

(
E1,t

[
R

1−γ
1−ρ

p,t+1

(
β
(

Ct+1

Ct

)−ρ
) 1−γ

1−ρ

])− η−γ
1−γ

µt

E1,t

R 1−γ
1−ρ

p,t+1

(
β
(

Ct+1

Ct

)−ρ
) (1−γ)

(1−ρ)

− η−γ
1−γ

+ (1− µt)

E2,t

R 1−γ
1−ρ

p,t+1

(
β
(

Ct+1

Ct

)−ρ
) (1−γ)

(1−ρ)

− η−γ
1−γ


,

(A.20)

we can rewrite (A.19) as equation (23).

By (A.1) and (A.10), we derive

Jt =WtGt =Wt

(
Ct
Wt

) −ρ
1−ρ

,

and
Wt

Ct
=

(
Jt
Ct

)1−ρ
,

where, without risk of confusion, we have suppressed arguments for Jt and Gt. Using (A.12) we

have

Rp,t+1 =
Wt+1

Ct

(
at

1− at

)
=
Ct+1

Ct

(
Jt+1

Ct+1

)1−ρ( at
1− at

)
. (A.21)

This equation implies that

Jt+1 = R
1

1−ρ

p,t+1C
−ρ
1−ρ

t+1

(
1− at
at

) 1
1−ρ

C
1

1−ρ

t .

Substituting this equation into (A.20) and cancelling terms adapted to time t information from the

denominator and the numerator, we obtain (24). Q.E.D.
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B Computation Method

We use the standard discrete state space value function iteration method, similar to that in Bar-

beris (2000), to solve the model by backward induction. We choose the state space for the state

variables (x, µ) as
[
−4σx/

√
1− ρ2, 4σx/

√
1− ρ2

]
× [0, 1] .We discretize this space using 1001×201

equally spaced points. Increasing grid points does not change our results much. We compute the

expectation in the Bellman equation using the Gaussian quadrature method. In the last period T,

CT = WT , there is no portfolio choice, and GT = 1. In period T − 1, the optimal portfolio weight

ψ∗
T−1 ∈ [0, 1] solves the problem:

max
ψT−1∈[0,1]

1

1− γ
HT−1

(
ψT−1, xT−1, µT−1;GT

)
. (B.1)

We next solve for the optimal consumption-wealth ratio a∗T−1 using equation (A.7). Substituting

a∗T−1

(
xT−1, µT−1

)
into (A.10) for t = T−1, we obtain GT−1. In general, suppose at time t, we know

Gt+1. We then use equation (A.8) to solve for the optimal portfolio weight ψ∗
t (xt, µt) . Substitute

ψ∗
t (xt, µt) into equation (A.7) to obtain a∗t . Substituting a

∗
t into (A.10), we obtain Gt. We then go

to time t− 1 and repeat the above procedure again, until we reach t = 0.

To solve for the welfare costs of suboptimal investment strategies, we use the following proce-

dure. Let k ∈ {1, 2, 3} index one of the three investment strategies defined in Section 5. These

strategies together with the implied consumption rules satisfy the budget constraint (19) and hence

are feasible for an ambiguity-averse investor’s consumption/portfolio choice problem with the recur-

sive ambiguity utility (5). Thus they deliver lower life-time utility values than the robust strategy

when the utility function (5) is used. As in Appendix A, we can show that the three suboptimal

investment strategies also give linear consumption rules Ckt = aktWt. Substituting these rules into

(5), we obtain Jk0 (W0, x0, µ0) = W0G
k
0 (x0, µ0) , where G

k
0 is some function. The welfare cost for

suboptimal investment strategy k is given by

∆k (x0, µ0) =
G0 (x0, µ0)

Gk0 (x0, µ0)
− 1.
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Table 1: Ambiguity Premium as a Percentage of the Expected Value of the Bet

γ/η 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0

A. Prize-wealth ratio = 1.0%

0.5 9.8 12.2 14.6 17.0 19.3 21.6 23.8 26.0
2.0 9.4 11.8 14.2 16.6 18.9 21.2 23.4 25.6
5.0 8.6 11.1 13.5 15.8 18.2 20.4 22.7 24.9
10.0 7.4 9.8 12.2 14.6 16.9 19.2 21.4 23.6
15.0 6.2 8.6 11.0 13.4 15.7 18.0 20.2 22.4

B. Prize-wealth ratio = 0.5%

0.5 4.9 6.2 7.4 8.6 9.8 11.1 12.3 13.5
2.0 4.7 6.0 7.2 8.4 9.7 10.9 12.1 13.3
5.0 4.4 5.6 6.8 8.1 9.3 10.5 11.7 12.9
10.0 3.7 5.0 6.2 7.4 8.7 9.9 11.1 12.3
15.0 3.1 4.3 5.6 6.8 8.0 9.3 10.5 11.7

Notes: This table reports ambiguity premium as a percentage of the expected value of the bet for
various different values of γ and η. The expression for ambiguity premium is given by equation (8).
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Table 2: Estimations of the IID and VAR Models

m b ρ (σr)2 × 1000 σrx × 1000 (σx)2 × 1000

IID 0.057 0 0.916 43.752 -22.763 32.656
(0.023) (-) (0.059) (6.751) (4.814) (5.039)

VAR 0.057 0.122 0.916 41.000 -22.772 32.656
(0.023) (0.048) (0.053) (6.326) (4.702) (5.039)

Notes: This table reports the results from estimating the IID and the VAR models of stock returns.
The numbers in brackets are standard errors. The predictive variable is ldy, the log dividend yield.
The sample period is 1926-2010. All variables are annualized when applicable.
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Table 3: Optimal Portfolio Weights in percentage

µ0 = 0.1 µ0 = 0.5 µ0 = 0.9
(ρ, γ, η) x10 x20 x30 x10 x20 x30 x10 x20 x30

0.5, 2, 2 52.9 100.0 100.0 70.5 100.0 100.0 86.0 92.5 94.9
0.5, 2, 60 45.1 100.0 94.9 47.7 100.0 91.5 61.9 93.8 91.5
0.5, 2, 80 43.6 100.0 90.5 44.4 100.0 91.0 54.9 94.2 91.7
0.5, 2, 100 42.4 100.0 89.0 42.1 100.0 91.0 49.6 94.6 91.9

0.5, 5, 5 27.6 52.5 62.7 30.8 42.1 45.0 34.7 37.0 37.4
0.5, 5, 60 24.0 47.8 46.0 25.1 41.3 38.2 31.6 37.3 36.4
0.5, 5, 80 23.1 47.0 42.6 23.8 41.2 37.2 30.2 37.4 36.2
0.5, 5, 100 22.4 46.4 40.1 22.7 41.1 36.5 28.8 37.5 36.2

0.5, 10, 10 14.3 26.4 30.6 15.6 21.0 22.1 17.3 18.4 18.5
0.5, 10, 60 13.3 25.0 26.3 14.1 20.7 20.1 16.7 18.4 18.2
0.5, 10, 80 13.0 24.6 24.9 13.6 20.7 19.6 16.4 18.5 18.1
0.5, 10, 100 12.7 24.3 23.7 13.2 20.6 19.2 16.1 18.5 18.1

0.5, 5.764, 5.764 24.2 45.6 54.1 26.8 36.5 38.8 30.1 32.0 32.4

(ρ, γ) IID Model VAR Model
x10 x20 x30

0.5, 2 90.1 47.4 100.0 100.0
0.5, 5 35.8 28.1 66.5 100.0
0.5, 10 17.8 15.1 35.1 56.0

Notes: This table presents the optimal portfolio weights in percentage allocated to the stock.
Column 1 denotes various values of ρ, γ and η. Columns 2-10 report the optimal portfolio weights in
percentage for different combinations of µ0 and x0 where x10 = −σx/

√
1− ρ2 = −0.4504, x20 = 0.0,

x30 = σx/
√

1− ρ2 = 0.4504. The predictive variable x is the price-dividend ratio.
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Table 4: Percentage Hedging Demand over Total Stock Demand

µ0 = 0.1 µ0 = 0.5 µ0 = 0.9
(ρ, γ, η) x10 x20 x30 x10 x20 x30 x10 x20 x30

0.5, 2, 2 35.7 4.6 0.0 15.5 7.1 0.0 2.3 2.0 -1.6
0.5, 2, 60 33.5 4.6 -5.4 13.6 7.2 -1.6 -1.6 3.4 1.1
0.5, 2, 80 32.7 4.7 -7.2 14.4 7.2 -0.2 -2.6 3.9 1.6
0.5, 2, 100 32.1 4.7 -4.7 15.4 7.3 0.6 -2.9 4.3 1.9

0.5, 5, 5 51.1 27.6 0.7 23.4 12.0 -9.9 3.8 2.5 -2.7
0.5, 5, 60 47.0 20.5 -15.4 20.6 10.4 -8.4 3.2 3.2 -0.9
0.5, 5, 80 46.0 19.2 -16.7 20.4 10.2 -7.1 3.0 3.5 -0.5
0.5, 5, 100 45.2 18.1 -16.7 20.4 10.1 -5.8 2.7 3.8 -0.1

0.5, 10, 10 53.0 28.3 -0.9 24.7 12.3 -11.0 4.2 2.5 -2.9
0.5, 10, 60 51.0 24.3 -10.8 23.0 11.3 -11.0 3.9 2.8 -2.0
0.5, 10, 80 50.3 23.2 -13.3 22.6 11.0 -10.4 3.8 3.0 -1.7
0.5, 10, 100 49.7 22.2 -15.2 22.4 10.9 -9.8 3.8 3.1 -1.4

0.5, 5.764, 5.764 51.6 27.8 0.3 23.7 12.1 -10.2 3.9 2.5 -2.7

Notes: This table presents the ratio of the hedging demand to the total stock demand in percentage.
Column 1 denotes various values of ρ, γ and η. Columns 2-10 report the percentage hedging demand
over the total stock demand for different combinations of µ0 and x0 where x10 = −σx/

√
1− ρ2 =

−0.4504, x20 = 0.0, x30 = σx/
√

1− ρ2 = 0.4504. The predictive variable x is the price-dividend
ratio.

40



1930 1940 1950 1960 1970 1980 1990 2000 2010
−5

−4

−3

−2

ld
y

Year

A. Data

 

 

ldy
excess return

1930 1940 1950 1960 1970 1980 1990 2000 2010
−1

−0.5

0

0.5

e
x
c
e

s
s
 r

e
tu

rn

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

Year

P
o
st
e
ri
o
r
p
ro
b
a
b
il
it
y
:
µ
t

B. Posterior probability of IID model

 

 
µ0 = 0.25
µ0 = 0.50
µ0 = 0.75

Figure 1: Returns, predictors, and posterior probabilities of the IID model. Panel A plots

the historical data for log dividend yields and market excess returns. Panel B plots the posterior probabilities

of the IID model using the historical annual data of stock returns and the log dividend yields as predictors

from 1927-2010. The prior is set at µ0 = 0.25, 0.5, 0.75 in 1927.
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Figure 2: Distorted beliefs of the IID model. This figure plots the distorted belief of the IID model

as a function of the Bayesian belief of the IID model µ0 and the demeaned dividend yield x0 for an ambiguity

averse investor with horizon T = 40 years. We set ρ = 0.5, γ = 5, and η = 80. The unconditional standard
deviation of the dividend yield is σx/

√
1− ρ2 = 0.4504.
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Figure 3: Comparison with the Epstein-Zin model. Each panel of this figure plots the stock

allocations ψ0 as functions of the demeaned log dividend yield x0 for the ambiguity model with ρ = 0.5, γ =
5, and η = 80 and for the Epstein-Zin model with ρ = 0.5 and γ = 5.76, 10, 20. The unconditional

standard deviation of the dividend yield is σx/
√

1− ρ2 = 0.4504.
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Figure 4: Comparison with the Epstein-Zin model. Each panel of this figure plots the stock

allocations ψ0 as functions of the prior µ0 for the ambiguity model with ρ = 0.5, γ = 5, and η = 80 and

for the Epstein-Zin model with ρ = 0.5 and γ = 5.76, 10, 20. The unconditional standard deviation of the
dividend yield is σx/

√
1− ρ2 = 0.4504.

44



−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
A. µ0 = 0.05

S
to
ck

a
ll
o
c
a
ti
o
n

 

 
IID
VAR
Robust
Baysian
MP

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
B. µ0 = 0.1

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
C. µ0 = 0.3

S
to
ck

a
ll
o
c
a
ti
o
n

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
D. µ0 = 0.6

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
E. µ0 = 0.9

Dividend yield

S
to
ck

a
ll
o
c
a
ti
o
n

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1
F. µ0 = 0.95

Dividend yield

Figure 5: Alternative investment strategies: market-timing effect. This figure plots the

initial portfolio weights ψ0 on the stock for five alternative investment strategies as functions of the initial

observation of the demeaned log dividend yield x0 for different initial beliefs about the IID model µ0. For

the robust strategy (‘Robust’), we set ρ = 0.5, γ = 5, η = 80. For the Bayesian strategy (‘Bayesian’),
we set ρ = 0.5, γ = η = 5. For the multiple-priors model (‘MP’), we set ρ = 0.5, γ = 5, and η = ∞.
The unconditional standard deviation of the dividend yield is σx/

√
1− ρ2 = 0.4504.
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Figure 6: Alternative investment strategies: uncertainty effect. This figure plots the portfolio

weights on the stock for three alternative investment strategies as functions of the initial beliefs about the

IID model µ0 for four different initial values of the demeaned log dividend yield x0. The unconditional

standard deviation of the dividend yield is σx/
√

1− ρ2 = 0.4504. For the robust strategy (‘Robust’), we

set ρ = 0.5, γ = 5, η = 80. For the Bayesian strategy (‘Bayesian’), we set ρ = 0.5, γ = η = 5.
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Figure 7: Alternative investment strategies: horizon effect. This figure plots the portfolio

weights on the stock for three alternative investment strategies as functions of the investment horizon.

The unconditional standard deviation of the dividend yield is σx/
√

1− ρ2 = 0.4504. For the robust

strategy (‘Robust’), we set ρ = 0.5, γ = 5, η = 80. For the Bayesian strategy (‘Bayesian’), we set
ρ = 0.5, γ = η = 5.
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Figure 8: Welfare costs. This figure plots the conditional welfare costs of an ambiguity averse investor

with horizon T = 40 years if he follows the Bayesian strategy by ignoring model ambiguity. The conditional

welfare cost is a function of the belief of the IID model µ0 and the demeaned dividend yield x0. For the

robust strategy, ρ = 0.5, γ = 5, and η = 60, 100. For the Bayesian strategy, we set ρ = 0.5, γ = η = 5.
The unconditional standard deviation of the dividend yield is σx/

√
1− ρ2 = 0.4504.
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