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Runway configuration is a key driver of airport capacity at any time. 
Several factors, such as wind speed and direction, visibility, traffic 
demand, air traffic controller workload, and the coordination of flows with 
neighboring airports, influence the selection of the runway configuration. 
This paper infers the utility functions of the nominal decision-making pro-
cess of air traffic personnel by using a discrete choice modeling approach.  
Given operational and weather conditions that have already been reported, 
such as ceiling and visibility, traffic demand, and current runway con-
figuration, the model produces a probabilistic forecast of the runway 
configuration on a 15-min horizon. The prediction is then extended to 
a more realistic 3-h planning horizon. Case studies for San Francisco 
(SFO), California; LaGuardia (LGA), New York; and Newark (EWR), 
New Jersey, airports were completed by using this approach. Given the 
weather and airport arrival demand, the model predicts the correct 
runway configuration at SFO, LGA, and EWR on a 3-h horizon with 
accuracies of 81.2%, 81.3%, and 77.8%, respectively.

Airport congestion leads to significant flight delays at the busiest air-
ports in the United States. Fundamentally, congestion is caused by an 
imbalance between demand (airport operations) and supply (airport 
capacity) within the air transportation system. Airport expansion proj-
ects can increase airport capacity but are expensive and take many 
years to complete; by contrast, better utilization of existing airport 
capacity is a less expensive approach to mitigating congestion. The 
key driver of airport capacity at a given time is the active runway con-
figuration, which is the combination of runways being used to handle 
the arrival and departure flows at the airport under consideration (1).

When a runway configuration is being selected, air traffic con-
trollers must consider meteorological and operational factors, such 
as wind speed and direction, arrival and departure demand, noise 
mitigation, and interairport coordination. A comprehensive under-
standing of the process for selecting runway configurations by 
air traffic personnel is necessary for the development of decision sup-
port tools under the initiatives of the Single European Sky Air Traffic 
Management Research (SESAR) and the Next-Generation Air Trans-
portation System (NexGen). A keen understanding of this process has 
the potential to increase operational efficiency of airport capacity 
utilization and provides a key step toward prediction of airport capac-
ity. Prediction of capacity can act as a supplement to predicting, and 
even reducing, air traffic delays.

This paper uses a data-driven approach to model the runway con-
figuration selection process by using a discrete choice modeling frame-
work for LaGuardia (LGA), New York City; San Francisco (SFO), 
California; and Newark (EWR), New Jersey, airports. The model 
infers the utility functions that best explain (i.e., maximize the like-
lihood of) the observed decisions. The utility functions give insight 
to the relative importance of the different decision factors to air 
traffic control when a runway configuration is being selected. The 
resultant model also yields a probabilistic prediction of the runway 
configuration at any time, given a forecast of the influencing factors.

Previous Work

Two types of models have previously been developed for the problem 
of runway configuration selection: prescriptive models and descrip-
tive models. Prescriptive models account for the weather and other 
operational constraints to recommend an optimal runway configura-
tion. Examples include the enhanced preferential runway advisory 
system (ENPRAS) for optimal runway configuration selection (2), 
runway allocation systems at both Sydney and Brisbane, Australia, 
airports (3), and the more recent models for scheduling runway 
configurations that account for weather forecasts and capacity loss 
during runway switches (4–8). These models have proven effective to 
optimize the system but are limited when they attempt to describe 
the decision-making process itself.

Descriptive models use data mining approaches to predict the 
selection of runway configuration on the basis of historical data. 
These models make predictions from the selection process of decision 
makers themselves rather than by recommending an optimal configu-
ration. Examples include the forecasting of airport arrival rates dur-
ing ground delay programs (9, 10), the forecasting of the selection 
of runway configuration at Amsterdam Schiphol Airport on a 24-h 
prediction horizon by using probabilistic weather forecasts (11), and 
models for logistic regression of the selection of runway configu-
rations for John F. Kennedy International (JFK) and LGA Airports 
(12). These models have shown accuracies of up to 75%; however, a 
difficult task has been quantifying the observed resistance to configu-
ration switches by air traffic control, called “operational inertia” in 
this paper. Switching a runway configuration requires increased coor-
dination among airport stakeholders, a maneuver that lowers airport 
throughput. Consequently, runway configuration switches typically 
occur less frequently per day than what would be optimal. A discrete 
choice approach has the advantage of accounting for inertia within its 
weighted variables and predictions.

More recently, discrete choice models of the process for selecting 
runway configurations have been created for 2006 at LGA and EWR 
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(13, 14). This paper will extend these models at LGA and EWR data 
for 2011 and 2012 with a more data-driven approach. The methodol-
ogy will also be applied to SFO for 2011 and 2012. A key novelty of 
this paper is that the constraints pertaining to the maximum allowable 
tailwinds and crosswinds are learned from the actual data rather than 
from FAA operating manuals.

Notation

Runway configurations are typically designated in the form  
A1, A2 |D1, D2, for which A1 and A2 are the arrival runways and 
D1 and D2 are the departure runways. The numbers for each active 
runway are reported on the basis of their bearing in degrees from 
magnetic north divided by 10. Parallel runway pairs are designated 
by an R (right) and L (left) after their numbers. For instance, if SFO 
(Figure 1) is operating in runway configuration 28L |1R, 1L, aircraft 
arrivals are handled on runway 28L, which faces 280° from magnetic 
north, and departures are handled on both parallel runways 1R and 1L, 
which face 10° from magnetic north.

Methodology

Framework for Discrete Choice Modeling

Discrete choice models are behavioral models that describe the choice 
selection of an individual decision maker, or the nominal decision 
selection among an exhaustive set of possible alternatives called 
the “choice set” (15). Each alternative in the choice set is assigned a 
utility function on the basis of the attributes related to the decision-
making process. At a given time, the feasible alternative with the 
maximum utility value is taken as the decision in the model.

The utility function U is modeled as a stochastic random variable 
with an observed deterministic component, V, and a stochastic error 
component, ε. For the nth decision selection, given a set of feasible 
alternatives, Cn, the utility of choice, ci ∈ Cn is represented as

U Vn i n i n i (1), , ,= + ε

where i is a specific alternative from 1, 2, . . . , n.

The observable component of the utility function is defined as a 
linear function of the observed vector of attributes, XYn,i. The attributes 
include the different factors that can influence the decision. They are 
weighted by the values in vector βY n,i and include alternative specific 
constants αn,i as follows:

V Xn i n i n i n i (2), , , ,

� �
i= α + β 

The random error component of the utility function reflects all  
measurement errors, including unobserved attributes, variations 
between different decision makers, proxy variable effects, and report-
ing errors. The error term is assumed to be distributed according 
to a Type I extreme value (or Gumbel) distribution with a location 
parameter of zero. The Gumbel distribution is used to approximate a 
normal distribution due to its computational advantages. The multi
nomial logit (MNL) model structure assumes that the error com-
ponents of each utility function are independent from one another. 
Under the assumptions of the MNL model, the probability P that 
choice ci is chosen during the nth decision selection period is given 
by Equation 3:
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where j is an alternative from 1, 2, . . . , n.
The independence among the error terms of each utility function 

in the MNL model assumes that all correlation among alternatives 
has been captured by the attributes included in the utility function (15). 
The nested logit (NL) model relaxes this assumption by grouping 
alternatives into subsets, or nests (denoted Bk), that have correlation 
between their error terms. NL models are typically illustrated by a 
tree diagram.

The NL model splits the observable part of the utility function into 
a component that is common among the alternatives within a nest and 
a component that varies between the different alternatives in a nest. 
The NL model can then be treated as nested MNL models by using 
conditional probabilities. The probability that a specific alternative 
is chosen is given by the probability that a specific alternative nest is 

FIGURE 1    SFO model specification.
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chosen multiplied by the probability that the specific alternative is 
chosen from among the alternatives in that nest. In other words
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where

	k	=	nest between 1, 2, . . . , K;
	l	=	nest between 1, 2, . . . , K; and
	µ	=	scale parameter for a nest.

Equation 5 has an additional term in the numerator, the “inclusive 
value,” that acts as a bridge between the lower-level MNL models 
within each nest and the upper-level ones.

Maximum Likelihood Estimation

Maximum likelihood estimates of the linear weighting parameters, 
alternative specific constants, and scale parameters are estimated 
from the training data. The maximum likelihood function L is the 
joint probability that the vector of sample data (θY) will occur given 
a vector of parameters θY  = <α, βY , µ> as follows:

P X( ) { }θ = θL
� � �

, (8)

The estimated parameters α̂, β̂, µ̂ are those that maximize the 
likelihood of the observations:

�( ) ( )( )α β µ = α β µˆ , ˆ , ˆ max , ,L

The resulting nonlinear optimization problem is solved compu
tationally by using the open-source software package Biogeme (16).

Statistical Testing

The discrete choice models for SFO, LGA, and EWR were realized 
iteratively by adding or removing variables on the basis of their statisti-
cal significance as determined by the Student’s t-test. The significance 
of each attribute to the overall model was tested by using likelihood 
ratio testing. Different NL model tree structures were also evaluated 
for statistical significance by using likelihood ratio testing (15).

Prediction Model

The utility functions from the discrete-choice model are applied 
in Equations 4 to 7 to develop the probabilities of selecting each 

runway configuration during a given 15-min interval. For a 15-min 
horizon, the runway configuration with the maximum positive 
utility (and therefore maximum probability of selection) is taken 
as the predicted decision. For a 3-h prediction horizon, all possible 
evolutions of the runway configuration selection for the next 3 h  
(in 15-min intervals) must be considered. Here, Bayes’ rule was 
recursively applied at each 15-min interval to determine the prob-
abilities of a runway configuration selection on a 3-h prediction 
horizon (17). In the prediction models, “accuracy” was defined as the 
percentage of time that the observed configurations were correctly 
predicted.

Training and Test Data

The training and test data sets for each airport were taken from the 
FAA’s Aviation System Performance Metrics (ASPM) database (18). 
The data are reported in 15-min intervals and include the active run-
way configuration, the arrival and departure demand, cloud ceiling, 
visibility conditions, and wind speed and direction. Training data 
for SFO, LGA, and EWR were taken from 2011, and the test data 
sets were taken from 2012. Because the ASPM data were used in the 
estimated models for the prediction, that prediction assumes perfect 
knowledge of the wind, visibility, and demand for the subsequent 
3 h. Future work may evaluate the effects of forecast weather data 
into the predictions.

Runway Configuration Filtering

Runway configurations that were seen less than 1% of the time 
throughout the year were removed at SFO and EWR to reduce pos-
sible reporting errors or cases of special operations that make 
difficult the reliable estimating and predicting of the models. For 
LGA, the filter was set to 2% to help further reduce errors that 
occurred during the nighttime hours. Table 1 shows the most com-
mon configurations at SFO, LGA, and EWR from the 2011 data after 
filtering.

TABLE 1    Configurations Observed at SFO, LGA, and EWR in 2011

Airport Designation
Configuration 
(Arrival|Departure) Frequency

Percentage  
of Frequency

SFO 1 19R, 19L|10R, 10L 957   3
2 28R, 28L|1R, 1L 24,871 74
4 28R, 28L|28R, 28L 3,000   9
5 28R|1R, 1L 467   1
6 28L|1R, 1L 4,244 13

LGA 1 22|13 6,846 24
2 22|31 5,556 19
3 22, 31|31 852   3
4 31|31 2,676   9
5 31|4 7,608 26
6 4|13 4,113 14
7 4|4 1,372   5

EWR 1 22L, 11|22R 4,214 13
2 22L|22R 16,559 50
3 22L|22R, 29 353   1
4 4L, 4R|4L 528   2
5 4R, 11|4L 1,576   5
6 4R|4L 10,221 31
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Attribute Selection  
and Variable Processing

Inertia

“Operational inertia” is a term used to describe the observed resis-
tance of air traffic controllers to resist configuration changes because 
of the high operational effort required to switch to a different runway 
configuration. Tools designed to suggest an optimal runway config-
uration have been shown to recommend significantly more frequent 
runway configuration switches than are observed in practice. An 
inertia variable was added as an attribute to reflect the preference of 
air traffic controllers to hold the same runway configuration as long 
as operationally safe; such changes require, between all stakeholders, 
increased coordination that would reduce airport throughput (7). 
The inertia variable adds a positive contribution to a runway configu-
ration’s utility if that same configuration is used in the previous time 
interval.

Wind Speed and Direction

Wind speed and direction are key factors that influence the choice 
of runway configuration. High tailwinds and crosswinds are opera-
tionally unsafe in many circumstances, and, as a result, render certain 
runways unusable. The FAA has specified the maximum allowable 
tailwind and crosswind values for the operation of a runway in 
standard operating procedures. Prior work on selection of runway 
configuration had based runway availability on standard operating 
procedures; however, in this paper, threshold values are removed 
from the 2011 ASPM data sets.

Figure 2 shows the observed wind speed and direction combina-
tions for 2011 at SFO, LGA, and EWR on a wind rose. In the figure, 
the solid lines correspond to the maximum thresholds, and the colors 
indicate the frequency of occurrence of different points. The identified 
ranges of tailwind and crosswind values for runway feasibility were 
learned directly from the 2011 ASPM data and are also shown on the 
plot. Air traffic controllers prefer headwinds to tailwinds and cross-
winds, and while no headwind threshold exists for runway feasibility, 
headwind thresholds were plotted at 40 knots for a better illustration. 
The tailwind and crosswind limits were taken on a per-runway basis 
and calculated via the following procedure:

1.	 Aggregate all tailwind and crosswind values for each runway 
at SFO, LGA, and EWR.

2.	 For each runway list, remove tailwind and crosswind combi-
nations from periods when the active configurations did not include 
any operations on the runway.

3.	 Take tailwind and crosswind thresholds at the 98th percentile 
to remove possible reporting errors.

The available choice set during a given decision selection period 
can change in a discrete choice framework. Runway feasibility was 
used to govern directly the available subset of runway configurations 
in the discrete choice model during a given interval. If the wind speed 
and direction combination fell outside the thresholds for a runway, all 
configurations using that runway were removed from the available 
choice set during the given decision selection period. Figure 2 shows 
that the majority of points correspond to conditions for which all the 
runway configurations are considered feasible.

Headwinds are expected to add a positive contribution to the 
utility functions, and tailwinds are expected to add a negative con-

tribution. Significantly high headwinds, however, could potentially 
have an adverse effect on airport operations by decreasing the space 
between aircraft arrivals during landing, a phenomenon known as 
“compression” (19). To account for the effects of compression, head-
winds above the 85th percentile were treated as high headwinds. 
Variables for normal headwinds (below the 85th percentile) and 
tailwinds were added in each model as well.

Demand

Airport arrival and departure demand play a significant role when the 
runway configuration is being selected. Specifically, in high-demand 
situations, high-capacity configurations are preferred. These typically 
include an extra arrival or departure runway.

Noise Abatement Procedures

Noise abatement procedures are used at many major airports to reduce 
the impacts of noise on communities in the vicinity of the airport, 
especially during early-morning and nighttime hours. At SFO, run-
way configurations that require arrivals and departures over water are 
preferred to those that require flying over populated areas. At LGA, 
configurations with flight paths over the city and away from populated 
areas are preferred during nighttime. Variables were included in each 
model to account for these effects.

Cloud Ceiling and Visibility

Cloud ceiling and visibility are important for air traffic control when 
the runway configuration is being selected. The term “visual meteo-
rological conditions” (VMC) refers to times when the visibility is 
sufficient for pilots to maintain visual separation from the ground and 
other aircraft, while the term “instrument meteorological conditions” 
(IMC) refers to times when pilots are required to use their flight 
instruments. The selection of runway configuration could depend on 
whether VMC or IMC is implemented. In addition, airport capac-
ity is higher in VMC than in IMC because IMC requires increased 
aircraft separations. Categorical variables were added to each model 
to account for VMC and IMC.

Coordination with Neighboring Airports  
in New York City Metroplex

The four airports in the New York City metroplex—LGA, EWR, 
John F. Kennedy International (JFK), and Teterboro (TEB)—are 
in close proximity to one another. Air traffic controllers at each 
airport must therefore coordinate their aircraft arrival and departure 
flows with the other airports. In the LGA and EWR models, the 
impacts of TEB were ignored and categorical variables were added 
to account for operations at JFK. JFK was included here because of its 
large volume of operations, which was assumed to have a significant 
impact on the runway configurations at LGA and EWR.

Switch Proximity

If airport conditions necessitate a runway configuration switch, 
certain such switches require more coordination from airport 
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FIGURE 2    Wind speeds and directions observed in 2011 at (a) SFO, (b) LGA,  
and (c) EWR.
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stakeholders than others. For instance, the addition of an extra 
arrival runway may be easier to implement than a complete reversal 
in the direction of operations. To account for these effects, variables 
were added to weight each utility function differently in relation 
to the previous configuration. The switch proximity variables are 
fundamentally the same as the inertia variables but are applied only 
to the utility functions of the runway configurations that were not seen 
in the previous time interval. In this sense, switch proximity variables 
do not account for the resistance of switching a runway configuration 
in general; rather, they account for the low likelihood of switching 
between two runway configurations, which requires a high amount  
of operational effort once the decision to switch has been made.

Special Considerations for SFO

The optimal capacity configuration at SFO is 28R, 28L |1R, 1L. 
The runways used in this operation are closely spaced, at 750 ft 
apart. FAA regulations specify that simultaneous arrivals are not 
allowed under IMC conditions (20). Therefore, one would expect 
that the 28R |1R, 1L or the 28L |1R, 1L configuration (which involves 
using only one of the two runways for arrivals) would be favored 
under IMC; however, the ASPM data suggest that configuration 
28R, 28L |1R, 1L was used 19,832 (82.7%) times under VMC and 
4,161 (17.3%) times under IMC and that configurations 28R |1R, 1L 
and 28L |1R, 1L were used 3,466 (65.3%) times under VMC and 
1,844 (34.7%) times under IMC. Even though the configurations 
with a single arrival runway were used a greater fraction of the time 
in IMC than in VMC, the runway configuration 28R, 28L |1R, 1L 
was still used a majority of the time in IMC. Under IMC, simultane-
ous side-by-side landings are not possible, and the airport operates 
as if it would be in a configuration with a single arrival runway by 
using a staggered-arrival approach. Operationally, the staggered 
28R, 28L |1R, 1L configuration under IMC may have a small capac-
ity benefit over the 28R |1R, 1L and 28L |1R, 1L configurations. 
To evaluate these effects, new variables that combine the effects of 
visibility and demand were used in the SFO model. Four categorical 
variables were defined for periods of

1.	 IMC + low demand,
2.	 IMC + high demand,
3.	 VMC + low demand, and
4.	 VMC + high demand.

In these cases, a “low demand” was defined as less than five arrivals 
per 15-min period and “high demand” was defined as greater than 
eight arrivals per 15-min period.

Case Study: SFO

Model Specification

In the SFO model, configurations were removed if they were not 
seen in at least 1% of the decision selection periods throughout 
the year. As shown in Figure 1, the chosen model had a nested 
logit structure with six possible alternative runway configurations. 
The model structure grouped similar configurations 28R, 28L |1R, 
1L, 28L |1R, 1L and 28R |1R, 1L into a common nest with scale param-
eter µARR28DEP1 = 1.16. The other two configurations were modeled as 
singleton nests.

Estimated Model and Inferences

The estimated weighting parameters for the utility function for the 
SFO model are shown in Table 2, which includes the estimated value, 
the standard error, and the t-statistics. Any parameter that was not 
statistically significant (i.e., the t-statistic had an estimated value 
less than 1.96) was removed from the model, except in cases for 
which removing the variable would bias the predictions.

Table 2 shows that the inertia variables were the most important 
ones in the decision selection. All configurations within the nest have 
the same inertia value because they were modeled under a common 
inertia variable. Because of the VMC–IMC reporting challenges 
noted earlier, the extreme sensitivity of these configurations to the 
biases in the prediction model made the choice of the same inertia 
value necessary.

Wind was another significant factor for the SFO decision selection. 
During estimation, compression did not show a significant influence 
on the high headwind attributes. Furthermore, headwinds and tail-
winds were linearly correlated. Therefore, as the values in Table 2 
show, these variables were constrained linearly for the final model. 
Figure 1 shows that the wind at SFO is predominantly from the 
San Bruno Gap and corresponds to a headwind for arrivals on 
runway 28. Five of the six unique configurations in the SFO model 
serve arrivals by using Runways 28R and 28L because of this head-
wind advantage. During poor weather conditions, low pressure sys-

TABLE 2    Estimated Utility Function Weights for SFO

Parameter Value SE t-Stat.

Inertia Parameters

Configuration 19R, 19L|10R, 10L 3.20 0.376 8.64

Configuration 28R, 28L|1R, 1L 4.48 0.139 31.87

Configuration 28R, 28L|28R, 28L 4.35 0.209 20.82

Configuration 28R|1R, 1L 4.48 0.139 31.87

Configuration 28L|1R, 1L 4.48 0.139 31.87

Wind Parameters

High headwind on arrival runway 0.0415 0.0131 3.20

Normal headwind on arrival runway 0.0415 0.0131 3.20

Tailwind on arrival runway −0.0415 0.0131 −3.20

High headwind on departure runway 0.0608 0.0076 8.14

Normal headwind on departure runway 0.0608 0.0076 8.14

Tailwind on departure runway −0.0608 0.0076 8.14

Demand–Visibility Parameters

VMC + high demand; 28R/L|1R, 1L −1.66 0.39 −3.44

IMC + low demand; 28R/L|1R, 1L 0.327 0.381 0.93

Switch Proximity Parameters

28R, 28L|1R, 1L to 28R, 28L|28R, 28L −1.2 0.189 −5.98

28R/L|1R, 1L to 28R, 28L|28R, 28L −1.2 0.189 −5.98

19R, 19L|10R, 10L to 28R, 28L|1R, 1L −0.775 0.649 −1.22

19R, 19L|10R, 10L to 28R/L|1R, 1L −0.775 0.649 −1.22

19R, 19L|10R, 10L to 28R, 28L|28R, 28L −0.946 0.601 −1.57

28R, 28L|28R, 28L to 28R, 28L|1R, 1L 1.33 0.251 4.97

28R, 28L|28R, 28L to 28R|/L 1R, 1L 1.33 0.251 4.97

Noise Abatement Parameters

Depart Runway 28 during evening −0.356 0.176 −3.23

Arrive Runway 10 during evening −0.356 0.176 −3.23
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tems with high circulating winds disrupt the typical pattern, making 
runway configuration 19R, 19L |10R, 10L more attractive for air traffic 
control (21). As a consequence, the headwind variables in the model 
are predominantly used to distinguish between runway configuration 
options with arrivals on the Runways 28 or on the Runways 19.

In the SFO model, attributes that grouped the effects of demand 
and visibility were estimated. As Table 2 shows, the utility function 
for 28R |1R, 1L and 28R |1R, 1L received a negative demand bonus 
under VMC and a positive demand bonus under IMC. In addition, the 
noise parameters indicated that flights over water during the evening 
hours are preferred to flights departing over nearby communities. 
This preference seems to coincide with noise abatement procedures 
at SFO (22) and would likely be more prevalent if other configurations 
such as 28R, 28L |10R, 10L were modeled in the future.

The switch proximity variables also showed statistically signifi-
cant effects in the SFO model. In particular, the estimated coef-
ficients reflected a preference to switch from runway Configuration 
28R, 28L |28R, 28L, which is likely because this configuration is 
used primarily for long-haul arrivals and departures that fly over the 
Pacific Ocean. In addition, Configuration 19R, 19L |10R, 10L does 
not show a preference to revert to the configurations with arrivals on 
Runways 28 perhaps because the 19R, 19L |10R, 10L configuration 
would be used during significant shifts in wind patterns over the 
San Bruno Gap.

Prediction of Runway Configuration

A challenge at SFO is accurately predicting between Configuration 
28R, 28L |1R, 1L with arrivals on the closely spaced parallel run-
ways and the Configurations 28R |1R, 1L and 28L |1R, 1L, with 
single arrival runways. As noted earlier, simultaneous (side-by-side) 
landings are not possible under IMC, and the airport operates almost 
as it would in a configuration with a single arrival runway, even in 
28R, 28L |1R, 1L. The reported configurations in the ASPM data 
set do not differentiate between simultaneous and staggered paral-
lel approaches, even though staggered approaches have a capacity 
that would be closer to 28R |1R, 1L or 28L |1R, 1L. This fact, along 
with the other similarities between these two runway configuration 
alternatives, makes it difficult to predict either of these alterna-
tives accurately without introducing a selection bias. Accurately 
predicting 28R, 28L |28R, 28L is also challenging because of the 
limitations from the ASPM data set. This runway configuration is 

typically used only for long-haul departures over the Pacific Ocean 
and to Hawaii, and the aggregate flight counts in ASPM are not 
sufficient to account for this factor. Despite these challenges, the 
overall prediction accuracy in 2012 for SFO on a 15-min prediction 
horizon was 98.2% and on a 3-h prediction horizon was 81.2%, 
under the assumption of perfect knowledge of future weather condi-
tions and traffic demand. The accuracy of individual configuration 
predictions is shown in Table 3. Configurations that were seen more 
infrequently had lower relative prediction accuracies.

Case Study: LGA

Model Specification

In the LGA model, configurations were removed if they were not 
seen in at least 2% of the decision selection periods throughout the 
year. Many model structures were tested, and the final resulting 
model was chosen as a nested logit structure with a single nest con-
taining all alternatives that used Runway 22 for arrivals with a scale 
parameter of µARR22 = 1.1, shown in Figure 3.

Estimated Model and Inferences

The estimated weighting parameters for the utility function for the 
LGA model are shown in Table 4. As with the SFO model, here 

TABLE 3    Prediction Accuracy for SFO in 2012  
for 15-min and 3-h Prediction Horizons

Configuration 
(Arrival|Departure)

Prediction 
Accuracy (%)

Frequency 15 min 3 h 

19R, 19L|10R, 10L 1,145 (4%) 98.9 86.7

28R, 28L|1R, 1L 22,641 (71%) 98.7 88.6

28R, 28L|28R, 28L 2,952 (9%) 97.8 55.3

28R|1R, 1L 925 (3%) 93.1 51.7

28L|1R, 1L 4,123 (13%) 96.3 64.8

Total 31,786 98.2 81.2

FIGURE 3    LGA model specification.
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TABLE 4    Estimated Utility Function Weights for LGA

Parameter Value SE t-Stat.

Inertia Parameters

Configuration 22|13 4.58 0.187 24.5

Configuration 22|31 7.41 0.36 20.57

Configuration 22,31|31 7.41 0.36 20.57

Configuration 31|31 4.91 0.401 12.24

Configuration 31|4 3.16 0.25 12.6

Configuration 4|13 3.99 0.196 20.34

Configuration 4|4 5.44 0.416 13.1

Wind Parameters

High headwind on arrival runway 0.0952 0.0161 5.89

Normal headwind on arrival runway 0.123 0.0197 6.26

Tailwind on arrival runway −0.0946 0.0199 −4.74

Tailwind on departure runway −0.211 0.0173 −12.2

Tailwind on extra arrival runway −0.348 0.07 −4.97

Demand Parameters

Arrival demand: 31|31 −0.101 0.0312 −3.24

Arrival demand: 4|4 −0.0807 0.0327 −2.47

VMC–IMC Parameters

VMC on 31|31 2.09 0.402 5.19

VMC on 31|4 1.36 0.231 5.9

Switch Proximity Parameters

31|4 to 31|31 −1.4 0.463 −3.03

4|13 to 31|31 −2.52 0.714 −3.53

4|4 to 31|31 −1.22 0.747 −1.77

22|13 to 31|31 −1.99 0.577 −3.45

4|13 to 31|4 −2.19 0.368 −5.94

4|4 to 31|4 −1.05 0.515 −2.04

22|13 to 31|4 −2.14 0.355 −6.04

4|13 to 4|4 −1.6 0.443 −3.61

22|13 to 4|4 −1.92 0.532 −3.6

31|31 to 22|13 −1.05 0.573 −1.84

Interairport Coordination Parameters

LGA departures on runway 4 vs. JFK arrivals on runway 13 0.85 0.308 2.76

LGA departures on runway 13 vs. JFK arrivals on runway 13 1.27 0.464 2.75

LGA departures on runway 31 vs. JFK departures on runway 13 −1.99 0.224 −8.88

LGA departures on runway 22 vs. JFK arrivals on runway 13 −0.448 0.172 −2.6

LGA departures on runway 31 vs. JFK arrivals on runway 13 −1.61 0.222 −7.26

LGA departures on runway 13 vs. JFK arrivals on runway 13 0.796 0.25 3.19

LGA departures on runway 31 vs. JFK departures on runway 4 −2.5 0.341 −7.34

LGA departures on runway 4 vs. JFK arrivals on runway 4 −0.737 0.293 −2.51

LGA departures on runway 22 vs. JFK departures on runway 13 −1.15 0.312 −3.68

LGA arrivals on runway 22 vs. JFK arrivals on runway 13 0.85 0.308 2.76

LGA arrivals on runway 31 vs. JFK arrivals on runway 13 1.27 0.464 2.75

LGA arrivals on runway 13 vs. JFK departures on runway 13 −1.99 0.224 −8.88

LGA arrivals on runway 4 vs. JFK arrivals on runway 13 −0.448 0.172 −2.6

LGA arrivals on runway 13 vs. JFK arrivals on runway 13 −1.61 0.222 −7.26

LGA arrivals on runway 31 vs. JFK arrivals on runway 13 0.796 0.25 3.19

LGA arrivals on runway 13 vs. JFK departures on runway 4 −2.5 0.341 −7.34

LGA arrivals on runway 22 vs. JFK arrivals on runway 4 −0.737 0.293 −2.51

LGA arrivals on runway 4 vs. JFK departures on runway 13 −1.15 0.312 −3.68
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the estimated weights indicate that inertia is, as expected, the most 
important factor when a runway configuration is being selected at 
LGA, particularly for Configurations 22 |31 and 22, 31|31.

In addition, the results indicate that the headwind parameters are 
statistically significant for the primary arrival runway but not for the 
primary departure runway or the extra arrival runway. This finding 
seems to suggest that the alignment of the primary arrival runway is 
more important than the alignment of the departure or extra arrival 
runways. This relative importance could result from the fact that air-
craft arrivals must be served whereas departures can be held under 
extreme conditions. Furthermore, the negative influence of tailwinds 
was found to be statistically significant in all cases. The high head-
wind variable for the primary arrival runway had a slightly lower 
value than the normal headwind variable, a difference suggesting that 
high headwinds are slightly less preferable because of compression.

Arrival demand effects were statistically significant for the 
low-capacity Configurations 31|31 and 4 |4. During high-demand 
scenarios, these configurations were less likely to be selected. VMC 
was seen to be important for Configurations 31|31 and 31|4 and 
therefore seems to suggest that VMC is an important consideration 
for arrivals on Runway 31.

Switch proximity was significant for only 10 of 42 possible con-
figuration switches. All had negative values, which represented a resis-
tance to a certain configuration switch. The relative weights suggest 
that, in general, air traffic control prefers not to reverse the direction 
of airport operations.

Prediction of Runway Configuration

As Table 5 shows, the overall prediction accuracy for LGA in 2012 
on a 15-min horizon was 97.9% and 81.3% on a 3-h horizon. Similar 
to those for the SFO prediction model, configurations that were seen 

more often had a higher relative prediction accuracy. For comparison, 
prior research using logistic regression models for LGA without any 
look-ahead achieved a prediction accuracy of 75% at LGA (12).

Case Study: EWR

Model Specification

In the EWR model, configurations were removed if they were not 
seen at least in 1% of the decision selection periods throughout the 
year. Many model structures were tested, and the final resulting 
model was chosen as a nested logit structure with nests containing all 
alternatives by using Runway 4 for arrivals, with a scale parameter 
of µARR4 = 1.22, as shown in Figure 4.

TABLE 5    Prediction Accuracy for LGA in 2012  
for 15-min and 3-h Prediction Horizons

Configuration 
(Arrival|Departure)

Prediction 
Accuracy (%)

Frequency 15 min 3 h

22|13 7,661 (29%) 98.2 88.3

22|31 2,705 (10%) 97.6 73.9

22, 31|31 1,675 (6%) 96.9 68.8

31|31 2,335 (9%) 97.0 71.9

31|4 6,448 (25%) 98.2 85.5

4|13 4,355 (17%) 98.0 79.7

4|4 875 (3%) 96.7 69.8

Total 26,054 97.9 81.3

FIGURE 4    EWR model specification.
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Estimated Model and Inferences

The estimated weighting parameters for the utility function for the 
EWR model are shown in Table 6. Again, inertia is shown as the most 
important variable to the decision selection. Similar to those for the 
SFO model, the runway configurations from each nest were grouped 
under common inertia variables.

Compression effects at EWR were not statistically significant dur-
ing estimation. In addition, headwinds and tailwinds showed a linear 
correlation. As a result, the high headwind, normal headwind, and 
tailwind variables were all linearly constrained in the final model. 
Similar to those for the LGA model, the wind variables for the depar-
ture runways at EWR were not statistically significant, a result that 
again may indicate that air traffic control prioritizes arrivals over 
departures when selecting a runway configuration.

Arrival demand was shown as statistically significant for run-
way configurations with extra arrival runways, namely, 22L, 11|22R; 
4R, 4L |4L; and 4R, 11|4L. As arrival demand increased, these con-
figurations received a utility bonus that encouraged the addition of 
an arrival runway to handle the increasing demand. The threshold 
values used in the model were determined as a nuisance parameter. 
Interestingly, a similar variable dealing with the departure demand 
was not statistically significant for Configuration 22L |22R, 29.

Prediction of Runway Configuration

As Table 7 shows, the overall prediction accuracy for EWR in 2012 
was 97.9% on a 15-min horizon and 78.2% on a 3-h horizon. As with 
the other models tested, configurations that were seen more often had 
higher relative accuracies. This general trend seems to suggest that the 
discrete choice approach may be limited when one is trying to predict 
runway configurations that are not seen often throughout the year.

Conclusions

The nominal process for selecting runway configurations by air traffic 
control personnel at SFO, LGA, and EWR International Airports was 
developed by using a discrete choice framework. The models devel-

oped for each airport were trained on 2011 data from the ASPM data-
base and were tested by using 2012 ASPM data. Utility functions for 
different runway configurations that reflect the importance of various 
factors such as weather, wind speed and direction, airport demand, 
noise mitigation, interairport coordination, and the incumbent run-
way configuration were used to develop a probabilistic forecast of 
the runway configuration on 15-min and 3-h planning horizons.

The weights assigned to the utilities were used to infer the relative 
importance of the attributes. Across all models, the inertia variables 
were seen to have the highest importance when the selection decision 
was being made. In addition, headwinds on arrival runways were also 
found to be an important factor. For LGA and EWR, high-capacity con-
figurations were favored under high-arrival demand scenarios. At SFO, 
demand effects were coupled with visibility because of runway sepa-
ration procedures. Switch proximity reflected a preference to reduce 
the operational effort required from a runway configuration switch.

The authors performed case studies by using 2012 ASPM data for 
SFO, LGA, and EWR airports. The models assumed perfect knowl-
edge of weather and airport demand. On a 15-min planning horizon, 
the SFO, LGA, and EWR models achieved accuracies of 98.2%, 
97.9%, and 97.9%, respectively. On a 3-h planning horizon, the  
models achieved accuracies of 81.2%, 81.3%, and 78.2%, respectively.

TABLE 6    Estimated Utility Function Weights for EWR

Parameter Value SE t-Stat.

Inertia Parameters

Configuration 22L, 11|22R 4.74 0.247 19.2

Configuration 22L |22R 4.74 0.247 19.2

Configuration 22L |22R, 29 4.74 0.247 19.2

Configuration 4R, 4L |4L 5.12 0.431 11.86

Configuration 4R, 11|4L 5.12 0.431 11.86

Configuration 4R|4L 5.12 0.431 11.86

Wind Parameters

High headwind on arrival runway 0.104 0.0377   2.75

Normal headwind on arrival runway 0.104 0.0377   2.75

Tailwind on arrival runway −0.104 −0.0377   2.75

Demand Parameters

Arrival demand (thresh ≥ 12) configuration 22L, 11|22R 3.33 1.12   2.95

Arrival demand (thresh ≥ 10) configuration 4R, 4L |4L 1.19 0.771   1.54

Arrival demand (thresh ≥ 10) configuration 4R, 11|4L 1.19 0.771   1.54

TABLE 7    Prediction Accuracy for EWR in 2012  
for 15-min and 3-h Prediction Horizons

Configuration 
(Arrival|Departure)

Prediction 
Accuracy (%)

Frequency 15 min 3 h 

Configuration 22L, 11|22R 3,954 (13%) 96.2 58.8

Configuration 22L |22R 13,737 (47%) 98.4 82.9

Configuration 22L |22R, 29 157 (1%) 92.6 45.2

Configuration 4R, 4L |4L 66 (<1%) 90.9 34.8

Configuration 4R, 11|4L 1,303 (4%) 94.4 46.0

Configuration 4R |4L 10,191 (35%) 98.4 84.2

Total 29,408 97.9 78.2
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The limitations seen in this study must be acknowledged. Because 
the approach was data driven, the predictions are limited only to 
runway configurations that have been previously seen. In addition, 
runway configurations that are seen infrequently are hard to predict 
accurately. The proposed models capture nominal behavior; how-
ever, realistically, decision makers demonstrate variability, which 
can be a possible source of error in the results. Furthermore, the 
Bayesian approach increases any errors or biases in the models for 
predictions on a 3-h horizon. In many cases, the heavy influence of 
the inertia parameter will bias the predictions to hold the incumbent 
configuration even when a switch is preferable.

Despite these limitations, the prediction performance of the 
proposed discrete choice models suggests that they are a promising 
approach to predicting runway configuration a few hours ahead of 
time. On a broad scope, these models could be developed over mul-
tiple years of data for all FAA core airports and clustered by weight 
parameters of similarly defined variables. These models could then 
be included in future NextGen decision support tools.

Potential areas of future work specific to the models in this paper 
can also be defined. The inertia term could be improved by limiting 
its effect as time progresses within a 3-h prediction period. Biases 
within the estimated parameters could be reduced by estimating the 
utility parameters with a balanced data set. The effect of wind gusts, 
which are currently ignored, can also be included in the utility models. 
Coordination variables could be added for all airports in the New York 
metroplex for the LGA and EWR models, and full models of JFK and 
TEB can be developed. Furthermore, new models for SFO could be 
estimated by defining both a side-by-side and a staggered class for 
Configuration 28R, 28L |1R, 1L and by using the distributions of air-
port arrival rates under VMC and IMC in the ASPM data. Challenges 
will still be present with this type of modeling because side-by-side 
and staggered operations are not reported in the ASPM data. Prelimi-
nary analysis shows that this lack of ground truth will likely lower the 
overall accuracy of the model to approximately 70%, but new insights 
on the demand and visibility variables may be present. High-demand 
scenarios will correlate more heavily with VMC, and low-demand 
scenarios will correlate significantly with IMC.
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