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Abstract— The air transportation system is a network of
many interacting, capacity-constrained elements. When the
demand for airport and airspace resources exceed the available
capacities of these resources, delays occur. The state of the
air transportation system at any time can be represented as
a weighted directed graph in which the nodes correspond to
airports, and the weight on each arc is the delay experienced
by departures on that origin-destination pair. Over the course
of any day, the state of the system progresses through a time-
series, where the state at any time-step is the weighted directed
graph described above.

This paper presents algorithms for the clustering of air
traffic delay network data from the US National Airspace
System, in order to identify characteristic delay states (i.e.,
weighted directed graphs) as well as characteristic types-of-
days (i.e., sequences of such weighted directed graphs) that are
experienced by the air transportation system. The similarity of
delay states during clustering are evaluated on the basis of not
only the in- and out-degrees of the nodes (the total inbound
and outbound delays), but also network-theoretic properties
such as the eigenvector centralities, and the hub and authority
scores of different nodes. Finally, the paper looks at community
detection, that is, the grouping of nodes (airports) based on their
similarities within a system delay state. The type of day is found
to have an impact on the observed community structures.

I. INTRODUCTION

Flights in the United States experienced nearly 16 million
minutes of delay in 2014 [1]. Air traffic delays have been
estimated to cost the US economy $31-41 billion annually
[2], [3]. When the traffic demand for an airport or airspace
resource exceeds the available capacity of that resource (ei-
ther because of deterioration in capacity or over-scheduling),
congestion and delays occur. The networked nature of the air
traffic system, and the flows of aircraft, crew and passengers,
result in delays propagating from one part of the system to
another.

Network models present a natural way to represent the air
transportation system. The major portion of previous work
in this area has considered models of traffic, either in terms
of aircraft or passengers [4], [5], [6], [7], [8]. By contrast,
this paper considers network models of air traffic delays, and
how one might use operational data to build these models. A
key difference between the problems is that network models
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of operations or passengers tend to be undirected when
aggregated over several hours or a day (in other words, traffic
levels are similar in both directions between two nodes),
while delay network models tend to be directed.

This paper models the US National Airspace System
(NAS) at any time as a directed network, with airports as
nodes and the current delays between origin and destination
airports as weights on the edges. It then uses algorithms
for graph clustering to identify characteristic delay states of
the NAS. In contrast to previous work on delay propagation
in air traffic networks [9], [10], our primary focus is not
to cluster network nodes (airports) on the basis of their
similarities, but instead, to cluster the networks themselves
(i.e., the system state at different times) on the basis of
their similarities [11], [12], [13]. In earlier work, the NAS
delay state was characterized using the edge weights of the
network; however, the connectivity and network structure of
the system were not explicitly considered [14].

The main objectives of this paper are as follows: (1)
Identify, cluster and characterize air traffic delay networks
that are similar to each other; and (2) identify, cluster and
characterize days (24-hour periods) in the NAS which are
similar to each other. Objective (1) will yield the character-
istic delay state of the NAS at any time, while objective (2)
will help identify characteristic type-of-days that describe the
evolution of NAS delays, accounting for the fact that every
hour of the day has an air traffic delay network associated
with it.

II. AIR TRAFFIC DELAY NETWORKS

Consider a graph G = (V,E), where V is the set of
vertices (nodes) and E is the set of edges between them. Let
n = |V | be the number of vertices. There is no directionality
associated with the edges of an undirected graph, while in
the case of a directed graph, each edge is represented as
an ordered pair, (v1,v2), where v1 is called the origin (or
tail) and v2 is called the destination (or head) of the edge.
A weighted graph has a weight w : E → R associated with
each edge. Let the weight on edge (i, j) be denoted by wi j.
Weighted graphs are also called networks.

The adjacency matrix, A ∈ Rn×n of a weighted graph is
given by

Ai j =

{
wi j, if (i, j) ∈ E,

0, otherwise (1)

From (1), one can infer that the adjacency matrix of an
undirected graph is symmetric (and that it therefore has real
eigenvalues), while the adjacency matrix of a directed graph
is asymmetric in general.



A. Description of data

The air traffic delay networks considered in this paper are
constructed using data from the Bureau of Transportation
Statistics (BTS) [15]. This data set contains details of flights
logged by US airlines that account for at least 1% of
domestic scheduled passenger revenues. Data from 2011-
2012 are used to develop a network that reflects the delay
state of the NAS at any time, focusing only origin-destination
(OD) pairs that serve at least 5 flights a day on average.
This filtering yields an unweighted graph with 158 nodes
(airports) and 1,107 edges (OD pairs).

The edge weight on each edge of the air traffic delay
network corresponds to the delay level of that edge. For
every hour in the two-year period, we use a moving median
(low-pass) filter on every OD pair in order to determine
its delay value at that time. Delay values for time-periods
shorter than 6 hours when there were no flights on an
edge are estimated using interpolation. Details on the data
processing and network generation can be found in Hanley
[16]. This procedure generates an air traffic delay network
for every hour of each of the 731 days in the data set, that
is, 24×731 = 17,544 networks.

III. FEATURES FOR COMPARING NETWORKS
In order to cluster “similar” networks, we need to identify

properties or features that can be used to evaluate their
similarity to one another. Many candidate scores can be
used to compare two networks; their suitability can vary
depending on the application being considered [17], [12]. For
example, one can compare the edge weights of two graphs,
that is, use the Euclidean distance between the vectors of
edge weights as a measure of graph similarity [14]. However,
such a representation requires O(n2) parameters to represent
a graph, where n is the number of nodes. In this work, we
consider promising features by which to compare networks
that represent the delays in the air traffic system, and then
use them to cluster similar networks, that is, identify charac-
teristic delay states of the air traffic network. By considering
features that represent the nodes and not the edges of the
network, we obtain models with O(n) parameters.

A. Degrees of nodes

The in- and out-degrees of a node in the air traffic network
correspond to the total inbound and outbound delay (summed
over all the incoming and outgoing edges from that node).
In addition, one can also determine the total delay associated
with a node as the sum of its inbound and outbound delays.
For an airport i, these quantities can be determined from the
adjacency matrix as:

dout(i) = ∑
j

Ai j (2)

din(i) = ∑
j

A ji (3)

dtot(i) = dout(i)+din(i) (4)

In other words, the air traffic delay network at any time can
be represented by the n×1 vectors, ~dout, ~din and ~dtot.

B. Eigenvector centrality
A measure of the importance of a node in a network is

given by the eigenvector centrality [18], [19]. The eigenvec-
tor centrality of a node increases if that node is strongly
connected to other nodes with high eigenvector centrality.
The eigenvector centrality vector, ~e, can be calculated from
the adjacency matrix as the eigenvector corresponding to the
largest eigenvalue of A. However, the eigenvalues of A are
guaranteed to be real only if it is symmetric, which leads to
the eigenvector centrality being a useful metric for undirected
graphs. By contrast, the air traffic delay networks are directed
weighted graphs.

One approach to applying the concept of eigenvector cen-
trality to directed graphs is by “symmetrizing” the adjacency
matrix, for example, by considering the graph with adjacency
matrix Ã:

Ã = (A+AT)/2. (5)

In the context of the air traffic delay network, the weight
on each edge of the undirected graph is the average of the
delays on the two corresponding edges of the directed graph.

C. Hub and authority scores
Hubs and authorities were introduced for directed net-

works in the context of the Hypertext Induced Topics Search
(HITS) algorithm [20], [21]. The key idea is that there are
two types of important nodes in directed networks: hubs
and authorities. An important hub points strongly to many
important authorities, while important authorities are nodes
that are pointed to strongly by many important hubs. In the
context of air traffic delay networks, a strong hub refers
to an airport that has significant outbound delays to strong
authorities (i.e., airports that have significant inbound delays
from strong hubs). The hub scores (~h) and authority scores
(~a) can be determined iteratively [20], or by considering
the dominant eigenvectors of AAT and ATA respectively.
Equivalently, they can be determined from the dominant
eigenvector of A [22], given by

A =

(
0 A

AT 0

)
. (6)

Since A is symmetric, the largest eigenvalue and corre-
sponding eigenvector are guaranteed to be real. If A is an
n×n matrix, then A is a 2n×2n matrix. The first n terms
of its dominant (nonnegative) eigenvector correspond to the
hub scores of the nodes of the directed graph, while the
second n terms correspond to its authority scores [22].

Example 1: Let us consider the example of the network
shown in Fig. 1.

The vectors of incoming delays, outgoing delays and total
delays at each airport are given by:

~din =
[

45 5 40 30 5 15
]T (7)

~dout =
[

35 10 25 50 15 5
]T (8)

~dtot =
[

80 15 65 80 20 20
]T (9)

While the quantities ~din, ~dout and ~dtot reflect the delays
associated with each node in the network, they do not reflect
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Fig. 1. Example of a weighted directed network, where the weights on
the edges is the departure delay between the origin and the destination.

the edges, that is, the connectivity of those nodes. The
eigenvector centrality can be determined from the undirected
graph derived using (5), which is shown in Fig. 2.
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Fig. 2. Symmetrized version of the weighted directed network shown in
Fig. 1.

The eigenvector centrality (i.e., the dominant eigenvector
of Ã) in this case is given by

~e =
[

0.60 0.14 0.47 0.59 0.15 0.19
]T (10)

Comparing the values of ~e and ~dtot in this example, we
see that they are not identical. For example, the nodes 1 and
4 have the same total delay (80 units), but their eigenvector
centralities differ, with node 1 being slightly more central.
Similarly, nodes 5 and 6 have the same total delays, but
different centralities. In both cases, we see that this is due to
connectivity: Node 4 and node 1 are both similarly connected
to each other and to node 3, but node 4 is more strongly
connected to node 6 than node 1 is to node 2. Similarly,
node 6 is more central than node 5 due to its connectivity
to node 4 (which has high centrality) rather than to node 3
(which has lower centrality).

One can also compare the hub (~h) and authority scores (~a)
of various nodes to their outbound (dout) and inbound (din)
delays, respectively. For this directed network,

~a =
[

0.70 0.05 0.56 0.24 0.05 0.36
]T(11)

~h =
[

0.32 0.21 0.35 0.82 0.25 0.04
]T(12)

Although node 4 has higher total inbound delay than node 6,
it has a lower authority score since none of the three nodes
it is connected to (1, 3 and 6) has a high hub score (and the
weights on links (3,4) and (6,4) have low weights), while
node 6 is strongly connected to node 4, which is a strong
hub.

As the previous example suggests, the different features
discussed above reflect different properties of the network.
While the delay features (~din and ~dout) reflect the total
inbound and outbound delays at a node, the hub and authority
scores reflect the connectivity and the propensity for delay
to propagate into and out of a node in a network.

IV. CLUSTERING OF NETWORKS
The features discussed in the previous section can be used

to compare networks, and to cluster similar networks. In
other words, two observed air traffic delay networks are
judged to be similar to each other if these features are close
to one another. The Euclidean distance between the feature
vectors can be used to measure distance. Candidate feature
vectors that were considered included:

1) Outbound and inbound delay vectors:
[

~dout

~din

]
.

2) Eigenvector centralities of the nodes of the sym-
metrized version of the air traffic delay network: ~e.

3) Eigenvector centralities weighted by the total delay in
the system:

(
∑ j

~din( j)
)
~e.

4) Hub and authority scores of the nodes of the air traffic

delay network:
[
~h
~a

]
.

5) Hub and authority scores weighted by the total delay

in the system:
(

∑ j
~din( j)

)[ ~h
~a

]
.

6) Hub and authority scores along with the outbound
and inbound delays (appropriately normalized to be in

[0,1]) at nodes:


~h
~a
~dout

~din

.

k-means or k-medoids algorithms were used to determine
clusters of similar graphs. The Euclidean distance between
the feature vectors was used as the objective function.
The number of clusters is evaluated using various criteria,
including the sum of distances to the nearest cluster cen-
troids and silhouette plots [23]. The next section presents
some illustrative results of clustering using different feature
vectors.

A. Clustering by eigenvector centralities
Fig. 3 shows the 6 clusters (suggested by the silhouette

plots [23]) that were identified by the eigenvector centralities,
~e. These centroids can be qualitatively describes as follows:
(1st row) High centrality in the West coast of the US (espe-
cially San Francisco (SFO) airport) exhibits strong centrality;
(2nd row) Chicago O’Hare (ORD) has high centrality; (3rd
row) Atlanta (ATL) airport has strong centrality; (4th row)
a diffused state; (5th row) Elevated centralities at the East
Coast airports, and (6th row) Dallas/Fort Worth (DFW)
airport has strong centrality.

B. Clustering by Hub/Authority scores weighted by the total
system delay

The feature vectors used in the previous section, eigenvec-
tor centralities, do not account for either the directed nature



Fig. 3. Centroids of clusters identified by k-means clustering of eigenvector
centralities. The radius of the shaded circle is proportional to its eigenvector
centrality. We see that there is (top row) one state in which SFO exhibits
strong centrality, (2nd row) one in which ORD airport does so, (3rd row)
one in which ATL airport has strong centrality, (4th row) a diffused state,
(5th row) a state with slightly higher centralities in the East Coast, and (6th
row) a state in which Dallas Fort Worth (DFW) airport has strong centrality.

of the networks being clustered, or possible scalings of the
network. In other words, the eigenvector centralities would

Fig. 4. Centroids of 4 of the 6 clusters identified by k-means clustering of
the delay-weighted hub and authority scores. The radius of the blue shaded
circle is proportional to the hub score of an airport weighted by the delay
while that of the red circle is proportional to the delay-weighted authority
score.

be the same for two networks that had adjacency matrices
that were scaled versions of each other; however, the two
networks would have very different system delays.

Fig. 4 shows 4 of the 6 clusters identified by the hub
and authority scores, multiplied by the total system delay at
that time. This feature vector accounts both for the directed
nature of the network, as well as the total delay in the system
corresponding to that network. The identified clusters can be
qualitatively described as follows: (1st row) High delays at
SFO which is also an authority; (2nd row) high delays and
strong hub and authority scores in the Eastern US, including
ATL, ORD and the Northeast airports; (3rd row) high delays
and strong authority scores at ATL; and (4th row) very
high delays and authority scores at ORD. The 5th and 6th
states (not shown) have low and medium delays diffused
across the system. It is interesting to note the differences
between the eigenvector centrality clustering and clustering
using hub/authority scores and delays. In particular, the latter
does not identify a clear state in which DFW is dominant,
instead opting for a medium NAS delays state in which



hub/authority scores are more diffused.
The NAS also exhibits temporal variations, and different

delay states are more likely to occur at different times of the
day. Fig. 5 shows the empirical frequencies of NAS delay
occurrences by time of day. The low delay state is seen to
occur consistently overnight, when traffic demand is low. The
frequency of occurrence of this state is lowest during peak
demand hours. The next most-frequently occurring cluster,
which has medium delays distributed across major airports,
tends to occur during the day when there are no major
disruptions in the system. The “SFO high delay” state tends
to occur with greatest frequency in the morning hours in
the West coast of the US (i.e., afternoon in the East Coast),
when the SFO area experiences fog in the summer months.
The very high ORD delays cluster tends to peak around 6PM,
when demand is at its highest. The high ATL and high East
Coast delay states tend to occur in the late evening hours,
when congestion peaks.
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Fig. 5. Variation of occurrence of characteristic NAS delay state by time
of day.

V. CLUSTERING OF SIMILAR TYPES OF DAY
While the state of the NAS at any time can be modeled

as a network, a day is a time series of these states, and
is therefore a time series of networks. Taking an approach
similar to the one in the previous sections, characteristic days
can be identified by clustering days that were most similar to
each other. Each day of the 731 days in the data set consists
of a 24 hour long time series of feature vectors, with each
feature vector representing the air traffic delay network at
that time. The candidate feature vectors at each time are still
the ones discussed in Section IV.

The following sections present a few illustrative results
from the clustering of these time series of air traffic delay
networks.

A. Clustering time series of out- and inbound delays

Each day in the dataset corresponds to a time-series of
length 24, with a air traffic delay network at each time. The
delay network at time t on day n can be represented by the

vector

[
~dout

t,n
~din

t,n

]
. Therefore, day n corresponds to the time

series

Dn =

[
~dout

1,n
~din

1,n

]
· · ·

[
~dout

24,n
~din

24,n

]
(13)

Similar days can be determined using k-means clustering, by
comparing the Euclidian distance between the time series Dn
on different days.

Clustering using the outbound and inbound delays as fea-
ture vectors yields 6 characteristic types of day, as suggested
by silhouette plots [24]. The centroids of these clusters,
which are each a time series of 24 feature vectors, can be
qualitatively described as follows: Days on which (1) Atlanta
(ATL) very high delays, (2) West coast high delays, (3)
ORD very high delays, (4) Northeast/ORD/ATL delays, (5)
Medium NAS delays, and (6) Low NAS delays.

B. Clustering time series of hub and authority scores

Alternatively, we can use the feature vector (4) described
in Section IV, namely the hub and authority scores, to
represent the network at any time. In other words, day n
is represented by the time series

Dn =

[
~h1,n
~a1,n

]
· · ·
[
~h24,n
~a24,n

]
, (14)

where~ht,n and ~at,n represent the hub and authority scores of
the nodes of the network at time t on day n.

Silhouette plots for k-means clustering using time series
of hub/authority scores for each day suggest a choice of
12 clusters. The centroids can be qualitatively described as
follows: Days on which (1) Northeast has med HA scores,
(2) Low/diffused HA scores, (3) ATL high H scores, (4) ATL
high HA and ORD high H, (5) ORD med HA, (6) SFO high
HA, (7) DFW high HA, (8) ATL med A and DEN, LAX
med HA, (9) SFO high A, (10) IAH high HA, (11) ORD
high H, and (12) ORD v. high A.

C. Clustering time series of inbound and outbound delays,
and hub and authority scores

In considering the feature vectors in Sections V-A and V-
B, one notes that the former only considers the edge weights
(delays) but not the connectivities (the susceptibility of nodes
to further inbound or outbound delays), while the latter only
considers the connectivities but not the delays themselves. In
reality, both kinds of feature vectors need to be considered.
An analysis of the overlap between the two sets of clusters
shows that there are relationships between them.

Fig. 6 shows the empirical probability distribution of
which hub/authority-based cluster days from each of the
five delay-based clusters would belong to. For example, a
day classified as ATL high delays is most likely to also
have high hub/authority scores at ATL, and there is a
similar correlation between delays and hub/authority scores
at the Northeast airports. High hub/authority scores at DFW
are strongly correlated with medium NAS delays. Chicago
delays (medium to very high) tend to be correlated with high
ORD authority scores (and midwest hub scores). Finally,
elevated hub/authority scores in the West coast tend to
cause localized delays, and to not have a significant impact
on systemwide delays. This statement is supported by the
observation that most days with high hub and authority
scores at SFO fall into the “West coast high delays” cluster,
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and most of the ones with high authority scores at SFO fall
into either the low NAS delays cluster or the West coast
high delays cluster. These days tend to have lower NAS-
wide delays (not shown in figure). Fig. 6 also suggests that
10-12 clusters may be a reasonable number to describe the
characteristic types of delay days seen in the NAS.

Another method for incorporating both inbound/outbound
delays and hub/authority scores is to cluster days based
on time series of feature vectors that include delays and
hub/authority scores. Using the feature vector (6) described
in Section IV, day n would be represented by the time series

Dn =


~h1,n
~a1,n
~dout

1,n
~din

1,n

 · · ·

~h24,n
~a24,n
~dout

24,n
~din

24,n

 , (15)

where the delays at the nodes were appropriately normalized
to be in [0,1]. Clustering days using this approach yields 10
clusters, as was suggested by Fig. 6. These clusters can be
qualitatively described as follows:

1) Low NAS 1: Low system delays; elevated delays and
hub/authority scores at ORD, ATL and the Texas area.

2) ATL: Very high delays and hub/authority scores at
ATL.

3) ORD: Very high delays and hub/authority scores at
ORD.

4) Low NAS 2: Low system delays; elevated delays and
hub/authority scores at ATL.

5) Low NAS 3: Low system delays; elevated delays and
hub/authority scores at DEN.

6) IAH: Very high delays and hub/authority scores at
IAH.

7) NE/ORD/ATL: High delays and hub/authority scores in
the Northeast, ORD and ATL.

8) SFO authority: High delays and authority scores at
SFO.

9) SFO hub and authority: High delays and hub/authority
scores at SFO; elevated hub scores at LAX.

10) DFW: High delays and hub/authority scores at DFW.

VI. COMMUNITY DETECTION

It would be valuable to be able to identify airports that are
most similar, that is, ones that tend to have similar delays
(or propensity for delays). This problem is analogous to that
of clustering similar nodes in networks [9], [10], [25]. As a
first step, we consider the symmetrized version of the air
traffic delay network, aggregated over a day. Community
detection algorithms using the notion of modularity, as
proposed by Girvan and Newman [26], determine groups of
nodes (communities) such that there is stronger connectivity
between nodes within a particular community than between
nodes in different ones.

Given a partitioning of the network nodes into C communi-
ties, the modularity or quality of the partitioning is evaluated
using the function, Q such that

Q =
C

∑
i=1

(eii−a2
i ), (16)

where ei j is the fraction of total network edge weight that
is on edges that connect nodes in community i to those in
community j, and ai = ∑ j ei j. The partitioning is optimized
over all values of C and possible community structures in
order to maximize Q [26]. For example, community detection
for the undirected graph shown in Fig. 2 results in two
communities, one containing nodes 1, 2, 4 and 6, and the
other containing nodes 3 and 5 (Fig. 7).
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Fig. 7. Community detection for the undirected graph shown in Fig. 2.
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In air traffic delay networks, there is stronger connectivity
amongst airports within a community (as indicated by the



delay weights on the edges) than to nodes in other communi-
ties. It is interesting to observe that the community structures
vary depending on the type of day that is being experienced
in the NAS. Fig. 8 shows the empirical probability that two
airports belong to the same community, given that the day
has been classified as being of a particular type. It shows that
while Atlanta Hartsfield International (ATL) and Houston
George Bush Intercontinental (IAH) airports are almost never
in the same community, Portland International (PDX) and
San Francisco (SFO) airports are in the same community on
the majority of days. In addition, on days labeled as having
high SFO delays, hub and authority scores, PDX and SFO
are almost always in the same community. By contrast, the
likelihood of SFO and Los Angeles (LAX) airports being
in the same community can vary from nearly 80% on days
when Houston (IAH) is impacted, to less than 40% on days
on which SFO is impacted. Similarly, Seattle (SEA) and SFO
are in the same community on 80% of days on which ATL
is impacted or SFO is both a hub and an authority, but only
50% of days when delays are low, with slightly higher delays
at Denver (DEN) airport.

VII. DISCUSSION AND NEXT STEPS

The results presented in this paper demonstrate the
promise of clustering air traffic delay networks in order to
identify characteristic delay states and characteristic types of
day that take into account both spatial and temporal patterns
and connectivity. The analyses help identify key airports
and constraints that drive air traffic delays. The community
detection analysis shows that groups of airports are strongly
connected in terms of delays on certain types of days. Ongo-
ing work on this topic includes comparing the characteristic
types of days identified by clustering time series of networks
(as was done in this paper) to types of days identified by
clustering aggregate delays experienced at different airports.
In addition, the evolution of delay states during the course
of a day could be compared to the disruptions and control
actions (i.e., Traffic Management Initiatives) that were seen
on that day. Finally, the characteristic delay states, types
of days, and significant features identified in this work can
be used to develop predictive models of air traffic network
delays, which may in turn enable improved decision support
tools for stakeholders such as air traffic managers.
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