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Abstract

This paper studies controllability for the class of control systems commonly called (continuous-time) recurrent neural
networks. It is shown that, under a generic condition on the input matrix, the system is controllable, for every possible
state matrix. The result holds when the activation function is the hyperbolic tangent. © 1997 Elsevier Science B.V.
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1. Introduction

This paper continues the study of system-
theoretic properties of recurrent networks. Assume
given a locally Lipschitz map ¢:R — R. By an n-
dimensional, m-input (recurrent) g-net we mean
a continuous-time control system of the form

X(t) = ¢ (Ax(t) + Bu(t)), (1)

where 4 € R"*" and B e R"*™ Here, for each map
o:R — R and each positive integer n, we use ¢ to
denote the diagonal mapping

X1 /0'(x1)

™R SR 2
Xn \ O-(xn)

(Sometimes one includes, in addition, an observa-

tion or measurement function y = Cx, but this
paper will not deal with observation issues.) The
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spaces R™ and R" are called respectively the
input-value space and the state space of the net.
Observe that the linear systems customarily studied
in control theory are precisely the o-nets for which
o is the identity function. Our main result will be
for the special case of the hyperbolic tangent
¢ = tanh, the “sigmoid” function used in neural
nets theoretical as well as experimental work.

In the area of neural networks, one interprets the
vector equations for x in (1) as representing the
evolution of an ensemble of n “neurons”, where
each coordinate x; of x is a real-valued variable
which represents the internal state of the ith
neuron, and each coordinate u;, i=1,...,m of u
is an external input signal. The coefficients A;;,
B;; denote the weights, intensities, or “synaptic
strengths”, of the various connections. The trans-
formation ¢:R — R is called the “activation func-
tion”. Systems of this type, have been employed in
areas as varied as digital signal processing (see for
instance [ 5, 6, 10]), control (see e.g. [11, 15, 17, 18]),
the design of associative memories (“Hopfield
nets”), language inference, and sequence extrapola-
tion for time series prediction. Special purpose
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chips are being built to implement recurrent nets
directly in hardware; for instance, Hitachi’s Wafer
Scale Integration chips have been designed to im-
plement Hopfield nets with over 500 neurons and
30000 synaptic connections.

In past work we have studied, for such models,
questions of parameter identifiability [2], observ-
ability [3], system approximation [14], computa-
bility [12], parameter reconstruction [9], and
sample complexity for learning and generalization
[7,8].

Here we focus on problems of controllability.
The fundamental contribution in this area was a re-
cent paper by Albertini and Dai Pra, cf. [1]. This
paper dealt with the study of the forward accessibil-
ity property. Recall that a system such as (1) is said
to be forward accessible if from each initial state it
is possible to reach, by using appropriate inputs
u(-), an open subset of the state space R". Albertini
and Dai Pra showed that forward accessibility
holds provided that
e the “independence property” (cf. [4, 16]) holds

for o, and
e Bisin a certain class B, ,, of matrices which was

introduced in [3,4] and is reviewed below.
(For the special but most important case of single
input systems, m = 1, the condition B € B,, ,, means
that the entries of the vector B are all nonzero and
have different absolute values. The independence
property asserts that distinct dilations and trans-
lates of ¢ must be linearly independent.)

An extremely surprising aspect of this result is
that for matrices B € B, ,,, accessibility holds inde-
pendently of the choice of the matrix A. This is in
sharp contrast with linear systems, for which the
only B’s so that the system X = Ax 4+ Bu is access-
ible no matter what A is are those B’s of full rank ».
Thus we were motivated to ask if the same condi-
tion B € B, ,, which Albertini and Dai Pra used to
guarantee forward accessibility also ensures con-
trollability. Controllability means that from each
initial state it is possible to reach, by using appro-
priate inputs u(-), the entire state space, not just
some — potentially very small — open subset. Nat-
urally, this is a much more interesting property.
Surprisingly, the answer turns out to be yes, for the
standard sigmoidal function ¢ = tanh which is ubi-
quitous in neural network practice. Adding to the
unexpected developments, it turns out that the use
of tanh is essential: there are other functions ¢ for
which the independence property holds, so that in

particular a o-net is accessible for every B e B, .,
but controllability fails for some B € B, ,,. We pro-
vide a counterexample with ¢ = arctan.

1.1. Definitions and statements of the main results

For any measurable (essentially) bounded con-
trolu: [0, T ] — R™and any state £ we use ¢(t, ¢, u)
to denote the solution x(t) of (1) having initial
condition x(0) = £. The function x(-) is defined on
some maximal subinterval of [0,T], and if ¢ is
globally Lipschitz, which is the case with our main
example given below, then it is defined on the entire
interval. Given &,{ e R", we say that ¢ can be
steered, or controlled, to ( if there is some T = 0
and some control # on [0, T ] such that the solution
is defined for all te[0,T] and ¢(T,&u)={.
The system (1) is controllable if every (e R"
can be steered to every (eR" (See [13] for
generalities and basic facts about control
systems.)

For each pair of positive integers n and m, we let

B, .:={Be R™", (Vi) row;(B) # 0 and
(Vi # j) row;(B) # + row;(B)}

where row;(-) denotes the ith row of the given
matrix. In the special case m = 1, a vector b € B, , if
and only if all its entries are nonzero and have
different absolute values. The complement of B, ,, is
an algebraic subset of R"*", so B, ,, is generic in
every possible sense (fully measure, open dense).

We let 2 be the class of maps o : R — R which are
locally Lipschitz and have the following properties:

1. ¢ is an odd function, i.e. 6(—r) = —a(r} for all
reR,;

2. 04, = limg, ,0a(s) exists and 1s > 0;

3. o(r) <o, forall reR;

4. foreach a,be R, b > 1,

. 0, —ola+ bs)
hm ——m——
sot+aw Oy — O(S)

=0. (3)

Remark 1.1. The requirement that ¢ be odd is
merely imposed for convenience, and can be
weakened in many of the results. The most critical
assumption on elements of the class 2 1s the last
one. This is a nontrivial requirement; note for in-
stance that the function ¢ = arctan does not satisfy
it, since the limit is in that case 1/b.
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We now list our main results; proofs are given in
later sections.

Lemma 1.2. The function tanhe 2.

Theorem 1. Assume that 6€ X, Be B, ,,, and A is
arbitrary. Then the system (1) is controllable.

A trivial converse of Theorem 1 is as follows:

Lemma 13. If Be R*™™ and the odd function
0:R - R are such that for all A € R"™" the system (1)
is controllable, then B B, ,,.

However, we give also the following example to
show that when B¢ B, ,,, it may still be the case
that the system (1) is controllable, provided A is
appropriately chosen.

Lemma 1.4. The following system in dimension two:
Xx=o0(y), y=ou),

where o(s) = tanhs, is controllable.

Observe that B = col(0,1) ¢ B, ;, and

0 1

=0 o
but with 4 = 0 the system would not be control-
lable.

Finally, one may ask what happens if o ¢ 2 but
o 1s still a “sigmoidal” type function, with a graph
qualitatively similar to that of tanh. Specifically,
one may consider the nonlinearity ¢ = arctan,
which has also appeared, albeit much less often, in

the neural network literature. We have the follow-
ing counterexample.

Proposition 1.5. Ler ¢ = arctan. Then the 4-dimen-
sional, single-input system

Xy =0(X; + X5 + X3 + x4 + 2u),

X, =0(x; + x; + x3 + x4 + 120),

X3 = a(—3u),

X4 = o(—4u)

is not controllable.

Observe that this system is forward accessible,
because it satisfies the conditions in [ 1]. Indeed, the

nonlinearity ¢ = arctan satisfies the “independence
property” (cf. [4]), and clearly the matrix B =
col(2,12, —3, —4) belongs to B, ;.

2. Proof of the main results
We first prove Lemma 1.2.

Proof. The first three properties are clear, with
04, = 1, 50 we need to prove the limit property (3).
Note that 8(x) = (1 + e~ *)~ ! satisfies

0(r) ,,

A r _ 4
a0 B(r)+ ¢ '0(—r) 4)
for all r, t, and that 1 — tanh x = 20(— 2x) for all
x € R. Thus

1 — tanh(a + bs) 0(—2a — 2bs)
_— ==\ )
1 — tanhs o

+e729e2170 9(2a + 2bs) -0
H_J ;—V—J

-0 -1

as desired. O
2.1. A result on convex hulls

Let 0 be a map R - R. For each vector a e R"
and matrix B e R"™*", we write

Sep={6"(a + Bu), ue R™}.

We use int(S) and co(S) to denote, respectively, the
interior and the convex hull of a set S.

Lemma 2.1. Pick 62, BeB, ,, and arbitrary
ae R". Then 0 € int{co(S, z)).

Proof. Since Be B, .., there is some u € R™ such
that the numbers b;:= row;{B)u are all nonzero and
have distinct absolute values. (Because the set of u’s
that satisfy at least one of the equations
row;(Byu = 0, row;(B)u + row;(B)u = 0, or row;(B)u
—row;(B)u = 0, is a finite union of hyperplanes in
R™) As S, s € S, it is enough to show the result
for Bu instead of B. So we assume from now on that
B = col(b,, ...,b,) and the b; are all nonzero and
have distinct absolute values.

Assume by way of contradiction that 0¢
int(co(S, ). Using a separating hyperplane, we
know that there is a nonzero vector ¢ = (cy, ... ,C,)
such that ce™(a + Bu) > 0 for all ue R. Writing
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a = col(ay, ... ,a,), this means that

Y colai+buy =20 VueR. (5)
i=1

We now prove that such an inequality cannot hold,
if 6 €2 and the b; are nonzero and have distinct
absolute values, unless all the ¢; are equal to 0.
Since ¢ is odd, we may assume that each b; > 0,
since any term c;o{a; + b;u) with b; < 0 can be re-
written as (—c¢;)o(—a; + (—by)u). Thus, reorder-
ing if needed, we assume that 0 < by < --- <b,.
Finally, dropping all those terms in the sum for
which ¢; = 0, we may assume that ¢; # 0. Taking
the limit in (5) as wu—> —oc we obtain
Yi . ci(—04) 2 0. So one may rewrite {5) as

n

Z Ci(O':,C e O'(ai + blu)) < 0 Vu € R (6)
i=1
Therefore
" 0, — ola; + b;u)
i <0 VueR. 7
Cl+i;20‘7w—‘7(al + byu) e )

If we prove that each term in the sum converges to
zero as u — + oo then it will follow that ¢; < 0. But
this fact follows from property (3) (applied with
a=a; — ba;/by, b =b;/b,, and noting that s =
a; + bju— oo as u— o).

If we take instead the limit in (5) as u —» + o0, we
find that ¥7_,ci0, > 0. We may therefore also
rewrite (5) in the form:

Y clo, +ola; + bu) >0 VueR. (8)
i=1
Letting v = —u and a; = — a;, and using that o is
odd,
" 0, — a{a; + b;v)
e+ ) ¢ - 20 VveR. 9
' 12;2 0, — oldy + byv) ®

Taking the limit as v -+ o0 and appealing again
to property (3), we conclude that also ¢; = 0. Thus
¢1 = 0, contradicting the assumption made earlier.

]

2.2. A local controllability lemma

Lemma 2.2. Let  be an open subset of R", let U be
a finite set, and let Q2 x U +> R" be a map such that
f(x,u) is continuous in x for eachue U. Let X be the
control system X = f(x, u). Let x4 € Q be a point such

that 0 is an interior point of the convex hull of the set
of vectors {f(xo,u):ue U}. Then there exists a
neighborhood W of x,, contained in , such that for
every x € W there are trajectories of X going from
X to Xq and from x, to x.

Proof. We may obviously assume, without loss of
generality, that x, = 0. Let

S={veR"|v| =1}
Define a function ¢ : Q +— R by letting

@(x) = max {¢(v,x):ve S},
where

Y (v,x) = min {{v, f(x,u)>:ueU}.

The function  is 2 minimum of a finite collection
of continuous functions, so ¥ is continuous. Then
@ is well-defined and continuous as well.

Since 0 is an interior point of the convex hull of
the set {f(0,u):ue U}, we can find a 6 > 0 such
that for every v e S the vector —44v is a convex
combination of the f(0,u), ue U. Given any v € S,
the number —40 is equal to {v, —4dv), which is
a convex combination of the numbers (v, f(0,u)),
ue U. So at least one of these numbers is < — 49.
So (1, 0) < — 44. Since this is true for all v € S, we
conclude that ¢(0) < — 44. Since ¢ is continuous,
there exists o >0 such that, if B = {xe R":|x||
<o}, then B < Q and ¢(x) < — 26 whenever
xeB.

Now fix a point X € B, and let  be the set of
all triples (I,5,¢) such that (i) I is an interval,
(i) I = [0, [, (i) 0e 1, (iv) :I - U is measur-
able, (v) £:1 — Qs a trajectory of 2 corresponding
to the control # (that is, £ is absolutely continuous
on [0, T] for every T eI, and &(t) = f(&(t, 5(t)) for
almost all t e I), (vi) £(0) = x, and (vii) the deriva-
tive of the function t +— || £(¢)|| 1s < — & for almost
every tel.

If (I,n,&)e 7, then ¢ is locally absolutely con-
tinuous on I, by the definition of trajectory, so the
map t — | &(1)]| is also locally absolutely continu-
ous. Then condition (vii) implies that the inequality
IEOI<IEQ)) — ot holds for all tel. Therefore
|E(t)| <o for all tel, so ¢ is entirely contained in
B. 1t follows that £ is Lipschitz (with Lipschitz
constant C =max {C(u):uec U}, where C(u) =
sup{llf(x,u)l|:x € B}). Moreover, the interval
I must be bounded, since tel implies ¢ < a/d.
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Therefore, if I is not. compact then the map ¢ ex-
tends to the closure T of I, which is compact. It is
clear that the extension is also a trajectory of Z.

Order Z in the obvious way, by letting
1,11, 8 <X U2,n2, &) T Iy < I and 5y, &, are the
restrictions to I; of 5,, &,. It is then obvious that
every totally ordered nonempty subset of 7 has an
upper bound in . So J has a maximal element
(I,n,&) by Zorn’s lernma. In view of the Lipschitz
property discussed in the previous paragraph,
I =[0,T] for some T.

We now show that &(T ) = 0. Suppose this is not
true. Let {T)=x, so Xe B and ||X| > 0. Since
@(X) € — 26, we have Y(7,X) < — 26, where ¢ =
— X/I1%|l. So there exists u € U such that {&, f(X, u)>
< —20. Let &:[T, T+ B]—> Q2 be an integral
curve of the vector field x — f(x,u), such that
E(T) = X. (Such a curve exists, for some f > 0, by
the existence theorem for ordinary differential
equations with a continuous right-hand side.) The
function x — || x| is smooth on a neighborhood of
X, and its derivative along the curve &’ is given by

d
p(t) = (1T = <v(0), D, up,

where

v(t) = ZO/1EON-

(Here we have used the chain rule, together with the
facts that the gradient of x || x| is x/| x| and the
derivative of t — £'(t) is t —f(E(t),u).) It is clear
that o(t) is continuous as a function of ¢, and
v(T) = 9. Since p(T ) = <5, f(X,u)y < — 2J, we can
assume, by taking f small enough, that p(t) < — ¢
for te [T, T + B]. So, if we let I =[0,T + f], we
can extend # to a control #:T— U by letting
i(t) = ufort €T, T + B1,and define &: T — Qto be
the curve whose restrictions to [0,7] and
[T,T + B]are & & Itis clear that the triple (I, 7, &)
is in 7 and (I,n,¢) < (1,7, &) but (1,1, &) # (L7,%).
This contradicts the maximality of (I,#,&). This
contradiction proves that &(T) = 0, as stated.

We have thus shown that for an arbitrary point
X € B there is a trajectory of 2 that goes from X to 0.
We may also apply this argument to the reversed
system X = — f(x, u), whose trajectories are those of
2 run backwards in time. Indeed, if the convex hull
of the set {f(xo,u):u € U} contains zero in its in-
terior, then the same is true for the convex hull of
{ —f(xo, u):u € U}. Thus, we find some other ball B’

with the property that every x € B’ can be reached
from x, by a trajectory of X. Then the neighbor-
hood W = Bn B’ has the desired property. [J

2.3. Proof of Theorem 1

We first show that if x, € R" then the set #(x,) of
points reachable from x4 is open. To see this, let
X € #(x,). By Lemma 2.1, with a = Ax, there exists
a finite subset U of R" such that 0 is an interior
point of the convex hull of the set of vectors
{6"(Ax + Bu), ueU}. If we define f(x,u)=
6"(Ax + Bu) for ue U, Lemma 2.2. tells us that
there is a neighborhood W of x all whose points are
reachable from X by trajectories of X = f(x,u).
Clearly, every trajectory of X = f(x,u) 1s a trajectory
of the system (1). So W < %(x,). This proves that
A(x,) is open.

We now prove that %(x,) is closed. To show this,
pick X in the closure of %(x,). Applying Lemmas
2.1 and 2.2, we find a neighborhood W of x such
that every x € W can be steered to X by a trajectory
of (1). Since W nZ(x,) # 0, we can find a point
X which is reachable from x, and can be steered to
X. Therefore x € %(xq). S0 #(x) is closed, as stated.

Since R" is connected, and %(x,) is open, closed,
and nonempty (because x, € %(x,)), we conclude
that #(x,) = R". Since x, is an arbitrary point of
R", the system (1) is controllable, and our proof is
complete.

2.4. Proof of Lemma 1.3

Take any BeR"™™ and any odd function
o:R — R. Assume that B ¢ B, ,,. We show that the
system (1) is not controllable when 4 = 0. Note
that the system equations are now x = ¢(Bu).
Since B ¢ B,_,,, either one of its rows is zero or some
two rows are equal up to a sign change. Assume
first that the ith row is zero. Then the equation for
the ith coordinate of x is %; = 0; this implies that
x;(t) is constant along all trajectories and hence the
system cannot be controllable. Assume instead that
row;(B) = row{B) for some i#j. In that case,
X; — X; = o(row;(B)u) —o(row;(B)u) = 0, no mat-
ter what the control u(-) is, so the quantity
x;(t) — x;(t) is constant along trajectories, again
contradicting controllability. Finally, if row;(B) =
—row;(B), then since ¢ is odd we have that
x;(t) + x;(t) is constant along trajectories, and once
more the system cannot be controllable.
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3. Proof of Lemma 1.4

Here we prove Lemma 1.4, which is an example
to illustrate that the controllability of system (1)
depends on the form of A, when B¢ B, ,,. We will
prove controllability for more general ¢ than the
specific example tanh of interest. The assumptions
made here (much more than necessary, but enough
to make the proof almost trivial) are as follows:
o:R —(—1,1) is locally Lipschitz, odd, strictly in-
creasing, onto, and there exists a’(0) = ¢ # 0.

Proof. There is a neighborhood # of (x, y) = (0,0)
such that each pair of states in % can be steered to
each other (local controllability about x =y =0,
because the linearized system is X = cy, ¥ = cu).

We claim that for each ¢ e R? thereis some { € #
which ¢ can be steered into. Once this claim is
proved, controllability follows. Indeed, assume
given any two states &, and &,. Then there is a con-
trol u, steering &, to some {; € %, by the claimed
property. Similarly, there is a control u; which
steers some {, € % to &,. (Proof: we must show that
&, can be controlled to some {, e # with respect
now to the time-reversed system X = —a(y),
¥ =—0o(u), ¢f Lemma 2.6.8 in [13]. With the
new variable z:= —y, the equations become
X = ¢(z), Z = o(u), which coincide with those of the
original system.) Finally, there is a control u, tak-
ing {; to {,. Then the concatenation of u,, u,,
usy steers &, to &,.

To prove the claim, it is sufficient to exhibit
a continuous function k: R? — R with the property
that every trajectory of X =y, y = a(k(x, y)) is de-
fined on [0, oc) and converges to zero (k is a con-
tinuous feedback stabilizer). We take k(x,y):=
6 Y —0o(x)/2 — a(y)/2). Thus, it suffices to show
that the system
X=o0(y, y=—30()—10(y
is globally asymptotically stable. For this we take
the Lyapunov function

Vix,y):= %J: a(s)ds + j: a(s)ds.

This function is positive definite and proper (that is,
“radially unbounded”), because of the assumptions
made on o. Its derivative along trajectories is
— [0(¥)]?/2 < 0 and only vanishes along trajecto-

ries for which y(tr) =0. Along such trajectories
0 =y = (—1/2)o(x) implies that also x = 0. By the
LaSalle invariance principle, the system is indeed
globally asymptotically stable. []

4. Proof of Proposition 1.5

Lemma 4.1. Suppose that 6:R — R is any continu-
ous function, and b, i = 1,2,3,4, are real numbers,
5o that

o(a + byp) + ola + byp) + o(bsp) + a(bap) > 0
VueR, Va3 1. (10)

Consider any measurable u:[0, T} - R and assume
that (x1(*), x2(*), x3(), x4(*)) is an (absolutely con-
tinuous) solution of the system

o*(xl + Xy + X3+ x4 + blu),

il

X1
X, =0(x; + x5 + X3 + x4 + byu),
X3 = a(byu),

X4 = 6(bau)

defined on [0, T . Along this solution, let
o(t):= x1(t) + x,(t) + x3(t) + x4(1).

Then, if «(0) > 1 it must hold that «(t) > 1 for all
te[0,T]

Proof. If the conclusion is false, there is a t, so that
alty) = 1 and a(t) > 1 for all t € [0, ¢t,). But property
(10) says that o'(t) > 0 for almost all te[0,t,),
which means that «(zo) = «(0) > 1, a contradic-
tion. [

Note that in this case the system cannot be com-
pletely controllable; for instance, the initial state
(1,1,1,1) (2(0) = 4) cannot be controlled to the ori-
gin (z(0) = 0).

The lemma given below says that property (10} is
satisfied when ¢ = arctan, by =2, b, =12, by =

— 3, and b, = — 4. This establishes the validity of
Proposition 1.5.

Lemma 4.2. The function
fa(u) = arctan(a + 2u) + arctan(a + 12y)
— arctan(3u) — arctan(4p)

is positive for all ye R and all a > 1.
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Proof. Since f,(u) is increasing as a function of a, it
suffices to prove the result for the special case a = 1.
We write f = f;. Note that

(W) () = — up(w)

where

g(e) = (1 + 2u + 2p3)(1 + 9p®)(1 + 164°)
x(1+ 12p + 72p%)

is always positive, and

p(p) =74 + 5110 + 175242
+ 613243 + 10656u*.

The polynomial p has just two real roots, both in
the interval [ = [ — 0.32, — 0.26] (the roots are ap-
proximately at —0.3136, —0.2657), and it is posit-
ive outside I. It follows that f"(u) > 0if p <O, u ¢ I
and f'(u) < 0 if u = 0, which together with

lim p2f(u) = lim p?f(u) = 37/144 > 0,

H— H—o — o

and f(—0.26) > O itnplies that f(u) > 0 whenever
¢ 1. Thus we only need to prove that f> 0 on I.

Write f(y) = fi(p) — f2(n), where
Sfi(p) = arctan(1 + 24) + arctan(1 + 12p).

Note that both f; and f, are strictly increasing
functions. For pe I, fi(p) = f1(—0.32) > — 0.9 and
fo(p) <f2(—026) < — 14, so indeed fi(u)—
f2() > — 0.9 + 1.4 > 0 on this interval. []

5. Remarks

Although the property that Be B, ,, is generic,
there are many instances, for example when there is
a layered structure, in which it is not natural. The
question of precisely characterizing controllability
in that case 1s still open. This will probably involve
a graph-theoretic reachability property (every vari-
able can be affected by inputs, indirectly through
other variables), as well as a generalization to pairs
(A, B) of the proper:y defining the class B, ,.

Another interesting direction for further research
concerns variations of the basic model, such as
those systems defined by equations X = — x +
6" (Ax + Bu). The natural state space for such a
system (for ¢ bounded by one) is a unit cube. It is
easy to see that B € 8, ,, is not sufficient for control-

lability in the cube (even reachability from the ori-
gin) for such systems. A precise characterization of
the reachable sets would be of interest.
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