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Abstract 

This paper studies co atrollability for the class of control systems commonly called (continuous-time) recurrent neural 
networks. It is shown that, under a generic condition on the input matrix, the system is controllable, for every possible 
state matrix. The result holds when the activation function is the hyperbolic tangent. © 1997 Elsevier Science B.V. 
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1. Introduction 

This paper continues the study of system- 
theoretic properties of recurrent networks. Assume 
given a locally Lipschitz map  a : ~ ~ E. By an n- 
dimensional,  m-input (recurrent) a-net we mean 
a cont inuous- t ime control  system of the form 

~(t) = a(")(Ax(t) + Bu(t)), (1) 

where A e ~"×" and ~ e R "× m. Here, for each map 
a : N ~ N and each positive integer n, we use ¢r (') to 
denote the diagonal  mapping  

~n: : 

. O(X.) / 
(2) 

(Sometimes one includes, in addition, an observa- 
tion or measurement  function y = Cx, but this 
paper  will not  deal with observat ion issues.) The 
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spaces ~m and ~" are called respectively the 
input-value space and the state space of  the net. 
Observe that  the linear systems customari ly studied 
in control  theory are precisely the a-nets for which 
a is the identity function. O ur  main result will be 
for the special case of the hyperbolic  tangent 
a = tanh, the "s igmoid" function used in neural 
nets theoretical as well as experimental work. 

In the area of neural networks,  one interprets the 
vector equations for x in (1) as representing the 
evolution of an ensemble of n "neurons",  where 
each coordinate  xi of x is a real-valued variable 
which represents the internal state of  the ith 
neuron,  and each coordinate  ul, i = 1 . . . . .  m of u 
is an external input signal. The coefficients Aij, 
Bij denote the weights, intensities, or  "synaptic 
strengths", of the various connections.  The trans- 
format ion a : ~ ~ ~ is called the "activation func- 
tion". Systems of this type, have been employed in 
areas as varied as digital signal processing (see for 
instance [5, 6, 10]), control  (see e.g. [ 11, 15, 17, 18]), 
the design of associative memories ("Hopfield 
nets"), language inference, and sequence extrapola- 
tion for time series prediction. Special purpose 
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chips are being built to implement recurrent nets 
directly in hardware; for instance, Hitachi's Wafer 
Scale Integration chips have been designed to im- 
plement Hopfield nets with over 500 neurons and 
30000 synaptic connections. 

In past work we have studied, for such models, 
questions of parameter  identifiability [2], observ- 
ability [3], system approximation [14], computa-  
bility [12], parameter  reconstruction [9], and 
sample complexity for learning and generalization 
[7,8]. 

Here we focus on problems of controllability. 
The fundamental contribution in this area was a re- 
cent paper by Albertini and Dai Pra, cf. [1]. This 
paper dealt with the study of the forward accessibil- 
ity property. Recall that a system such as (1) is said 
to be forward accessible if from each initial state it 
is possible to reach, by using appropriate inputs 
u(.), an open subset of the state space ~". Albertini 
and Dai Pra showed that forward accessibility 
holds provided that 
• the "independence property" (cf. [4, 16]) holds 

for a, and 
• B is in a certain class B,,,, of matrices which was 

introduced in [3, 4] and is reviewed below. 
(For the special but most important  case of single 
input systems, m = 1, the condition B ~ B,,,, means 
that the entries of the vector B are all nonzero and 
have different absolute values. The independence 
property asserts that distinct dilations and trans- 
lates of a must be linearly independent.) 

An extremely surprising aspect of this result is 
that for matrices B ~ B . . . .  accessibility holds inde- 
pendently of the choice of the matrix A. This is in 
sharp contrast with linear systems, for which the 
only B's so that the system 2 = A x  + Bu is access- 
ible no matter  what A is are those B's of full rank n. 
Thus we were motivated to ask if the same condi- 
tion B e B,.,, which Albertini and Dai Pra used to 
guarantee forward accessibility also ensures con- 
trollability. Controllability means that from each 
initial state it is possible to reach, by using appro- 
priate inputs u(.), the entire state space, not just 
some - potentially very small - open subset. Nat-  
urally, this is a much more interesting property. 
Surprisingly, the answer turns out to be yes, for the 
standard sigmoidal function a = tanh which is ubi- 
quitous in neural network practice. Adding to the 
unexpected developments, it turns out that the use 
of tanh is essential: there are other functions a for 
which the independence property holds, so that in 

particular a a-net is accessible for every B e B  . . . .  
but controllability fails for some B ~ B.,~. We pro- 
vide a counterexample with a = arctan. 

1.1. Definitions and statements o f  the main results 

For  any measurable (essentially) bounded con- 
trol u: [0, T ]  ~ R" and any state ~ we use 6( t ,~ ,u)  
to denote the solution x(t) of (1) having initial 
condition x(0) = ~. The function x(.) is defined on 
some maximal subinterval of [0, T] ,  and if a is 
globally Lipschitz, which is the case with our main 
example given below, then it is defined on the entire 
interval. Given ~ , ~  ~", we say that ~ can be 
steered, or controlled, to ~ if there is some T ~> 0 
and some control u on [0, T ] such that the solution 
is defined for all t ~ [ 0 ,  T ]  and ~b(T,~,u)=~. 
The system (1) is controllable if every ~ e  ~" 
can be steered to every ~O~". (See [13] for 
generalities and basic facts about control 
systems.) 

For each pair of positive integers n and m, we let 

B,,,, := {B e Nn × m, (Vi) rowi(B) v a 0 and 

(Vi ¢ j )  rowi(B) :/: _+ rowj(B)} 

where row/ . )  denotes the ith row of the given 
matrix. In the special case m = 1, a vector b ~ B,, 1 if 
and only if all its entries are nonzero and have 
different absolute values. The complement of B,,,, is 
an algebraic subset of ~,×m, so B,,,, is generic in 
every possible sense (fully measure, open dense). 

We let Z be the class of maps a :  [~ ~ R which are 
locally Lipschitz and have the following properties: 

1. a is an odd function, i.e. a( - r) = - a(r) for all 
r ~ R ;  

2. a~ = lims-~÷~a(s) exists and is > 0; 
3. a(r) < a~ for all r ~ R; 
4. for eacha ,  b ~ , b > l ,  

a~ - a(a + bs) 
lim = 0. (3) 

Remark 1.1. The requirement that a be odd is 
merely imposed for convenience, and can be 
weakened in many of the results. The most critical 
assumption on elements of the class 2; is the last 
one. This is a nontrivial requirement; note for in- 
stance that the function a = arctan does not satisfy 
it, since the limit is in that case 1/b. 
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We now list our  main results; proofs are given in 
later sections. 

L e m m a  1.2. The function tanh ~ X. 

Theorem 1. Assume that 6 ~ S,  B 6 B , , , , ,  and A is 
arbitrary. Then the system (1) is controllable. 

A trivial converse: of Theorem 1 is as follows: 

L e m m a  1.3. I f  B~:. E "×~ and the odd function 
6 : ~ -~ ~ are such that for all A ~ E" ×" the system (1) 
is controllable, then B ~ B,,,,. 

However,  we give: also the following example to 
show that  when B !~ B . . . .  it may  still be the case 
that  the system (1) is controllable, provided A is 
appropria te ly  chosen. 

L e m m a  1.4. The following system in dimension two: 

y: -- ~(y),  ~ = ~(u),  

where a(s) = tanh s, is controllable. 

Observe that B =: col(0, 1) q~ Bn,1, and 

(°0 '0) 
but with A = 0 the system would not  be control-  
lable. 

Finally, one may  ask what  happens if cr¢ S but 
a is still a "sigmoidal" type function, with a graph 
qualitatively similar to that  of tanh. Specifically, 
one may consider the nonlinearity a = arctan, 
which has also appeared, albeit much less often, in 
the neural network literature. We have the follow- 
ing counterexample.  

Proposit ion 1.5. Let  a = arctan. Then the 4-dimen- 
sional, single-input '~ystem 

2~ =a(x~  + x2 + x3 + x4 + 2u), 

22 = a(xl  + x2 + x3 + x4 + 12u), 

23 = a ( -  3u), 

24 = a ( - -4u)  

is not controllable. 

Observe that  this system is forward accessible, 
because it satisfies tlhe condit ions in [1]. Indeed, the 

nonlinearity ~r = arctan satisfies the "independence 
proper ty"  (cf. [-4]), and clearly the matrix B = 
co1(2, 12, - 3 ,  - 4 )  belongs to B,,~. 

2. Proof  of  the main results 

We first prove Lemma 1.2. 

Proof.  The first three properties are clear, with 
a~ = 1, so we need to prove the limit proper ty  (3). 
Note  that O(x) = (1 + e-X) -1 satisfies 

O(r) 
O(t) = O(r) + e r tO(--r) (4) 

for all r, t, and that 1 - t a n h x  = 2 0 ( - 2 x )  for all 
x e ~. Thus 

1 - tanh(a + bs) O ( - 2 a  - 2bs) 
~ k  

1 - tanh s " - -  
~ 0  

-I- e - 2 a  e m -b)s O(2a + 2bs) ~ 0 
k . ~ . y ~ _ )  k _ _ , v . , _ _ )  

~ 0  -* 1 

as desired. [ ]  

2.1. A result on convex hulls 

Let a be a map  ~ --* JR. For  each vector a ~ ~" 
and matrix B e ~"× m, w e  write 

S.,,:= {~¢"~(a + Bu), u ~ ~m}. 

We use int(S) and co(S) to denote, respectively, the 
interior and the convex hull of a set S. 

L e m m a  2.1. Pick ~r ~ S,, B ~ B  . . . .  and arbitrary 
a e ~'.  Then 0 e int(co(S,,B)). 

Proof.  Since B e B . . . .  there is some u ~ Nm such 
that the numbers  bl := rowi(B)u are all nonzero  and 
have distinct absolute values. (Because the set of u's 
that  satisfy at least one of  the equations 
rowi(B)u = O, rowg(B)u + rowj(B)u = 0, or  rowi(B)u 
- rowj(B)u = 0, is a finite union of hyperplanes in 

~".) As S.,~, c_ S,,B, it is enough to show the result 
for Bu instead of B. So we assume from now on that 
B = col(b1, ... ,b,) and the bi are all nonzero  and 
have distinct absolute values. 

Assume by way of contradict ion that 0 6  
int(co(S,,B)). Using a separating hyperplane,  we 
know that  there is a nonzero  vector c = (cl, . . . ,  c.) 
such that  caC')(a + Bu)>~ 0 for all u ~ R. Writ ing 
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a = col(a~ . . . . .  a,), this means that 

~ c ia (a i+biu)>~O V u e E .  (5) 
i=1 

We now prove that  such an inequality cannot  hold, 
if a E 2; and the bl are nonzero  and have distinct 
absolute values, unless all the ci are equal to 0. 
Since a is odd, we may  assume that each b1 > 0, 
since any term cla(al + biu) with bl < 0 can be re- 
written as ( - c i ) a ( - a i  + ( -b l )u) .  Thus, reorder- 
ing if needed, we assume that  0 < ba < ..- < b,. 
Finally, dropping all those terms in the sum for 
which ci = 0, we may  assume that c~ ~ 0. Taking 
the limit in (5) as u - - * - o c  we obtain 
~ n = l  Ci(- -a~)  ~ O. S o  one may  rewrite (5) as  

~',ci(a~ -- a(ai + blU)) <~ 0 Vu  e ~. (6) 
i=1 

Therefore 

aoo -- o(ai + bi u) 
cl + cl i=2 0"~ -- a(al + bau) ~ 0 VU ~ JR. (7) 

If we prove that each term in the sum converges to 
zero as u - ,  + oc then it will follow that ca ~< 0. But 
this fact follows from proper ty  (3) (applied with 
a = a i -  biaa/bl, b = bi/bl, and noting that s = 
at+blU---* oo as u--,  oo). 

If we take instead the limit in (5) as u ~ + oo, we 
find that ~?=~cla+ >~ O. We may  therefore also 
rewrite (5) in the form: 

~ ci(oo~+o'(a i -4- biu)) >1 0 V U E  [~. (8) 
i=1 

Letting v = - u  and a'~ = - a i ,  and using that a is 
odd, 

,5  ~+ - ~(a'i + b~v) 
c~ + 2.. ci i=2 a ~ - a ( a ' a  +blV)  >~0 Vv~[R .  (9) 

Taking the limit as v ~ + oo and appealing again 
to proper ty  (3), we conclude that also c~ ~> 0. Thus 
ca -- 0, contradict ing the assumption made earlier. 

[ ]  

2.2. A local controllability lemma 

Lemma 2.2. Let  f2 be an open subset o f  R", let U be 
a finite set, and let f :  g2 x U ~+ IR" be a map such that 

f ( x ,  u) is continuous in x for  each u ~ U. Let  Z, be the 
control system 2 = f ( x ,  u). Let  Xo ~ f2 be a point such 

that 0 is an interior point o f  the convex hull o f  the set 
o f  vectors {f(xo,  u ) :uE  U}. Then there exists a 
neighborhood W of  xo, contained in g2, such that for 
every x ~ W there are trajectories of  X going f rom 
x to Xo and from Xo to x. 

Proof. We may  obviously assume, without  loss of  
generality, that  Xo = 0. Let 

s = { v ~  m":  Ilvll = 1}. 

Define a function q0 : f2 ~-, E by letting 

q~(x) = max {~(v, x ) :v  E S}, 

where 

tp(v,x) = min { ( v , f ( x ,  u) ) : u ~ U }. 

The function ~ is a min imum of a finite collection 
of cont inuous functions, so ~ is continuous.  Then 
q0 is well-defined and cont inuous as well. 

Since 0 is an interior point  of the convex hull of 
the set {f(0, u): u ~ U}, we can find a 6 > 0 such 
that for every v ~ S the vector - 4 6 v  is a convex 
combina t ion  of the f(0,  u), u ~ U. Given any v e S, 
the number  - 4 6  is equal to ( v , - 4 6 v ) ,  which is 
a convex combinat ion  of the numbers  (v , f (O,u)) ,  
u e U. So at least one of  these numbers  is ~< - 46. 
So ~k(v,0) ~ - 46. Since this is true for all v E S, we 
conclude that  ~0(0) ~ - 46. Since ~0 is continuous,  
there exists ~ > 0  such that, if B = { x e E " :  [Ixll 
~<c~}, then B_c  f~ and q ~ ( x ) ~ < - 2 6  whenever 

x ~ B .  
N o w  fix a point  2 e B ,  and let 3-  be the set of 

all triples (I,r/,~) such that (i) I is an interval, 
(ii) I _~ [0, oc[, (iii) 0 E I, (iv) t / : I  ~ U is measur- 
able, (v) ~ : I  ~ Q is a trajectory of Z corresponding 
to the control  r/(that is, ~ is absolutely cont inuous 
on [0, T ]  for every T e I, and ~(t) =f(~.(t, t/(t)) for 
almost  all t e I), (vi) 4(0) = 2, and (vii) the deriva- 
tive of  the function t w-, II~(t)ll is ~< - 6  for almost  
every t ~ I. 

If (I, r/, ~)~ J ,  then ~ is locally absolutely con- 
t inuous on I, by the definition of trajectory, so the 
map  t ~ I]~(t)II is also locally absolutely continu- 
ous. Then condit ion (vii) implies that  the inequality 
II~(t)ll ~< tl~(0)ll - & holds for all t E I. Therefore 
II~.(t)PI ~<c~ for all t e I, so ~ is entirely contained in 
B. It follows that  ~ is Lipschitz (with Lipschitz 
constant  C = max {C(u):u e U}, where C(u) = 
s u p { l l f ( x , u ) l l : x e B } ) .  Moreover ,  the interval 
/ must  be bounded,  since t ~ I implies t <~ c~/6. 
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Therefore,  if I is not  compac t  then the m a p  ~ ex- 
tends to the c l o s u r e / - o f  I, which is compact .  It  is 
clear that  the extension is also a t ra jectory of I;. 

Order  Y- in the obvious  way, by letting 
(I~, rh, ~ )  % (•2, t/2, ~2) iff I~ ~_ 12 and t h,  (~ are the 
restrictions to 11 of t/z, ~2. It  is then obvious  that  
every totally ordered n o n e m p t y  subset  of  @ has an 
upper  bound  in Y-. So Y- has a maximal  element 
(I, t/, ~) by Zorn ' s  lemma.  In view of the Lipschitz 
p roper ty  discussed in the previous paragraph ,  
I = [0, T ] for some T. 

We now show that  ( ( T )  = 0. Suppose this is not 
true. Let  ~(T) = ~ ,  so ~ B  and I1~1] > 0 .  Since 
¢p(2) < . - 2 6 ,  we have O( t~ ,2)~<-26,  where t~= 

- 2/11~11. So there exists u e U such that  (~ , f (2 ,u))  
- 2 6 .  Let  ~ ' : [ 7 - , T + f l ] ~ f 2  be an integral 

curve of the vector  field x ~--,f(x,u), such that  
¢'(T) = 2. (Such a curve exists, for some/3  > 0, by 
the existence theorem for ordinary  differential 
equat ions  with a cont inuous  r ight-hand side.) The  
function x ~ Ilxll is smooth  on a ne ighborhood  of 
2, and its derivative along the curve ~' is given by 

d ! 
p(t) = -~t (l[ ~ (t)I1) = ( v(t),f(~(t), u)), 

where 

v(t) = ~'(t)/II ~'(t) ll. 

(Here we have used the chain rule, together  with the 
facts that  the gradient  of  x w-~ tlxl] is x/llxlland the 
derivative of t ~ ' ( t )  is t w-,f(~'(t),u).) It  is clear 
that  v(t) is cont inuous  as a function of t, and  
v ( r )  = ~3. Since p ( r l  = (~ , f (2 ,u ) )  ~< - 26, we can 
assume, by taking fl small enough, that  p(t) <. - 
for t e [ r ,  r + fl]. So, if we let i" = [0, T + fl], we 
can extend r/ to a control  ~ : T - - , U  by letting 
~(t) = u for t e ] T, r + fl], and define ~': I ' ~  f2 to be 
the curve whose restrictions to [0, T ]  and 
[ r ,  r + fl] are ~, ~'. It  is clear that  the triple ([, ~, ~') 
is in Y- and (I, q, ~) -~, (I, r~, ~') but  (I, q, ~) ~a (~, ~, ~'). 
This contradicts  the maximal i ty  of  (I, rl, ~). This 
contradic t ion  prove!; that  ~ (T)  = 0, as stated. 

We have thus shown that  for an arb i t ra ry  point  
~ B there is a t ra jectory of I; that  goes f rom 2 to 0. 

We m a y  also apply  this a rgument  to the reversed 
system 2 = - f ( x ,  u), whose trajectories are those of 
N run backwards  in time. Indeed, if the convex hull 
of the set {f(xo, u) :u e U} contains zero in its in- 
terior, then the same is true for the convex hull of 
{ - f ( x o ,  u): u e U}. Thus,  we find some other  ball B' 

with the p roper ty  that  every x e B' can be reached 
f rom Xo by a t rajectory of Z. Then the neighbor-  
hood  W = BomB' has the desired property .  [ ]  

2.3. Proof  o f  Theorem 1 

We first show that  if Xo e ~" then the set ~(Xo) of 
points  reachable f rom Xo is open. To  see this, let 

~ ~(Xo). By L e m m a  2.1, with a = Aft, there exists 
a finite subset U of R" such that  0 is an interior  
point  of  the convex hull of the set of  vectors 
{a~")(Aff + Bu), u~  U}. If  we define f (x ,u)  = 
#")(Ax + Bu) for u ~ U, L e m m a  2.2. tells us that  
there is a ne ighborhood  W of Y all whose points  are 
reachable f rom 2 by trajectories of 2 =f(x ,u) .  
Clearly, every t rajectory of 2 = f ( x ,  u) is a t ra jectory 
of the system (1). So W _ ~(Xo). This proves  that  
Y/(Xo) is open. 

We now prove  that  ~(Xo) is closed. To  show this, 
pick ff in the closure of  ~(Xo). Applying L e m m a s  
2.1 and 2.2, we find a ne ighborhood  W of 2 such 
that  every x ~ W can be steered to ~ by a t ra jectory 
of (1). Since W c ~ ( X o ) ~  O, we can find a point  

which is reachable f rom Xo and can be steered to 
2. Therefore  Y 6 ~(Xo). So 5~(Xo) is closed, as stated. 

Since ~" is connected,  and ~(Xo) is open, closed, 
and no ne mpt y  (because Xo ~ ~(Xo)), we conclude 
that  ~(Xo) = ~". Since Xo is an arb i t ra ry  point  of  
~", the system (1) is controllable,  and our  p roof  is 
complete.  

2.4. Proof  o f  Lemma 1.3 

Take  any B e  N,×m and any odd function 
a :  ~ ~ ~. Assume that  B ¢ B  . . . .  We show that  the 
system (1) is not  control lable  when A = 0. No te  
that  the system equat ions are now 2 = a~")(Bu). 
Since B ¢ B . . . .  either one of its rows is zero or  some 
two rows are equal up to a sign change. Assume 
first that  the ith row is zero. Then  the equat ion for 
the ith coordinate  of x is 2i = 0; this implies that  
x~(t) is constant  a long all trajectories and hence the 
system cannot  be controllable.  Assume instead that  
rowi(B) = rows(B) for some i Cj .  In that  case, 
Yci - 2~ = a(rowi(B)u) --a(rowj(B)u) = 0, no mat -  
ter what  the control  u( . )  is, so the quant i ty  
x~( t ) -  x~(t) is constant  a long trajectories, again 
contradict ing controllabili ty.  Finally, if rowi(B) = 
- - rows (B  ) , then since a is odd  we have that  

x~(t) + xi(t ) is constant  a long trajectories, and  once 
more  the system cannot  be controllable.  
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3. Proof  of L e m m a  1.4 

Here we prove  L e m m a  1.4, which is an example  
to illustrate that  the control labil i ty of system (1) 
depends on the form of A, when B ~ B,.m. We will 
prove  control labi l i ty for more  general ~r than the 
specific example  tanh of interest. The  assumpt ions  
made  here (much more  than necessary, but enough 
to make  the p roof  a lmost  trivial) are as follows: 
a :  ~ ~ ( -  1, 1) is locally Lipschitz, odd, strictly in- 
creasing, onto,  and there exists a'(0) = c v e 0. 

Proof. There is a ne ighborhood  J# of (x, y) = (0, 0) 
such that  each pair  of states in ~ can be steered to 
each other  (local control labil i ty abou t  x = y  = 0, 
because the linearized system is 2 = cy, y: = cu). 

We claim that  for each ~ ~ ~2 there is some ( E Y/ 
which ~ can be steered into. Once  this claim is 
proved,  control labil i ty follows. Indeed, assume 
given any two states ~1 and ~2. Then there is a con- 
trol ul steering ~.1 to some (1 ~ og, by the claimed 
property .  Similarly, there is a control  u3 which 
steers some ~2 e ~ to ~2. (Proof: we must  show that  
~2 c a n  be control led to s o m e  ~2 C ~ with respect 
now to the t ime-reversed system 2 = - a ( y ) ,  
)~=-~r (u ) ,  cf. L e m m a  2.6.8 in [13]. With  the 
new variable z : = - y ,  the equat ions become 
2 = a(z), 2 = a(u), which coincide with those of the 
original system.) Finally, there is a control  u2 tak-  
ing (1 to ~2. Then the concatenat ion  of u~, u2, 
u3 steers ~1 to ~2. 

To  prove  the claim, it is sufficient to exhibit 
a cont inuous  function k: ~2 __. ~ with the p roper ty  
that  every t rajectory of 2 = y, 3", = a(k(x,y))  is de- 
fined on [0, ~ )  and converges to zero (k is a con- 
t inuous feedback stabilizer). We take k (x , y ) :=  
a - l ( - a ( x ) / 2 -  a(y)/2). Thus,  it suffices to show 
that  the system 

2 = a ( y ) ,  ~ = - ½ a ( x )  - ½ a ( y )  

is globally asymptot ical ly  stable. For  this we take 
the L y a p u n o v  function 

V(x, y):= ~ a(s) ds + a(s) ds. 

This function is positive definite and proper  (that is, 
"radially unbounded") ,  because of the assumpt ions  
made  on a. Its derivative along trajectories is 
- [a(y)]2/2 <~ 0 and only vanishes along trajecto- 

ries for which y(t)=-O. Along such trajectories 
0 =- ~ = ( -  1/2)a(x) implies that  also x - 0. By the 
LaSalle invariance principle, the system is indeed 
globally asymptot ica l ly  stable. [ ]  

4. Proof  of  Proposition 1.5 

L e m m a  4.1. Suppose that a: ~ --. ~ is any continu- 
ous function, and bl, i = 1,2, 3, 4, are real numbers, 
so that 

a(a + bill ) q- a(a + bzll ) + a(b3/t ) + o-(b4fl ) > 0 

V# ~ 0~, Va ) 1. (10) 

Consider any measurable u : [0, T ] -~ ~ and assume 
that (x l ( ' ) ,  x2( ' ) ,  x3( ' ) ,  x4( ' ) )  is an (absolutely con- 
tinuous) solution of  the system 

21 = 0"(11 -I- X 2 -[- X 3 -]- X 4 -~- b lU) ,  

2 2 = O'(X 1 q- X 2 ~- X 3 q- X 4 -[- b2u), 

23 = a(b3u), 

24 = a(b4u) 

defined on [0, T ]. Alon9 this solution, let 

~(t):= xl(t) + Xz(t) + x3(t) + x4(t). 

Then, if  ~(0) > 1 it must hold that ~(t) > 1 for all 
t e  [0, T ] .  

Proof. If  the conclusion is false, there is a to so that  
e(to) = 1 and ~(t) > 1 for all t ~ [0, to). But proper ty  
(10) says that  c( ( t )>  0 for a lmost  all t ~ [0, to), 
which means  that  ~(to)/> ~ ( 0 ) >  1, a contradic-  
tion. [ ]  

Note  that  in this case the system cannot  be com-  
pletely controllable; for instance, the initial state 
(1, 1, 1, 1) (e(0) = 4) cannot  be control led to the ori- 
gin (c~(0) = 0). 

The  l emma given below says that  p roper ty  (10) is 
satisfied when cr = arctan,  bl = 2, b2 = 12, b3 = 
- 3, and b4 = - 4. This establishes the validity of 

Propos i t ion  1.5. 

L e m m a  4.2. The function 

fa(/~) = arc tan(a  + 2#) + arc tan(a  + 12#) 

- arctan(3#) - arctan(4p) 

is positive for  all I t ~ R and all a >~ 1. 
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Proof. Sincefa(u) is increas ing as a funct ion of a, it 
suffices to prove  the result  for the special  case a = 1. 
We w r i t e f = f l .  No te  tha t  

q(g) f ' (# )  = _ tip(#) 

where 

q(#) = (1 + 2# + 2#2)(1 + 9p2)(1 + 16# 2) 

x ( l +  1 2 # + 7 2 g  2 ) 

is a lways  posit ive,  and  

p(#) = 74 + 511g + 1752# 2 

+ 6132/t 3 + 10656# ¢. 

The  po lynomia l  p has jus t  two real  roots,  bo th  in 
the in terval  I = [ -  0.32, - 0.26] (the roots  are ap-  
p rox ima te ly  at  -0.2;136, -0 .2657) ,  and  it is pos i t -  
ive outs ide  I. It  follows t h a t f ' ( # )  > 0 if # < 0, # ¢ I 
and  f ' (# )  ~< 0 if # ~> 0, which toge ther  with 

l im #2f(#)  = lim #2f(#)  = 37/144 > 0, 

and  f ( - 0 . 2 6 )  > 0 implies tha t  f (#)  > 0 whenever  
# ¢ I. Thus  we only need to p rove  tha t  f > 0 on I. 

Wr i t e  f (#)  = k(#) - r e ( a ) ,  where 

A(#) -- arctan(1 + 2j~) + arctan(1 + 12#). 

Note  tha t  bo th  f l  and  f2 are strictly increasing 
functions.  F o r  # ~ I, f l (#)  ~>f1(-0 .32)  > - 0 . 9  and 
f2(#) ~<f2( -0 .26)  < - 1.4, so indeed f t ( p ) -  
f2(#) > - 0.9 + 1.4 :> 0 on this interval .  [ ]  

5. Remarks 

Al though  the p r o p e r t y  that  B e B , , , ,  is generic, 
there  are m a n y  instances,  for example  when there is 
a layered  structure,  in which it is not  natura l .  The  
ques t ion  of precisely charac ter iz ing  cont ro l lab i l i ty  
in tha t  case is still open.  This will p r o b a b l y  involve 
a g raph- theore t i c  reachabi l i ty  p rope r ty  (every vari-  
able can be affected by  inputs,  indirect ly  th rough  
o ther  variables),  as well as a genera l iza t ion  to pairs  
(A, B) of  the p r o p e E y  defining the class B . . . .  

Ano the r  interes t ing d i rec t ion  for fur ther  research 
concerns  var ia t ions  of  the basic  model ,  such as 
those  systems defined by equat ions  2 - = -  x + 
a~")(Ax + Bu). The na tu ra l  state space for such a 
system (for a b o u n d e d  by one) is a unit  cube. I t  is 
easy to see tha t  B ~ ,~,,m is not  sufficient for cont ro l -  

labi l i ty  in the cube (even reachabi l i ty  from the ori- 
gin) for such systems. A precise charac te r i za t ion  of  
the reachable  sets would  be of interest.  
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