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Problem
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Height distribution of American 20 year olds.

I Male/female heights are very close to Gaussian distribution.

Can we learn the average male and female heights from
unlabeled population data?
How many samples to learn µ1, µ2 to ±εσ?
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Gaussian Mixtures: Origins
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Gaussian Mixtures: Origins
Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

Pearson’s naturalist buddy measured lots of crab body parts.
Most lengths seemed to follow the “normal” distribution (a recently
coined name)
But the “forehead” size wasn’t symmetric.
Maybe there were actually two species of crabs?
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More previous work

Pearson 1894: proposed method for 2 Gaussians
I “Method of moments”

Other empirical papers over the years:
I Royce ’58, Gridgeman ’70, Gupta-Huang ’80

Provable results assuming the components are well-separated:
I Clustering: Dasgupta ’99, DA ’00
I Spectral methods: VW ’04, AK ’05, KSV ’05, AM ’05, VW ’05

Kalai-Moitra-Valiant 2010: first general polynomial bound.
I Extended to general k mixtures: Moitra-Valiant ’10, Belkin-Sinha ’10

The KMV polynomial is very large.
I Our result: tight upper and lower bounds for the sample complexity.
I For k = 2 mixtures, arbitrary d dimensions.
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Learning the components vs. learning the sum
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It’s important that we want to learn the individual components:

I Male/female average heights, std. deviations.
Getting ε approximation in TV norm to overall distribution takes
Θ̃(1/ε2) samples from black box techniques.

I Quite general: for any mixture of known unimodal distributions.
[Chan, Diakonikolas, Servedio, Sun ’13]
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We show

Pearson’s 1894 method can be extended to be optimal!
Suppose we want means and variances to ε accuracy:

I µi to ±εσ
I σ2

i to ±ε2σ2

In one dimension: Θ(1/ε12) samples necessary and sufficient.
I Previously: O(1/ε300).
I Moreover: algorithm is almost the same as Pearson (1894).

In d dimensions, Θ(1/ε12 log d) samples necessary and sufficient.
I “σ2” is max variance in any coordinate.
I Get each entry of covariance matrix to ±ε2σ2.
I Previously: O((d/ε)300,000).

Caveat: assume p1,p2 are bounded away from zero.

Moritz Hardt, Eric Price (IBM) Sharp bounds for learning a mixture of two Gaussians 2014-05-28 7 / 25



Outline

1 Algorithm in One Dimension

2 Algorithm in d Dimensions

3 Lower Bound
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Method of Moments

140 160 180 200
Height (cm)

We want to learn five parameters: µ1, µ2, σ1, σ2,p1,p2 with
p1 + p2 = 1.
Moments give polynomial equations in parameters:

M1 := E[x1] = p1µ1 + p2µ2

M2 := E[x2] = p1µ
2
1 + p2µ

2
2 + p1σ

2
1 + p2σ

2
2

M3,M4,M5 = [...]

Use our samples to estimate the moments.
Solve the system of equations to find the parameters.
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Method of Moments
Solving the system

Start with five parameters.
First, can assume mean zero:

I Convert to “central moments”
I M ′2 = M2 −M2

1 is independent of translation.
Analogously, can assume min(σ1, σ2) = 0 by converting to
“excess moments”

I X4 = M4 − 3M2
2 is independent of adding N(0, σ2).

I “Excess kurtosis” coined by Pearson, appearing in every Wikipedia
probability distribution infobox.

Leaves three free parameters.
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Method of Moments: system of equations
Convenient to reparameterize by

α = −µ1µ2, β = µ1 + µ2, γ =
σ2

2 − σ2
1

µ2 − µ1

Gives that

X3 = α(β + 3γ)

X4 = α(−2α + β2 + 6βγ + 3γ2)

X5 = α(β3 − 8αβ + 10β2γ + 15γ2β − 20αγ)

X6 = α(16α2 − 12αβ2 − 60αβγ + β4 + 15β3γ + 45β2γ2 + 15βγ3)

All my attempts to obtain a simpler set have failed... It is
possible, however, that some other ... equations of a less
complex kind may ultimately be found.

—Karl Pearson
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Pearson’s Polynomial

Chug chug chug...
Get a 9th degree polynomial in the excess moments X3,X4,X5:

p(α) = 8α9 + 28X4α
7 − 12X 2

3α
6 + (24X3X5 + 30X 2

4 )α5

+ (6X 2
5 − 148X 2

3 X4)α4 + (96X 4
3 − 36X3X4X5 + 9X 3

4 )α3

+ (24X 3
3 X5 + 21X 2

3 X 2
4 )α2 − 32X 4

3 X4α + 8X 6
3

= 0

Easy to go from solutions α to mixtures µi , σi ,pi .
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Pearson’s Polynomial

1 0 1 2 36 4 2 0 2 4 6 8 1 0 1 2 36 4 2 0 2 4 6 8

Get a 9th degree polynomial in the excess moments X3,X4,X5.
I Positive roots correspond to mixtures that match on five moments.
I Usually have two roots.
I Pearson’s proposal: choose candidate with closer 6th moment.

Works because six moments uniquely identify mixture [KMV]
How robust to moment estimation error?

I Usually works well

I Not when there’s a double root.
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Making it robust in all cases
Can create another ninth degree polynomial p6 from X3,X4,X5,X6.
Then α is the unique positive root of

r(α) := p5(α)2 + p6(α)2 = 0.

Therefore q(x) := r/(x − α)2 has no positive roots.
Would like that q(x) ≥ c > 0 for all x and all mixtures α, β, γ.

I Then for |p̃5 − p6|, |p̃6 − p6| ≤ ε,

|α− arg min r̃(x)| ≤ ε/
√

c.

I Compactness: true for any closed and bounded region.
Bounded:

I For unbounded variables, dominating terms show q →∞.
Closed:

I Issue is that x > 0 isn’t closed.
I Can use X3,X4 to get an O(1) approximation α to α.
I x ∈ [α/10, α] is closed.
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Result

Large ∆ Small ∆

Suppose the two components have means ∆σ apart.
Then if we know Mi to ±ε(∆σ)i , the algorithm recovers the means
to ±ε∆σ.
Therefore O(∆−12ε−2) samples give an ε∆ approximation.

I If components are Ω(1) standard deviations apart, O(1/ε2) samples
suffice.

I In general, O(1/ε12) samples suffice to get εσ accuracy.
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Outline

1 Algorithm in One Dimension

2 Algorithm in d Dimensions

3 Lower Bound
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Algorithm in d dimensions

Idea: project to lower dimensions.
Look at individual coordinates: get {µ1,i , µ2,i} to ±εσ.
How do we piece them together?
Suppose we could solve d = 2:

I Can match up {µ1,i , µ2,i} with {µ1,j , µ2,j}.
Solve d = 2:

I Project x → 〈v , x〉 for many random v .
I For µ′ 6= µ, will have 〈µ′, v〉 6= 〈µ′, v〉 with constant probability.

So we solve d case with poly(d) calls to 1-dimensional case.
Only loss is log(1/δ)→ log(d/δ):

Θ(1/ε12 log(d/δ)) samples
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Outline

1 Algorithm in One Dimension

2 Algorithm in d Dimensions

3 Lower Bound
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Lower bound in one dimension

The algorithm takes O(ε12) samples because it uses six moments
I Necessary to get sixth moment to ±(εσ)6.

Let F ,F ′ be any two mixtures with five matching moments:

I Constant means and variances.
I Add N(0, σ2) to each mixture as σ grows.

Claim: Ω(σ12) samples necessary to distinguish the distributions.
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Lower bound in one dimension

Two mixtures F ,F ′ with F ≈ F ′.
Have TV(F ,F ′) ≈ 1/σ6.
Shows Ω(σ6) samples, O(σ12) samples.
Improve using squared Hellinger distance.

I H2(P,Q) := 1
2

∫
(
√

p(x)−
√

q(x))2dx
I H2 is subadditive on product measures
I Sample complexity is Ω(1/H2(F ,F ′))
I H2 . TV . H, but often H ≈ TV .
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Bounding the Hellinger distance: general idea

Definition

H2(P,Q) =
1
2

∫
(
√

p(x)−
√

q(x))2dx = 1−
∫ √

p(x)q(x)dx

If q(x) = (1 + ∆(x))p(x) for some small ∆, then [Pollard ’00]

H2(p,q) = 1−
∫ √

1 + ∆(x)p(x)dx

= 1− E
x∼p

[
√

1 + ∆(x)]

= 1− E
x∼p

[1 + ∆(x)/2−O(∆2(x))]∆(x)︸ ︷︷ ︸∫
x

. E
x∼p

[∆2(x)]

Compare to TV (p,q) = 1
2 Ex∼p[|∆(x)|]
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Bounding the Hellinger distance: our setting
Lemma
Let F ,F ′ be two subgaussian distributions with k matching moments
and constant parameters. Then for G,G′ = F + N(0, σ2),F ′ + N(0, σ2),

H2(G,G′) . 1/σ2k+2.

Can show both G′,G are within O(1) of N(0, σ2) over [−σ2, σ2].
We have that

∆(x) h
G′(x)−G(x)

ν(x)
=

∫
ν(x − t)
ν(x)

(F ′(t)− F (t))dt

.
∫ ∞∑

d=0

(
1 + x/σ
σ
√

d

)d

td (F ′(t)− F (t))dt

.
∞∑

d=k+1

(
1 + x/σ

σ

)d

.

(
1 + x/σ

σ

)k+1

so
H2(G,G′) ≤ E

x∼G
[∆(x)2] . 1/σ2k+2
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Lower bound in one dimension
Add N(0, σ2) to two mixtures with five matching moments.

For

G =
1
2

N(−1,1 + σ2) +
1
2

N(1,2 + σ2)

G′ ≈ 0.297N(−1.226,0.610 + σ2) + 0.703N(0.517,2.396 + σ2)

have H2(G,G′) . 1/σ12.
Therefore distinguishing G from G′ takes Ω(σ12) samples.
Cannot learn either means to ±εσ or variance to ±ε2σ2 with
o(1/ε12) samples.
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G′ ≈ 0.297N(−1.226,0.610 + σ2) + 0.703N(0.517,2.396 + σ2)

have H2(G,G′) . 1/σ12.
Therefore distinguishing G from G′ takes Ω(σ12) samples.

Cannot learn either means to ±εσ or variance to ±ε2σ2 with
o(1/ε12) samples.
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Recap and open questions

Our result:
I Θ(ε−12 log d) samples necessary and sufficient to estimate µi to
±εσ, σ2

i to ±ε2σ2.
I If the means have ∆σ separation, just O(ε−2∆−12) for ε∆σ

accuracy.
Extend to k > 2?

I Lower bound extends, so Ω(ε−6k ).
I Do we really care about finding an O(ε−18) algorithm?
I Solving the system of equations gets nasty.

Automated way of figuring out whether solution to system of
polynomial equations is robust?
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