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@ Height distribution of American 20 year olds.
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Problem

140 160 180 200
Height (cm)

@ Height distribution of American 20 year olds.
» Male/female heights are very close to Gaussian distribution.

@ Can we learn the average male and female heights from
unlabeled population data?

@ How many samples to learn pq, o to +eo?
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Gaussian Mixtures: Origins

LT, Contrilautions to the Mathematiced Theory of Evolution,
By Kart, Puansor, University Colleye, London.

Communicated by Professor Hewrict, £1R .8,
Received Qctober 18,—Read November 16, 1803,
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Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

@ Pearson’s naturalist buddy measured lots of crab body parts.

@ Most lengths seemed to follow the “normal” distribution (a recently
coined name)

@ But the “forehead” size wasn’t symmetric.
@ Maybe there were actually two species of crabs?
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More previous work

@ Pearson 1894: proposed method for 2 Gaussians
» “Method of moments”
@ Other empirical papers over the years:
» Royce '58, Gridgeman '70, Gupta-Huang '80
@ Provable results assuming the components are well-separated:
» Clustering: Dasgupta '99, DA '00
» Spectral methods: VW '04, AK '05, KSV '05, AM 05, VW "05
@ Kalai-Moitra-Valiant 2010: first general polynomial bound.
» Extended to general k mixtures: Moitra-Valiant ‘10, Belkin-Sinha ’10
@ The KMV polynomial is very large.

» Our result: tight upper and lower bounds for the sample complexity.
» For k = 2 mixtures, arbitrary d dimensions.
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Learning the components vs. learning the sum
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Height (cm)

@ It's important that we want to learn the individual components:
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Learning the components vs. learning the sum
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@ It's important that we want to learn the individual components:
» Male/female average heights, std. deviations.
@ Getting e approximation in TV norm to overall distribution takes
©(1/¢2) samples from black box techniques.
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Learning the components vs. learning the sum

140 160 180 200
Height (cm)

@ It's important that we want to learn the individual components:
» Male/female average heights, std. deviations.
@ Getting e approximation in TV norm to overall distribution takes
©(1/¢2) samples from black box techniques.

» Quite general: for any mixture of known unimodal distributions.
[Chan, Diakonikolas, Servedio, Sun '13]
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We show

@ Pearson’s 1894 method can be extended to be optimal!
@ Suppose we want means and variances to € accuracy:
> pjto Leo
> 0,-2 to +e202
@ In one dimension: ©(1/¢'?) samples necessary and sufficient.
» Previously: O(1/¢300).
» Moreover: algorithm is almost the same as Pearson (1894).
@ In d dimensions, ©(1/¢'2log d) samples necessary and sufficient.

» “02” is max variance in any coordinate.
» Get each entry of covariance matrix to 4-¢%0?.
» Previously: O((d/e)390-000),

@ Caveat: assume py, po are bounded away from zero.

Moritz Hardt, Eric Price (IBM) Sharp bounds for learning a mixture of two Gaussians 2014-05-28 7125



Outline

0 Algorithm in One Dimension

e Algorithm in d Dimensions

© Lower Bound
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Method of Moments

140 160 180 200
Height (cm)

@ We want to learn five parameters: w1, uo, 01,02, P1, P2 With
p1+p2=1.
@ Moments give polynomial equations in parameters:

My :=E[x"] = pip1 + papiz
My := E[X?] = 11§ + Papib + P10 + P20’
M37 M47 Ms = []

@ Use our samples to estimate the moments.
@ Solve the system of equations to find the parameters.
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Method of Moments IR S

Support XE [0, @)

Solving the system i f:h
zz::‘a.. ;Zlm(z)
Mode 0
Variance A2
Skewness 2

N
Entropy 1-1In@R)
MGF -1
. . (1 — X) for t < A
@ Start with five parameters. A

@ First, can assume mean zero:

» Convert to “central moments”

» My = M, — M? is independent of translation.
@ Analogously, can assume min(o1, 02) = 0 by converting to

“‘excess moments”
» X4 = My — 3M2 is independent of adding N(0, o2).
» “Excess kurtosis” coined by Pearson, appearing in every Wikipedia
probability distribution infobox.

@ Leaves three free parameters.
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Method of Moments: system of equations

@ Convenient to reparameterize by

0'2 — 0’2
= —pp2, f =y + p2,y = Mz - /A
@ Gives that
X3 =B +37)
Xy = (=20 + % + 687 + 37°)
Xs = B — 8a + 1082y + 15425 — 20ary)
Xs = a(16a? — 12052 — 6008y + B* + 1533y + 453242 + 15434°)

All my attempts to obtain a simpler set have failed... It is
possible, however, that some other ... equations of a less
complex kind may ultimately be found.

—Karl Pearson
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Pearson’s Polynomial

@ Chug chug chug...
@ Get a 9th degree polynomial in the excess moments X3, Xy, Xs:
p(a) = 8a° +28X4a’ — 12X5aP + (24 X3 X5 + 30X2)a®
+ (6X2 — 148X2Xy)a* + (96 X5 — 36 X3 Xy X5 + 9X3)a®
+ (24X3 X5 + 21XEX2)a? — 32X5 Xqar + 8XF
=0

@ Easy to go from solutions « to mixtures pj, o;, p;.
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Pearson’s Polynomial

6-4-20 2 4 6 8 -1 0 1 2 3

@ Get a 9th degree polynomial in the excess moments X3, Xy, Xs.

» Positive roots correspond to mixtures that match on five moments.
» Usually have two roots.
» Pearson’s proposal: choose candidate with closer 6th moment.

@ Works because six moments uniquely identify mixture [KMV]
@ How robust to moment estimation error?
» Usually works well
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Pearson’s Polynomial

I I I I

-6-4-20 2 4 6 8 -1 0 1 2 3

@ Get a 9th degree polynomial in the excess moments X3, Xy, Xs.

» Positive roots correspond to mixtures that match on five moments.
» Usually have two roots.
» Pearson’s proposal: choose candidate with closer 6th moment.

@ Works because six moments uniquely identify mixture [KMV]
@ How robust to moment estimation error?

» Usually works well

» Not when there’s a double root.
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Making it robust in all cases

@ Can create another ninth degree polynomial pg from X3, X4, X5, Xs.

@ Then « is the unique positive root of

r(a) == ps(a)? + pg(a)® = 0.

@ Therefore g(x) := r/(x — «)? has no positive roots.
@ Would like that g(x) > ¢ > 0 for all x and all mixtures «, 3, .
> Then for |ps — ps|, |Ps — Pe| < ¢,

lo —argminr(x)| < e/+/c.

» Compactness: true for any closed and bounded region.
@ Bounded:

» For unbounded variables, dominating terms show g — cc.
@ Closed:

» Issue is that x > 0 isn’t closed.
» Can use X3, X4 to get an O(1) approximation @ to «.
» x € [@/10, ] is closed.
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Result

RN\

Large A Small A

@ Suppose the two components have means Ao apart.

@ Then if we know M; to +¢(Ac)’, the algorithm recovers the means
to teAo.

@ Therefore O(A~'2¢72) samples give an ¢A approximation.

» |f components are Q(1) standard deviations apart, O(1/¢?) samples
suffice.
» In general, O(1/¢'?) samples suffice to get eo accuracy.
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Algorithm in d dimensions

@ Idea: project to lower dimensions.
@ Look at individual coordinates: get {11 ;, 12} t0 £eo.

@ How do we piece them together?
@ Suppose we could solve d = 2:

> Can match up {u1,, po,it With {p1,, po j}-
@ Solve d = 2:

» Project x — (v, x) for many random v.
» For u/ # u, will have (u/, v) # (i, v) with constant probability.

@ So we solve d case with poly(d) calls to 1-dimensional case.
@ Only loss is log(1/d) — log(d/9):

©(1/¢log(d/s)) samples
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Lower bound in one dimension

@ The algorithm takes O(¢'?) samples because it uses six moments
» Necessary to get sixth moment to +(eo)°®.
@ Let F, F' be any two mixtures with five matching moments:

» Constant means and variances.
» Add N(0, 0?) to each mixture as o grows.
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Lower bound in one dimension

@ The algorithm takes O(¢'?) samples because it uses six moments
» Necessary to get sixth moment to +(eo)°®.
@ Let F, F' be any two mixtures with five matching moments:

N

» Constant means and variances.
» Add N(0, 0?) to each mixture as o grows.
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Lower bound in one dimension

@ The algorithm takes O(¢'?) samples because it uses six moments
» Necessary to get sixth moment to +(eo)°®.
@ Let F, F' be any two mixtures with five matching moments:

RN

» Constant means and variances.
» Add N(0, 0?) to each mixture as o grows.
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Lower bound in one dimension

@ The algorithm takes O(¢'?) samples because it uses six moments
» Necessary to get sixth moment to +(eo)°®.
@ Let F, F' be any two mixtures with five matching moments:

TN

» Constant means and variances.
» Add N(0, 0?) to each mixture as o grows.

@ Claim: Q(o'?) samples necessary to distinguish the distributions.
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Lower bound in one dimension

@ Two mixtures F, F’ with F ~ F’.

@ Have TV(F,F') ~ 1/,

@ Shows Q(c%) samples, O(c'2) samples.
@ Improve using squared He//inger distance.

» H3(P,Q) =} [(\/p(x) — /a(x))2adx
» H? is subadditive on product measures
» Sample complexity is Q(1/H?(F, F"))

» H? < TV < H, but often H~ TV.
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Bounding the Hellinger distance: general idea
Definition J

H2(P, Q) = /(\/ —/q(x))2dx =1 —/\/p(x)q x)dx

@ If g(x) = (1 + A(x))p(x) for some small A, then [Pollard ’00]

H2(p.q) =1 / VA + A)p(x)dx
1 B [VTTAR)

=1 E[1+A(x)/2- 0(8%(x))
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@ If g(x) = (1 + A(x))p(x) for some small A, then [Pollard ’00]

H2(p.q) =1 / VA + A)p(x)dx
1 B [VTTAR)

== El +ax)/2- O(A%(x))]
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Bounding the Hellinger distance: general idea
Definition J

H2(P, Q) = /(\/ —/q(x))2dx =1 —/\/p(x)q x)dx

@ If g(x) = (1 + A(x))p(x) for some small A, then [Pollard ’00]

H(p, q) = 1— / VT + A(x)p(x)dx
=1- E[VI+AX)
=1— E [l + A(x) /2 — O(A2(x))]
x~p

J q()-p(x)=0

Moritz Hardt, Eric Price (IBM) Sharp bounds for learning a mixture of two Gaussians 2014-05-28 22/25



Bounding the Hellinger distance: general idea
Definition

H(P, Q) = /(\/_ \/_dx—1—/\/de J

@ If g(x) = (1 + A(x))p(x) for some small A, then [Pollard ’00]

HA(p.q) =1~ [ T+ Alx)p(x)ox
=1- E[VI+AX)
=1— E [l + A(x) /2 — O(A2(x))]
x~p
J a0=p(=0

S B [82%(x)]

~

Moritz Hardt, Eric Price (IBM) Sharp bounds for learning a mixture of two Gaussians 2014-05-28 22/25



Bounding the Hellinger distance: general idea
Definition

HA(P, Q) — /<¢_¢_x1/¢deJ

@ If g(x) = (1 + A(x))p(x) for some small A, then [Pollard ’00]

HA(p.q) =1~ [ T+ Alx)p(x)ox
=1- E[VI+AX)
=1— E [l + A(x) /2 — O(A2(x))]
x~p
J a0=p(=0

S B [82%(x)]

~

@ Compare to TV(p,q) = 5 Exp[|A(X)]]
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Bounding the Hellinger distance: our setting
Lemma

Let F, F' be two subgaussian distributions with k matching moments
and constant parameters. Then for G, G' = F + N(0,0?), F’ + N(0, ¢?),

H?(G, G') < 1/0%k+2,

@ Can show both G', G are within O(1) of N(0, o2) over [-0?, 02].
@ We have that

_Gx)-G(x)  [v(x—t
a0~ 2 = [0

/Z( +X/°'> t9(F/(t) — F(t))dt
By

g
d=k+1

J(F(t) - F(ty)at

SO
H(G.G) < E [A(X)?] $1/0% "
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Lower bound in one dimension
@ Add N(0, ?) to two mixtures with five matching moments.
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Lower bound in one dimension
@ Add N(0, ?) to two mixtures with five matching moments.

VAR
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Lower bound in one dimension
@ Add N(0, ?) to two mixtures with five matching moments.

N
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Lower bound in one dimension
@ Add N(0, ?) to two mixtures with five matching moments.

PN

@ For
G= %N(—1,1 +0%) + %N(1,2+02)
G ~ 0.297N(—1.226,0.610 + ¢2) + 0.703N(0.517, 2.396 + 2)
have H?(G, G') < 1/0'2.
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Lower bound in one dimension
@ Add N(0, ?) to two mixtures with five matching moments.

PN

@ For
G= %N(—1,1 +0%) + %N(1,2+02)
G' ~ 0.297N(—1.226,0.610 + ¢2) 4 0.703N(0.517,2.396 + ¢°)

have H?(G, G') < 1/0'2.
@ Therefore distinguishing G from G’ takes Q(o'2) samples.
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Lower bound in one dimension
@ Add N(0, #2) to two mixtures with five matching moments.

RN

@ For
G= %N(—1,1 +0%) + %N(1,2+02)
G' ~ 0.297N(—1.226,0.610 + ¢2) 4 0.703N(0.517,2.396 + ¢°)

have H?(G, G') < 1/0'2.
@ Therefore distinguishing G from G’ takes Q(o'2) samples.
@ Cannot learn either means to +eo or variance to 4?02 with
o(1/€'?) samples.
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Recap and open questions

@ Our result:
» O(e "?log d) samples necessary and sufficient to estimate ; to
+eo, 0,-2 to +e202.
» If the means have Ao separation, just O(e2A~"2) for Ao
accuracy.
@ Extendto k > 27
» Lower bound extends, so Q(e).
» Do we really care about finding an O(¢~'®) algorithm?
» Solving the system of equations gets nasty.

@ Automated way of figuring out whether solution to system of
polynomial equations is robust?
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