Improved Concentration Bounds for Count-Sketch

Gregory T. Minton¹ Eric Price²

 1 MIT \rightarrow MSR New England 2 MIT \rightarrow IBM Almaden \rightarrow UT Austin

2014-01-06

Count-Sketch: a classic streaming algorithm

Charikar, Chen, Farach-Colton 2002

- Solves "heavy hitters" problem
- Estimate a vector $x \in \mathbb{R}^n$ from low dimensional sketch $Ax \in \mathbb{R}^m$.
- Nice algorithm
 - Simple
 - Used in Google's MapReduce standard library
- [CCF02] bounds the *maximum* error over all coordinates.
- We show, for the same algorithm,
 - Most coordinates have asymptotically better estimation accuracy.
 - The average accuracy over many coordinates will be asymptotically better with high probability.
 - Experiments show our asymptotics are correct.
- Caveat: we assume fully independent hash functions.

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

 \mathcal{X}

- Unknown distribution \mathcal{X} over \mathbb{R} , symmetric about unknown μ .
 - Given samples $x_1, \ldots, x_R \sim X$.
 - How to estimate μ?

 $\underset{\mathcal{X}}{\longrightarrow} \text{ mean } \mu \text{, standard deviation } \sigma$

- Unknown distribution \mathcal{X} over \mathbb{R} , symmetric about unknown μ .
 - Given samples $x_1, \ldots, x_R \sim X$.
 - How to estimate μ?
- Mean:
 - ▶ Converges to μ as σ/\sqrt{R} .

- Unknown distribution \mathcal{X} over \mathbb{R} , symmetric about unknown μ .
 - ▶ Given samples $x_1, ..., x_R \sim X$.
 - How to estimate μ?
- Mean:
 - Converges to μ as σ/\sqrt{R} .
 - No robustness to outliers

- Unknown distribution \mathcal{X} over \mathbb{R} , symmetric about unknown μ .
 - ▶ Given samples $x_1, ..., x_R \sim X$.
 - How to estimate μ?
- Mean:
 - Converges to μ as σ/\sqrt{R} .
 - No robustness to outliers
- Median:
 - Extremely robust
 - Doesn't necessarily converge to μ.

- Median doesn't converge
- Consider: median of pairwise means

$$\widehat{\mu} = \underset{i \in \{1, 3, 5, ...\}}{\text{median}} \frac{x_i + x_{i+1}}{2}$$

- ▶ Converges as $O(\sigma/\sqrt{R})$, even with outliers.
- That is: median of (X + X) converges.

[See also: Hodges-Lehmann estimator.]

Why does median converge for $\mathcal{X} + \mathcal{X}$?

- WLOG $\mu = 0$.
- Define the Fourier transform $\mathcal{F}_{\mathcal{X}}$ of \mathcal{X} :

$$\mathcal{F}_{\mathcal{X}}(t) = \underset{\mathsf{x} \sim \mathcal{X}}{\mathbb{E}}[\cos(\tau \mathsf{x} t)]$$

(standard Fourier transform of PDF, specialized to symmetric \mathcal{X} .)

- ullet Convolution \Longleftrightarrow multiplication
 - $\mathcal{F}_{\mathcal{X}+\mathcal{X}}(t) = (\mathcal{F}_{\mathcal{X}}(t))^2 \geq 0$ for all t.

Theorem

Let $\mathcal Y$ be symmetric about 0 with $\mathcal F_{\mathcal Y}(t) \geq 0$ for all t and $\mathbb E[Y^2] = \sigma^2$. Then for all $\epsilon \leq 1$,

$$\Pr[|y| \le \epsilon \sigma] \gtrsim \epsilon$$

Standard Chernoff bounds: median y_1, \ldots, y_R converges as σ/\sqrt{R} .

Proof

Theorem

Let $\mathcal{F}_{\mathcal{Y}}(t) \geq 0$ for all t and $\mathbb{E}[Y^2] = 1$. Then for all $\epsilon \leq 1$, $\Pr[|y| \leq \epsilon] \gtrsim \epsilon$.

$$\mathcal{F}_{\mathcal{Y}}(t) = \mathbb{E}[\cos(\tau yt)] \ge 1 - \frac{\tau^2}{2}t^2$$

$$\Pr[|y| \le \epsilon] = \mathcal{Y} \cdot \frac{1}{\epsilon}$$

$$\ge \mathcal{Y} \cdot \frac{1}{\epsilon}$$

$$= \mathcal{F}_{\mathcal{Y}} \cdot \frac{1}{\epsilon}$$

$$\ge \frac{1}{\epsilon}$$

$$\ge \frac{1}{\epsilon}$$

$$\ge \frac{1}{\epsilon}$$

$$\ge \frac{1}{\epsilon}$$

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

Count-Sketch

- Want to estimate $x \in \mathbb{R}^n$ from small "sketch."
- Hash to k buckets and sum up with random signs
 Choose random h: [n] → [k], s: [n] → {±1}. Store

$$y_j = \sum_{i: h(i)=j} s(i)x_i$$
 k

• Can estimate x_i by $\tilde{x}_i = y_{h(i)}s(i)$.

Count-Sketch

- Want to estimate $x \in \mathbb{R}^n$ from small "sketch."
- Hash to k buckets and sum up with random signs Choose random $h:[n] \to [k], s:[n] \to \{\pm 1\}$. Store

$$y_j = \sum_{i: h(i)=j} s(i)x_i$$

- Can estimate x_i by $\tilde{x}_i = y_{h(i)}s(i)$.
- Repeat R times, take the median.
- For each row,

$$\tilde{x}_i - x_i = \sum_{j \neq i} \left\{ egin{array}{ll} \pm x_j & ext{with probability } 1/k \\ 0 & ext{otherwise} \end{array} \right.$$

Symmetric, non-negative Fourier transform.

Count-Sketch Analysis

Let

$$\sigma^{2} = \frac{1}{k} \min_{k \text{-sparse } x_{[k]}} ||x - x_{[k]}||_{2}^{2}$$

be the "typical" error for a single row of Count-Sketch with *k* columns.

Theorem

For the any coordinate i, we have for all $t \le R$ that

$$\Pr[|\widehat{x}_i - x_i| > \sqrt{\frac{t}{R}}\sigma] \le e^{-\Omega(t)}.$$

(CCF02:
$$t = R = O(\log n)$$
 case; $\|\widehat{x} - x\|_{\infty} \lesssim \sigma$ w.h.p.)

Corollary

Excluding $e^{-\Omega(R)}$ probability events, we have for each i that

$$\mathbb{E}[(\widehat{x}_i - x_i)^2] = \sigma^2 / R$$

Estimation of *multiple* coordinates?

- What about the average error on a set S of k coordinates?
- Linearity of expectation: $\mathbb{E}[\|\widehat{x}_{S} x_{S}\|_{2}^{2}] = \frac{O(1)}{R}k\sigma^{2}$.
- Does it concentrate?

$$\Pr[\|\widehat{x}_{S} - x_{S}\|_{2}^{2} > \frac{O(1)}{R}k\sigma^{2}]$$

- By expectation: $p = \Theta(1)$.
- If independent: $p = e^{-\Omega(k)}$.
- Sum of many variables, but not independent...
- Chebyshev's inequality, bounding covariance of error:
 - Feasible to analyze (though kind of nasty).
 - Ideally get: $p = 1/\sqrt{k}$.
 - We can get $p = 1/k^{1/14}$.
- Can we at least get "high probability," i.e. 1/k^c for arbitrary constant c?

Boosting the error probability

in a black box manner

- We know that $\|\hat{x}_S x_S\|_2$ is "small" with all but $k^{-1/14}$ probability.
- Way to get all but k^{-c} probability: repeat 100c times and take the median of results.
 - ▶ With all but k^{-c} probability, > 75c of the $\widehat{x}_{S}^{(i)}$ will have "small" error.
 - Median of results has at most 3× "small" total error.
- But resulting algorithm is stupid:
 - ▶ Run count-sketch with R' = O(cR).
 - Arbitrarily partition into blocks of R rows.
 - Estimate is median (over blocks) of median (within block) of individual estimates.
- Can we show that the direct median is as good as the median-of-medians?

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

Electoral Colleges

- Suppose you have a two-party election for k offices.
 - ▶ Voters come from a distribution \mathcal{X} over $\{0,1\}^k$.
 - "True" majority slate of candidates $\overline{x} \in \{0, 1\}^k$.
 - ▶ Election day, receive ballots $x_1, ..., x_n \sim \mathcal{X}$.
- How to best estimate \overline{x} ? For each office,

• Is $x^{majority}$ better than $x^{electoral}$ in every way? Is

$$\Pr[\|x^{majority} - \overline{x}\| > \alpha] \le \Pr[\|x^{electoral} - \overline{x}\| > \alpha]$$

for all α , $\|\cdot\|$?

Electoral Colleges

• Is $x^{majority}$ better than $x^{electoral}$ in every way, so

$$\Pr[\|x^{majority} - \overline{x}\| > \alpha] \le \Pr[\|x^{electoral} - \overline{x}\| > \alpha]$$

for all α , $\|\cdot\|$?

Don't know, but

Theorem

$$\Pr[\|x^{majority} - \overline{x}\| > 3\alpha] \le 4 \cdot \Pr[\|x^{electoral} - \overline{x}\| > \alpha]$$

for all p-norms $\|\cdot\|$.

Proof

Theorem

$$\Pr[\|x^{majority} - \overline{x}\| > 3\alpha] \le 4 \cdot \Pr[\|x^{electoral} - \overline{x}\| > \alpha]$$

for all p-norms $\|\cdot\|$.

Follows easily from:

Lemma (median³)

For any $x_1, \ldots, x_n \in \mathbb{R}^k$, we have

median median median $x_i = \text{median } x_i$ partitions into states states within state populace

(With 4*p* failure probability, 3/4 of partitions have error at most α ; then their median has error 3α .)

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

Concentration for sets

- We know that a "median-of-medians" variant of Count-Sketch would give good estimation of sets with high probability.
- Therefore the standard Count-Sketch would as well.

Theorem

For any constant c, we have for any set S of coordinates that

$$\Pr[\|\widehat{x}_S - x_S\|_2 > O(\sqrt{\frac{|S|}{R}}\sigma)] \lesssim |S|^{-c}.$$

- Robust Estimation of Symmetric Variables
 - Lemma
 - Relevance to Count-Sketch
- Electoral Colleges and Direct Elections
 - Lemma
 - Relevance to Count-Sketch
- 3 Experiments!

Experiments

- Claims
 - Individual coordinates have error that concentrates like a Gaussian with standard deviation σ/\sqrt{R} .
 - ② Sets of coordinates have error $O(\sigma\sqrt{k/R})$ with high probability.
- Evaluate on power-law distribution with typical parameters.

Experiments

- Individual coordinates have error that concentrates like a Gaussian with standard deviation σ/\sqrt{R} .
 - Compare observed error to expected error for various R, C.

Experiments

- ② Sets of coordinates have error $O(\sigma\sqrt{k/R})$ with high probability. (for large enough R,C)
 - Compare observed error to expected error for various R, C.

Conclusions

- We present an improved analysis of Count-Sketch, a classic algorithm used in practice.
- Experiments show it gives the right asymptotics
- More applications of our lemmas?
- Independence?

Thank You