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Count-Sketch: a classic streaming algorithm
Charikar, Chen, Farach-Colton 2002

Solves “heavy hitters” problem
Estimate a vector x ∈ Rn from low dimensional sketch Ax ∈ Rm.
Nice algorithm

I Simple
I Used in Google’s MapReduce standard library

[CCF02] bounds the maximum error over all coordinates.
We show, for the same algorithm,

I Most coordinates have asymptotically better estimation accuracy.
I The average accuracy over many coordinates will be asymptotically

better with high probability.
I Experiments show our asymptotics are correct.

Caveat: we assume fully independent hash functions.
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Estimating a symmetric random variable’s mean

X
mean µ, standard deviation σ1/2

µ±∞1/2

Unknown distribution X over R, symmetric about unknown µ.
I Given samples x1, . . . , xR ∼ X .
I How to estimate µ?

Mean:

I Converges to µ as σ/
√

R.
I No robustness to outliers

Median:

I Extremely robust
I Doesn’t necessarily converge to µ.
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Estimating a symmetric random variable’s mean

µ−σ      µ      µ+σ

X

Median doesn’t converge
Consider: median of pairwise means

µ̂ = median
i∈{1, 3, 5, ...}

xi + xi+1

2

I Converges as O(σ/
√

R), even with outliers.

That is: median of (X + X ) converges.

[See also: Hodges-Lehmann estimator.]
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Why does median converge for X + X?

WLOG µ = 0.
Define the Fourier transform FX of X :

FX (t) = E
x∼X

[cos(τxt)]

(standard Fourier transform of PDF, specialized to symmetric X .)
Convolution ⇐⇒ multiplication

I FX+X (t) = (FX (t))2 ≥ 0 for all t .

Theorem
Let Y be symmetric about 0 with FY(t) ≥ 0 for all t and E[Y 2] = σ2.
Then for all ε ≤ 1,

Pr[|y | ≤ εσ] & ε

Standard Chernoff bounds: median y1, . . . , yR converges as σ/
√

R.

2π ≈ 6.28
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Proof
Theorem
Let FY(t) ≥ 0 for all t and E[Y 2] = 1. Then for all ε ≤ 1,

Pr[|y | ≤ ε] & ε.

FY(t) = E[cos(τyt)] ≥ 1− τ2

2
t2

Pr[|y | ≤ ε] = Y · 1
ε

≥ Y · 1
ε

= FY · ε
1/ε

≥ 1
0.2

· ε
1/ε

& ε. �
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Count-Sketch

kk

R

Want to estimate x ∈ Rn from small “sketch.”
Hash to k buckets and sum up with random signs
Choose random h : [n]→ [k ], s : [n]→ {±1}. Store

yj =
∑

i: h(i)=j

s(i)xi

Can estimate xi by x̃i = yh(i)s(i).

Repeat R times, take the median.
For each row,

x̃i − xi =
∑
j 6=i

{
±xj with probability 1/k
0 otherwise

Symmetric, non-negative Fourier transform.
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Count-Sketch Analysis
Let

σ2 =
1
k

min
k -sparse x[k ]

‖x − x[k ]‖22

be the “typical” error for a single row of Count-Sketch with k columns.

Theorem
For the any coordinate i, we have for all t ≤ R that

Pr[|x̂i − xi | >
√

t
R
σ] ≤ e−Ω(t).

(CCF02: t = R = O(log n) case; ‖x̂ − x‖∞ . σ w.h.p.)

Corollary

Excluding e−Ω(R) probability events, we have for each i that

E[(x̂i − xi)
2] = σ2/R
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Estimation of multiple coordinates?

What about the average error on a set S of k coordinates?

Linearity of expectation: E[‖x̂S − xS‖22] = O(1)
R kσ2.

Does it concentrate?

Pr[‖x̂S − xS‖22 >
O(1)

R
kσ2] < p =???

By expectation: p = Θ(1).
If independent: p = e−Ω(k).
Sum of many variables, but not independent...
Chebyshev’s inequality, bounding covariance of error:

I Feasible to analyze (though kind of nasty).
I Ideally get: p = 1/

√
k .

I We can get p = 1/k1/14.

Can we at least get “high probability,” i.e. 1/kc for arbitrary
constant c?
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Boosting the error probability
in a black box manner

We know that ‖x̂S − xS‖2 is “small” with all but k−1/14 probability.
Way to get all but k−c probability: repeat 100c times and take the
median of results.

I With all but k−c probability, > 75c of the x̂ (i)
S will have “small” error.

I Median of results has at most 3× “small” total error.
But resulting algorithm is stupid:

I Run count-sketch with R′ = O(cR).
I Arbitrarily partition into blocks of R rows.
I Estimate is median (over blocks) of median (within block) of

individual estimates.

Can we show that the direct median is as good as the
median-of-medians?
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Electoral Colleges

Suppose you have a two-party election for k offices.
I Voters come from a distribution X over {0,1}k .
I “True” majority slate of candidates x ∈ {0,1}k .
I Election day, receive ballots x1, . . . , xn ∼ X .

How to best estimate x? For each office,

x1 x2 x3 · · · xn−1 xn

xmajority

x1 · · · x|CA| · · · xn−|TX |+1 · · · xn

xCA xTX· · ·

xelectoral

Is xmajority better than xelectoral in every way? Is

Pr[‖xmajority − x‖ > α] ≤ Pr[‖xelectoral − x‖ > α]

for all α, ‖·‖?
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Electoral Colleges

Is xmajority better than xelectoral in every way, so
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Proof

Theorem

Pr[‖xmajority − x‖ > 3α] ≤ 4 · Pr[‖xelectoral − x‖ > α]

for all p-norms ‖·‖.

Follows easily from:

Lemma (median3)

For any x1, . . . , xn ∈ Rk , we have

median
partitions into states

median
states

median
within state

xi = median
populace

xi

(With 4p failure probability, 3/4 of partitions have error at most α; then
their median has error 3α.)
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Concentration for sets

We know that a “median-of-medians” variant of Count-Sketch
would give good estimation of sets with high probability.
Therefore the standard Count-Sketch would as well.

Theorem
For any constant c, we have for any set S of coordinates that

Pr[‖x̂S − xS‖2 > O(

√
|S|
R
σ)] . |S|−c .
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Experiments

Claims
1 Individual coordinates have error that concentrates like a Gaussian

with standard deviation σ/
√

R.
2 Sets of coordinates have error O(σ

√
k/R) with high probability.

Evaluate on power-law distribution with typical parameters.
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Experiments
1 Individual coordinates have error that concentrates like a

Gaussian with standard deviation σ/
√

R.

Compare observed error to expected error for various R,C.
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Experiments

2 Sets of coordinates have error O(σ
√

k/R) with high probability.
(for large enough R,C)

Compare observed error to expected error for various R,C.
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Conclusions

We present an improved analysis of Count-Sketch, a classic
algorithm used in practice.
Experiments show it gives the right asymptotics
More applications of our lemmas?
Independence?

Thank You
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