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Count-Sketch: a classic streaming algorithm
Charikar, Chen, Farach-Colton 2002

@ Solves “heavy hitters” problem
@ Estimate a vector x € R” from low dimensional sketch Ax ¢ R™.
@ Nice algorithm
» Simple
» Used in Google’s MapReduce standard library
@ [CCF02] bounds the maximum error over all coordinates.
@ We show, for the same algorithm,

» Most coordinates have asymptotically better estimation accuracy.

» The average accuracy over many coordinates will be asymptotically
better with high probability.

» Experiments show our asymptotics are correct.

@ Caveat: we assume fully independent hash functions.
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Estimating a symmetric random variable’s mean

@ Unknown distribution X over R, symmetric about unknown .

» Given samples xq,...,xg ~ X.
» How to estimate ;?

Gregory T. Minton, Eric Price (IBM) Improved Concentration Bounds for Count-Sketch 2014-01-06 5/24



Estimating a symmetric random variable’s mean

mean pu, standard deviation o
X —

@ Unknown distribution X over R, symmetric about unknown .

» Given samples xq,...,xg ~ X.
» How to estimate ;?

@ Mean:
» Converges to 1 as o/v/R.
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Estimating a symmetric random variable’s mean

X1/2/ mean pu, standard deviation o
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@ Unknown distribution X over R, symmetric about unknown .

» Given samples xq,...,xg ~ X.
» How to estimate ;?

@ Mean:

» Converges to 1 as o/v/R.
» No robustness to outliers
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Estimating a symmetric random variable’s mean

X1/2/ mean pu, standard deviation o
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@ Unknown distribution X over R, symmetric about unknown .

» Given samples xq,...,xg ~ X.
» How to estimate ;?

@ Mean:

» Converges to 1 as o/v/R.
» No robustness to outliers

@ Median:

» Extremely robust
» Doesn’t necessarily converge to p.
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Estimating a symmetric random variable’s mean

X

JANEVAN

p—o  p  pto

@ Median doesn’t converge
@ Consider: median of pairwise means

» Converges as O(a/+v/R), even with outliers.
@ That is: median of (X + X’) converges.

[See also: Hodges-Lehmann estimator.]
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Why does median converge for X + X'?

@ WLOG 1 = 0.

@ Define the Fourier transform Fy of X:
27 ~ 6.28
Fx(t) = E [cos(rxt)]
X~X

(standard Fourier transform of PDF, specialized to symmetric X'.)
@ Convolution < multiplication

» Frix(t) = (Fx(t))? > 0forall t.

Theorem

Let) be symmetric about 0 with Fy(t) > 0 for all t and E[Y?] = 2.
Then forall e < 1,

Prly| < eo] Z €

Standard Chernoff bounds: median ys, ..., yr converges as o/V/R.
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Proof

Theorem

Let Fy(t) > 0 forallt and E[Y?] = 1. Then foralle < 1,
Prilyl < e X e.

Fy(t) = E[cos(ryt)] > 1 — %21‘2

Prily| <d=y-__[] 1

> AN I YE 2 €. [
0.2 1/e
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Count-Sketch

@ Want to estimate x € R” from small “sketch.”

@ Hash to k buckets and sum up with random signs
Choose random h: [n] — [k],s: [n] — {£1}. Store

yi= Y. s(i)x k

NN EEEE

@ Can estimate x; by X; = yx(;)S(/).
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Count-Sketch

@ Want to estimate x € R"” from small “sketch””

@ Hash to k buckets and sum up with random signs
Choose random h: [n] — [k],s: [n] — {£1}. Store

yi= > s(ix k
it ()= N

@ Can estimate x; by X; = yx(;S(/). R
@ Repeat R times, take the median.
@ For each row, .

- +x; with probability 1/k
o — j
Xi X’_;{ 0 otherwise

JFEI

@ Symmetric, non-negative Fourier transform.
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Count-Sketch Analysis

Let

2
min X — X
7 kksparsexk | [k]”2

be the “typical” error for a single row of Count-Sketch with k columns.

Theorem
For the any coordinate i, we have for all t < R that

Pr{|x; — xj| > \/—;o] < =S,

(CCF02: t = R = O(log n) case; ||X — X||oo < o W.h.p.)
Corollary

Excluding e=**R) probability events, we have for each i that

E[(X; — xi)?] = o®/R
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Estimation of multiple coordinates?

@ What about the average error on a set S of k coordinates?
o Linearity of expectation: E[||Xs — xs|2] = 21 ko2
@ Does it concentrate?
~ o(1

Prl|%s — xsl3 > 1 ko?] < p=777
@ By expectation: p = ©(1).
o Ifindependent: p = e~
@ Sum of many variables, but not independent...
@ Chebyshev’s inequality, bounding covariance of error:

» Feasible to analyze (though kind of nasty).
» ldeally get: p = 1/V/k.
» We can get p = 1/k'/14,

@ Can we at least get “high probability,” i.e. 1/k€ for arbitrary
constant ¢?
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Boosting the error probability

in a black box manner

@ We know that ||Xs — xs||2 is “small” with all but k—1/1# probability.
@ Way to get all but k—¢ probability: repeat 100c times and take the
median of results.
» With all but k¢ probability, > 75c¢ of the ?é’) will have “small” error.
» Median of results has at most 3x “small” total error.
@ But resulting algorithm is stupid:
» Run count-sketch with R = O(cR).
» Arbitrarily partition into blocks of R rows.
» Estimate is median (over blocks) of median (within block) of
individual estimates.

@ Can we show that the direct median is as good as the
median-of-medians?
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Electoral Colleges

@ Suppose you have a two-party election for k offices.

» Voters come from a distribution X’ over {0, 1}.
» “True” majority slate of candidates x < {0, 1}*.

» Election day, receive ballots xq,...,x, ~ X.
@ How to best estimate x? For each office,
Xmajority Xe/ectora/
X1 Xo X3 .-+ Xp_1 Xp xCA ce xTX
X1--'X\CA\ Xn—|TX|+1--- Xn

@ Is xMaory petter than x€ectoral in every way? Is

Pr[”Xmajority _7|| > a] < Pr[HXeIectora/ _7H > a]

for all a, ||-]|?
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Electoral Colleges

@ Is xMaory petter than x€ector@l in every way, so
Pr[HXmajority _7|| > a] < Pr[HXeIectoral _7” > a]

forall a, ||-]|?
@ Don’t know, but
Theorem
Pr[“Xmajority . 7|| > 3a] <4. Pr[”Xelectoral . 7|| > a]

for all p-norms ||-|.

Gregory T. Minton, Eric Price (IBM) Improved Concentration Bounds for Count-Sketch 2014-01-06 16/24



Proof

Theorem

Pr[“Xmajority _ 7|| > 3a] < 4. Pr[HXeIectoral o 7” > Oé]

for all p-norms ||-|.

Follows easily from:

Lemma (median®)

Forany x1, ..., X, € R, we have

median median median x; = median x;
partitions into states  states  within state populace

(With 4p failure probability, 3/4 of partitions have error at most «; then
their median has error 3a.)
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Concentration for sets

@ We know that a “median-of-medians” variant of Count-Sketch
would give good estimation of sets with high probability.

@ Therefore the standard Count-Sketch would as well.

Theorem
For any constant c, we have for any set S of coordinates that

S|

PriliXs — xsll2 > O(y/ o)l < 1SI7°
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Experiments

@ Claims

@ Individual coordinates have error that concentrates like a Gaussian
with standard deviation o /v/R.
@ Sets of coordinates have error O(o\/k/R) with high probability.

@ Evaluate on power-law distribution with typical parameters.
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Experiments

@ Individual coordinates have error that concentrates like a
Gaussian with standard deviation o /v/R.

@ Compare observed error to expected error for various R, C.

Distribution of errors, 10 trials at n =1000000

—— R=20,C=20 —— R=50, C=200
R=20, C=30 — R=100, C=20
2.5 —— R=20, C=50 —— R=100, C=30 ||
. —— R=20,C=100 —— R=100, C=50
—— R=20, C=200 — R=100, C=100
2 R=20, C=500 R=100, C=200
420 R=20,C=1000 —— R=200,C=20 [|
5] R=20,C=2000 —— R=200, C=30
° —— R=20,C=5000 —— R=200, C=50
2 1.5 —— R=20,C=10000 —— R=200, C=100{
= —— R=50,C=20 —— R=500, C=20
g —— R=50, C=30 —— R=500, C=30
Q R=50, C=50 R=1000, C=20
g 19 — R=50, C=100 I
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0.5
0’840 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

The ratio |z, —a,|/mp
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Experiments

@ Sets of coordinates have error O(c+/k/R) with high probability.
(for large enough R, C)

@ Compare observed error to expected error for various R, C.

Distribution of E, for various C with n=10000, k=25, R =50 Distribution of E,, for various R with n=10000, k=25, C'=100
14 €=20 14 R=10
f C=50 R=20
1.2 C=100 1.2 R=50
2z €=200 Z R=100
1%} 7]
g 1.0y C=500 £ 1.0 R=200
o C=1000 °© R=500
2 0.8 0.8|
g g R=1000
2 2 -
R=2000
£ 08 506 R=4000
g S =
& 04 0.4
0.2] 0.2]
0.0 9 0.0 10 12

Ey/(mpcVE)
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Conclusions

@ We present an improved analysis of Count-Sketch, a classic
algorithm used in practice.

@ Experiments show it gives the right asymptotics
@ More applications of our lemmas?
@ Independence?

Thank You

Gregory T. Minton, Eric Price (IBM) Improved Concentration Bounds for Count-Sketch 2014-01-06 24 /24



Minton, Eric Price (IBM)

=] =
Improved Concentration Bounds for Count-Sketch

12N Ge



	Robust Estimation of Symmetric Variables
	Lemma
	Relevance to Count-Sketch

	Electoral Colleges and Direct Elections
	Lemma
	Relevance to Count-Sketch

	Experiments!
	Appendix

