
Sharp bounds for learning a mixture of two Gaussians

Moritz Hardt
m@mrtz.org

IBM Research Almaden

Eric Price
ecprice@mit.edu

IBM Research Almaden

April 24, 2014

Abstract

We consider the problem of identifying the parameters of an unknown mixture of two ar-
bitrary d-dimensional Gaussians from a sequence of random samples. Our main result is a
computationally efficient moment-based estimator with an optimal convergence rate thus re-
solving a problem introduced by Pearson (1894). Denoting by σ2 the variance of the unknown
mixture, we prove that Θ(σ12) samples are necessary and sufficient to estimate each parameter
up to constant additive error when d = 1. Our upper bound extends to arbitrary dimension d > 1
up to a (necessary) logarithmic loss in d using a novel—yet simple—dimensionality reduction
technique.

Strikingly, our estimator turns out to be very similar to the one Pearson proposed in 1894
which reduces the one-dimensional problem to solving and analyzing a tractable system of
polynomial equations. Our result greatly improves on the exponent in the sample size of the
best previous estimator due to Kalai, Moitra and Valiant (2010).

1 Introduction

Gaussian mixture models are among the most well-studied models in statistics, signal processing,
and computer science with a venerable history spanning more than a century. Gaussian mixtures
arise naturally as way of explaining data that arises from two or more homogenous populations
mixed in varying proportions. There have been numerous applications of Gaussian mixtures in
disciplines including astronomy, biology, economics, engineering and finance.

The most basic estimation problem when dealing with any mixture model is to approximately
identify the parameters that specify the model given access to random samples. In the case of
a Gaussian mixture the model is determined by a collection of means, covariance matrices and
mixture probabilities. A sample is drawn by first selecting a component according to the mixture
probabilities and then sampling from the normal distribution specified by the corresponding mean
and covariance. Already in 1894, Pearson [Pea94] proposed the problem of estimating the parame-
ters of a mixture of two one-dimensional Gaussians in the context of evolutionary biology. Pearson
analyzed a population of crabs and found that a mixture of two Gaussians faithfully explained the
size of the crab “foreheads”. He concluded that what he observed was a mixture of two species
rather than a single species and further speculated that “a family probably breaks up first into two
species, rather than three or more, owing to the pressure at a given time of some particular form
of natural selection.”

Fitting a mixture of two Gaussians to the observed crab data was a formidable task at the time
that required Pearson to come up with a good approach. His approach is based on the method
of moments which uses the empirical moments of a distribution to distinguish between competing

1

models. Given n samples x1, . . . , xn the k-th empirical moment is defined as 1
n

∑
i x

k
i , which for

sufficiently large n will approximate the true moment Exki . A mixture of two one-dimensional Gaus-
sians has 5 parameters so one might hope that 5 moments are sufficient to identify the parameters.
Pearson derived a ninth degree polynomial p5 in the first 5 moments and located the roots of this
polynomial. Each root gives a candidate mixture that matches the first 5 moments; there were
two valid solutions, among which Pearson selected the one whose 6-th moment was closest to the
observed empirical 6-th moment.

In this work, we extend the method proposed by Pearson and prove that the extended method
reliably recovers the parameters of the unknown mixture. Moreover, we show that the sample
complexity we achieve is essentially optimal. To illustrate the quantitative bound that we get,
if the means and variances are separated by constants and the total variance of the mixture is
σ2, then we show that up to constant factors it is necessary and sufficient to use σ12 samples to
recover the parameters up to small additive error. Our work can be interpreted as providing an
analysis of Pearson’s 120-year old estimator demonstrating that not only does it provably work (in
most situations) but in fact gives an optimal convergence rate. We extend our result to arbitrary
dimension d using an apparently novel but surprisingly simple dimensionality reduction technique.
This allows us to obtain the same sample complexity in any dimension up to a logarithmic loss
in d, which we can also show is necessary.

Closely related to our results is an important recent work of Kalai, Moitra and Valiant [KMV10]
who gave the first proof of a computationally efficient estimator with an inverse-polynomial con-
vergence rate for the problem we consider. In particular, they show that six moments suffice to
identify a mixture of two one-dimensional Gaussians. Moreover, the result is robust in the sense
that if the parameters of a mixture with variance σ2 are separated by constants, then one of the
first 6 moments must differ by 1/σ66. In particular, the first six empirical moments suffice provided
that they’re within 1/σ66 of the true moments (which happens for n � σ132). This then leads
to an estimator up to some polynomial loss. They also show that a solution to the 1-dimensional
problem extends to any dimension d up to some loss that’s polynomial in d and σ using a suitable
dimensionality reduction technique. In contrast to their result which is within a polynomial factor
of optimal, our result is within a constant factor of optimal in one dimension and within a logd log σ
factor of optimal in d dimensions.

1.1 Problem Description

A mixture F of two d-dimensional Gaussians is specified by mixing probabilities p1, p2 ≥ 0 such
that p1 + p2 = 1, two means µ1, µ2 ∈ Rd and two covariance matrices Σ1,Σ2 ∈ Rd×d. A sample
from F is generated by first picking an integer i ∈ {1, 2} from the distribution (p1, p2) and then
sampling from the d-dimensional Gaussian measure N(µi,Σi).

The variance σ2 of a 1-dimensional mixture of two Gaussians is p1p2(µ1 − µ2)2 + p1σ
2
1 + p2σ

2
2.

For a d-dimensional mixture, it is useful to define its “variance” as the maximum variance of any
coordinate,

V(F)
def
= p1p2‖µ1 − µ2‖2∞ + p1‖Σ1‖∞ + p2‖Σ2‖∞ . (1)

Given samples from F our goal is to recover the parameters that specify the mixture up to
small additive error; this is known as parameter distance. It is easy to see that we can only hope
to recover the components of the mixture up to permutation. For simplicity it is convenient to
combine the error in estimating the parameters:

Definition 1.1. We say that mixture F̂ is ε-close to mixture F if there is a permutation π for

2

which
max

(
‖µ(i) − µ̂(π(i))‖2∞, ‖Σ(i) − Σ̂(π(i))‖∞

)
≤ εV(F)

We say that an algorithm (ε, δ)-learns a mixture F of two Gaussians from f(ε, δ) samples, if given
f(ε, δ) i.i.d. samples from F , it outputs a mixture F̂ that is ε-close to F with probability 1− δ.

Note that this definition does not require good recovery of the pi. If the two components of the
mixture are indistinguishable, one cannot hope to recover the pi to additive error. On the other
hand, if the components are well-separated, one can use that the overall mean is the p-weighted
average of the component means—or an analogous statement for the variances—to estimate the pi
from estimates of the parameters. Our main theorem will give a more precise characterization of
how well we estimate p, but for simplicity we ignore it in much of the paper.

Kalai, Moitra and Valiant [KMV10] considered total variation distance between the two mix-
tures as the target metric; in their analysis they first bound the parameter distance and then give
an argument showing how to convert it to bounds in total variation distance. However, focusing on
parameter distance has several advantages in our context. First, it leads to a cleaner quantitative
analysis. Second, if the covariance matrices are (close to) sparse we can scale εσ to the magnitude
of the dominant entries of the covariance matrices and ignore the rest, decreasing our sample com-
plexity; an affine invariant measure such as total variation distance could not benefit from sparsity
this way. We will discuss later an application where sparse covariance matrices are natural. Finally,
even if we converted our bounds to total variation norm using the argument of [KMV10], our main
theorem would still lead to significant quantitative improvements.

1.2 Main results

One-dimensional algorithm. Our main theorem is a general result that achieves tight bounds
in multiple parameter regimes. As a consequence it’s a little cumbersome to state, so we start
with two simpler corollaries. The first corollary is that the algorithm (ε, δ)-learns a mixture with
O(ε−6 log(1/δ)) samples.

Corollary 1.2. Let F be any mixture of 1-dimensional Gaussians where p1 and p2 are bounded
away from zero. Then Algorithm 2.3 can (ε, δ)-learn F with O(ε−6 log(1/δ)) samples.

The 6th power dependence on ε arises because our algorithm uses the 6th moment. In fact, we
will see that in general this result is tight: there exist distributions for which one cannot reliably
estimate either the µi to ±

√
εσ or the σ2

i to ±εσ2 with o(1/ε6) samples.
However, for many distributions one can estimate the parameters with fewer than 1/ε12 samples.

One important special case is when the two Gaussians have means that are separated by Ω(1)
standard deviations. In this case, our algorithm requires only O(1/ε) samples:

Corollary 1.3. Let F be a mixture of 1-dimensional Gaussians where p1 and p2 are bounded
away from zero and |µ1 − µ2| = Ω(σ). Then Algorithm 2.3 can (ε, δ)-learn F with O(ε−1 log(1/δ))
samples.

This result is also tight: even if the samples from the mixture were labeled, it still would take
Ω(1/ε) samples to estimate the mean and variance of each Gaussian to the desired precision. Our
main theorem gives a smooth tradeoff between these two corollaries.

Theorem 2.10. Let F be any mixture of two Gaussians with variance σ2 and p1, p2 bounded away
from 0. Then, given O(ε−2n log(1/δ)) samples Algorithm 2.3 with probability 1 − δ outputs the
parameters of a mixture F̂ so that for some permutation π and all i ∈ {1, 2} we have the following
guarantees:

3

• If n ≥
(

σ2

|µ1−µ2|2
)6

, then |µi− µ̂π(i)| ≤ ε|µ1−µ2|, |σ2
i − σ̂2

π(i)| ≤ ε|µ1−µ2|2, and |pi− p̂π(i)| ≤ ε.

• If n ≥
(

σ2

|σ2
1−σ2

2 |
)6

, then |σ2
i − σ̂2

π(i)| ≤ ε|σ
2
1 − σ2

2|+ |µ1 − µ2|2 and |pi − p̂π(i)| ≤ ε+ |µ1−µ2|2
|σ2

1−σ2
2 |

.

• For any n ≥ 1, the algorithm performs as well as assuming the mixture is a single Gaussian:
|µi − µ̂π(i)| ≤ |µ1 − µ2|+ εσ and |σ2

i − σ̂2
π(i)| ≤ |σ

2
1 − σ2

2|+ |µ1 − µ2|2 + εσ2.

In essence, the theorem states that the algorithm can distinguish the two Gaussians in the
mixture if it has at least (σ2

max(|µ1−µ2|2,|σ2
1−σ2

2 |)
)6 samples. Once this happens, the parameters can

be estimated to ±ε relative accuracy with only a 1/ε2 factor more samples. If the means are
reasonably separated, then the first clause of the theorem provides the strongest bounds. If there
is no separation in the means, we cannot hope to learn the means to relative accuracy, but we can
still learn the variances to relative accuracy provided that they’re separated. This is the content
of the second clause. If neither means nor variances are separated, our algorithm is no better or
worse than treating the mixture as a single Gaussian.

The only assumption present in our main theorem requires that min(p1, p2) be bounded away
from zero. Making this assumption simplifies the proof on a syntactic level considerably. A poly-
nomial dependence on the separation from 0 could be extracted from our techniques, but we don’t
know if this dependence would be optimal.

Lower bound. Our second main result is that the bound in Theorem 2.10 is essentially best
possible among all estimators—even computationally inefficient ones. More concretely, we exhibit
a pair of mixtures F, F̃ that satisfy the following strong bound on the squared Hellinger distance1

between the two distributions.

Lemma 1.4. There are two one-dimensional Gaussian mixtures F, F̃ with variances σ2 and all
of the µi, σ

2
i , and pi separated by Ω(1) from each other such that the squared Hellinger distance

satisfies
H2(F, F̃) ≤ O

(
σ−12

)
.

Denoting by Fn the distribution obtained by taking n independent samples from F, the squared
Hellinger distance satisfies the direct sum rule H2(Fn, F̃n) ≤ n·H2(F, F̃). Moreover, if H2(Fn, F̃n) ≤
o(1) then the total variation distance also satisfies TV(Fn, F̃n) ≤ o(1). In particular, in this case
no statistical test can distinguish F and F ′ from n samples with high confidence and parameter
estimation is therefore impossible. The following theorem follows, showing that Corollary 1.2 is
optimal.

Theorem 4.5. Consider any algorithm that, given n samples of any Gaussian mixture with vari-
ance σ2, with probability 1− δ learns either µi to ±

√
εσ or σ2

i to ±εσ2. Then n = Ω(ε−6 log(1/δ)).

Since (ε, δ)-learning the mixture requires learning both the µi and the σ2
i to this precision, we

get that Corollary 1.2 is tight:

Corollary 1.5. Any algorithm that uses f(ε, δ) samples to (ε, δ)-learn arbitrary mixtures of two
1-dimensional Gaussians with p1 and p2 bounded away from zero requires f(ε, δ) = Ω(ε−6 log(1/δ)).

1For probability measure P and Q with densities p and q, respectively, the squared Hellinger distance is defined
as H2(P,Q) =

∫
(
√

p(x) −
√

q(x))2dx.

4

Extension to arbitrary dimensions. Our main result holds for the d-dimensional problem up
to replacing log(1/δ) by log(d log(1/ε)/δ) in the sample complexity.

Theorem 3.11. Let F be any mixture of d-dimensional Gaussians where p1 and p2 are bounded
away from zero. Then we can (ε, δ)-learn F with O(ε−6 log(d log(1/ε)/δ)) samples.

Notably, our bound is essentially dimension-free and incurs only a logarithmic dependence on d.
The best previous bound for the problem is the bound due to [KMV10] that gives a polynomial
dependence of O((d/ε)c) for some very large constant c = O(1).2 The proof of our theorem is based
on a new dimension-reduction technique for the mixture problem that is quite different from the
one in [KMV10]. Apart from the quantitative improvement that it yields, it is also notably simpler.

Moreover, we can extend Theorem 4.5 to show that Ω(ε−6 log(d/δ)) samples are necessary to
achieve the guarantee of Theorem 3.11; one can embed a different instance of the hard distribution
in each of the d dimensions, and the guarantee requires that the algorithm solve all the copies.
That this direct product is hard is shown in Theorem 4.7. Hence Theorem 3.11 is optimal up to
the log log(1/ε) term, and optimal up to constant factors when d ≥ log(1/ε).

1.3 Proof overview

We now give a high-level outline of our approach (and the related approach of Pearson). We begin
by reparametrizing the Gaussian mixture in such a way to get parameters that are independent of
adding Gaussian noise to the mixture. Formally, adding or subtracting the same term from each of
the variances leaves these parameters unchanged. Assuming the overall mean of the mixture is 0,
this leaves us with 3 free parameters that we call α, β, γ. Since these parameters are independent
of adding Gaussian noise it is useful to also define the moments of the mixture in such a way that
they are independent under adding Gaussian noise. This is accomplished by considering what we
call excess moments. The name is inspired by the term excess kurtosis, a well-known measure of
“peakedness” of a distribution introduced in [Pea94] that corresponds to the fourth excess moment.
At this point, the third through sixth excess moments give us four equations in the three variables
α, β, γ.

Three different precision regimes. Our analysis distinguishes between three different param-
eter regimes. In the first parameter regime we know each excess moment Xi for i ≤ 6 up to an
additive error of ε|µ1 − µ2|i. This analysis is applicable when the means are separated and it leads
to the first case in Theorem 2.10. The second regime is when the separation between the means
is small, but we nevertheless know each excess moment up to error ε|σ2

1 − σ2
2|i/2. This analysis in

this case applies when the variances are separated and leads to the second case in Theorem 2.10.
Finally, when neither of the cases applies the two Gaussians are indistinguishable and we simply
fit a single Gaussian. We show that we can figure out which parameter regime we’re in and run
the appropriate algorithm.

We focus here on a discussion of the first parameter regime, since it is the most interesting case.
The full argument is in Section 2.3.

Pearson’s polynomial. Expressing the excess moments in terms of our new parameters α, β, γ,
we can derive in a fairly natural manner a ninth degree polynomial p5(y) whose coefficients depend
on X3, X4, and X5 so that α has to satisfy p5(α) = 0. The polynomial p5 was already used by
Pearson. Unfortunately, p5 can have multiple roots and this is to be expected since 5 moments are

2Their formal proof appears to use c = 300,000, although their technique could get a somewhat smaller value.

5

not sufficient to identify a mixture of two Gaussians. Pearson computed the mixtures associated
with each of the roots and threw out the invalid solutions (e.g. the ones that give imaginary
variances), getting two valid mixtures that matched on the first five moments. He then chose the
one whose sixth moment was closest to the observed sixth moment.

We proceed somewhat differently from Pearson after computing p5. First, we use the first 4
excess moments to compute an upper bound ymax on α. We show that the set of valid mixtures
that match the first 5 moments correspond precisely to the roots y of p5(y) with 0 < y ≤ ymax.
We then derive another ninth degree polynomial using X3, X4, X5, and X6 that we call p6(y). We
prove that α is the only solution to the system of equations{

p5(y) = 0, p6(y) = 0, 0 < y ≤ ymax

}
.

This approach isn’t yet robust to small perturbations in the moments; for example, if p5 has a double
root at α, it may have no nearby root after perturbation. We therefore consider the polynomial
r(y) = p2

5(y) + p2
6(y) which we know is zero at α. We argue that r(y) is significantly nonzero for

any y significantly far from α. This is the main technical claim we need.
For intuition of why this is the case, consider the normalization |µ1 − µ2| = 1 and the setting

where |σ2
1 − σ2

2| = O(1). Because the excess moments are polynomials in α, β, γ we can think of
r(y) as a polynomial in (y, α, β, γ). We are interested in some region R ⊂ R4 where every root of r
corresponds to a mixture matching the first six moments. Because six moments suffice to identify
the mixture by [KMV10], r has no roots in R outside y = α. This lets us show that r/(y−α)2 has
no roots over R, which for a compact R implies that r/(y−α)2 = Ω(1) over R. Thus r = Ω((y−α)2)
over the region of interest.

Now, with O(σ12/ε2) samples we can estimate all the Xi to ±ε, which lets us estimate both
p5(y) and p6(y) to ±O(ε). This means

√
r(y) is estimated to ±O(ε). Since

√
r(y) = Ω(|y − α|),

this lets us find α to ±O(ε). We then work back through our equations to get β and γ to ±O(ε),
which give the µi and σ2

i to ±O(ε).
The analysis proceeds slightly differently in the setting where |σ2

1 − σ2
2| � 1. In this setting

the region R of interest is not compact, because the parameter γ (which here equals σ2
1 − σ2

2)
is unbounded. However, we can show directly that the highest (12th) degree coefficient of γ in
r/(y − α)2 is bounded away from zero, getting that r = Ω(γ12(y − α)2). Since the Xi are now not
constant, while we can estimate each Xi to ±ε with O(σ12/ε2) samples, we only estimate p5(y)
and p6(y) to ±O(εγ5). Since

√
r(y) = Ω(γ6|y − α|), this lets us estimate α to ±O(ε/γ). This is

sufficient to recover γ to ±O(ε), which lets us recover β to ±O(ε) and then the µi and σ2
i to ±O(ε).

Dimension Reduction. In Section 3 we extend our theorem to arbitrary dimensional mix-
tures using two simple ideas. The first idea is used to reduce the d-dimensional case to the 4-
dimensional case and is straightforward. The second argument reduces the 4-dimensional case to
the 1-dimensional and is only slightly more involved. How can we use an algorithm for d ≤ 4
to solve the problem in arbitrary dimension? Consider the case where Σ1,Σ2 ∈ Rd×d differ in
some entry (i, j). We can find (i, j) by running our assumed algorithm for all pairs of variables.
Each pair of variables leads to a two-dimensional mixture problem where the covariances are ob-
tained by restricting Σ1,Σ2 to the corresponding entries. Once we have found an entry (i, j) where
|(Σ1−Σ2)ij | > ε, we are in good shape. We now iterate over all k, l ∈ [d] and solve the 4-dimensional
mixture problem on the variables (i, j, k, l) to within accuracy ε/10. This not only reveals an addi-
tional entry k, l of the covariance matrix but it also tells us which of the two values for position (k, l)
is associated with which of the values for position (i, j). This is because we solved the 4-dimensional
problem to accuracy ε/10 and we know that |(Σ1 − Σ2)ij | > ε. Hence, each newly recovered value

6

for position (i, j) must be close to the value that we previously recovered. This ensures that we do
not mix up any entries and so we recover the covariance matrices entry by entry. A similar but
simpler argument works for the means.

Finally, the four-dimensional problem reduces to one dimension by brute forcing over an ε-
net of all possible four-dimensional solutions (which is now doable in polynomial time) and using
the algorithm for d = 1 to verify whether we picked a valid solution. The verification works by
projecting the four-dimensional mixture in a random direction. Using anti-concentration results
for quadratic forms in Gaussian variables, we can show that any covariance matrix ε-far from the
true covariance matrices will be ruled out with constant probability by each projection. Therefore
O(log(1/ε)) projections will identify the covariance matrices among the poly(1/ε) possibilities. A
union bound requires δ ≈ 1/ log(1/ε), giving O(log log(1/ε)) overhead beyond the 1-dimensional
algorithm.

1.4 Related Work

The body of related work on Gaussian mixture models is too broad to survey here. We refer the
reader to [KMV10] for a helpful discussion of work prior to 2010. Since then a number of works
have further contributed to the topic. Moitra and Valiant [MV10] gave polynomial bounds for
estimating the parameters of a mixture of k Gaussians based on the method of moments. Belkin
and Sinha [BS10] achieved a similar result. It is an interesting question if our techniques extend
to the case of k Gaussians, but by [MV10] the dependence must be at least ε−Ω(k). Work of Chan
et al. [CDSS14] implies an improper learning algorithm for a mixture of two single-dimensional
Gaussians that learns the mixture in total variation distance to error ε using Õ(1/ε2) samples.
Daskalakis and Kamath [DK13] strengthen this result by giving a proper learning algorithm with
the same guarantee. However, neither algorithm estimates the paramters the mixture (and this is
impossible in general given the stated sample complexity by our lower bound). A number of recent
works have considered Gaussian mixture models under stronger assumptions on the components.
See, for example, [HK13, AJOS14]. We are not aware of improvements over [KMV10] for the
parameter estimation problem when no such assumptions are made.

2 Algorithm for one-dimensional mixtures

2.1 Preliminaries and Notation

Asymptotics. For any expressions f and g, we use f . g to denote that there exists a constant
C > 0 such that f ≤ Cg. Similarly, f & g denotes that g . f , and f h g denotes that f . g . f .

Parameters of the Gaussian. The two Gaussians have probabilities pi, means µi, and standard
deviations σi. The overall mean and variance of the mixture are µ = p1µ1 + p2µ2 and

σ2 = p1((µ1 − µ)2 + σ2
1) + p2((µ2 − µ)2 + σ2

2) = p1p2(µ1 − µ2)2 + p1σ
2
1 + p2σ

2
2 . (2)

For almost all of the section, for simplicity of notation we will assume that the overall mean
µ = 0. We only need to consider µ 6= 0 when showing that we can estimate the moments precisely
enough.

We will also assume that p1, p2 ∈ (0, 1) are both bounded away from zero. We define

∆µ = |µ2 − µ1| ∆σ2 = |σ2
2 − σ2

1| . (3)

7

We also make use of a reparameterization of the Gaussian distribution:

α = −µ1µ2 β = µ1 + µ2 γ =
σ2

2 − σ2
1

µ2 − µ1
(4)

Note that these are independent of adding Gaussian noise, i.e. increasing both σ2
1 and σ2

2 by the
same amount. Also we have α ≥ 0, since the mean is zero. With our assumption that p1, p2 are
bounded away from zero we have that

β2 . α h ∆2
µ.

Finally, we will make use of the parameter

κ = max(1,∆σ2/∆2
µ)

which will relate to how well-conditioned our equations are. We have that |γ| . ∆µκ.

Excess moments. We define Mi to be the ith moment of our distribution, E[xi], so M2 = σ2.
The excess kurtosis of a distribution is a standard statistical measure defined as M4/M

2
2 − 3.

It is designed to be independent of adding independent Gaussian noise to the variable. Inspired by
this, we define the excess moments Xi to be Mi plus a polynomial in M2, . . . ,Mi−1 such that the
result is independent of adding Gaussian noise. We have that:

Lemma 2.1. For α = −µ1µ2, β = µ1 + µ2, γ =
σ2
2−σ2

1
µ2−µ1 we have that

X3 := M3 = αβ + 3αγ

X4 := M4 − 3M2
2 = −2α2 + αβ2 + 6αβγ + 3αγ2 (5)

X5 := M5 − 10M3M2 = α(β3 − 8αβ + 10β2γ + 15γ2β − 20αγ)

X6 := M6 − 15M4M2 + 30M3
2 = α(16α2 − 12αβ2 − 60αβγ + β4 + 15β3γ + 45β2γ2 + 15βγ3)

See Appendix B.2 for proof. Since α, β, γ are independent of adding Gaussian noise, these
definitions of the Xi are correct.

By inspection, we have for each i ∈ {3, 4, 5, 6} that

|Xi| . ∆i
µκ

i−2. (6)

For simplicity of notation, we also define X1 = µ and X2 = σ2, despite them not technically
being “excess,” and refer to {X1, X2, X3, X4, X5, X6} as the excess moments.

Estimation of moments. All our algorithms in this section proceed by first estimating the (ex-
cess) moments from the samples, then estimating the mixture from these moments. The relationship
between sample complexity and estimation error is as follows:

Lemma 2.2. Suppose p1, p2 are bounded away from zero and our mixture has variance σ2. Given
O(log(1/δ)/ε2) samples, with probability 1− δ we can compute estimates X̂i of the first O(1) excess
moments Xi satisfying |X̂i −Xi| ≤ εσi .

See Appendix A for a proof. We will state our first two theorems in terms of the necessary error
bound on |X̂i −Xi| rather than sample complexity. This is more general, since it supports other
forms of perturbation of the inputs.

For a statistic f of the Gaussian mixture, in general we use f to denote the true value of the
statistic and f̂ to denote the estimate of f from estimates of the moments.

8

2.2 Algorithm overview

Our overall goal is to recover the µi to ±εσ and the σ2
i to ±ε2σ2 using roughly O(1/ε12) samples.

We have two different algorithms for different parameter regimes. The first algorithm, Algo-
rithm 2.1, proceeds by first learning the µi, then using this to estimate the σi. However, it only
works well if we have the Xi to within ∆i

µ; without this, we cannot get a nontrivial estimate of the
µi, which causes the algorithm to also not get a decent estimate of the σi.

Theorem 2.7 (Precision better than ∆µ). Consider any mixture of Gaussians where p1 and p2 are

bounded away from zero, c > 0 a sufficiently small constant, and any ε < 1. If |X̂i −Xi| ≤ cε∆i
µ

for all i ≤ 6, Algorithm 2.1 recovers the pi to ±ε, µi to ±ε∆µ, and σ2
i to ±ε∆2

µ.

If ∆σ2 � ∆2
µ, for example if ∆µ = 0, one may hope to get a good estimate of the σ2

i despite
having more than ∆i

µ error in Xi. Algorithm 2.2 does this by solving for the σi under the assumption
that µ1 = µ2. We can show that the solution is robust to ∆µ being small but nonzero, so the

algorithm does a good job when ∆i
µ . |X̂i −Xi| . ∆

i/2
σ2 . (When |X̂i −Xi| goes below this bound,

the performance doesn’t degrade but does not improve as one would like.)

Theorem 2.9 (Precision between ∆µ and
√

∆σ2). Consider any mixture of Gaussians where p1

and p2 are bounded away from zero, and any ε < 1. Suppose that ε∆σ2 & ∆2
µ. If |X̂i −Xi| ≤ ε∆i/2

σ2

for all i ≤ 6, Algorithm 2.2 recovers the pi to ±O(ε) and σ2
i to ±O(ε)∆σ2.

In the remaining parameter regime, with |X̂i − Xi| > ∆i
µ + ∆

i/2
σ2 , the two Gaussians are in

general indistinguishable and it suffices to just output the average mean and variance.
To get a general result, we just need to figure out which of the three parameter regimes we’re

in and apply the appropriate algorithm. Algorithm 2.3 does this by constructing sufficiently good
estimates of σ,∆µ, and ∆σ2 . We also invoke Lemma 2.2 to get bounds on sample complexity,
showing:

Theorem 2.10. Let F be any mixture of two Gaussians with variance σ2 and p1, p2 bounded away
from 0. Then, given O(ε−2n log(1/δ)) samples Algorithm 2.3 with probability 1 − δ outputs the
parameters of a mixture F̂ so that for some permutation π and all i ∈ {1, 2} we have the following
guarantees:

• If n ≥
(

σ2

|µ1−µ2|2
)6

, then |µi− µ̂π(i)| ≤ ε|µ1−µ2|, |σ2
i − σ̂2

π(i)| ≤ ε|µ1−µ2|2, and |pi− p̂π(i)| ≤ ε.

• If n ≥
(

σ2

|σ2
1−σ2

2 |
)6

, then |σ2
i − σ̂2

π(i)| ≤ ε|σ
2
1 − σ2

2|+ |µ1 − µ2|2 and |pi − p̂π(i)| ≤ ε+ |µ1−µ2|2
|σ2

1−σ2
2 |

.

• For any n ≥ 1, the algorithm performs as well as assuming the mixture is a single Gaussian:
|µi − µ̂π(i)| ≤ |µ1 − µ2|+ εσ and |σ2

i − σ̂2
π(i)| ≤ |σ

2
1 − σ2

2|+ |µ1 − µ2|2 + εσ2.

The regimes can be unified to get the following, simpler but weaker, corollary:

Corollary 2.3. Consider any mixture of Gaussians where p1 and p2 are bounded away from zero,
and any ε, δ < 1. With n = O(log(1/δ)/ε12) samples, Algorithm 2.3 returns {µ1, µ2} to ±εσ
additive error and the corresponding {σ2

1, σ
2
2} to ±ε2σ2 additive error with probability 1− δ.

Proof. If εσ = f∆µ for f < 1, then by the first clause of Theorem 2.10 with ε′ = f6 we get the µi
to within f6∆µ ≤ f∆µ = εσ and the σ2

i to within f6∆2
µ ≤ f2∆2

µ = ε2σ2.
Otherwise, if εσ > ∆µ but ε2σ2 = f2∆σ2 for f2 < 1, then by the second clause of Theorem 2.10

with ε′ = f6 we get the σi to within f6∆σ2 + ∆2
µ . ε2σ2.

And by the last clause, if εσ & ∆µ we get the µi to within ∆µ + ε6σ . εσ, and if ε2σ2 &
max(∆σ2 ,∆2

µ) we get the σ2
i to within ∆2

µ + ∆σ2 + ε6σ2 . ε2σ2.

9

2.3 Algorithm for better precision than ∆µ

. Recover Gaussian mixture from (estimates of the) mean, variance, and excess moments
. Excess moments are function of moments, defined in (5)

procedure RecoverFromMoments(ε, µ, σ2, X3, X4, X5, X6)
α← RecoverAlphaFromMoments(X3, X4, X5, X6, ε).

γ ← 1
α
α2X5+2X3

3+2α3X3−3X3X4α

4X2
3−2α3−3X4α

.

β ← 1
α(X3 − 3αγ).

µ1, µ2 ←
−β∓
√
β2+4α

2 .
p1, p2 ← µ2

µ2−µ1 ,
−µ1
µ2−µ1 .

σ2
1 ← σ2 −

(
p1µ

2
1 + p2µ

2
2 − µ1γ

)
.

σ2
2 ← σ2

1 + (µ2 − µ1)γ.
return (p1, µ1 + µ, σ1), (p2, µ2 + µ, σ2)

end procedure
procedure RecoverAlphaFromMoments(X3, X4, X5, X6, ε)

Let ymax be the largest root of 2y3 +X4y −X2
3 = 0.

κ← 1 +
√
|X4|/ymax . κ = Θ(1 + |γ|/

√
α)

Define the 18th degree polynomial r(y) = p5(y)2 + p6(y)2 for p5 and p6 given by (9) and (11).
. For the true moments, α is the only zero of r on (0, ymax].

Compute the set of roots R of r′(y).
Let α be maximal element of R ∪ {(1 + ε/κ)ymax} satisfying

α ≤ (1 + ε/κ)ymax

r(α) ≤ ε2α18κ10.

return α.
end procedure

Algorithm 2.1: Algorithm for recovery of mixture of two Gaussians in one dimension when the
means are separated.

In this section we derive Pearson’s polynomial and extend it into a robust algorithm.

Manipulation of X3, X4, X5. Based on (5) we can remove β to get an equation in {α, γ,X3, X4}:

6(αγ)2 = X2
3 − 2α3 −X4α. (7)

If we define z := αγ, we can get another equation in {α, z,X3, X4, X5}.

α2X5 −X3
3 + 8α3X3 = α3β2γ − 12α3γ2β + 4α4γ − 27α3γ3

= z(X3 − 3z)2 − 12z2(X3 − 3z) + 4α3z − 27z3

= 18z3 − 18X3z
2 + (4α3 +X2

3)z

Substituting in (7) we make the equation linear in z:

α2X5 −X3
3 + 8α3X3 = 3(z −X3)(X2

3 − 2α3 −X4α) + (4α3 +X2
3)z

= (4X2
3 − 2α3 − 3X4α)z + (3X3X4α+ 6α3X3 − 3X3

3)

10

or

z := αγ =
α2X5 + 2X3

3 + 2α3X3 − 3X3X4α

4X2
3 − 2α3 − 3X4α

. (8)

We can substitute z back into (7) and clear the denominator to get a polynomial equation in the
single variable α:3

p5(α) = 6(2X3α
3 +X5α

2 − 3X3X4α+ 2X3
3)2 + (2α3 + 3X4α− 4X2

3)2(2α3 +X4α−X2
3) = 0. (9)

Therefore, given the excess moments Xi, we can find a set of candidate α by solving for the positive
roots of p5(y) = 0. Unfortunately, there are in general multiple such roots. In fact, the first five
moments do not suffice to uniquely identify a Gaussian mixture, so we must incorporate the sixth
moment.

Using the 6th moment. Analogously to the creation of (8), we take the expression for X6

in (5), replace β with X4/α− 3γ, then remove γ2 terms using (7) to get

z := αγ =
4X4

3 − 4X2
3X4α− 8X2

3α
3 −X2

4α
2 + 8X4α

4 +X6α
3 + 4α6

10X3
3 − 7X3X4α− 2X3α3

(10)

(See Appendix B.3 for a more detailed explanation.) Combining with (8) and clearing the denom-
inators gives that

p6(α) = (4X2
3 − 3X4α− 2α3)(4X4

3 − 4X2
3X4α− 8X2

3α
3 −X2

4α
2 + 8X4α

4 +X6α
3 + 4α6)−

(10X3
3 − 7X3X4α− 2X3α

3)(2X3
3 − 3X3X4α+ 2X3α

3 +X5α
2) = 0 (11)

which is another 9th degree equation in α in terms of the excess moments.
We would like to say that α is the only common positive root of p5 and p6, but this is not always

true. Fortunately, we can exclude the other common roots if we enforce an upper bound on α.

Restricting the domain. Let ymax be the positive root of

2y3 +X4y −X2
3 = 0. (12)

There is at most one such root by Descartes’ rule of signs. There exists such a root because if
X3 = α(β + 3γ) is zero, then X4 = α(β + 3γ)2 − 6αγ2 − 2α2 is negative. And by (7), α ≤ ymax.

Moreover,

ymax . α. (13)

(Since p1 and p2 are bounded away from zero, β2 . α. Then if γ2 . α, this follows from a
cubic polynomial with bounded coefficients having bounded roots. Otherwise, X2

3 = Θ(α2γ2) and
X4 = Θ(αγ2) are positive so ymax ≤ X2

3/X4 . α.)

3This polynomial (9) is identical to (29) in Pearson’s 1894 paper, up to rescaling variables by constant factors.
Our (8) is similarly identical to Pearson’s (27).

11

Combining the equations. We will show that y = α is the only solution to the set of equations
0 < y ≤ ymax, p5(y) = 0, p6(y) = 0. This statement would suffice to recover the mixture given the
exact excess moments, but we also want the algorithm to have robustness to small perturbations
in the Xi. We therefore define

r(y) := p5(y)2 + p6(y)2, (14)

which we know is zero at α. We will show it is significantly non-zero for any candidate y that is
far from α and still within [cymax, ymax] for any constant c > 0.

The robustness will depend on the parameter

κ := max(1,∆σ2/∆2
µ) h 1 + |γ|/

√
α. (15)

This is intuitive because the excess moments Xi are bounded by O(∆i
µκ

i−2), which implies by
inspection of (9) and (11) that for all |y| . ymax, every monomial in p5 and p6 has magnitude
bounded by

O(∆18
µ κ

6). (16)

At this point, it is convenient to normalize so ∆µ h α h 1. While we state our lemmas in full
generality, it is better to think about this normalization and we will use it in the proofs.

Lemma 2.4. For any constant c > 0, and for all α ≥ 0 and β, γ, y ∈ R with cymax ≤ y ≤ ymax
and β2 . α we have

r(y) & κ12(y − α)2α16

This is the key lemma of our proof, and shown in Section B.4. Note that the recovery algorithm
will not know ymax exactly, so we need to extend the claim to slightly beyond ymax.

Lemma 2.5. For any constant c > 0, there exists a constant c′ > 0 such that for all α ≥ 0 and
β, γ, y ∈ R with cymax ≤ y ≤ ymax + c′(ymax − α) and β2 . α we have

r(y) & κ12(y − α)2α16

The proof is in Section B.4. This lemma lets us show that RecoverAlphaFromMoments
returns a good approximation to α if it is given good approximations to the moments:

Lemma 2.6. Suppose p1, p2 are bounded away from zero, let c > 0 be a sufficiently small constant,
and let ε < 1. Suppose further that |X̂i − Xi| ≤ cε∆i

µ for all i ∈ {3, 4, 5, 6}. In this setting, the

result α̂ = RecoverAlphaFromMoments(X̂3, X̂4, X̂5, X̂6, ε) satisfies

|α̂− α| . ε∆2
µ/κ.

See Section B.6 for a proof. It is then easy to show that all the recovered parameters are good
approximations to the true parameters, getting the theorem:

Theorem 2.7 (Precision better than ∆µ). Consider any mixture of Gaussians where p1 and p2 are

bounded away from zero, c > 0 a sufficiently small constant, and any ε < 1. If |X̂i −Xi| ≤ cε∆i
µ

for all i ≤ 6, Algorithm 2.1 recovers the pi to ±ε, µi to ±ε∆µ, and σ2
i to ±ε∆2

µ.

12

Proof. We normalize so ∆µ = 1. By Lemma 2.6,

|α̂− α| . ε/κ.

Therefore α and the X̂i for i ∈ {3, 4, 5, 6} all have error less than ε/κ times the corresponding upper
bounds of 1 and κi−2. Then by Lemma A.1, the error in any monomial in α and the Xi is less than
ε/κ times the upper bound on that monomial.

Let us consider the error in γ̂. The equation is

γ̂ :=
1

α̂

α̂2X̂5 + 2X̂3
3 + 2α̂3X̂3 − 3X̂3X̂4α̂

4X̂2
3 − 2α̂3 − 3X̂4α̂

For the true α,X3, X4, X5, the numerator is O(κ3) and the denominator is Θ(κ2), where to get the
lower bound on the denominator we use from (7) that

4X2
3 − 2α3 − 3X4α = X2

3 + 4α3 + 3(X2
3 − 2α3 −X4α) ≥ 4α3 + 3(6αγ)2 h κ2.

Hence for the estimates, we have

γ̂ =
O(κ3)±O(εκ2)

Θ(κ2)±O(εκ)
= γ ±O(ε)

Then β̂ and the µ̂i are trivial ±O(ε) approximations. From this, the p̂i are ±O(ε) approximations
and the σ̂2

i are ±O(ε)-approximations. Rescaling ε gives the result.

2.4 Algorithm for precision between ∆µ and
√

∆σ2

. Recover Gaussian mixture from (estimates of the) mean, variance, and excess moments
. Excess moments are function of moments, defined in (5)

procedure SameMeanRecoverFromMoments(µ, σ2, X4, X6)

∆σ2 ←
√

4
3X4 +

X2
6

25X2
4

. ∆σ2 := σ2
2 − σ2

1

pi ← 1
2(1∓ X6

5X4∆σ2
) . p1 takes − branch

σ2
1 ← σ2 − p2∆σ2 .
σ2

2 ← σ2 + p1∆σ2 .
return (p1, µ, σ1), (p2, µ, σ2)

end procedure

Algorithm 2.2: Algorithm for recovery of mixture of two Gaussians in one dimension, when µ1 ≈ µ2.

Algorithm 2.2 solves for the Gaussian mixture under the assumption that µ1 = µ2. First, we
show that it is correct and robust to perturbations in the moments; we will then show that the
moments are robust to perturbation of the means.

Lemma 2.8. Suppose µ1 = µ2 and p1, p2 are bounded away from zero. Let ∆σ2 := σ2
1−σ2

2. For any

ε less than a sufficiently small constant, if |X̂i−Xi| . ε∆
i/2
σ2 for all i ∈ {2, 4, 6}, then Algorithm 2.2

recovers σ2
i to ±O(ε∆σ2) additive error and pi to ±O(ε) additive error.

13

Proof. First, we show that Algorithm 2.2 gives exact recovery when the moments are exact; then
we show robustness.

We choose to disambiguate the mixtures by σ2
2 ≥ σ2

1 so γ = ∆σ2/(µ2 − µ1). By examining
Lemma 2.1 as µi → 0 and γ → ∆σ2/µi, we observe that when ∆µ = 0 we have

X4 → 3αγ2 (17)

X6 → 15αβγ3

which, in terms of p1, p2,∆σ2 , for ∆µ = 0 implies that

X4 = 3p1p2∆2
σ2

X6 = 15p1p2(p2 − p1)∆3
σ2

Therefore

4

3
X4 +

X2
6

25X2
4

= 4p1p2∆2
σ2 + (p2 − p1)2∆2

σ2

= (p1 + p2)2∆2
σ2 = ∆2

σ2

and

p2 − p1 =
X6

5X4∆σ2

.

The algorithm is thus correct given the exact moments.
How robust is the algorithm? We have that X4 h ∆2

σ2 and |X6| . ∆3
σ2 . Hence X̂4 = (1 ±

O(ε))X4 & ∆2
σ2 and |X̂2

6 −X2
6 | . ε∆6

σ2 , and

|X̂
2
6

X̂2
4

− X2
6

X2
4

| ≤ |X̂
2
6

X̂2
4

− X̂2
6

X2
4

|+ |X̂
2
6

X2
4

− X2
6

X2
4

| . ε∆2
σ2 .

Therefore ∆̂σ2 = (1±O(ε))∆σ2 . And since | X̂6

X̂4
− X6

X4
| . ε∆σ2 , this means

|p̂i − pi| . |
X̂6

X̂4∆̂σ2

− X6

X4∆σ2

| . ε

as desired.

Theorem 2.9 (Precision between ∆µ and
√

∆σ2). Consider any mixture of Gaussians where p1

and p2 are bounded away from zero, and any ε < 1. Suppose that ε∆σ2 & ∆2
µ. If |X̂i −Xi| ≤ ε∆i/2

σ2

for all i ≤ 6, Algorithm 2.2 recovers the pi to ±O(ε) and σ2
i to ±O(ε)∆σ2.

Proof. Let G be the given Gaussian mixture and G′ be the mixture with probabilities pi and
variances σ2

i but both means moved to µ, which we may assume without loss of generality is 0.
Then we can express x ∼ G as y + z for y ∼ G′ and |z| ≤ ∆µ. Define X ′i to be the ith excess
moment of G′.

Since the sign of y is independent of the mixture chosen, E[yz] = 0. Therefore |X ′2 − X2| =
E[z2] = p1µ

2
1 + p2µ

2
2 . ∆2

µ. From (5) and (17), we have that

|X4 −X ′4| = | − 2α2 + αβ2 + 6αβγ| . ∆2
µ∆σ2

|X6 −X ′6| = |α(16α2 − 12αβ2 − 60αβγ + β4 + 15β3γ + 45β2γ2)| . ∆2
µ∆2

σ2

Therefore |X ′i −Xi| . ∆2
µ∆

i/2−1
σ2 for all i ∈ {2, 4, 6}, so |X ′i − X̂i| . ε∆

i/2
σ2 . Lemma 2.8 immediately

implies the result.

14

2.5 Combining the algorithms to get general precision

procedure Recover1DMixture(x1, . . . , xn, δ)
Compute (excess) moments µ, σ2, X3, . . . , X6

f ← (log(1/δ)
n)1/12 . Error f6σi in each Xi.

∆µ ←
{

min(|X3|1/3 + |X4|1/4, X3/
√
X4) if X4 > 0

|X3|1/3 + |X4|1/4 otherwise
. Θ(∆µ) +O(f3/2σ)

∆σ2 ←
√
|X4| . Θ(∆σ2)±O(f3σ2)±O(∆2

µ)

if f2 . ∆
2
µ/σ

2 then . Can get within ±∆2
µ

return result of Algorithm 2.1 with ε h
√

(σ/∆µ)12 log(1/δ)
n .

else if f2 . ∆σ2/σ2 then . Between ±∆2
µ and ±∆σ2

return result of Algorithm 2.2
else . Can’t distinguish either µi or σi, so output a single Gaussian.

return (1/2, µ, σ2), (1/2, µ, σ2)
end if

end procedure

Algorithm 2.3: Combined algorithm for recovery of mixture of two Gaussians in one dimension.

Theorem 2.10. Let F be any mixture of two Gaussians with variance σ2 and p1, p2 bounded away
from 0. Then, given O(ε−2n log(1/δ)) samples Algorithm 2.3 with probability 1 − δ outputs the
parameters of a mixture F̂ so that for some permutation π and all i ∈ {1, 2} we have the following
guarantees:

• If n ≥
(

σ2

|µ1−µ2|2
)6

, then |µi− µ̂π(i)| ≤ ε|µ1−µ2|, |σ2
i − σ̂2

π(i)| ≤ ε|µ1−µ2|2, and |pi− p̂π(i)| ≤ ε.

• If n ≥
(

σ2

|σ2
1−σ2

2 |
)6

, then |σ2
i − σ̂2

π(i)| ≤ ε|σ
2
1 − σ2

2|+ |µ1 − µ2|2 and |pi − p̂π(i)| ≤ ε+ |µ1−µ2|2
|σ2

1−σ2
2 |

.

• For any n ≥ 1, the algorithm performs as well as assuming the mixture is a single Gaussian:
|µi − µ̂π(i)| ≤ |µ1 − µ2|+ εσ and |σ2

i − σ̂2
π(i)| ≤ |σ

2
1 − σ2

2|+ |µ1 − µ2|2 + εσ2.

We compare the algorithm to the “ideal” algorithm which uses ∆µ and ∆σ2 instead of their
estimates ∆µ and ∆σ2 to decide which algorithm to use. We show that:

• If the first branch is taken in either the ideal or the actual setting, then ∆µ h ∆µ.

• If the second branch is taken in either the ideal or the actual setting, then ∆σ2 h ∆σ2 .

Therefore, up to constant factors in the sample complexity, the Algorithm 2.3 performs as well
as the ideal algorithm, which performs as well as the best of Algorithm 2.1, Algorithm 2.2, and
outputting a single Gaussian. The proof is given in Appendix B.7.

3 Dimension Reduction

We first give a simple argument showing that the d-dimensional problem reduces to the 4-dimensional
problem. We then give a separate result showing that the 4-dimensional problem reduces to the
1-dimensional problem. Since we previously saw a solution to the 1-dimensional problem, our
reductions show how to solve the general d-dimensional problem.

15

To describe our reduction we need to know V(F) up to a constant factor. This can be accom-
plished with few samples as shown next.

Lemma 3.1. Given n = O(log(1/δ)) samples from a mixture F we can output a parameter σ2 such
that P

{
σ2 ∈ [V(F), 2V(F)]

}
≥ 1− δ.

Proof. This follows from estimating the second moment of the distribution up to constant multi-
plicative error and is shown in the proof of Lemma 2.2.

Theorem 3.2 ((d to 4)-reduction). Assume there is a polynomial time algorithm that (ε, δ)-learns
mixtures of two Gaussians in R4 from f(ε, δ) samples. Then, for every d ≥ 4, there is a polynomial
time algorithm that (ε, δ)-learns mixtures of two gaussians using f(ε/20, δ/10d2) + O(log(1/δ))
samples.

Proof. Let A denote the assumed algorithm for R4. We give an algorithm B for the d-dimensional
problem. The algorithm is given sample access to a mixture F of variance σ2 = V(F). The algorithm
B always invokes A with error parameter ε/20 and failure probability δ/10d2.

Algorithm B:

1. Use Lemma 3.1 to obtain a parameter σ̂2 such that σ̂2 ∈ [σ2, 2σ2] with probability 1− δ/2.
Determine µ̂(i):

2. For every i ∈ [d] use A to obtain numbers ξpi for every p ∈ {1, 2} there is q ∈ {1, 2} such that

|ξpi − µ
(q)
i | ≤ εσ̂/20. For each i this can be done by invoking A to solve the 1-dimensional

mixture problem obtained by restricting the samples to coordinate i.

3. If for all i we have |ξ1
i − ξ2

i | ≤ εσ̂/4, then put µ̂(1) = µ̂(2) = (ξ1
i)i∈[d]

4. Otherwise, let i be the first index such that |ξ1
i − ξ2

i | > εσ̂/4 and do for each j ∈ [d] :

(a) Use A to solve the 2-dimensional mixture problem obtained by restricting to the coor-
dinates i, j to accuracy εσ̂/20 in order to obtain numbers (νpi , ν

p
j) for p = 1, 2 as the

estimate for the two-dimensional means.

(b) Determine p ∈ {1, 2} such that |ξ1
i − ν

p
i | ≤ εσ̂/10. If no such p exists, terminate and

output “failure”.

(c) Put µ̂
(1)
j = νpj and put µ̂

(2)
j = ν3−p

j .

Determine Σ̂(i):

5. For every i, j ∈ [d] use A to obtain numbers ξpij for every p ∈ {1, 2} there is q ∈ {1, 2} such

that |ξpij−Σ
(q)
ij | ≤ ε2σ̂2/20. For each i, j this can be done by using A to solve the 2-dimensional

mixture problem obtained by restricting the samples to coordinates i, j.

6. If for all i, j we have |ξ1
ij − ξ2

ij | ≤ ε2σ̂2/4, then put Σ̂(1) = Σ̂(2) = [ξ1
ij]i,j∈[d]

7. Otherwise, let i, j be the first indices in lexicographic order such that |ξ1
ij − ξ2

ij | > ε2σ̂2/4 and
do for each k, l ∈ [d] :

(a) Invoke A to solve the 4-dimensional mixture problem obtained by restricting to the
coordinates i, j, k, l to accuracy ε2σ̂2/20 in order to obtain numbers σpij , σ

p
kl for p = 1, 2.

16

(b) Determine p ∈ {1, 2} such that |ξ1
ij − σ

p
ij | ≤ ε2σ̂2/10. If no such p exists, terminate and

output “failure”.

(c) Put Σ̂
(1)
kl = σpkl and put Σ̂

(2)
kl = σ3−p

kl .

Matching up Σ̂ and µ̂.

8. If there exist an i, j, k with |ξ1
ij−ξ2

ij | ≥ εσ/2 and |ξ1
k−ξ2

k| ≥ εσ/2, then run A on {i, j, k} to get
estimates (σpij , ν

p
k) of (Σp

ij , µ
p
k) for p = 1, 2. If there exists a permutation π : {1, 2} → {1, 2}

with |Σ̂(1)
ij − σ

(π(1))
ij | < |Σ̂(1)

ij − σ
(π(2))
ij | and |µ̂(1)

k − ν
(π(1))
k | > |µ̂(1)

k − ν
(π(2))
k |, then switch Σ̂(1)

and Σ̂(2).

Correctness of σ̂2 and invocations of A. Appealing Lemma 3.1 we have with probability
1− δ/2,

σ2 ≤ σ̂2 ≤ 2σ2 .

Moreover, we know that each invocation of A is on a mixture problem of variance at most σ2 and
we run the algorithm with accuracy parameter ε/20 and error probability δ/10d2. The total number
of invocations is at most 5d2 and therefore every invocation is successful with probability 1− δ/2.
In this case, we have that all the “mean parameters” returned by A are εσ/20-accurate and all the
“variacne paramters” are ε2σ2/400-accurate. Both events described above occur with probability
1− δ and we will show that B succeeds in outputting a mixutre that’s ε-close to F assuming that
these events occur.

Correctness of means. On the one hand, suppose that the case described in Step 3 occurs.
In this case, each pair of parameters is within distance εσ̂/4 ≤ εσ/2 and the estimates are εσ/20
accurate. Hence, the output is εσ-close for both means.

On the other hand, consider the case described in Step 4 and let i denote the coordinate found
by the algorithm. Since |ξ1

i − ξ2
i | > εσ̂/4 ≥ εσ/4 it must be the case that∣∣∣µ(1)

i − µ
(2)
i

∣∣∣ ≥ εσ

4
− εσ

10
=
εσ

8
.

Further since all estimates are (εσ/20)-accurate, there always must exist a p ∈ {1, 2} such that
|ξ1
i − ν

p
i | ≤ εσ/10 ≤ εσ̂/10. There is at most one such p since |ξ1

i − ξ2
i | > εσ̂/4. For this p we have

νpi and ξ1
i are either both (εσ/20)-close to µ

(1)
i or they are both (εσ/20)-close to µ

(2)
i but not both.

It follows that for every j ∈ [d] our estimates νpj all belong to the same d-dimensional mean. This

shows that we correctly identify µ(1), µ(2) ∈ Rd up to additive error εσ/20 in each coordinate.

Correctness of covariances. The argument for Σ̂(1), Σ̂(2) is analogous. Suppose that the case
described in Step 6 occurs. In this case, each pair of parameters is within distance ε2σ2/2 and the
estimates are ε2σ2/20 accurate. Hence, the output is ε2σ2 accurate for both covariance matrices.

Now consider the case described in Step 7 and let (i, j) denote the pair of coordinates found by
the algorithm. Since |ξ1

ij − ξ2
ij | > ε2σ̂2/4 ≥ ε2σ2/4 it must be the case that∣∣∣Σ(1)
ij − Σ

(2)
ij

∣∣∣ > ε2σ2/4− ε2σ2/10 = ε2σ2/8.

Further since all estimates are (ε2σ2/20)-accurate, there always must exist a p ∈ {1, 2} such that

|ξ1
ij − σ

p
ij | ≤ ε2σ2/10. For this p we know that σpij and ξ1

ij are either both (ε2σ2/10)-close to Σ
(1)
ij or

17

they are both (ε2σ2/10)-close to Σ
(2)
ij . In particular, for every k, l ∈ [d] our estimates σpkl all belong to

the same n-dimensional covariance matrix. This shows that we correctly identify Σ(1),Σ(2) ∈ Rd×d
up to additive error ε2σ2/20 in each coordinate.

Correctness of matching Σ to µ. If there does not exist an i, j, k with |ξ1
ij−ξ2

ij | ≥ εσ/2 and |ξ1
k−

ξ2
k| ≥ εσ/2, then either the means or the variances are indistinguishable and the order of matching

doesn’t matter. Otherwise, since A gives accuracy (εσ/20, ε2σ2/20) and the true parameters are

separated by at least (εσ/8, ε2σ2/8), the correct pairing will only have |µ̂(1)
k −ν

(π(1))
k | < |µ̂(1)

k −ν
(π(2))
k |

or |Σ̂(1)
ij − σ

(π(1))
ij | < |Σ̂(1)

ij − σ
(π(2))
ij | when π is the correct permutation for µ̂ and Σ̂, respectively.

3.1 From 4 to 1 dimension

For our reduction from R4 to R we invoke a powerful anti-concentration result for polynomials in
Gaussian variables due to Carbery and Wright.

Theorem 3.3 ([CW01]). Let p(x1, . . . , xd) be a degree r polynomial, normalized such that Var(p) =
1 under the normal distribution. Then, for any t ∈ R and δ > 0, we have

P
x∼N(0,1)d

{|p(x)− t| ≤ τ} ≤ O(r) · τ1/r .

Lemma 3.4. Let Nd
9 be the d-dimensional normal distribution N(0, 1)d conditioned on vectors of

norm at most 9. There is a constant c > 0 such that for every B ∈ Rd×d,

P
a∼Nd9

{∣∣∣a>Ba∣∣∣ ≤ c · ‖B‖∞} ≤ 1

3
.

Proof. Observe that p(x) = x>Bx is a degree 2 polynomial in n Gaussian variables. It is easy to
see that the variance of p under the normal distribution is at least the square of the largest entry
of B. That is, ‖B‖2∞. Hence, we can apply Theorem 3.3 to p(x)/V for some number V ≥ ‖B‖∞ to
conclude that

P
x∼N(0,1)d

{∣∣∣x>Bx∣∣∣ ≤ c · ‖B‖∞} ≤ 1

6
.

On the other hand, ‖x‖2 > 9 with probability less than 1/6. Hence, the claim follows.

The next lemma is a direct consequence.

Lemma 3.5. There is a constant c > 0 such that for every ε > 0,m ∈ N and Σ̂,Σ(1),Σ(2) ∈ Rd×d

such that
∥∥∥Σ̂− Σ(1)

∥∥∥
∞
> ε and

∥∥∥Σ̂− Σ(2)
∥∥∥
∞
> ε we have

P
a1,...,am∼Nd9

{
∃i ∈ [m] :

∣∣∣a>i (Σ̂− Σ(1))ai

∣∣∣ > cε and
∣∣∣a>i (Σ̂− Σ(2))ai

∣∣∣ > cε
}
≥ 1−

(
1

3

)m
.

Proof. For every fixed i ∈ [m], by Lemma 3.4 and the union bound we have,

P
ai∼Nd9

{∣∣∣a>i (Σ̂− Σ(1))ai

∣∣∣ ≤ cε or
∣∣∣a>i (Σ̂− Σ(2))ai

∣∣∣ ≤ cε} ≤ 2/3 .

The claim therefore follows since the samples are independent.

18

We have the analogous statement for vectors instead of matrices.

Lemma 3.6. There is a constant c > 0 such that for every ε > 0,m ∈ N and µ̂, µ(1), µ(2) ∈ Rd
such that

∥∥µ̂− µ(1)
∥∥
∞ > ε and

∥∥µ̂− µ(2)
∥∥
∞ > ε we have

P
a1,...,am∼Nd9

{
∃i ∈ [m] :

∣∣∣〈µ̂− µ(1), ai〉
∣∣∣ > cε and

∣∣∣〈µ̂− µ(2), ai〉
∣∣∣ > cε

}
≥ 1−

(
1

3

)m
.

Proof. The proof is analogous to that of Lemma 3.5, but instead of Lemma 3.4 we directly appeal
to the anti-concentration properties of the one-dimensional Normal distribution.

We also note two obvious bounds.

Lemma 3.7. Let B ∈ R4×4 and µ ∈ R4. Then,

1. Pa∼N4
9

{
|a>Ba| ≤ O(‖B‖∞)

}
= 1, and

2. Pa∼N4
9
{|〈a, µ〉| ≤ O(‖µ‖∞)} = 1.

Proof. This is immediate because the dimension is constant and the norm of a is at most 9 with
probability 1.

We now have all the ingredients for our reduction from four to one dimension.

Theorem 3.8 ((4 to 1)-reduction). Assume there is a polynomial time algorithm that (ε, δ)-
learns a mixture of two Gaussians in R from f(ε, δ) samples. Then for some constant c > 0
there is a polynomial time algorithm that (ε, δ)-learns mixtures of two Gaussians in R4 from
f(cε, cδ/ log(ε/δ)) +O(log(1/δ)) samples.

Proof. Let A denote the assumed algorithm for one-dimensional mixtures. We give an algorithm
B for the 4-dimensional problem. We prove that the algorithm (O(ε), O(δ))-learns mixtures of
two Gaussians in R4 given the stated sample bounds. We get the statement of the theorem by
rescaling ε, δ.

We use Lemma 3.1 to obtain a parameter σ̂2 such that σ̂2 ∈ [σ2, 2σ2] with probability 1− δ.
We will locate the unknown mixture parameters by doing a grid search and checking each

solution using the previous lemmas that we saw. To find a suitable grid for the means, we first
find an estimate µ̂ ∈ R4 so that µ(1) and µ(2) are both within 2σ̂ of µ̂ in each coordinate. This
can be done by invoking A on each of the 4 coordinates with error parameter 1/2 and success
probability 1 − δ. For i = 1, . . . , 4 we take µ̂i to be either of the two estimates for the means in
the i-th invocation of A. Since ‖µ(1) − µ(2)‖∞ ≤ σ by assumption we know that µ(1), µ(2) are both
within distance 2σ of µ̂i.

Let Nµ be a (cεσ̂)-net in `∞-distance around the point µ̂ of width 2σ̂ in every coordinate. For
small enough c > 0, the true parameters must be (εσ̂/20) close to a point contained in Nµ. This is
because σ2 ≥ ‖µ(1) − µ(2)‖2∞ by definition. Similarly, we let Nσ = ([−σ̂2, σ̂2] ∩ (cεσ̂2)Z)4×4. Since
‖Σ(i)‖∞ ≤ σ2 ≤ σ̂2 this net must contain an (εσ/20)-close point to each true covariance matrix.
Note that |Nµ| × |Nσ| = poly(1/ε).

19

Algorithm B:

1. Let m = 10 log((|Nµ| × |Nσ|)/δ). Sample a1, . . . , am ∼ N4
9 and sample x1, . . . , xm′ ∼ F where

m′ = f(ε′, δ′) with ε′ = cε and δ′ = δ/m for sufficiently small constant c > 0. For each ai run
A on {〈ai, xj〉 : j ∈ [m′]} with error parameter ε′ and confidence δ′.

Denote the outputs of A by
{

(µ̂1,i, Σ̂1,i, µ̂2,i, Σ̂2,i) : i ∈ [m]
}
.

2. For every vector µ̂ ∈ Nµ, do the following:

(a) If there exists an i ∈ [m] such that |〈ai, µ̂〉− µ̂1,i| > εσ̂/2 and |〈ai, µ̂〉− µ̂2,i| > εσ̂/2, then
label µ̂ as “rejected”. Otherwise if there is no such i ∈ [m], label µ̂ as “accepted”.

3. Let M be the set of accepted vectors. If M = ∅ output “failure” and terminate. Otherwise,
choose µ̂(1), µ̂(2) ∈M to maximize ‖µ̂1 − µ̂2‖∞.

4. For every symmetric Σ̂ ∈ Nσ, do the following:

(a) If there exists an i ∈ [m] such that |〈ai, Σ̂ai〉 − Σ̂1,i| > ε2σ̂2/2 and |〈ai, Σ̂ai〉 − Σ̂2,i| >
ε2σ̂2/2, then label Σ̂ as “rejected”. Otherwise if there is no such i ∈ [m], label Σ̂ as
“accepted”.

5. Let S be the set of accepted matrices. If S = ∅ output “failure” and terminate. Otherwise,
choose Σ̂(1), Σ̂(2) ∈ S to maximize ‖Σ̂(1) − Σ̂(2)‖∞.

6. If there exists an i ∈ [m] where there does not exist a permutation π : {1, 2} → {1, 2} such
that for all p ∈ {1, 2} we have |〈ai, Σ̂(p)ai〉 − Σ̂π(p),i| ≤ ε2σ̂2/2 and |〈ai, µ̂(p)〉 − µ̂π(p),i| ≤ εσ̂/2,
then switch Σ̂(1) and Σ̂(2).

Claim 3.9. Let σ2
i denote the variance of the mixture problem induced by ai. Then we have that

maxi∈[m] σ
2
i ≤ O(σ2) with probability 1.

Proof. This follows directly from the concentration bounds in Lemma 3.7.

We need the following claim which shows that with high probability the estimates obtained in
Step 1 are (ε/10)-accurate.

Claim 3.10. With probability 1− δ, for all i ∈ [m], there is a permutation πi so that:

1. |µ̂1,i − 〈ai, µ(πi(1))〉| ≤ εσ/10 and |µ̂2,i − 〈ai, µ(πi(2))〉| ≤ εσ/10

2. |Σ̂1,i − 〈ai,Σ(πi(1))ai〉| ≤ ε2σ2/100 and |Σ̂2,i − 〈ai,Σ(πi(2))ai〉| ≤ ε2σ2/100

Proof. If x ∼ F then 〈a, x〉 is sampled from a 1-dimensional mixture model with means 〈a, µ(1)〉, 〈a, µ(2)〉
and variances 〈a,Σ(1)a〉, 〈a,Σ(2)a〉. Note that we chose the error probability of A small enough so
that we can take a union bound over all m invocations of the algorithm. Moreover, by Claim 3.9,
all of these mixtures have variance at most O(σ2).

We suppose in what follows that the result of Claim 3.10 holds.

20

Correctness of means. Let

A =
{
µ :
∥∥∥µ(1) − µ

∥∥∥
∞
≤ Cεσ

}
∪
{
µ :
∥∥∥µ(2) − µ

∥∥∥
∞
≤ Cεσ

}
.

for a sufficiently large constant C. We first claim that with probability 1 − δ, every element that
gets accepted is in A. To establish the claim we need to show that with probability 1 − δ every
element in Ac ∩Nµ gets rejected. For any µ ∈ Ac, we have from Lemma 3.6 that for some constant
c′ > 0, with probability 1− 1/3m we have for some i ∈ [m] that

min(|〈µ− µ(1), ai〉|, |〈µ− µ(2), ai〉|) > c′Cεσ ≥ εσ̂

if C is sufficiently large, and hence µ is rejected. By our choice of m and a union bound, with 1− δ
probability all µ ∈ Ac ∩Nµ are rejected.

We also need to show there exists µ̄(1), µ̄(2) that get accepted such that
∥∥µ̄(1) − µ(1)

∥∥ ≤ εσ and∥∥µ̄(2) − µ(2)
∥∥ ≤ εσ. To see this take µ̄(1) to be the nearest neighbor of µ(1), which has |µ̄(1)−µ(1)| ≤

cεσ. By Lemma 3.7, it follows that

max
i∈[m]

|〈µ̄(1) − µ(1), ai〉| ≤ O(cεσ)

and hence µ̄(1) is accepted if c is sufficiently small. The symmetric argument holds for the nearest
neighbor of µ(2).

Now we can finish the argument by distinguishing two cases. Consider the case where
∥∥µ(1) − µ(2)

∥∥
∞ ≤

5Cεσ. In this case any accepted element must be 6Cεσ-close to both means. The other case is when∥∥µ(1) − µ(2)
∥∥
∞ > 5Cεσ. In this case, A contains two distinct clusters of elements centered around

each mean. Each pair within a single cluster has distance at most 2Cεσ, while any pair spanning
the two clusters has distance at least 3Cεσ. Hence the pair of largest distance are in different
clusters and within Cεσ of the corresponding means.

Correctness of covariances. The argument is very similar to the previous one. Let

A =
{

Σ:
∥∥∥Σ(1) − Σ

∥∥∥
∞
≤ Cε2σ2

}
∪
{

Σ:
∥∥∥Σ(2) − Σ

∥∥∥
∞
≤ Cε2σ2

}
.

for a sufficiently large constant C. We first claim that with probability 1 − δ, every element that
gets accepted is in A. To establish the claim we need to show that with probability 1 − δ every
element in Ac∩Nσ gets rejected. For any Σ ∈ Ac, we have from Lemma 3.5 that for some constant
c′ > 0, with probability 1− 1/3m we have for some i ∈ [m] that

min(|a>i (Σ− Σ(1))ai|, |a>i (Σ− Σ(2))ai|) > c′Cε2σ2 ≥ ε2σ̂2

if C is sufficiently large, and hence Σ is rejected. By our choice of m and a union bound, with 1− δ
probability all Σ ∈ Ac ∩Nσ are rejected.

We also need to show there exists Σ̄(1), Σ̄(2) that get accepted such that
∥∥Σ̄(1) − Σ(1)

∥∥ ≤ ε2σ2

and
∥∥Σ̄(2) − Σ(2)

∥∥ ≤ ε2σ2. To see this take Σ̄(1) to be the nearest neighbor of Σ(1), which has

|Σ̄(1) − Σ(1)| ≤ cε2σ2. By Lemma 3.7, it follows that

max
i∈[m]

|〈Σ̄(1) − Σ(1), ai〉| ≤ O(cε2σ2)

and hence Σ̄(1) is accepted if c is sufficiently small. The symmetric argument holds for the nearest
neighbor of Σ(2). Now we can finish the argument by distinguishing two cases. Consider the case

21

where
∥∥Σ(1) − Σ(2)

∥∥
∞ ≤ 5Cε2σ2. In this case any accepted element must be 6Cε2σ2-close to both

Σ(i). The other case is when
∥∥Σ(1) − Σ(2)

∥∥
∞ > 5Cε2σ2. In this case, A contains two distinct

clusters of elements centered around each Σ(i). Each pair within a single cluster has distance at
most 2Cε2σ2, while any pair spanning the two clusters has distance at least 3Cε2σ2. Hence the
pair of largest distance are in different clusters and within Cε2σ2 of the corresponding Σ(i).

Correctness of matching Σ to µ. If either
∥∥Σ(1) − Σ(2)

∥∥
∞ ≤ 5Cε2σ2 or

∥∥µ(1) − µ(2)
∥∥
∞ ≤ 5Cεσ,

then matching the Σ̂(p) to the µ̂(p) is unnecessary. Otherwise, we have for each i ∈ [m] that the
probability that either Σ̂(1) or µ(1) matches the wrong mean under ai is at most 2/3. Hence with
1− δ probability, one of the ai will disambiguate the two. (One must be careful because µ̂ and Σ̂
depend on the randomness in ai, but m is large enough that we can union bound over all |Nµ|×|Nσ|
possibilities.)

Combining our two reductions we immediately have the following result.

Theorem 3.11. Let F be any mixture of d-dimensional Gaussians where p1 and p2 are bounded
away from zero. Then we can (ε, δ)-learn F with O(ε−6 log(d log(1/ε)/δ)) samples.

Proof. By Corollary 1.2, there is an algorithm that (ε, δ)-learns mixtures of two Gaussians in R from
O(ε−6 log(1/δ)) samples. Hence, by Theorem 3.8, there is an algorithm that (ε, δ)-learns mixtures
of two Gaussians in R4 using sample size

O(ε−6 log(log(1/εδ)/δ) + log(1/δ)) = O(ε−6 log(log(1/εδ)/δ)) .

Finally, by Theorem 3.2, there is an algorithm that (ε, δ)-learns mixtures of two Gaussians in
Rd from using a number of samples that is bounded by

O(ε−6 log(2d log(d/εδ)/δ) + log(1/δ)) = O(ε−6 log(2d log(d/εδ)/δ)) .

4 Lower bounds

Our main lemma shows that if we have two Gaussian mixtures whose first k moments are matching
and we add a Gaussian random variable N(0, σ2) to each mixture, then the resulting distributions
are O(1/σ2k+2)-close in squared Hellinger distance.

Definition 4.1. Let P,Q be probability distributions that are absolutely continuous with respect to
the Lebesgue measure. Let p and q denote density functions of P and Q, respectively. Then, the
squared Hellinger distance between P and Q is defined as

H2(P,Q) =

∫ ∞
−∞

(√
p(x)−

√
q(x)

)2
dx .

Lemma 4.2. Let F and G be Gaussian mixtures with constant parameters and identical first k
moments for k = O(1). Let P = F +N(0, σ2) and Q = G+N(0, σ2) for σ & 1. Then

H2(P,Q) . 1/σ2k+2.

22

Proof. We have that F and G are subgaussian with constant parameters, i.e., for any d ≥ 0 we
have ∣∣∣∣ Et∼F td

∣∣∣∣ . (O(
√
d))d

and similarly for G. Denote by p, q, f, g density functions of P,Q, F,G, respectively. We would like
to bound

H2(P,Q) =

∫ ∞
−∞

(√
p(x)−

√
q(x)

)2
dx . (18)

We split the integral (18) into two regimes, |x| ≥ T and |x| ≤ T for T h σ
√

log σ.
For the |x| ≥ T regime, we have∫

|x|≥T

(√
p(x)−

√
q(x)

)2
dx ≤ P

x∼P
{|x| ≥ T}+ Prx∼Q {|x| ≥ T}

. e−T
2/(2(σ2+O(1)))

. 1/σ2k+2 .

The challenging part is the |x| ≤ T regime.

Claim 4.3. For |x| ≤ T, we have

p(x) &
1√
2πσ

e−x
2/(2σ2). (19)

Proof. Let x be such that |x| ≤ T. Let t be such that F ([−t, t]) = 1/2. Note that
t = O(1) since all the parameters of F are constant. In particular, denoting by ν(y)
the density of N(0, σ2) we have for every y ∈ [−t, t],

ν(x− y) ≥ e−(|x|+t)2/2σ2

√
2πσ

≥ e−x
2/2σ2

e−O(|x|/σ2)e−O(1/2σ2)

√
2πσ

&
1√
2πσ

e−x
2/(2σ2).

Hence,

p(x) ≥
∫ t

−t
f(x)ν(x− y)dy ≥ 1

2
· min
y∈[−t,t]

ν(x− y) &
1

2
· 1√

2πσ
e−x

2/(2σ2) .

Now, we define

∆(x) =
q(x)− p(x)

p(x)
.

We have that

∆(x) =
1

p(x)

∫ ∞
−∞

1√
2πσ

e−
(x−t)2

2σ2 (g(t)− f(t))dt

=
1

p(x)

1√
2πσ

e−x
2/(2σ2)

∫ ∞
−∞

etx/σ
2
e−

t2

2σ2 (g(t)− f(t))dt

.
∫ ∞
−∞

etx/σ
2
e−

t2

2σ2 (g(t)− f(t))dt. (20)

23

We take a power series expansion of the interior of the integral,

etx/σ
2
e−

t2

2σ2 =

(∞∑
d=0

(tx/σ2)d

d!

)(∞∑
d=0

(−t2/(2σ2))d

d!

)

=

∞∑
d=0

∑
j∈Z

0≤2j≤d

(tx/σ2)d−2j

(d− 2j)!

(−t2/(2σ2))j

j!

=
∞∑
d=0

(t/σ)d
∑
j∈Z

0≤2j≤d

(x/σ)d−2j(−1/2)j

(d− 2j)!j!
.

Now, for all j ∈ [0, d/2],

(d− 2j)!j! ≥ (d/2−
√
d)! = (Ω(d))d/2−

√
d = (Ω(d))d/2 .

Therefore each term in the inner sum has magnitude bounded by (x/σ)d−2j(O(1/d))d/2, so the sum
has magnitude bounded by (1 + (x/σ)d)(O(1/d))d/2. Hence there exists a constant C and values
cx,d with |cx,d| ≤ 1 such that

etx/σ
2
e−

t2

2σ2 =

∞∑
d=0

cx,d

(
C(1 + x/σ)

σ
√
d

)d
td.

Returning to (20), we have

∆(x) .
∫ ∞
−∞

∞∑
d=0

cx,d

(
C(1 + x/σ)

σ
√
d

)d
td(g(t)− f(t))dt

=
∞∑
d=0

cx,d

(
C(1 + x/σ)

σ
√
d

)d ∫ ∞
−∞

td(g(t)− f(t))dt

≤
∞∑
d=0

|cx,d|
(
C(1 + x/σ)

σ
√
d

)d{
0 if d ≤ k

(O(
√
d))d otherwise.

.
∞∑

d=k+1

(
O(1) · C(1 + x/σ)

σ

)d
h
(

1 + x/σ

σ

)k+1

.

for all |x| ≤ T h σ log σ. Note that this implies |∆(x)| < 1 which justifies the expansion√
1 + ∆(x) = 1 + ∆(x)/2±O(∆(x)2).

Therefore, following the approach outlined in [Pol00], we can write

H2(P,Q) = 1−
∫ ∞
−∞

√
p(x)q(x)dx

= 1−O(1/σ2k+2)−
∫ T

−T
p(x)

√
1 + ∆(x)dx

= 1−O(1/σ2k+2)−
∫ T

−T
p(x)(1 + ∆(x)/2±O(∆(x)2))dx

24

Now, we have that∫ T

−T
p(x)

(
1 +

1

2
∆(x)

)
dx = P

x∼P
[|x| ≤ T] +

1

2

(
P

x∼Q
{|x| ≤ T} − P

x∼P
{|x| ≤ T]}

)
= 1− 1

2

(
P

x∼Q
{|x| > T}+ P

x∼P
{|x| > T}

)
= 1−O(1/σ2k+2)

by our choice of T. We conclude,

H2(P,Q) . 1/σ2k+2 +

∫ T

−T
p(x)

(
1 + x/σ

σ

)2k+2

dx

. 1/σ2k+2

(
1 +

∫ T

−T
p(x)(x/σ)2k+2dx

)
≤ 1/σ2k+2

(
1 + E

x∼P
(x/σ)2k+2

)
. 1/σ2k+2 .

Claim 4.4. Let P and Q be distributions with H2(P,Q) ≤ ε. Then there exists a constant c > 0
such that n = cε−1 log(1/δ) independent samples from P and Q have total variation distance less
than 1 − δ. In particular, we cannot distinguish the distributions from n samples with success
probability greater than 1− δ.

Proof. Let x1, . . . , xn ∼ P and y1, . . . , yn ∼ Q for n = cε−1 log(1/δ). We will show that the total
variation distance between (x1, . . . , xn) and (y1, . . . , yn) is less than 1− δ.

We partition [n] into k groups of size 1/(10ε), for k = 10c log(1/δ). Within each group, by
sub-additivity of squared Hellinger distance we have that

H2
(
(x1, . . . , x1/(10ε)), (y1, . . . , y1/(10ε))

)
≤ 1/10 .

Appealing to the relation between total variation and Hellinger, this implies

TV
(
(x1, . . . , x1/(10ε)), (y1, . . . , y1/(10ε))

)
≤ 2H

(
(x1, . . . , x1/(10ε)), (y1, . . . , y1/(10ε))

)
≤ 2

3
.

Hence we may sample (x1, . . . , x1/(10ε)) and (y1, . . . , y1/(10ε)) in such a way that the two are identical
with probability at least 1/3. If we do this for all k groups, we have that (x1, . . . , xn) = (y1, . . . , yn)
with probability at least 1/3k > 2δ for sufficiently small constant c.

Theorem 4.5. Consider any algorithm that, given n samples of any Gaussian mixture with vari-
ance σ2, with probability 1− δ learns either µi to ±

√
εσ or σ2

i to ±εσ2. Then n = Ω(ε−6 log(1/δ)).

Proof. Take any two Gaussian mixtures F and G with constant parameters such that the four
means and variances are all Ω(1) different from each other, but F and G match in the first five
moments. One can find such mixtures by taking almost any mixture F with constant parameters
and solving p5 to find another root and the corresponding mixture (per Lemma B.1, this will cause
the first five moments to match). We can find such an F and G in [Pea94], or alternatively take

F =
1

2
N(−1, 1) +

1

2
N(1, 2)

G ≈ 0.2968N(−1.2257, 0.6100) + 0.7032N(0.5173, 2.3960).

25

While G is expressed numerically, one can certainly prove that the p5 derived from F has a second
root that yields something close to this mixture. Plug the mixtures into Lemma 4.2. We get that
for any σ > 0, the mixtures

P =
1

2
N(−1, 1 + σ2) +

1

2
N(1, 2 + σ2)

Q ≈ 0.2968N(−1.2257, 0.6100 + σ2) + 0.7032N(0.5173, 2.3960 + σ2).

have

H2(P,Q) . 1/σ12. (21)

Since by Claim 4.4 we cannot differentiate P and Q with o(σ12 log(1/δ)) samples, it requires
Ω(σ12 log(1/δ)) samples to learn either the µi or the σ2

i to ±1/10 with 1 − δ probability. Set
σ = 1/(10ε) to get the result.

Our argument extends to d dimensions. We gain a log(d) factor in our lower bound by randomly
planting a hard mixture learning problem in each of the d coordinates.

Claim 4.6. Let P and Q be distributions with H2(P,Q) ≤ ε. Let Ri ∈ {P,Q} uniformly at random
for i ∈ {1, . . . , d}. Then there exists a constant c > 0 such that given n = cε−1 log(d/δ) no algorithm
can identify all Ri with probability 1− δ.

Proof. As in Claim 4.4, we have that the total variation distance between B = 1/(10ε) samples
from P and B samples from Q is less than 2/3.

Partition our samples into k = 10c log d groups x1, . . . , xk, where for each group j ∈ [k] and
coordinate i ∈ [d] we have xji ∼ R⊗Bi . By the total variation bound between P⊗B and Q⊗B, we

could instead draw xji from a distribution independent of Ri with probability 1/3 and a distribution
dependent on Ri with probability 2/3. Suppose we do this.

Then for any coordinate i, with probability 3−k > δ/d all of x1
i , . . . , x

k
i are independent of Ri.

Since the coordinates are independent, this means that with probability at least

1− (1− δ/d)d ≥ δ/4

there will exist a coordinate i such that all of x1
i , . . . , x

k
i are independent of Ri. The algorithm

must then guess Ri incorrectly with probability at least 1/2, for a δ/8 probability of failure overall.
Rescale δ to get the result.

This immediately gives that Theorem 4.5 can be extended to d dimensions:

Theorem 4.7. Consider any algorithm that, given n samples of any d-dimensional Gaussian mix-
ture F with V(F) = σ2, with probability 1 − δ for all i ∈ [d] learns either µi to ±

√
εσ or Σi,i to

±εσ2. Then n = Ω(ε−12 log(d/δ)).

Proof. Let P,Q be as in Theorem 4.5. We choose a mixture F to have independent coordinates,
each of which is uniformly chosen from {P,Q}. Then V(F) h 1/ε, H(P,Q) ≤ ε6, and learning the
parameters of the mixture in the ith coordinate to the specified precision would identify whether
it is P or Q. Claim 4.6 gives the result.

26

References

[AJOS14] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. Near-
optimal-sample estimators for spherical gaussian mixtures. CoRR, abs/1402.4746, 2014.

[BS10] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In FOCS,
pages 103–112. IEEE Computer Society, 2010.

[CDSS14] Siu-On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Efficient density
estimation via piecewise polynomial approximation. In Proc. 46th Symposium on Theory
of Computing (STOC). ACM, 2014.

[CW01] A Carbery and J Wright. Distributional and lq norm inequalities for polynomials over
convex bodies in Rn. Mathematical research letters, 8(3):233–248, 2001.

[DK13] Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal algorithms
for proper learning mixtures of gaussians. CoRR, abs/1312.1054, 2013.

[HK13] Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical gaussians: moment
methods and spectral decompositions. In Robert D. Kleinberg, editor, ITCS, pages 11–
20. ACM, 2013.

[KMV10] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures
of two gaussians. In STOC, pages 553–562. ACM, 2010.

[MV10] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of
gaussians. In FOCS, pages 93–102. IEEE Computer Society, 2010.

[Pea94] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Trans-
actions of the Royal Society of London, 185, 1894.

[Pol00] D. Pollard. Asymptopia. in progress, 2000.

[Sym14] SymPy Development Team. SymPy: Python library for symbolic mathematics, 2014.

A Utility Lemmas

The following lemma shows that a constant size monomial is robust to perturbations of its inputs.

Lemma A.1. Let a, b, c ∈ Rk for constant k and 0 ≤ ε ≤ 1. If |ai| ≤ bi and |ci| ≤ εbi, we have that

|
k∏
i=1

(ai + ci)−
k∏
i=1

ai| . ε
k∏
i=1

bi.

Proof. All 2k − 1 . 1 terms on the left are bounded by the value on the right.

Lemma A.2. Let p be any constant-degree polynomial in a constant number of variables a1, . . . , at
with constant coefficients. Let q equal p except with all the coefficients having their absolute value
taken. Suppose |ai| ≤ bi and |ci| ≤ εbi for some b, c ∈ Rt and 0 ≤ ε ≤ 1. Then

|p(a1, . . . , at)− p(a1 + c1, . . . , at + ct)| . εp(b1, . . . , bt).

27

Proof. Apply Lemma A.1 to each monomial.

The following lemma shows that we can estimate moments well.

Lemma 2.2. Suppose p1, p2 are bounded away from zero and our mixture has variance σ2. Given
O(log(1/δ)/ε2) samples, with probability 1− δ we can compute estimates X̂i of the first O(1) excess
moments Xi satisfying |X̂i −Xi| ≤ εσi .

Proof. We partition the samples xi into O(log(1/δ)) groups of size k = O(1/ε2), then compute the
median (over groups) of the empirical excess moment of the group. We will show that this gives
the desired result.

Suppose we want to compute t = O(1) moments. Because our samples xi are the sum of a
Gaussian and a bounded variable and hence subgaussian, E[xpi] . σp for any p ≤ t. Therefore

Var(xpi) ≤ E[x2p
i] . σ2p.

For a group of k samples xi, consider how well the empirical pth moment M̂p = 1
k

∑
xpi approx-

imates the true moment Mp. We have that Var(M̂p) . σ2p/k. By Chebyshev’s inequality, then, for
any c > 0 we have

P[|M̂p −Mp| > O(σp/
√
ck)] ≤ c.

Setting the constant c = 1/(4t) and then choosing k = O(1/(cε2)), we have with 3/4 probability
that

|M̂p −Mp| ≤ εσp

for all p ≤ t. Then since the Xp are polynomials in the Mp with total degree p, by Lemma A.2 we
have for all p ≤ t that

|X̂p −Xp| . εσp. (22)

Call a block where this happens “good.” Since each block is good with 3/4 probability and there
are O(log(1/δ)) blocks, with 1− δ probability more than half the blocks are “good.” If this is the
case, then for each p the median X̂p will also satisfy (22). Rescaling ε gives the result.

B Algorithm for d = 1

B.1 Sympy

The proofs in this section involve a fair amount of algebraic manipulation. To make these compu-
tations more reliable and easier to verify, in some cases we provide code for a computer to do them.
We use Sympy [Sym14], a standard Python package for symbolic manipulation. We only use Sympy
for simple tasks – multiplying and adding polynomials, substituting expressions for variables – that
can be verified by hand.

B.2 Excess Moments of a Gaussian Mixture

Lemma 2.1. For α = −µ1µ2, β = µ1 + µ2, γ =
σ2
2−σ2

1
µ2−µ1 we have that

X3 := M3 = αβ + 3αγ

X4 := M4 − 3M2
2 = −2α2 + αβ2 + 6αβγ + 3αγ2

X5 := M5 − 10M3M2 = α(β3 − 8αβ + 10β2γ + 15γ2β − 20αγ)

X6 := M6 − 15M4M2 + 30M3
2 = α(16α2 − 12αβ2 − 60αβγ + β4 + 15β3γ + 45β2γ2 + 15βγ3)

28

Proof. For a standard N(µ, σ2) Gaussian we have moments

M2 = µ2 + σ2

M3 = µ3 + 3µσ2

M4 = µ4 + 6µ2σ2 + 3σ4

M5 = µ5 + 10µ3σ2 + 15µσ4

M6 = µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6.

and the mixture has probability p1 = µ2/(µ2 − µ1) and p2 = −µ1/(µ2 − µ1).
Therefore the following Sympy code (see Section B.1 for an explanation of Sympy) can be used

to formally verify the result:

#! /usr/bin/python

from sympy import *

Define variables

mu1 = Symbol(r’\mu_1’)

sigma1 = Symbol(r’\sigma_1’)

mu2 = Symbol(r’\mu_2’)

sigma2 = Symbol(r’\sigma_2’)

alpha = Symbol(r’\alpha’)

beta = Symbol(r’\beta’)

gamma = Symbol(r’\gamma’)

p1 = mu2/(mu2 - mu1)

Moments of single (mu1, sigma1) Gaussian

M2 = mu1**2 + sigma1**2

M3 = mu1**3 + 3 * mu1 * sigma1**2

M4 = mu1**4 + 6 * mu1**2 * sigma1**2 + 3 * sigma1**4

M5 = mu1**5 + 10 * mu1**3 * sigma1**2 + 15 * mu1 * sigma1**4

M6 = mu1**6 + 15 * mu1**4 * sigma1**2 + 45 * mu1**2 * sigma1**4 + 15*sigma1**6

Convert to moments of mixture

M2 = p1 * M2 + (1-p1)*M2.subs({mu1:mu2, sigma1:sigma2})

M3 = p1 * M3 + (1-p1)*M3.subs({mu1:mu2, sigma1:sigma2})

M4 = p1 * M4 + (1-p1)*M4.subs({mu1:mu2, sigma1:sigma2})

M5 = p1 * M5 + (1-p1)*M5.subs({mu1:mu2, sigma1:sigma2})

M6 = p1 * M6 + (1-p1)*M6.subs({mu1:mu2, sigma1:sigma2})

Claimed excess moments

x3 = alpha*beta + 3*alpha*gamma

x4 = -2*alpha**2 + alpha*beta**2 + 6*alpha*beta*gamma + 3*alpha*gamma**2

x5 = alpha * (beta**3 - 8*alpha*beta + 10*beta**2*gamma + 15*gamma**2*beta

- 20*alpha*gamma)

x6 = alpha*(16*alpha**2 - 12*alpha*beta**2 - 60*alpha*beta*gamma + beta**4 +

15*beta**3*gamma + 45*beta**2*gamma**2 + 15*beta*gamma**3)

29

Check that they match

alphadefs = {alpha: -mu1*mu2, beta: mu1+mu2,

gamma: (sigma2**2-sigma1**2)/(mu2-mu1)}

print (M3 - x3.subs(alphadefs)).factor()

print (M4-3*M2**2 - x4.subs(alphadefs)).factor()

print (M5-10*M3*M2 - x5.subs(alphadefs)).factor()

print (M6-15*M4*M2 + 30*M2**3 - x6.subs(alphadefs)).factor()

All the results are zero, so the claimed Xi are correct.

B.3 Expressing αγ using X3, X4, X6, α

We prove (10), which is analogous to (8). We demonstrate using the following Sympy code (see
Section B.1 for an explanation of Sympy):

#! /usr/bin/python

from sympy import *

define variables

alpha = Symbol(r’\alpha’)

beta = Symbol(r’\beta’)

gamma = Symbol(r’\gamma’)

X3 = Symbol(’X3’)

X4 = Symbol(’X4’)

X5 = Symbol(’X5’)

X6 = Symbol(’X6’)

z = Symbol(’z’)

define expressions for X_i in terms of alpha, beta, gamma

x3 = alpha*beta + 3*alpha*gamma

x4 = -2*alpha**2 + alpha*beta**2 + 6*alpha*beta*gamma + 3*alpha*gamma**2

x5 = alpha * (beta**3 - 8*alpha*beta + 10*beta**2*gamma + 15*gamma**2*beta

- 20*alpha*gamma)

x6 = alpha*(16*alpha**2 - 12*alpha*beta**2 - 60*alpha*beta*gamma + beta**4 +

15*beta**3*gamma + 45*beta**2*gamma**2 + 15*beta*gamma**3)

we know that this should be zero.

eqn = alpha**3 * (x6 - X6)

print eqn, ’= 0’

−α3(X6 − 16α3 + 12α2β2 + 60α2βγ − αβ4 − 15αβ3γ − 45αβ2γ2 − 15αβγ3) = 0

eqn = eqn.expand().subs(alpha*beta, X_3-3*alpha*gamma) # remove beta

print eqn, ’= 0’

X4
3 + 3X3

3αγ− 12X2
3α

3− 36X2
3α

2γ2 + 12X3α
4γ+ 42X3α

3γ3−X6α
3 + 16α6 + 72α5γ2 + 36α4γ4 = 0

30

Use (7) to remove gamma**2 terms

eqn = eqn.expand().subs(alpha**2*gamma**2, (X3**2 - 2*alpha**3 - X4*alpha)/6)

print eqn, ’= 0’

−4X4
3 + 10X3

3αγ + 4X2
3X4α+ 8X2

3α
3 − 7X3X4α

2γ − 2X3α
4γ +X2

4α
2 − 8X4α

4 −X6α
3 − 4α6 = 0

eqn = eqn.subs(alpha*gamma, z).expand().collect(z) # this of the form f*z + g

print eqn, ’= 0’

z(10X3
3 − 7X3X4α− 2X3α

3)− 4X4
3 + 4X2

3X4α+ 8X2
3α

3 +X2
4α

2 − 8X4α
4 −X6α

3 − 4α6 = 0

answer = -eqn.subs(z, 0) / eqn.coeff(z)

print ’z = ’, answer

z =
4X4

3 − 4X2
3X4α− 8X2

3α
3 −X2

4α
2 + 8X4α

4 +X6α
3 + 4α6

X3(10X2
3 − 7X4α− 2α3)

which is (10).

B.4 Bounding r away from zero

This section proves the following lemma:

Lemma 2.4. For any constant c > 0, and for all α ≥ 0 and β, γ, y ∈ R with cymax ≤ y ≤ ymax
and β2 . α we have

r(y) & κ12(y − α)2α16

We start by showing that r(y) = 0 has a unique solution on (0, ymax]. The following lemma
shows that for any such solution y there exists a Gaussian mixture with α = y and matching excess
moments; since the first six moments uniquely identify a Gaussian mixture, this gives uniqueness.

Lemma B.1. For any solution y to the system of equations

p5(y) = 0

p6(y) = 0 (23)

y > 0

X2
3 − 2y3 +X4y ≥ 0

there exists a mixture of Gaussians with α = y and excess moments X3, . . . , X6.

Proof. We set the recovered α̂ = y, recover γ via (8):

γ̂ =
1

α̂

α̂2X5 + 2X3
3 + 2α̂3X3 − 3X3X4α̂

4X2
3 − 3X4α̂− 2α̂3

.

which is well defined, using (7) and that the denominator is

4X2
3 − 3X4α̂− 2α̂3 = 4α̂3 +X2

3 + 3(X2
3 − 2α̂3 −X4α̂) > 0.

We then recover

β̂ =
1

α̂
(X3 − 3α̂γ̂).

Now, our α̂ and γ̂ satisfy (8) and (9), which implies that (7) is satisfied as well.

31

Now, consider the excess moments X ′i of the Gaussian mixture with parameters (α̂, β̂, γ̂). By

choice of β̂, X ′3 = X3. Then since (7) is satisfied by both (X3, X4) and (X3, X
′
4) and the coefficient

of X ′4 is nonzero, X ′4 = X4. Similarly with (8), X ′5 = X5.
What remains is to show p6(α̂) = 0 implies X ′6 = X6. The coefficient of X6 in p6 is

−2α2(4X2
3 − 3X4α̂− 2α̂3) < 0.

Thus since p6 = 0 is satisfied by both (α̂,X3, X4, X5, X6) and (α̂,X3, X4, X5, X
′
6), X ′6 = X6.

Corollary B.2. The set of equations (23) has exactly one solution, y = α.

Proof. By construction, y = α is a solution to (23). Suppose there existed another solution y′ 6=
y. Then by Lemma B.1, there exist two mixtures of Gaussians with different α and matching
X3, . . . , X6.

The excess moments are constructed to be indifferent to adding Gaussian noise, i.e. increasing
σ2

1 and σ2
2 by the same amount. Hence, by “topping off” the second moment, we can construct

two different mixtures of Gaussians with identical second moment as well as identical X3, . . . , X6;
these mixtures also both have mean zero. Such mixtures would have identical first six moments.
But by [KMV10], any two different mixtures of Gaussians differ in their first six moments. So this
is a contradiction.

Lemma B.3. For no α, β, γ with α > 0 is it the case that both p5 and p6 have a double root at
y = α.

Proof. Define q5(y) = p5(y)/(y − α), q6(y) = p6(y)/(y − α). We need to show that it is not true
that both q5(α) = 0 and q6(α) = 0. We show this by repeatedly adding multiples of one to the
other, essentially taking the GCD. The below is a transcript of a Sympy session (see Section B.1
for an explanation of Sympy) proving this claim.

#! /usr/bin/python

Setup variables and expressions

from sympy import *

alpha = Symbol(r’\alpha’)

beta = Symbol(r’\beta’)

gamma = Symbol(r’\gamma’)

y = Symbol(’y’)

X3 = alpha * beta + 3 * alpha * gamma

X4 = -2*alpha**2 + alpha*beta**2 + 6*alpha*beta*gamma + 3*alpha*gamma**2

X5 = alpha * (beta**3 - 8*alpha*beta + 10*beta**2*gamma + 15*gamma**2*beta

- 20*alpha*gamma)

X6 = alpha*(16*alpha**2 - 12*alpha*beta**2 + beta**4 + 45*beta**2*gamma**2 +

15*beta*gamma**3 + 15*gamma*(-4*alpha*beta + beta**3))

p5 = (6*(2*X3*y**3 + X5*y**2 - 3*X3*X4*y + 2*X3**3)**2 +

(2*y**3+3*X4*y - 4*X3**2)**2*(2*y**3 + X4*y - X3**2))

p6 = ((4*X3**2 - 3*X4*y - 2*y**3) *

(4*X3**4 - 4*X3**2*X4*y - 8*X3**2*y**3 - X4**2*y**2 +

8*X4*y**4 + X6*y**3 + 4*y**6) -

32

(10*X3**3 - 7*X3*X4*y - 2*X3*y**3) *

(2*X3**3 - 3*X3*X4*y + 2*X3*y**3 + X5*y**2))

Start actual code

q5 = (p5 / (y - alpha)).factor().subs(y, alpha).factor()

q6 = (p6 / (y - alpha)).factor().subs(y, alpha).factor()

Our goal is to show that (q5, q6) != (0, 0) for any alpha, beta, gamma.

print q5

α5(4α+ β2 + 6βγ + 27γ2)(16α2 + 8αβ2 + 72αγ2 + β4 + 18β2γ2 − 135γ4)

and since α5(4α+ β2 + 6βγ + 27γ2) > 0, we can reduce by

q5a = q5 / (alpha**5*(4*alpha + beta**2 + 6*beta*gamma + 27*gamma**2))

print q5a.subs(gamma, 0).factor()

(4α+ β2)2

nonzero, so must have γ 6= 0.

print q6

α5γ(16α2β−48α2γ+8αβ3−24αβ2γ−72αβγ2−72αγ3+β5−3β4γ−18β3γ2−18β2γ3+405βγ4+2025γ5)

q6a = (q6 / (alpha**5*gamma) - beta * q5a).factor()

print q6a

−3γ(16α2 + 8αβ2 + 48αβγ + 24αγ2 + β4 + 12β3γ + 6β2γ2 − 180βγ3 − 675γ4)

q6b = (q6a / (-3*gamma) - q5a).factor()

print q6b

12γ(4αβ − 4αγ + β3 − β2γ − 15βγ2 − 45γ3)

q6c = q6b / (12*gamma)

z = 4*alpha + beta**2

q5b = (z + 9*gamma**2)**2 - 216*gamma**4

q6d = (z - 15*gamma**2)*(beta - gamma) - 60*gamma**3

print (q5a - q5b).factor(), (q6d - q6c).factor()

(0, 0)

So the solution must have (z+9γ2)2−216γ4 = 0 and (z−15γ2)(β−γ)−60γ3 = 0 for z = 4α+β2.
From the first equation,

z = −9γ2 ± 6
√

6γ2

and since z > 0, this means
z = (6

√
6− 9)γ2.

Plugging into the second equation and dividing by γ2,

(6
√

6− 24)β − (36 + 6
√

6)γ = 0

33

and so

γ = −4−
√

6

6 +
√

6
β

z =
(6
√

6− 9)(4−
√

6)2

(6 +
√

6)2
β2 ≈ 0.19β2

≤ β2 < 4α+ β2 = z

a contradiction.

Lemma B.4 (r is large when γ is unbounded). There exists a constant C such that for all β, γ ∈ R
and α, y > 0 with γ2 ≥ Cα, y . ymax, and β2 . α we have

r(y) & (y − α)2γ12α10

Proof. As in Lemma B.3, define q5(y) = p5(y)/(y−α) and q6(y) = p6(y)/(y−α) Per (12), we have
that ymax . α+ β2 . α.

Then q5 is a homogenous polynomial in
√
y,
√
α, β, γ, all of which are O(

√
α) except γ. The

leading γ6 term of q5 is
>>> q5 = (p5 / (y - alpha)).factor()

>>> q5.expand().coeff(gamma**6).factor()

243α3((y + 4α)2 − 40α2)γ6

Hence for y /∈ (2α, 3α), |q5(y)| & γ6α5.
Doing the same for p6, for p6/(y − α) the leading γ6 term is
>>> q6 = (p6 / (y - alpha)).factor()

>>> q6.expand().coeff(gamma**6).factor()

162α3(y − 6α)2γ6

so for y /∈ (5α, 7α), |q5(y)| & γ6α5.
Thus for all y with γ2 sufficiently much greater than α,

r(y) = (y − α)2(q5(y)2 + q6(y)2) & (y − α)2γ12α10.

Lemma B.5 (r is large when γ is bounded). For any constant c > 0, and for all α ≥ 0 and
β, γ, y ∈ R with cymax ≤ y ≤ ymax and β2, γ2 . α we have

r(y) & (y − α)2α16

Proof. Define the polynomial q(y, α, β, γ) = r(y)/(y − α)2 = q2
5 + q2

6. By homogeneity of the
constraints and result, we may normalize so that α = 1 and consider q(y, β, γ) := q(y, 1, β, γ). Our
goal is to show that q(y, β, γ) & 1.

Define R to be the region of (y, β, γ) allowed by the lemma constraints. By our normalization,
y h ymax h α = 1 and γ2, β2 . 1 over R. This means R is closed and bounded and hence compact.

By Corollary B.2, q can only be zero over R when y = 1. By Lemma B.3, q(1, β, γ) 6= 0 for
all β, γ. Hence q has no roots over R. Because R is compact, this means q & 1 over R, giving the
result.

34

Lemma 2.4. For any constant c > 0, and for all α ≥ 0 and β, γ, y ∈ R with cymax ≤ y ≤ ymax
and β2 . α we have

r(y) & κ12(y − α)2α16

Proof. This is simply the union of Lemma B.4 and Lemma B.5.

Lemma 2.5. For any constant c > 0, there exists a constant c′ > 0 such that for all α ≥ 0 and
β, γ, y ∈ R with cymax ≤ y ≤ ymax + c′(ymax − α) and β2 . α we have

r(y) & κ12(y − α)2α16

Proof. By homogeneity of the equations, we may assume ymax = 1 and α h 1.
By Lemma 2.4, r(1) & (1−α)2κ12. That is, one of |p5(1)| and |p5(1)| is Ω((1−α)κ6). Since p5(y)

and p6(y) are constant degree polynomials with coefficients of magnitude O(κ6), their derivatives
over [1, 2] are bounded in magnitude by O(κ6). Hence for all y ∈ [1, 1 + c′(1− α)],

|p5(y)| ≥ |p5(1)| −O(κ6) · |y − 1| ≥ |p5(1)| −O(c′(1− α)κ6)

and similarly for p6. For sufficiently small c, if |p5(1)| is the Ω((1−α)2κ6) term, this is Ω((1−α)κ6).
If instead |p6(1)| is the Ω((1− α)κ6) term, then |p6(y)| is Ω((1− α)κ6); regardless, the conclusion
holds.

B.5 Accuracy of estimating r

Lemma B.6. Suppose that |X̂i −Xi| . εκi−2∆i
µ for all i ∈ {3, 4, 5, 6} and some ε < 1. Then for

any y . ∆2
µ,

|p̂5(y)− p5(y)| . εκ6∆18
µ

|p̂6(y)− p6(y)| . εκ6∆18
µ

Hence √
r̂(y)−

√
r(y) . εκ6∆18

µ .

Proof. Recall from (6) that |Xi| . κi−2∆i
µ and from (16) that this means each monomial of p5(y)

and p6(y) is bounded by O(κ6∆18
µ). Since p5 and p6 are constant size polynomials, the first result

follows from by Lemma A.2.
For the second claim, we use that

√
r(y) =

√
p5(y)2 + p6(y)2 is Lipschitz in p5(y) and p6(y).

B.6 Recovering α

Lemma B.7. In RecoverAlphaFromMoments, for any ε if |X̂i − Xi| ≤ ε∆i
µ for i ∈ {3, 4},

then the estimation ŷmax of ymax satisfies

|ŷmax − ymax| . ε∆2
µ/κ

2.

Proof. We would like to know the stability of the largest root ymax of the polynomial s(y) :=
2y3 + X4y −X2

3 to perturbations in X4 and X3. Without loss of generality we normalize so that
ymax h ∆2

µ h 1.
Since ymax is a root, 2y3

max+X4ymax = X2
3 ≥ 0 so 2y2

max+X4 ≥ 0. Hence for all y ≥ (2/3)ymax,

s′(y) = 6y2 +X4 ≥ (8/3)y2
max +X4 ≥ (2/3)y2

max & 1.

35

But we also have that

s′(y) = 6y2 +X4 ≥ X4 & γ2 −O(1) h (κ2 −O(1)).

Combining gives that for all y ≥ (2/3)ymax,

s′(y) & κ2.

This implies for any parameter t > 0 that

s(ymax − tε) . −tεκ2

as long as tε ≤ ymax/3, and
s(ymax + tε) & tεκ2

for all t > 0. On the other hand, for all y h 1 we have

|ŝ(y)− s(y)| ≤ |X̂4 −X4|y + |X̂2
3 −X2

3 | . ε.

Let t = C/κ2 for sufficiently large constant C.
If tε ≤ ymax/3, then combining gives that ŝ must have a root within ymax ± tε and no root

above this range. This is the desired result.
On the other hand, if tε ≥ ymax/3, then it is still true that ŝ has no root above ymax + tε. Since

ŝ(0) = −X̂2
3 ≤ 0, we also have that ŷmax ≥ 0. Hence the result lies in [0, ymax + tε], which is still

ymax ±O(ε/κ2) in this parameter regime.

Lemma 2.6. Suppose p1, p2 are bounded away from zero, let c > 0 be a sufficiently small constant,
and let ε < 1. Suppose further that |X̂i − Xi| ≤ cε∆i

µ for all i ∈ {3, 4, 5, 6}. In this setting, the

result α̂ = RecoverAlphaFromMoments(X̂3, X̂4, X̂5, X̂6, ε) satisfies

|α̂− α| . ε∆2
µ/κ.

Proof. We will suppose |X̂i − Xi| . ε∆i
µ, and show for a sufficiently large constant C that α̂ =

RecoverAlphaFromMoments(X̂3, X̂4, X̂5, X̂6, Cε) satisfies |α̂ − α| . εα/κ. Rescaling ε gives
the result.

We normalize so α h ∆2
µ h 1.

By Lemma B.7, |ŷmax − ymax| . ε/κ2 ≤ ε/κ. Since ŷmax h ymax h 1, X̂4 . κ2, and X̂4 h κ2 if
κ� 1, the estimation κ̂ of κ is always

κ̂ := 1 +

√
|X̂4|/ŷmax h κ.

Hence α ≤ ymax < (1 +O(ε/κ))ŷmax.
We have by Lemma B.6 with ε′ = ε/κ that

√
r̂(y) =

√
r(y)±O(εκ5) for all y . 1. In particular,

this means that √
r̂(α) . εκ5. (24)

Moreover, by Lemma 2.4 for all y ∈ [α/2, ymax] we have r(y) & (y − α)2κ12. Therefore for some
sufficiently large constant c, for all y ∈ [α/2, ymax] with |y − α| > cε/κ we have√

r̂(y) & |y − α|κ6 −O(εκ5) ≥ 1

2
|y − α|κ6 & cεκ5 >

√
r̂(α). (25)

36

And by Lemma 2.5, if α < (1 − O(cε/κ))ymax then r(y′) & c2ε2κ10 for all y′ ∈ [ymax, (1 +
O(cε/κ))ymax.

This implies (A) that a local minimum of r̂ over [0, (1 +O(cε/κ))ŷmax] is α±O(cε/κ), and (B)
that any larger local minimum y′ has r̂(y′) & c2ε2κ10.

By definition, RecoverAlphaFromMoments(X̂3, X̂4, X̂5, X̂6, Cε) finds the largest local min-
imum α̂ of r̂ with α̂ ≤ (1 + Cε/κ)ŷmax ≤ (1 + (C + O(1))ε/κ)ymax and r̂(α̂) ≤ C2ε2κ10. For
sufficiently large C and c, (A) and (B) imply that α̂ = α±O(ε/κ).

B.7 Proof of Theorem 2.10

Theorem 2.10. Let F be any mixture of two Gaussians with variance σ2 and p1, p2 bounded away
from 0. Then, given O(ε−2n log(1/δ)) samples Algorithm 2.3 with probability 1 − δ outputs the
parameters of a mixture F̂ so that for some permutation π and all i ∈ {1, 2} we have the following
guarantees:

• If n ≥
(

σ2

|µ1−µ2|2
)6

, then |µi− µ̂π(i)| ≤ ε|µ1−µ2|, |σ2
i − σ̂2

π(i)| ≤ ε|µ1−µ2|2, and |pi− p̂π(i)| ≤ ε.

• If n ≥
(

σ2

|σ2
1−σ2

2 |
)6

, then |σ2
i − σ̂2

π(i)| ≤ ε|σ
2
1 − σ2

2|+ |µ1 − µ2|2 and |pi − p̂π(i)| ≤ ε+ |µ1−µ2|2
|σ2

1−σ2
2 |

.

• For any n ≥ 1, the algorithm performs as well as assuming the mixture is a single Gaussian:
|µi − µ̂π(i)| ≤ |µ1 − µ2|+ εσ and |σ2

i − σ̂2
π(i)| ≤ |σ

2
1 − σ2

2|+ |µ1 − µ2|2 + εσ2.

Proof. Suppose the number of samples is f−12 log(1/δ) so f−12 h ε−2n. By Lemma 2.2 we have
with probability 1− δ that all the X̂i are within ±O(f6σi) of the true moments Xi. Suppose this
happens.

First, we show that ∆σ2 and ∆µ are good approximations to ∆σ2 and ∆µ, and therefore the
conditionals are followed roughly in the same cases as they would if they were not approximations.

The first conditional. We have that, if ∆σ2 � ∆2
µ, then X4 h ∆2

σ2 and X3 h ∆µ∆σ2 . Then
X4 h ∆2

σ2 > 0 and

min(|X3|1/3 + |X4|1/4, X3/
√
X4) h min(∆

1/2
σ2 ,∆µ) = ∆µ

Therefore, as long as f6σ4 � ∆2
σ2 , in the ∆σ2 � ∆2

µ setting we have ∆µ h ∆µ.
Otherwise, i.e. when ∆σ2 . ∆2

µ, we have that |X4| . ∆4
µ and |X3| . ∆3

µ. Moreover, in this
case, since X4 = X2

3/α − 6αγ2 − 2α2 = Θ(X2
3/∆

2
µ) − Θ(∆4

µ), either |X3| h ∆3
µ or |X4| h ∆4

µ. If
X4 > 0, then X2

3/X4 & ∆2
µ. This is because the single positive root ymax of (12) is Θ(∆2

µ) and the
polynomial is positive at X2

3/X4.
Thus, when ∆σ2 . ∆2

µ,

|X3|1/3 + |X4|1/4 h ∆µ

X3/
√
X4 & ∆µ if X4 > 0

As long as f6σ4 . ∆4
µ, we will have |X̂3|1/3 + |X̂4|1/4 h |X3|1/3 + |X4|1/4 h ∆µ. For X̂3/

√
X̂4, if

X3 � ∆3
µ then X4 h −∆4

µ so X̂4 < 0. Otherwise, X̂3/

√
X̂4 & (∆3

µ − f6σ3)/
√

∆4
µ + f6σ4 & ∆µ.

Therefore, as long as f6σ4 � ∆4
µ, in the ∆σ2 . ∆2

µ setting we have ∆µ h ∆µ.

Thus, regardless of the relationship between ∆2
µ and ∆σ2 , we have that ∆µ h ∆µ as long as

f6σ4 � ∆4
µ + ∆2

σ2 . In particular, ∆µ h ∆µ whenever f2 . ∆2
µ/σ

2.

37

Therefore the first conditional in Algorithm 2.3 is followed if and only if f2 . ∆2
µ/σ

2; that

is to say, if the first conditional is that f2 ≤ C1∆
2
µ/σ

2, then it is followed whenever f2 ≤ (C1 −
O(1))∆2

µ/σ
2 and not followed whenever f2 ≥ (C1 +O(1))∆2

µ/σ
2.

The second conditional. We have that X4 = Θ(∆2
σ2)±O(∆4

µ). Therefore ∆σ2 . ∆σ2 + ∆2
µ +

f3σ2 in general, and if f3σ2 ≤ c∆σ2 and ∆2
µ ≤ c∆σ2 for some sufficiently small constant c > 0,

then ∆σ2 h ∆σ2 .
Therefore the second conditional in Algorithm 2.3 is taken if and only if ∆2

µ/σ
2 . f2 . ∆σ2/σ2;

that is to say, if the second conditional is that f2 ≤ C2∆
2
µ/σ

2, then that branch is taken whenever

(C1 +O(1))∆2
µ/σ

2 ≤ f2 ≤ (C2 −O(1))∆σ2/σ2

and not taken whenever

(C1 −O(1))∆2
µ/σ

2 ≥ f2 or f2 ≥ (C2 +O(1))∆σ2/σ2

The third branch The remainder is the third branch, which is taken when f2 ≥ (C2+O(1))∆σ2/σ2

and f2 ≥ (C1 + O(1))∆2
µ/σ

2, and not taken if either condition is false after replacing +O(1) by
−O(1).

Completing the theorem. We have shown that the three branches are taken in the same
settings as they would be taken with the true ∆µ and ∆σ2 . We now show that the clauses of the
theorem correspond to the branches.

In the first clause of the theorem, we have that f−12 = C 1
ε2
n for sufficiently large C and

n > (σ2/∆2
µ)6. Then f2 < C−1/6∆2

µ/σ
2, so the first branch will be taken and Algorithm 2.1 is run.

By Theorem 2.7, running Algorithm 2.1 with O(1
ε2

(σ
∆µ

)12 log(1/δ)) samples will recover the pi to

additive ε error, the µi to additive ε∆µ error, and the σ2
i to additive ε∆2

µ error.

In the second clause of the theorem, we have that f2 < C−1/6∆σ2/σ2 for sufficiently large C.
Hence, if the first branch is not taken, then the second branch is taken. The first branch is only taken
if it can recover the σ2

i to better than ±|µ1−µ2|2, which satisfies the second clause of the theorem.
The second branch invokes Algorithm 2.2, which by Theorem 2.9 uses O(1

ε2
(σ√

∆σ2
)12 log(1/δ))

samples to estimate the pi to additive ε error and the σ2
i to additive ε∆σ2 error, again satisfying

the theorem.
Finally, the last clause of the theorem is satisfied by both algorithms and by outputting the

single Gaussian N(µ, σ2). (If the second branch is taken, the mean outputted is the sample mean,
which suffices for this purpose.)

38

	Introduction
	Problem Description
	Main results
	Proof overview
	Related Work

	Algorithm for one-dimensional mixtures
	Preliminaries and Notation
	Algorithm overview
	Algorithm for better precision than
	Algorithm for precision between and 2
	Combining the algorithms to get general precision

	Dimension Reduction
	From 4 to 1 dimension

	Lower bounds
	Utility Lemmas
	Algorithm for d = 1
	Sympy
	Excess Moments of a Gaussian Mixture
	Expressing using X3, X4, X6,
	Bounding r away from zero
	Accuracy of estimating r
	Recovering
	Proof of Theorem 2.10

