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Abstract— The problem central to sparse recovery and com-
pressive sensing is that of stable sparse recovery: we want a
distribution A of matrices A ∈ Rm×n such that, for any x ∈ Rn
and with probability 1−δ > 2/3 over A ∈ A, there is an algorithm
to recover x̂ from Ax with

‖x̂− x‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
p

(1)

for some constant C > 1 and norm p.
The measurement complexity of this problem is well understood

for constant C > 1. However, in a variety of applications it is
important to obtain C = 1+ε for a small ε > 0, and this complexity
is not well understood. We resolve the dependence on ε in the
number of measurements required of a k-sparse recovery algorithm,
up to polylogarithmic factors for the central cases of p = 1 and
p = 2. Namely, we give new algorithms and lower bounds that
show the number of measurements required is k/εp/2polylog(n).
For p = 2, our bound of 1

ε
k log(n/k) is tight up to constant

factors. We also give matching bounds when the output is required
to be k-sparse, in which case we achieve k/εppolylog(n). This
shows the distinction between the complexity of sparse and non-
sparse outputs is fundamental.

1. INTRODUCTION

Over the last several years, substantial interest has been
generated in the problem of solving underdetermined linear
systems subject to a sparsity constraint. The field, known
as compressed sensing or sparse recovery, has applica-
tions to a wide variety of fields that includes data stream
algorithms [15], medical or geological imaging [4], [10],
and genetics testing [16]. The approach uses the power of
a sparsity constraint: a vector x′ is k-sparse if at most
k coefficients are non-zero. A standard formulation for
the problem is that of stable sparse recovery: we want a
distribution A of matrices A ∈ Rm×n such that, for any
x ∈ Rn and with probability 1−δ > 2/3 over A ∈ A, there
is an algorithm to recover x̂ from Ax with

‖x̂− x‖p ≤ C min
k-sparse x′

‖x− x′‖p (2)

for some constant C > 1 and norm p1. We call this a C-
approximate `p/`p recovery scheme with failure probability
δ. We refer to the elements of Ax as measurements.

It is known [4], [12] that such recovery schemes exist
for p ∈ {1, 2} with C = O(1) and m = O(k log n

k ).

1Some formulations allow the two norms to be different, in which case
C is not constant. We only consider equal norms in this paper.

Furthermore, it is known [9], [11] that any such recovery
scheme requires Ω(k log1+C

n
k ) measurements. This means

the measurement complexity is well understood for C =
1 + Ω(1), but not for C = 1 + o(1).

A number of applications would like to have C = 1+ε for
small ε. For example, a radio wave signal can be modeled
as x = x∗ + w where x∗ is k-sparse (corresponding to a
signal over a narrow band) and the noise w is i.i.d. Gaussian
with ‖w‖p ≈ D ‖x∗‖p [17]. Then sparse recovery with C =
1+α/D allows the recovery of a (1−α) fraction of the true
signal x∗. Since x∗ is concentrated in a small band while
w is located over a large region, it is often the case that
α/D � 1.

The difficulty of (1+ε)-approximate recovery has seemed
to depend on whether the output x′ is required to be k-
sparse or can have more than k elements in its support.
Having k-sparse output is important for some applications
(e.g. the aforementioned radio waves) but not for others
(e.g. imaging). Algorithms that output a k-sparse x′ have
used Θ( 1

εp k log n) measurements [5], [6], [7], [18]. In
contrast, [12] uses only Θ( 1

εk log(n/k)) measurements for
p = 2 and outputs a non-k-sparse x′.

Our results: We show that the apparent distinction
between complexity of sparse and non-sparse outputs is
fundamental, for both p = 1 and p = 2. We show that
for sparse output, Ω(k/εp) measurements are necessary,
matching the upper bounds up to a log n factor. For general
output and p = 2, we show Ω( 1

εk log(n/k)) measurements
are necessary, matching the upper bound up to a constant
factor. In the remaining case of general output and p = 1, we
show Ω̃(k/

√
ε) measurements are necessary. We then give a

novel algorithm that uses O( log3(1/ε)√
ε

k log n) measurements,
beating the 1/ε dependence given by all previous algorithms.
As a result, all our bounds are tight up to factors logarithmic
in n. The full results are shown in Figure 1.

In addition, for p = 2 and general output, we show that
thresholding the top 2k elements of a Count-Sketch [5] es-
timate gives (1 + ε)-approximate recovery with Θ( 1

εk log n)
measurements. This is interesting because it highlights the
distinction between sparse output and non-sparse output: [7]
showed that thresholding the top k elements of a Count-
Sketch estimate requires m = Θ( 1

ε2 k log n). While [12]
achieves m = Θ( 1

εk log(n/k)) for the same regime, it only



Lower bound Upper bound

k-sparse output `1 Ω( 1
ε (k log 1

ε + log 1
δ )) O( 1

εk log n)[6]

`2 Ω( 1
ε2 (k + log 1

δ )) O( 1
ε2 k log n)[5], [7], [18]

Non-k-sparse output `1 Ω( 1√
ε log2(k/ε)

k) O( log3(1/ε)√
ε

k log n)

`2 Ω( 1
εk log(n/k)) O( 1

εk log(n/k))[12]

Figure 1. Our results, along with existing upper bounds. Fairly minor restrictions on the relative magnitude of parameters apply; see the theorem statements
for details.

succeeds with constant probability while ours succeeds with
probability 1 − n−Ω(1); hence ours is the most efficient
known algorithm when δ = o(1), ε = o(1), and k < n0.9.

Related work: Much of the work on sparse recovery
has relied on the Restricted Isometry Property [4]. None of
this work has been able to get better than 2-approximate
recovery, so there are relatively few papers achieving (1 +
ε)-approximate recovery. The existing ones with O(k log n)
measurements are surveyed above (except for [13], which
has worse dependence on ε than [6] for the same regime).

No general lower bounds were known in this setting but
a couple of works have studied the `∞/`p problem, where
every coordinate must be estimated with small error. This
problem is harder than `p/`p sparse recovery with sparse
output. For p = 2, [18] showed that schemes using Gaussian
matrices A require m = Ω( 1

ε2 k log(n/k)). For p = 1, [8]
showed that any sketch requires Ω(k/ε) bits (rather than
measurements).

Our techniques: For the upper bounds for non-sparse
output, we observe that the hard case for sparse output is
when the noise is fairly concentrated, in which the estimation
of the top k elements can have

√
ε error. Our goal is to

recover enough mass from outside the top k elements to
cancel this error. The upper bound for p = 2 is a fairly
straightforward analysis of the top 2k elements of a Count-
Sketch data structure.

The upper bound for p = 1 proceeds by subsampling
the vector at rate 2−i and performing a Count-Sketch with
size proportional to 1√

ε
, for i ∈ {0, 1, . . . , O(log(1/ε))}.

The intuition is that if the noise is well spread over many
(more than k/ε3/2) coordinates, then the `2 bound from
the first Count-Sketch gives a very good `1 bound, so the
approximation is (1+ ε)-approximate. However, if the noise
is concentrated over a small number k/εc of coordinates,
then the error from the first Count-Sketch is proportional
to 1 + εc/2+1/4. But in this case, one of the subsamples
will only have O(k/εc/2−1/4) < k/

√
ε of the coordinates

with large noise. We can then recover those coordinates
with the Count-Sketch for that subsample. Those coordinates
contain an εc/2+1/4 fraction of the total noise, so recovering
them decreases the approximation error by exactly the error
induced from the first Count-Sketch.

The lower bounds use substantially different techniques
for sparse output and for non-sparse output. For sparse
output, we use reductions from communication complexity
to show a lower bound in terms of bits. Then, as in [9],
we embed Θ(log n) copies of this communication problem
into a single vector. This multiplies the bit complexity by
log n; we also show we can round Ax to log n bits per
measurement without affecting recovery, giving a lower
bound in terms of measurements.

We illustrate the lower bound on bit complexity for sparse
output using k = 1. Consider a vector x containing 1/εp

ones and zeros elsewhere, such that x2i + x2i+1 = 1 for
all i. For any i, set z2i = z2i+1 = 1 and zj = 0 elsewhere.
Then successful (1+ε/3)-approximate sparse recovery from
A(x+ z) returns ẑ with supp(ẑ) = supp(x)∩ {2i, 2i+ 1}.
Hence we can recover each bit of x with probability 1− δ,
requiring Ω(1/εp) bits2. We can generalize this to k-sparse
output for Ω(k/εp) bits, and to δ failure probability with
Ω( 1

εp log 1
δ ). However, the two generalizations do not seem

to combine.
For non-sparse output, we split between `2 and `1. In `2,

we consider A(x+w) where x is sparse and w has uniform
Gaussian noise with ‖w‖22 ≈ ‖x‖

2
2 /ε. Then each coordinate

of y = A(x + w) = Ax + Aw is a Gaussian channel with
signal to noise ratio ε. This channel has channel capacity ε,
showing I(y;x) ≤ εm. Correct sparse recovery must either
get most of x or an ε fraction of w; the latter requires m =
Ω(εn) and the former requires I(y;x) = Ω(k log(n/k)).
This gives a tight Θ( 1

εk log(n/k)) result. Unfortunately, this
does not easily extend to `1, because it relies on the Gaussian
distribution being both stable and maximum entropy under
`2; the corresponding distributions in `1 are not the same.

Therefore for `1 non-sparse output, we have yet another
argument. The hard instances for k = 1 must have one large
value (or else 0 is a valid output) but small other values
(or else the 2-sparse approximation is significantly better
than the 1-sparse approximation). Suppose x has one value
of size ε and d values of size 1/d spread through a vector
of size d2. Then a (1 + ε/2)-approximate recovery scheme
must either locate the large element or guess the locations

2For p = 1, we can actually set |supp(z)| = 1/ε and search among a
set of 1/ε candidates. This gives Ω( 1

ε
log(1/ε)) bits.



of the d values with Ω(εd) more correct than incorrect. The
former requires 1/(dε2) bits by the difficulty of a novel
version of the Gap-`∞ problem. The latter requires εd bits
because it allows recovering an error correcting code. Setting
d = ε−3/2 balances the terms at ε−1/2 bits. Because some
of these reductions are very intricate, this extended abstract
does not manage to embed log n copies of the problem into a
single vector. As a result, we lose a log n factor in a universe
of size n = poly(k/ε) when converting to measurement
complexity from bit complexity.

2. PRELIMINARIES

Notation: We use [n] to denote the set {1 . . . n}. For
any set S ⊂ [n], we use S to denote the complement of
S, i.e., the set [n] \ S. For any x ∈ Rn, xi denotes the ith
coordinate of x, and xS denotes the vector x′ ∈ Rn given
by x′i = xi if i ∈ S, and x′i = 0 otherwise. We use supp(x)
to denote the support of x.

3. UPPER BOUNDS

The algorithms in this section are indifferent to permuta-
tion of the coordinates. Therefore, for simplicity of notation
in the analysis, we assume the coefficients of x are sorted
such that |x1| ≥ |x2| ≥ . . . ≥ |xn| ≥ 0.

Count-Sketch: Both our upper bounds use the Count-
Sketch [5] data structure. The structure consists of c log n
hash tables of size O(q), for O(cq log n) total space; it can
be represented as Ax for a matrix A with O(cq log n) rows.
Given Ax, one can construct x∗ with

‖x∗ − x‖2∞ ≤
1

q

∥∥∥x[q]

∥∥∥2

2
(3)

with failure probability n1−c.

3.1. Non-sparse `2
It was shown in [7] that, if x∗ is the result of a Count-

Sketch with hash table size O(k/ε2), then outputting the top
k elements of x∗ gives a (1+ε)-approximate `2/`2 recovery
scheme. Here we show that a seemingly minor change—
selecting 2k elements rather than k elements—turns this into
a (1 + ε2)-approximate `2/`2 recovery scheme.

Theorem 3.1. Let x̂ be the top 2k estimates from a Count-
Sketch structure with hash table size O(k/ε). Then with
failure probability n−Ω(1),

‖x̂− x‖2 ≤ (1 + ε)
∥∥∥x[k]

∥∥∥
2
.

Therefore, there is a 1 + ε-approximate `2/`2 recovery
scheme with O( 1

εk log n) rows.

Proof: Let the hash table size be O(ck/ε) for constant
c, and let x∗ be the vector of estimates for each coordinate.
Define S to be the indices of the largest 2k values in x∗,
and E =

∥∥∥x[k]

∥∥∥
2
.

By (3), the standard analysis of Count-Sketch:

‖x∗ − x‖2∞ ≤
ε

ck
E2.

so

‖x∗S − x‖
2
2 − E

2

= ‖x∗S − x‖
2
2 −

∥∥∥x[k]

∥∥∥2

2

≤‖(x∗ − x)S‖22 +
∥∥x[n]\S

∥∥2

2
−
∥∥∥x[k]

∥∥∥2

2

≤ |S| ‖x∗ − x‖2∞ +
∥∥x[k]\S

∥∥2

2
−
∥∥xS\[k]

∥∥2

2

≤2ε

c
E2 +

∥∥x[k]\S
∥∥2

2
−
∥∥xS\[k]

∥∥2

2
(4)

Let a = maxi∈[k]\S xi and b = mini∈S\[k] xi, and let
d = |[k] \ S|. The algorithm passes over an element of value
a to choose one of value b, so

a ≤ b+ 2 ‖x∗ − x‖∞ ≤ b+ 2

√
ε

ck
E.

Then ∥∥x[k]\S
∥∥2

2
−
∥∥xS\[k]

∥∥2

2

≤da2 − (k + d)b2

≤d(b+ 2

√
ε

ck
E)2 − (k + d)b2

≤− kb2 + 4

√
ε

ck
dbE +

4ε

ck
dE2

≤− k(b− 2

√
ε

ck3
dE)2 +

4ε

ck2
dE2(k − d)

≤4d(k − d)ε

ck2
E2 ≤ ε

c
E2

and combining this with (4) gives

‖x∗S − x‖
2
2 − E

2 ≤ 3ε

c
E2

or
‖x∗S − x‖2 ≤ (1 +

3ε

2c
)E

which proves the theorem for c ≥ 3/2.

3.2. Non-sparse `1
Theorem 3.2. There exists a (1 + ε)-approximate `1/`1
recovery scheme with O( log3 1/ε√

ε
k log n) measurements and

failure probability e−Ω(k/
√
ε) + n−Ω(1).

Set f =
√
ε, so our goal is to get (1 + f2)-approximate

`1/`1 recovery with O( log3 1/f
f k log n) measurements.

For intuition, consider 1-sparse recovery of the follow-
ing vector x: let c ∈ [0, 2] and set x1 = 1/f9 and
x2, . . . , x1+1/f1+c ∈ {±1}. Then we have∥∥∥x[1]

∥∥∥
1

= 1/f1+c



and by (3), a Count-Sketch with O(1/f)-sized hash tables
returns x∗ with

‖x∗ − x‖∞ ≤
√
f
∥∥∥x[1/f ]

∥∥∥
2
≈ 1/f c/2 = f1+c/2

∥∥∥x[1]

∥∥∥
1
.

The reconstruction algorithm therefore cannot reliably find
any of the xi for i > 1, and its error on x1 is at least
f1+c/2

∥∥∥x[1]

∥∥∥
1
. Hence the algorithm will not do better than

a f1+c/2-approximation.
However, consider what happens if we subsample an

f c fraction of the vector. The result probably has about
1/f non-zero values, so a O(1/f)-width Count-Sketch can
reconstruct it exactly. Putting this in our output improves the
overall `1 error by about 1/f = f c

∥∥∥x[1]

∥∥∥
1
. Since c < 2,

this more than cancels the f1+c/2
∥∥∥x[1]

∥∥∥
1

error the initial
Count-Sketch makes on x1, giving an approximation factor
better than 1.

This tells us that subsampling can help. We don’t need to
subsample at a scale below k/f (where we can reconstruct
well already) or above k/f3 (where the `2 bound is small
enough already), but in the intermediate range we need to
subsample. Our algorithm subsamples at all log 1/f2 rates
in between these two endpoints, and combines the heavy
hitters from each.

First we analyze how subsampled Count-Sketch works.

Lemma 3.3. Suppose we subsample with probability p and
then apply Count-Sketch with Θ(log n) rows and Θ(q)-sized
hash tables. Let y be the subsample of x. Then with failure
probability e−Ω(q) + n−Ω(1) we recover a y∗ with

‖y∗ − y‖∞ ≤
√
p/q

∥∥∥x[q/p]

∥∥∥
2
.

Proof: Recall the following form of the Chernoff
bound: if X1, . . . , Xm are independent with 0 ≤ Xi ≤ M ,
and µ ≥ E[

∑
Xi], then

Pr[
∑

Xi ≥
4

3
µ] ≤ e−Ω(µ/M).

Let T be the set of coordinates in the sample. Then
E[
∣∣∣T ∩ [ 3q

2p ]
∣∣∣] = 3q/2, so

Pr

[∣∣∣∣T ∩ [
3q

2p
]

∣∣∣∣ ≥ 2q

]
≤ e−Ω(q).

Suppose this event does not happen, so
∣∣∣T ∩ [ 3q

2p ]
∣∣∣ < 2q. We

also have ∥∥∥x[q/p]

∥∥∥
2
≥
√

q

2p

∣∣∣x 3q
2p

∣∣∣ .
Let Yi = 0 if i /∈ T and Yi = x2

i if i ∈ T . Then

E[
∑
i> 3q

2p

Yi] = p

∥∥∥∥x[ 3q2p ]

∥∥∥∥2

2

≤ p
∥∥∥x[q/p]

∥∥∥2

2

For i > 3q
2p we have

Yi ≤
∣∣∣x 3q

2p

∣∣∣2 ≤ 2p

q

∥∥∥x[q/p]

∥∥∥2

2

giving by Chernoff that

Pr[
∑

Yi ≥
4

3
p
∥∥∥x[q/p]

∥∥∥2

2
] ≤ e−Ω(q/2)

But if this event does not happen, then∥∥∥y[2q]

∥∥∥2

2
≤

∑
i∈T,i> 3q

2p

x2
i =

∑
i> 3q

2p

Yi ≤
4

3
p
∥∥∥x[q/p]

∥∥∥2

2

By (3), using O(2q)-size hash tables gives a y∗ with

‖y∗ − y‖∞ ≤
1√
2q

∥∥∥y[2q]

∥∥∥
2
≤
√
p/q

∥∥∥x[q/p]

∥∥∥
2

with failure probability n−Ω(1), as desired.
Let r = 2 log 1/f . Our algorithm is as follows: for j ∈

{0, . . . , r}, we find and estimate the 2j/2k largest elements
not found in previous j in a subsampled Count-Sketch with
probability p = 2−j and hash size q = ck/f for some
parameter c = Θ(r2). We output x̂, the union of all these
estimates. Our goal is to show

‖x̂− x‖1 −
∥∥∥x[k]

∥∥∥
1
≤ O(f2)

∥∥∥x[k]

∥∥∥
1
.

For each level j, let Sj be the 2j/2k largest coordinates
in our estimate not found in S1 ∪ · · · ∪ Sj−1. Let S = ∪Sj .
By Lemma 3.3, for each j we have (with failure probability
e−Ω(k/f) + n−Ω(1)) that

∥∥(x̂− x)Sj

∥∥
1
≤ |Sj |

√
2−jf

ck

∥∥∥x[2jck/f ]

∥∥∥
2

≤ 2−j/2
√
fk

c

∥∥∥x[2k/f ]

∥∥∥
2

and so

‖(x̂− x)S‖1 =

r∑
j=0

∥∥(x̂− x)Sj

∥∥
1

≤ 1

(1− 1/
√

2)
√
c

√
fk
∥∥∥x[2k/f ]

∥∥∥
2

(5)

By standard arguments, the `∞ bound for S0 gives∥∥x[k]

∥∥
1
≤ ‖xS0

‖1 + k ‖x̂S0
− xS0

‖∞ ≤
√
fk/c

∥∥∥x[2k/f ]

∥∥∥
2

(6)



Combining Equations (5) and (6) gives

‖x̂− x‖1 −
∥∥∥x[k]

∥∥∥
1

(7)

= ‖(x̂− x)S‖1 + ‖xS‖1 −
∥∥∥x[k]

∥∥∥
1

= ‖(x̂− x)S‖1 +
∥∥x[k]

∥∥
1
− ‖xS‖1

= ‖(x̂− x)S‖1 + (
∥∥x[k]

∥∥
1
− ‖xS0

‖1)−
r∑
j=1

∥∥xSj

∥∥
1

≤
(

1

(1− 1/
√

2)
√
c

+
1√
c

)√
fk
∥∥∥x[2k/f ]

∥∥∥
2

−
r∑
j=1

∥∥xSj

∥∥
1

=O(
1√
c
)
√
fk
∥∥∥x[2k/f ]

∥∥∥
2
−

r∑
j=1

∥∥xSj

∥∥
1

(8)

We would like to convert the first term to depend on the
`1 norm. For any u and s we have, by splitting into chunks
of size s, that ∥∥∥u[2s]

∥∥∥
2
≤
√

1

s

∥∥∥u[s]

∥∥∥
1∥∥∥u[s]∩[2s]

∥∥∥
2
≤
√
s |us| .

Along with the triangle inequality, this gives us that√
kf
∥∥∥x[2k/f ]

∥∥∥
2
≤
√
kf
∥∥∥x[2k/f3]

∥∥∥
2

+
√
kf

r∑
j=1

∥∥∥x[2jk/f ]∩[2j+1k/f ]

∥∥∥
2

≤ f2
∥∥∥x[k/f3]

∥∥∥
1

+

r∑
j=1

k2j/2
∣∣x2jk/f

∣∣
so

‖x̂− x‖1 −
∥∥∥x[k]

∥∥∥
1

≤O(
1√
c
)f2

∥∥∥x[k/f3]

∥∥∥
1

+

r∑
j=1

O(
1√
c
)k2j/2

∣∣x2jk/f

∣∣
−

r∑
j=1

∥∥xSj

∥∥
1

(9)

Define aj = k2j/2
∣∣x2jk/f

∣∣. The first term grows as f2 so it
is fine, but aj can grow as f2j/2 > f2. We need to show that
they are canceled by the corresponding

∥∥xSj

∥∥
1
. In particular,

we will show that
∥∥xSj

∥∥
1
≥ Ω(aj)−O(2−j/2f2

∥∥∥x[k/f3]

∥∥∥
1
)

with high probability—at least wherever aj ≥ ‖a‖1 /(2r).
Let U ∈ [r] be the set of j with aj ≥ ‖a‖1 /(2r), so that

‖aU‖1 ≥ ‖a‖1 /2. We have

∥∥∥x[2jk/f ]

∥∥∥2

2
=
∥∥∥x[2k/f3]

∥∥∥2

2
+

r∑
i=j

∥∥∥x[2jk/f ]∩[2j+1k/f ]

∥∥∥2

2

≤
∥∥∥x[2k/f3]

∥∥∥2

2
+

1

kf

r∑
i=j

a2
j (10)

For j ∈ U , we have
r∑
i=j

a2
i ≤ aj ‖a‖1 ≤ 2ra2

j

so, along with (y2 + z2)1/2 ≤ y+ z, we turn Equation (10)
into ∥∥∥x[2jk/f ]

∥∥∥
2
≤
∥∥∥x[2k/f3]

∥∥∥
2

+

√√√√ 1

kf

r∑
i=j

a2
j

≤
√
f3

k

∥∥∥x[k/f3]

∥∥∥
1

+

√
2r

kf
aj

When choosing Sj , let T ∈ [n] be the set of indices
chosen in the sample. Applying Lemma 3.3 the estimate
x∗ of xT has

‖x∗ − xT ‖∞ ≤
√

f

2jck

∥∥∥x[2jk/f ]

∥∥∥
2

≤
√

1

2jc

f2

k

∥∥∥x[k/f3]

∥∥∥
1

+

√
2r

2jc

aj
k

=

√
1

2jc

f2

k

∥∥∥x[k/f3]

∥∥∥
1

+

√
2r

c

∣∣x2jk/f

∣∣
for j ∈ U .

Let Q = [2jk/f ] \ (S0 ∪ · · · ∪ Sj−1). We have |Q| ≥
2j−1k/f so E[|Q ∩ T |] ≥ k/2f and |Q ∩ T | ≥ k/4f
with failure probability e−Ω(k/f). Conditioned on |Q ∩ T | ≥
k/4f , since xT has at least |Q ∩ T | ≥ k/(4f) = 2r/2k/4 ≥
2j/2k/4 possible choices of value at least

∣∣x2jk/f

∣∣, xSj

must have at least k2j/2/4 elements at least
∣∣x2jk/f

∣∣ −
‖x∗ − xT ‖∞. Therefore, for j ∈ U ,∥∥xSj

∥∥
1
≥ − 1

4
√
c
f2
∥∥∥x[k/f3]

∥∥∥
1

+
k2j/2

4
(1−

√
2r

c
)
∣∣x2jk/f

∣∣
and therefore

r∑
j=1

∥∥xSj

∥∥
1
≥
∑
j∈U

∥∥xSj

∥∥
1

≥
∑
j∈U
− 1

4
√
c
f2
∥∥∥x[k/f3]

∥∥∥
1

+
k2j/2

4
(1−

√
2r

c
)
∣∣x2jk/f

∣∣
≥− r

4
√
c
f2
∥∥∥x[k/f3]

∥∥∥
1

+
1

4
(1−

√
2r

c
) ‖aU‖1

≥− r

4
√
c
f2
∥∥∥x[k/f3]

∥∥∥
1

+
1

8
(1−

√
2r

c
)

r∑
j=1

k2j/2
∣∣x2jk/f

∣∣
(11)



Using (9) and (11) we get

‖x̂− x‖1 −
∥∥∥x[k]

∥∥∥
1

≤
(

r

4
√
c

+O(
1√
c
)

)
f2
∥∥∥x[k/f3]

∥∥∥
1

+

r∑
j=1

(
O(

1√
c
) +

1

8

√
2r

c
− 1

8

)
k2j/2

∣∣x2jk/f

∣∣
≤f2

∥∥∥x[k/f3]

∥∥∥
1
≤ f2

∥∥∥x[k]

∥∥∥
1

for some c = O(r2). Hence we use a total of rc
f k log n =

log3 1/f
f k log n measurements for 1 + f2-approximate `1/`1

recovery.
For each j ∈ {0, . . . , r} we had failure probability

e−Ω(k/f) +n−Ω(1) (from Lemma 3.3 and |Q ∩ T | ≥ k/2f ).
By the union bound, our overall failure probability is at most

(log
1

f
)(e−Ω(k/f) + n−Ω(1)) ≤ e−Ω(k/f) + n−Ω(1),

proving Theorem 3.2.

4. LOWER BOUNDS FOR NON-SPARSE OUTPUT AND p = 2

In this case, the lower bound follows fairly straightfor-
wardly from the Shannon-Hartley information capacity of a
Gaussian channel.

We will set up a communication game. Let F ⊂ {S ⊂
[n] | |S| = k} be a family of k-sparse supports such that:
• |S∆S′| ≥ k for S 6= S′ ∈ F ,
• PrS∈F [i ∈ S] = k/n for all i ∈ [n], and
• log |F| = Ω(k log(n/k)).

This is possible; for example, a Reed-Solomon code on
[n/k]k has these properties.

Let X = {x ∈ {0,±1}n | supp(x) ∈ F}. Let w ∼
N(0, α knIn) be i.i.d. normal with variance αk/n in each
coordinate. Consider the following process:

Procedure: First, Alice chooses S ∈ F uniformly
at random, then x ∈ X uniformly at random subject to
supp(x) = S, then w ∼ N(0, α knIn). She sets y = A(x+w)
and sends y to Bob. Bob performs sparse recovery on y to
recover x′ ≈ x, rounds to X by x̂ = arg minx̂∈X ‖x̂− x′‖2,
and sets S′ = supp(x̂). This gives a Markov chain S →
x→ y → x′ → S′.

If sparse recovery works for any x + w with probability
1 − δ as a distribution over A, then there is some specific
A and random seed such that sparse recovery works with
probability 1 − δ over x + w; let us choose this A and
the random seed, so that Alice and Bob run deterministic
algorithms on their inputs.

Lemma 4.1. I(S;S′) = O(m log(1 + 1
α )).

Proof: Let the columns of AT be v1, . . . , vm. We may
assume that the vi are orthonormal, because this can be
accomplished via a unitary transformation on Ax. Then

we have that yi = 〈vi, x + w〉 = 〈vi, x〉 + w′i, where
w′i ∼ N(0, αk

∥∥vi∥∥2

2
/n) = N(0, αk/n) and

Ex[〈vi, x〉2] = ES [
∑
j∈S

(vij)
2] =

k

n

Hence yi = zi + w′i is a Gaussian channel with power
constraint E[z2

i ] ≤ k
n

∥∥vi∥∥2

2
and noise variance E[(w′i)

2] =

α kn
∥∥vi∥∥2

2
. Hence by the Shannon-Hartley theorem this chan-

nel has information capacity

max
vi

I(zi; yi) = C ≤ 1

2
log(1 +

1

α
).

By the data processing inequality for Markov chains and the
chain rule for entropy, this means

I(S;S′) ≤ I(z; y) = H(y)−H(y | z) = H(y)−H(y − z | z)

= H(y)−
∑

H(w′i | z, w′1, . . . , w′i−1)

= H(y)−
∑

H(w′i) ≤
∑

H(yi)−H(w′i)

=
∑

H(yi)−H(yi | zi) =
∑

I(yi; zi)

≤ m

2
log(1 +

1

α
). (12)

We will show that successful recovery either recovers
most of x, in which case I(S;S′) = Ω(k log(n/k)), or
recovers an ε fraction of w. First we show that recovering
w requires m = Ω(εn).

Lemma 4.2. Suppose w ∈ Rn with wi ∼ N(0, σ2) for
all i and n = Ω( 1

ε2 log(1/δ)), and A ∈ Rm×n for m <
δεn. Then any algorithm that finds w′ from Aw must have
‖w′ − w‖22 > (1−ε) ‖w‖22 with probability at least 1−O(δ).

Proof: Note that Aw merely gives the projection of w
onto m dimensions, giving no information about the other
n − m dimensions. Since w and the `2 norm are rotation
invariant, we may assume WLOG that A gives the projection
of w onto the first m dimensions, namely T = [m]. By the
norm concentration of Gaussians, with probability 1− δ we
have ‖w‖22 < (1 + ε)nσ2, and by Markov with probability
1− δ we have ‖wT ‖22 < εnσ2.

For any fixed value d, since w is uniform Gaussian and
w′
T

is independent of wT ,

Pr[‖w′ − w‖22 < d] ≤ Pr[‖(w′ − w)T ‖
2

2
< d]

≤ Pr[‖wT ‖
2
2
< d].

Therefore

Pr[‖w′ − w‖22 < (1− 3ε) ‖w‖22]

≤Pr[‖w′ − w‖22 < (1− 2ε)nσ2]

≤Pr[‖wT ‖
2
2
< (1− 2ε)nσ2]

≤Pr[‖wT ‖
2
2
< (1− ε)(n−m)σ2] ≤ δ



as desired. Rescaling ε gives the result.

Lemma 4.3. Suppose n = Ω(1/ε2 + (k/ε) log(k/ε)) and
m = O(εn). Then I(S;S′) = Ω(k log(n/k)) for some α =
Ω(1/ε).

Proof: Consider the x′ recovered from A(x+ w), and
let T = S ∪ S′. Suppose that ‖w‖2∞ ≤ O(αkn log n) and
‖w‖22 /(αk) ∈ [1 ± ε], as happens with probability at least
(say) 3/4. Then we claim that if recovery is successful, one
of the following must be true:

‖x′T − x‖
2
2 ≤ 9ε ‖w‖22 (13)∥∥x′

T
− w

∥∥2

2
≤ (1− 2ε) ‖w‖22 (14)

To show this, suppose ‖x′T − x‖
2
2 > 9ε ‖w‖22 ≥ 9 ‖wT ‖22

(the last by |T | = 2k = O(εn/ log n)). Then

‖(x′ − (x+ w))T ‖
2
2 > (‖x′ − x‖2 − ‖wT ‖2)2

≥ (2 ‖x′ − x‖2 /3)2 ≥ 4ε ‖w‖22 .

Because recovery is successful,

‖x′ − (x+ w)‖22 ≤ (1 + ε) ‖w‖22 .

Therefore∥∥x′
T
− wT

∥∥2

2
+ ‖x′T − (x+ w)T ‖

2
2 = ‖x′ − (x+ w)‖22∥∥x′

T
− wT

∥∥2

2
+ 4ε ‖w‖22 < (1 + ε) ‖w‖22∥∥x′

T
− w

∥∥2

2
− ‖wT ‖22 < (1− 3ε) ‖w‖22

≤ (1− 2ε) ‖w‖22
as desired. Thus with 3/4 probability, at least one of (13)
and (14) is true.

Suppose Equation (14) holds with at least 1/4 probability.
There must be some x and S such that the same equation
holds with 1/4 probability. For this S, given x′ we can
find T and thus x′

T
. Hence for a uniform Gaussian wT ,

given AwT we can compute A(x + wT ) and recover x′
T

with
∥∥∥x′

T
− wT

∥∥∥2

2
≤ (1 − ε) ‖wT ‖

2
2
. By Lemma 4.2 this

is impossible, since n − |T | = Ω( 1
ε2 ) and m = Ω(εn) by

assumption.
Therefore Equation (13) holds with at least 1/2 probabil-

ity, namely ‖x′T − x‖
2
2 ≤ 9ε ‖w‖22 ≤ 9ε(1− ε)αk < k/2 for

appropriate α. But if the nearest x̂ ∈ X to x is not equal to
x,

‖x′ − x̂‖22
=
∥∥x′

T

∥∥2

2
+
∥∥x′

T
− x̂
∥∥2

2
≥
∥∥x′

T

∥∥2

2
+ (‖x− x̂‖2 −

∥∥x′
T
− x
∥∥

2
)2

>
∥∥x′

T

∥∥2

2
+ (k − k/2)2 >

∥∥x′
T

∥∥2

2
+
∥∥x′

T
− x
∥∥2

2
= ‖x′ − x‖22 ,

a contradiction. Hence S′ = S. But Fano’s inequality states
H(S|S′) ≤ 1 + Pr[S′ 6= S] log |F| and hence

I(S;S′) = H(S)−H(S|S′) ≥ −1+
1

4
log |F| = Ω(k log(n/k))

as desired.

Theorem 4.4. Any (1 + ε)-approximate `2/`2 recovery

scheme with ε >
√

k logn
n and failure probability δ < 1/2

requires m = Ω( 1
εk log(n/k)).

Proof: Combine Lemmas 4.3 and 4.1 with α = 1/ε to
get m = Ω(k log(n/k)

log(1+ε) ) = Ω( 1
εk log(n/k)), m = Ω(εn), or

n = O( 1
εk log(k/ε)). For ε as in the theorem statement, the

first bound is controlling.

5. BIT COMPLEXITY TO MEASUREMENT COMPLEXITY

The remaining lower bounds proceed by reductions from
communication complexity. The following lemma (implicit
in [9]) shows that lower bounding the number of bits
for approximate recovery is sufficient to lower bound the
number of measurements. Let Bnp (R) ⊂ Rn denote the `p
ball of radius R.

Definition 5.1. Let X ⊂ Rn be a distribution with xi ∈
{−nd, . . . , nd} for all i ∈ [n] and x ∈ X . We define a
1 + ε-approximate `p/`p sparse recovery bit scheme on
X with b bits, precision n−c, and failure probability δ
to be a deterministic pair of functions f : X → {0, 1}b
and g : {0, 1}b → Rn where f is linear so that f(a + b)
can be computed from f(a) and f(b). We require that, for
u ∈ Bnp (n−c) uniformly and x drawn from X , g(f(x)) is
a valid result of 1 + ε-approximate recovery on x+ u with
probability 1− δ.

Lemma 5.2. A lower bound of Ω(b) bits for such a sparse
recovery bit scheme with p ≤ 2 implies a lower bound of
Ω(b/((1+c+d) log n)) bits for regular (1+ε)-approximate
sparse recovery with failure probability δ − 1/n.

Proof: Suppose we have a standard (1+ε)-approximate
sparse recovery algorithm A with failure probability δ using
m measurements Ax. We will use this to construct a
(randomized) sparse recovery bit scheme using O(m(1 +
c + d) log n) bits and failure probability δ + 1/n. Then
by averaging some deterministic sparse recovery bit scheme
performs better than average over the input distribution.

We may assume that A ∈ Rm×n has orthonormal rows
(otherwise, if A = UΣV T is its singular value decomposi-
tion, Σ+UTA has this property and can be inverted before
applying the algorithm). When applied to the distribution
X + u for u uniform over Bnp (n−c), we may assume that
A and A are deterministic and fail with probability δ over
their input.

Let A′ be A rounded to t log n bits per entry for some
parameter t. Let x be chosen from X . By Lemma 5.1 of [9],
for any x we have A′x = A(x− s) for some s with ‖s‖1 ≤
n22−t logn ‖x‖1, so ‖s‖p ≤ n2.5−t ‖x‖p ≤ n3.5+d−t. Let
u ∈ Bnp (n5.5+d−t) uniformly at random. With probability
at least 1− 1/n, u ∈ Bnp ((1− 1/n2)n5.5+d−t) because the
balls are similar so the ratio of volumes is (1−1/n2)n > 1−



1/n. In this case u+ s ∈ Bnp (n5.5+d−t); hence the random
variable u and u+s overlap in at least a 1−1/n fraction of
their volumes, so x+s+u and x+u have statistical distance
at most 1/n. Therefore A(A(x+ u)) = A(A′x+Au) with
probability at least 1− 1/n.

Now, A′x uses only (t+d+1) log n bits per entry, so we
can set f(x) = A′x for b = m(t+d+1) log n. Then we set
g(y) = A(y+Au) for uniformly random u ∈ Bnp (n5.5+d−t).
Setting t = 5.5+d+c, this gives a sparse recovery bit scheme
using b = m(6.5 + 2d+ c) log n.

6. NON-SPARSE OUTPUT LOWER BOUND FOR p = 1

First, we show that recovering the locations of an ε
fraction of d ones in a vector of size n > d/ε requires Ω̃(εd)
bits. Then, we show high bit complexity of a distributional
product version of the Gap-`∞ problem. Finally, we create
a distribution for which successful sparse recovery must
solve one of the previous problems, giving a lower bound
in bit complexity. Lemma 5.2 converts the bit complexity to
measurement complexity.

6.1. `1 Lower bound for recovering noise bits

Definition 6.1. We say a set C ⊂ [q]d is a (d, q, ε) code if
any two distinct c, c′ ∈ C agree in at most εd positions. We
say a set X ⊂ {0, 1}dq represents C if X is C concatenated
with the trivial code [q]→ {0, 1}q given by i→ ei.

Claim 6.2. For ε ≥ 2/q, there exist (d, q, ε) codes C of size
qΩ(εd) by the Gilbert-Varshamov bound (details in [9]).

Lemma 6.3. Let X ⊂ {0, 1}dq represent a (d, q, ε) code.
Suppose y ∈ Rdq satisfies ‖y − x‖1 ≤ (1 − ε) ‖x‖1. Then
we can recover x uniquely from y.

Proof: We assume yi ∈ [0, 1] for all i; thresholding
otherwise decreases ‖y − x‖1. We will show that there exists
no other x′ ∈ X with ‖y − x‖1 ≤ (1 − ε) ‖x‖1; thus
choosing the nearest element of X is a unique decoder.
Suppose otherwise, and let S = supp(x), T = supp(x′).
Then

(1− ε) ‖x‖1 ≥ ‖x− y‖1
= ‖x‖1 − ‖yS‖1 + ‖yS‖1

‖yS‖1 ≥ ‖yS‖1 + εd

Since the same is true relative to x′ and T , we have

‖yS‖1 + ‖yT ‖1 ≥ ‖yS‖1 + ‖yT ‖1 + 2εd

2 ‖yS∩T ‖1 ≥ 2 ‖yS∪T ‖1 + 2εd

‖yS∩T ‖1 ≥ εd
|S ∩ T | ≥ εd

This violates the distance of the code represented by X .

Lemma 6.4. Let R = [s, cs] for some constant c and
parameter s. Let X be a permutation independent distri-
bution over {0, 1}n with ‖x‖1 ∈ R with probability p. If y

satisfies ‖x− y‖1 ≤ (1 − ε) ‖x‖1 with probability p′ with
p′ − (1− p) = Ω(1), then I(x; y) = Ω(εs log(n/s)).

Proof: For each integer i ∈ R, let Xi ⊂ {0, 1}n
represent an (i, n/i, ε) code. Let pi = Prx∈X [‖x‖1 = i]. Let
Sn be the set of permutations of [n]. Then the distribution
X ′ given by (a) choosing i ∈ R proportional to pi, (b)
choosing σ ∈ Sn uniformly, (c) choosing xi ∈ Xi uniformly,
and (d) outputting x′ = σ(xi) is equal to the distribution
(x ∈ X | ‖x‖1 ∈ R).

Now, because p′ ≥ Pr[‖x‖1 /∈ R]+Ω(1), x′ chosen from
X ′ satisfies ‖x′ − y‖1 ≤ (1− ε) ‖x′‖1 with δ ≥ p′− (1−p)
probability. Therefore, with at least δ/2 probability, i and
σ are such that ‖σ(xi)− y‖1 ≤ (1 − ε) ‖σ(xi)‖1 with
δ/2 probability over uniform xi ∈ Xi. But given y with
‖y − σ(xi)‖1 small, we can compute y′ = σ−1(y) with
‖y′ − xi‖1 equally small. Then by Lemma 6.3 we can re-
cover xi from y with probability δ/2 over xi ∈ Xi. Thus for
this i and σ, I(x; y | i, σ) ≥ Ω(log |Xi|) = Ω(δεs log(n/s))
by Fano’s inequality. But then I(x; y) = Ei,σ[I(x; y |
i, σ)] = Ω(δ2εs log(n/s)) = Ω(εs log(n/s)).

6.2. Distributional Indexed Gap `∞
Consider the following communication game, which we

refer to as Gap`B∞, studied in [2]. The legal instances
are pairs (x, y) of m-dimensional vectors, with xi, yi ∈
{0, 1, 2, . . . , B} for all i such that
• NO instance: for all i, yi − xi ∈ {0, 1}, or
• YES instance: there is a unique i for which yi−xi = B,

and for all j 6= i, yi − xi ∈ {0, 1}.
The distributional communication complexity Dσ,δ(f) of a
function f is the minimum over all deterministic protocols
computing f with error probability at most δ, where the
probability is over inputs drawn from σ.

Consider the distribution σ which chooses a random
i ∈ [m]. Then for each j 6= i, it chooses a random
d ∈ {0, . . . , B} and (xi, yi) is uniform in {(d, d), (d, d+1)}.
For coordinate i, (xi, yi) is uniform in {(0, 0), (0, B)}.
Using similar arguments to those in [2], Jayram [14] showed
Dσ,δ(Gap`

B
∞) = Ω(m/B2) (this is reference [70] on p.182

of [1]) for δ less than a small constant.
We define the one-way distributional communication com-

plexity D1−way
σ,δ (f) of a function f to be the smallest

distributional complexity of a protocol for f in which only
a single message is sent from Alice to Bob.

Definition 6.5 (Indexed Ind`r,B∞ Problem). There are r pairs
of inputs (x1, y1), (x2, y2), . . . , (xr, yr) such that every pair
(xi, yi) is a legal instance of the Gap`B∞ problem. Alice
is given x1, . . . , xr. Bob is given an index I ∈ [r] and
y1, . . . , yr. The goal is to decide whether (xI , yI) is a NO
or a YES instance of Gap`B∞.

Let η be the distribution σr×Ur, where Ur is the uniform
distribution on [r]. We bound D1−way

η,δ (Ind`∞)r,B as follows.



For a function f , let fr denote the problem of computing
r instances of f . For a distribution ζ on instances of f , let
D1−way,∗
ζr,δ (fr) denote the minimum communication cost of

a deterministic protocol computing a function f with error
probability at most δ in each of the r copies of f , where
the inputs come from ζr.

Theorem 6.6. (special case of Corollary 2.5 of [3]) Assume
Dσ,δ(f) is larger than a large enough constant. Then
D1−way,∗
σr,δ/2 (fr) = Ω(rDσ,δ(f)).

Theorem 6.7. For δ less than a sufficiently small constant,
D1−way
η,δ (Ind`r,B∞ ) = Ω(δ2rm/(B2 log r)).

Proof: Consider a deterministic 1-way protocol Π
for Ind`r,B∞ with error probability δ on inputs drawn
from η. Then for at least r/2 values i ∈ [r],
Pr[Π(x1, . . . , xr, y1, . . . , yr, I) = Gap`B∞(xI , yI) | I =
i] ≥ 1 − 2δ. Fix a set S = {i1, . . . , ir/2} of indices with
this property. We build a deterministic 1-way protocol Π′

for fr/2 with input distribution σr/2 and error probability
at most 6δ in each of the r/2 copies of f .

For each ` ∈ [r] \ S, independently choose (x`, y`) ∼
σ. For each j ∈ [r/2], let Z1

j be the probability that
Π(x1, . . . , xr, y1, . . . , yr, I) = Gap`B∞(xij , yij ) given I =
ij and the choice of (x`, y`) for all ` ∈ [r] \ S.

If we repeat this experiment independently s =
O(δ−2 log r) times, obtaining independent Z1

j , . . . , Z
s
j and

let Zj =
∑
t Z

t
j , then Pr[Zj ≥ s− s · 3δ] ≥ 1− 1

r . So there
exists a set of s = O(δ−1 log r) repetitions for which for
each j ∈ [r/2], Zj ≥ s− s · 3δ. We hardwire these into Π′

to make the protocol deterministic.
Given inputs ((X1, . . . , Xr/2), (Y 1, . . . , Y r/2)) ∼ σr/2

to Π′, Alice and Bob run s executions of Π, each with xij =
Xj and yij = Y j for all j ∈ [r/2], filling in the remaining
values using the hardwired inputs. Bob runs the algorithm
specified by Π for each ij ∈ S and each execution. His
output for (Xj , Y j) is the majority of the outputs of the s
executions with index ij .

Fix an index ij . Let W be the number of repetitions for
which Gap`B∞(Xj , Y j) does not equal the output of Π on
input ij , for a random (Xj , Y j) ∼ σ. Then, E[W ] ≤ 3δ. By
a Markov bound, Pr[W ≥ s/2] ≤ 6δ, and so the coordinate
is correct with probability at least 1− 6δ.

The communication of Π′ is a factor s = Θ(δ−2 log r)
more than that of Π. The theorem now follows by Theorem
6.6, using that Dσ,12δ(Gap`

B
∞) = Ω(m/B2).

6.3. Lower bound for sparse recovery

Fix the parameters B = Θ(1/ε1/2), r = k, m = 1/ε3/2,
and n = k/ε3. Given an instance (x1, y1), . . . , (xr, yr), I of
Ind`r,B∞ , we define the input signal z to a sparse recovery
problem. We allocate a set Si of m disjoint coordinates in
a universe of size n for each pair (xi, yi), and on these
coordinates place the vector yi − xi. The locations are

important for arguing the sparse recovery algorithm cannot
learn much information about the noise, and will be placed
uniformly at random.

Let ρ denote the induced distribution on z. Fix a (1 + ε)-
approximate k-sparse recovery bit scheme Alg that takes b
bits as input and succeeds with probability at least 1− δ/2
over z ∼ ρ for some small constant δ. Let S be the set of top
k coordinates in z. Alg has the guarantee that if it succeeds
for z ∼ ρ, then there exists a small u with ‖u‖1 < n−2 so
that v = Alg(z) satisfies

‖v − z − u‖1 ≤ (1 + ε)
∥∥(z + u)[n]\S

∥∥
1

‖v − z‖1 ≤ (1 + ε)
∥∥z[n]\S

∥∥
1

+ (2 + ε)/n2

≤ (1 + 2ε)
∥∥z[n]\S

∥∥
1

and thus

‖(v − z)S‖1 +
∥∥(v − z)[n]\S

∥∥
1
≤ (1 + 2ε)‖z[n]\S‖1. (15)

Lemma 6.8. For B = Θ(1/ε1/2) sufficiently large, suppose
that Prz∼ρ[‖(v − z)S‖1 ≤ 10ε · ‖z[n]\S‖1] ≥ 1 − δ. Then
Alg requires b = Ω(k/(ε1/2 log k)).

Proof: We show how to use Alg to solve instances
of Ind`r,B∞ with probability at least 1 − C for some small
C, where the probability is over input instances to Ind`r,B∞
distributed according to η, inducing the distribution ρ. The
lower bound will follow by Theorem 6.7. Since Alg is a
deterministic sparse recovery bit scheme, it receives a sketch
f(z) of the input signal z and runs an arbitrary recovery
algorithm g on f(z) to determine its output v = Alg(z).

Given x1, . . . , xr, for each i = 1, 2, . . . , r, Alice places
−xi on the appropriate coordinates in the block Si used in
defining z, obtaining a vector zAlice, and transmits f(zAlice)
to Bob. Bob uses his inputs y1, . . . , yr to place yi on the
appropriate coordinate in Si. He thus creates a vector zBob
for which zAlice+zBob = z. Given f(zAlice), Bob computes
f(z) from f(zAlice) and f(zBob), then v = Alg(z). We
assume all coordinates of v are rounded to the real interval
[0, B], as this can only decrease the error.

We say that Si is bad if either
• there is no coordinate j in Si for which |vj | ≥ B

2 yet
(xi, yi) is a YES instance of Gap`r,B∞ , or

• there is a coordinate j in Si for which |vj | ≥ B
2 yet

either (xi, yi) is a NO instance of Gap`r,B∞ or j is not
the unique j∗ for which yij∗ − xij∗ = B

The `1-error incurred by a bad block is at least B/2 − 1.
Hence, if there are t bad blocks, the total error is at least
t(B/2−1), which must be smaller than 10ε · ‖z[n]\S‖1 with
probability 1− δ. Suppose this happens.

We bound t. All coordinates in z[n]\S have value in the
set {0, 1}. Hence, ‖z[n]\S‖1 < rm. So t ≤ 20εrm/(B− 2).
For B ≥ 6, t ≤ 30εrm/B. Plugging in r, m and B, t ≤ Ck,
where C > 0 is a constant that can be made arbitrarily small
by increasing B = Θ(1/ε1/2).



If a block Si is not bad, then it can be used to solve
Gap`r,B∞ on (xi, yi) with probability 1. Bob declares that
(xi, yi) is a YES instance if and only if there is a coordinate
j in Si for which |vj | ≥ B/2.

Since Bob’s index I is uniform on the m coordinates
in Ind`r,B∞ , with probability at least 1 − C the players
solve Ind`r,B∞ given that the `1 error is small. Therefore
they solve Ind`r,B∞ with probability 1 − δ − C overall. By
Theorem 6.7, for C and δ sufficiently small Alg requires
Ω(mr/(B2 log r)) = Ω(k/(ε1/2 log k)) bits.

Lemma 6.9. Suppose Prz∼ρ[‖(v − z)[n]\S‖1] ≤ (1 − 8ε) ·
‖z[n]\S‖1] ≥ δ/2. Then Alg requires b = Ω( 1√

ε
k log(1/ε)).

Proof: The distribution ρ consists of B(mr, 1/2) ones
placed uniformly throughout the n coordinates, where
B(mr, 1/2) denotes the binomial distribution with mr
events of 1/2 probability each. Therefore with proba-
bility at least 1 − δ/4, the number of ones lies in
[δmr/8, (1 − δ/8)mr]. Thus by Lemma 6.4, I(v; z) ≥
Ω(εmr log(n/(mr))). Since the mutual information only
passes through a b-bit string, b = Ω(εmr log(n/(mr))) as
well.

Theorem 6.10. Any (1 + ε)-approximate `1/`1 recovery
scheme with sufficiently small constant failure probability
δ must make Ω( 1√

ε
k/ log2(k/ε)) measurements.

Proof: We will lower bound any `1/`1 sparse recovery
bit scheme Alg. If Alg succeeds, then in order to satisfy
inequality (15), we must either have ‖(v − z)S‖1 ≤ 10ε ·
‖z[n]\S‖1 or we must have ‖(v − z)[n]\S‖1 ≤ (1 − 8ε) ·
‖z[n]\S‖1. Since Alg succeeds with probability at least 1−
δ, it must either satisfy the hypothesis of Lemma 6.8 or
the hypothesis of Lemma 6.9. But by these two lemmas, it
follows that b = Ω( 1√

ε
k/ log k). Therefore by Lemma 5.2,

any (1 + ε)-approximate `1/`1 sparse recovery algorithm
requires Ω( 1√

ε
k/ log2(k/ε)) measurements.

7. LOWER BOUNDS FOR k-SPARSE OUTPUT

Theorem 7.1. Any 1+ε-approximate `1/`1 recovery scheme
with k-sparse output and failure probability δ requires m =
Ω( 1

ε (k log 1
ε + log 1

δ )), for 32 ≤ 1
δ ≤ nε

2/k.

Theorem 7.2. Any 1+ε-approximate `2/`2 recovery scheme
with k-sparse output and failure probability δ requires m =
Ω( 1

ε2 (k + log ε2

δ )), for 32 ≤ 1
δ ≤ nε

2/k.

These two theorems correspond to four statements: one
for large k and one for small δ for both `1 and `2.

All are fairly similar to the framework of [9]: they use
a sparse recovery algorithm to robustly identify x from Ax
for x in some set X . This gives bit complexity log |X|,
or measurement complexity log |X| / log n by Lemma 5.2.
They amplify the bit complexity to log |X| log n by showing
they can recover x1 from A(x1 + 1

10x2 + . . .+ 1
nxΘ(logn))

for x1, . . . , xΘ(logn) ∈ X and reducing from augmented

indexing. This gives a log |X| measurement lower bound.
Due to space constraints, we defer full proof to the full
paper.
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