(1 + €)-approximate Sparse Recovery

Eric Price
MIT CSAIL
ecprice@mit.edu

Abstract— The problem central to sparse recovery and com-
pressive sensing is that of stable sparse recovery: we want a
distribution A of matrices A € R™*™ such that, for any x € R"
and with probability 1—9 > 2/3 over A € A, there is an algorithm
to recover & from Az with

|z — x|, <C min
P k-sparse x’

lz =<'l (n

for some constant C' > 1 and norm p.

The measurement complexity of this problem is well understood
for constant C' > 1. However, in a variety of applications it is
important to obtain C' = 14-¢ for a small € > 0, and this complexity
is not well understood. We resolve the dependence on € in the
number of measurements required of a k-sparse recovery algorithm,
up to polylogarithmic factors for the central cases of p = 1 and
p = 2. Namely, we give new algorithms and lower bounds that
show the number of measurements required is k/e”/?polylog(n).
For p = 2, our bound of klog(n/k) is tight up to constant
factors. We also give matching bounds when the output is required
to be k-sparse, in which case we achieve k/ePpolylog(n). This
shows the distinction between the complexity of sparse and non-
sparse outputs is fundamental.

1. INTRODUCTION

Over the last several years, substantial interest has been
generated in the problem of solving underdetermined linear
systems subject to a sparsity constraint. The field, known
as compressed sensing or sparse recovery, has applica-
tions to a wide variety of fields that includes data stream
algorithms [15], medical or geological imaging [4], [10],
and genetics testing [16]. The approach uses the power of
a sparsity constraint: a vector =’ is k-sparse if at most
k coefficients are non-zero. A standard formulation for
the problem is that of stable sparse recovery: we want a
distribution A of matrices A € R™*" such that, for any
2 € R™ and with probability 1 —§ > 2/3 over A € A, there
is an algorithm to recover & from Ax with

& — a:Hp <C min
k-sparse x’

lz — 2", )

for some constant C > 1 and norm p'. We call this a C-
approximate €y /£, recovery scheme with failure probability
0. We refer to the elements of Ax as measurements.

It is known [4], [12] that such recovery schemes exist
for p € {1,2} with C = O(1) and m = O(klog %).

ISome formulations allow the two norms to be different, in which case
C is not constant. We only consider equal norms in this paper.
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Furthermore, it is known [9], [11] that any such recovery
scheme requires €2(klog; , » %) measurements. This means
the measurement complexity is well understood for C' =
1+ Q(1), but not for C' =1+ o(1).

A number of applications would like to have C' = 1+-¢ for
small e. For example, a radio wave signal can be modeled
as ¢ = x* + w where x* is k-sparse (corresponding to a
signal over a narrow band) and the noise w is i.i.d. Gaussian
with [[wl|,, & D [|z*||, [17]. Then sparse recovery with C' =
14+ a/D allows the recovery of a (1 — ) fraction of the true
signal z*. Since x* is concentrated in a small band while
w is located over a large region, it is often the case that
a/D < 1.

The difficulty of (1+¢€)-approximate recovery has seemed
to depend on whether the output z’ is required to be k-
sparse or can have more than k elements in its support.
Having k-sparse output is important for some applications
(e.g. the aforementioned radio waves) but not for others
(e.g. imaging). Algorithms that output a k-sparse x’ have
used @(Eipklog n) measurements [5], [6], [7], [18]. In
contrast, [12] uses only ©(1klog(n/k)) measurements for
p = 2 and outputs a non-k-sparse z’.

Our results: We show that the apparent distinction
between complexity of sparse and non-sparse outputs is
fundamental, for both p = 1 and p = 2. We show that
for sparse output, §2(k/eP) measurements are necessary,
matching the upper bounds up to a logn factor. For general
output and p = 2, we show Q(2klog(n/k)) measurements
are necessary, matching the upper bound up to a constant
factor. In the remaining case of general output and p = 1, we
show Q(k/+/€) measurements are necessary. We then give a
novel algorithm that uses O(log?’%k log n) measurements,
beating the 1/¢ dependence given by all previous algorithms.
As a result, all our bounds are tight up to factors logarithmic
in n. The full results are shown in Figure 1.

In addition, for p = 2 and general output, we show that
thresholding the top 2k elements of a Count-Sketch [5] es-
timate gives (1 + €)-approximate recovery with ©(2klogn)
measurements. This is interesting because it highlights the
distinction between sparse output and non-sparse output: [7]
showed that thresholding the top %k elements of a Count-
Sketch estimate requires m = ©(%klogn). While [12]
achieves m = ©(1klog(n/k)) for the same regime, it only
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Figure 1. Our results, along with existing upper bounds. Fairly minor restriction:
for details.

succeeds with constant probability while ours succeeds with
probability 1 — n~*(1); hence ours is the most efficient
known algorithm when 5— o(1),e = o(1), and k < n%,

Related work: Much of the work on sparse recovery
has relied on the Restricted Isometry Property [4]. None of
this work has been able to get better than 2-approximate
recovery, so there are relatively few papers achieving (1 +
€)-approximate recovery. The existing ones with O(klogn)
measurements are surveyed above (except for [13], which
has worse dependence on € than [6] for the same regime).

No general lower bounds were known in this setting but
a couple of works have studied the ¢, /¢, problem, where
every coordinate must be estimated with small error. This
problem is harder than ¢,/¢, sparse recovery with sparse
output. For p = 2, [18] showed that schemes using Gaussian
matrices A require m = Q(%klog(n/k)). For p = 1, [8]
showed that any sketch requires §2(k/e) bits (rather than
measurements).

Our techniques: For the upper bounds for non-sparse
output, we observe that the hard case for sparse output is
when the noise is fairly concentrated, in which the estimation
of the top k elements can have /¢ error. Our goal is to
recover enough mass from outside the top k elements to
cancel this error. The upper bound for p = 2 is a fairly
straightforward analysis of the top 2k elements of a Count-
Sketch data structure.

The upper bound for p = 1 proceeds by subsampling
the vector at rate 27° and performing a Count-Sketch with
size proportional to —=, for ¢ € {0,1,...,0(log(1/€))}.
The intuition is that i the noise is well spread over many
(more than k/e%/?) coordinates, then the ¢ bound from
the first Count-Sketch gives a very good ¢; bound, so the
approximation is (1 + €)-approximate. However, if the noise
is concentrated over a small number k/e® of coordinates,
then the error from the first Count-Sketch is proportional
to 1 4 €/2>t1/4 But in this case, one of the subsamples
will only have O(k/e®/2=1/4) < k/\/€ of the coordinates
with large noise. We can then recover those coordinates
with the Count-Sketch for that subsample. Those coordinates
contain an €“/2+1/4 fraction of the total noise, so recovering
them decreases the approximation error by exactly the error
induced from the first Count-Sketch.

s on the relative magnitude of parameters apply; see the theorem statements

The lower bounds use substantially different techniques
for sparse output and for non-sparse output. For sparse
output, we use reductions from communication complexity
to show a lower bound in terms of bits. Then, as in [9],
we embed ©(logn) copies of this communication problem
into a single vector. This multiplies the bit complexity by
logn; we also show we can round Az to logn bits per
measurement without affecting recovery, giving a lower
bound in terms of measurements.

We illustrate the lower bound on bit complexity for sparse
output using £ = 1. Consider a vector x containing 1/€?
ones and zeros elsewhere, such that xo; + 29,41 = 1 for
all 4. For any i, set z9; = 29,41 = 1 and z; = 0 elsewhere.
Then successful (1+¢/3)-approximate sparse recovery from
A(x + z) returns £ with supp(2) = supp(z) N {24,2i + 1}.
Hence we can recover each bit of & with probability 1 — 6,
requiring £2(1/€?) bits?>. We can generalize this to k-sparse
output for Q(k/eP) bits, and to ¢ failure probability with
Q(Z log §). However, the two generalizations do not seem
to combine.

For non-sparse output, we split between ¢5 and ¢;. In /5,
we consider A(x 4 w) where x is sparse and w has uniform
Gaussian noise with ||w||§ ~ Hx||§ /€. Then each coordinate
of y = A(x + w) = Az + Aw is a Gaussian channel with
signal to noise ratio €. This channel has channel capacity e,
showing I(y;x) < em. Correct sparse recovery must either
get most of z or an € fraction of w; the latter requires m =
Q(en) and the former requires I(y;x) = Q(klog(n/k)).
This gives a tight ©(Lklog(n/k)) result. Unfortunately, this
does not easily extend to ¢, because it relies on the Gaussian
distribution being both stable and maximum entropy under
{s; the corresponding distributions in ¢; are not the same.

Therefore for ¢; non-sparse output, we have yet another
argument. The hard instances for £ = 1 must have one large
value (or else 0 is a valid output) but small other values
(or else the 2-sparse approximation is significantly better
than the 1-sparse approximation). Suppose = has one value
of size € and d values of size 1/d spread through a vector
of size d?. Then a (1 + ¢/2)-approximate recovery scheme
must either locate the large element or guess the locations

2For p = 1, we can actually set |[supp(z)| = 1/e and search among a
set of 1/e candidates. This gives Q(% log(1/€)) bits.



of the d values with Q(ed) more correct than incorrect. The
former requires 1/(de?) bits by the difficulty of a novel
version of the Gap-/., problem. The latter requires ed bits
because it allows recovering an error correcting code. Setting
d = ¢3/2 balances the terms at ¢~/ bits. Because some
of these reductions are very intricate, this extended abstract
does not manage to embed log n copies of the problem into a
single vector. As a result, we lose a logn factor in a universe
of size n = poly(k/e) when converting to measurement
complexity from bit complexity.

2. PRELIMINARIES

Notation: We use [n] to denote the set {1...n}. For
any set S C [n], we use S to denote the complement of
S, i.e., the set [n] \ S. For any € R", x; denotes the ith
coordinate of z, and zg denotes the vector 2’ € R™ given
by x; = x; if i € S, and z} = 0 otherwise. We use supp(x)
to denote the support of x.

3. UPPER BOUNDS

The algorithms in this section are indifferent to permuta-
tion of the coordinates. Therefore, for simplicity of notation
in the analysis, we assume the coefficients of x are sorted
such that |z1| > |z2| > ... > |z, > 0.

Count-Sketch: Both our upper bounds use the Count-
Sketch [5] data structure. The structure consists of clogn
hash tables of size O(q), for O(cqlogn) total space; it can
be represented as Az for a matrix A with O(cqlogn) rows.
Given Az, one can construct * with

3

2
2" — 2|5 <

1 S—
q Hx[q] )
with failure probability n'=¢.

3.1. Non-sparse {5

It was shown in [7] that, if z* is the result of a Count-
Sketch with hash table size O(k/€?), then outputting the top
k elements of 2* gives a (1+¢€)-approximate {5 /{5 recovery
scheme. Here we show that a seemingly minor change—
selecting 2k elements rather than k& elements—turns this into
a (1 + €2)-approximate £3 /{5 recovery scheme.

Theorem 3.1. Let & be the top 2k estimates from a Count-
Sketch structure with hash table size O(k/¢). Then with
failure probability n~(M),

& =zl < (1+e

Therefore, there is a 1 + e-approximate {5/ly recovery
scheme with O(2klogn) rows.

Proof: Let the hash table size be O(ck/¢) for constant
¢, and let z* be the vector of estimates for each coordinate.
Define S to be the indices of the largest 2k values in x*

and F = H ’f]H

By (3), the standard analysis of Count-Sketch:

€
< —E2
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<l@* = sl + lognsll; = |7

<IS] " — zl% + [leppslls — esu
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<STE + [lzunsl; = lesnll, “

Let a = max;epps2; and b = min;cg\[x] s> and let
d = |[k] \ S|. The algorithm passes over an element of value
a to choose one of value b, so

a<b+2|z* —a|, <b+2,/—E.
ck

lzwnsls = lzsve s
<da® — (k + d)b?

<d(b+ 2, /ikE)2 — (k + d)b?
C

< — k44 SdbE deQ

= W ETE T G

€ 9 4e 2
< _ _9. ] = = _

<4d(k: - d)eE2 < €2
- ck? “c

and combining this with (4) gives

Then

3
|l — a2 — E* < ZE?
C

or

3¢
g —all, < (14 5B
which proves the theorem for ¢ > 3/2. |

3.2. Non-sparse {1

Theorem 3.2. There exists a (1 + €)-approximate {1 /{,

recovery scheme with O(log /¢ logn) measurements and

failure probability e~ ¥k/Ve) 4 p=21),

Set f = /e, so our goal is to get (1 + f2)-approximate
01/t recovery with O(Mklog 1) measurements.
For intuition, consider 1 -sparse recovery of the follow-

ing vector z: let ¢ € [0,2] and set z; = 1/f° and
Ta,...,T141/p1+c € {£1}. Then we have
o o 14c
[z, =177



and by (3), a Count-Sketch with O(1/f)-sized hash tables
returns x* with

< VT o], = 17572 = 772 o

The reconstruction algorithm therefore cannot reliably find
any of the x; for ¢ > 1, and its error on x; is at least
fire/2 H

2" = |

Ty ’1. Hence the algorithm will not do better than

a f1t</2_approximation.

However, consider what happens if we subsample an
f¢ fraction of the vector. The result probably has about
1/f non-zero values, so a O(1/ f)-width Count-Sketch can
reconstruct it exactly. Putting this in our ouT)ut improves the

overall ¢; error by about 1/f = f° ’xm . Since ¢ < 2,

this more than cancels the f1t¢/2 meH error the initial
1

Count-Sketch makes on z;, giving an approximation factor
better than 1.

This tells us that subsampling can help. We don’t need to
subsample at a scale below k/f (where we can reconstruct
well already) or above k/f3 (where the ¢ bound is small
enough already), but in the intermediate range we need to
subsample. Our algorithm subsamples at all log 1/ f? rates
in between these two endpoints, and combines the heavy
hitters from each.

First we analyze how subsampled Count-Sketch works.

Lemma 3.3. Suppose we subsample with probability p and
then apply Count-Sketch with ©(logn) rows and ©(q)-sized
hash tables. Let y be the subsample of x. Then with failure
probability e~ 4 n=W) we recover a y* with

ly* = ylloe < Vo/a |27z,

Proof: Recall the following form of the Chernoff
bound: if X,...,X,, are independent with 0 < X; < M,
and p > E[>_ X;], then

Pr(d X, > -

Let T be the set of coordinates in the sample. Then
BI|T N [321]) = 34/2. s

o

Suppose this event does not happen, so ‘T N [g—g]‘ < 2q. We

also have
lemrll, = /55 |72

Let Y; =0if i ¢ T and Y; = 22 if i € T. Then

E[Y Yi]=p|=
i>31

~Qu/M)

3
TN [q]‘ > 2q] < e~ SUD),
2p

2

2
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For 7 > ;’—; we have

<2

2
T -

2p

giving by Chernoff that

4 % < o=0a/2)
P2 o o) < 7
But if this event does not happen, then
2 2
o, < 30 at= 3 < gl
€T, 1>2p i>3 2p

By (3), using O(2q)-size hash tables gives a y* with

. 1
v =yl < /24 HyWHQ =Vr/d HxWHQ

with failure probability n =), as desired. [ ]

Let r = 2log1/f. Our algorithm is as follows: for j €
{0,...,7}, we find and estimate the 27/k largest elements
not found in previous j in a subsampled Count-Sketch with
probability p = 277 and hash size ¢ = ck/f for some
parameter ¢ = O(r?). We output £, the union of all these
estimates. Our goal is to show

2
e,

For each level j, let S; be the 2172k largest coordinates
in our estimate not found in Sy U---US;_;. Let S = US;.
By Lemma 3.3, for each j we have (with failure probability
e W/ 1) 4 =)y that

1@ = 2)s, ||, < 18; \/7H [2Jck/f]H
< 2‘]’/2\/?“90[2% "

oot~ o, <

and so

m)SjH1

VI e, ©

|| SHl

(1—1/\f

By standard arguments, the /., bound for Sy gives

< VIHe| oz,
(6)

lzwll, < lwsolly + & 1 E50 — 256/l



Combining Equations (5) and (6) gives

~

& =2l — o], 7

=@ = )slly + lazll, = [Jogg]|,

=@ = 2)slly + [lzw |, — sl

56 11)

=& —2)sly + (Jewl, -

Xl
1
(isivme 72) VP e,
fgmwl
\FH [2k/fH ZH»”ES ||1 (8)

We would like to convert the first term to depend on the
¢1 norm. For any v and s we have, by splitting into chunks

of size s, that
< o/ e
=Vs Hu[s]

<\[‘u9|

[l

H“[ ni2s]

Along with the triangle inequality, this gives us that

VS ez, < VAT 2],
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Define a; = k2772 ‘mQJ k/f| The first term grows as f2 so it
is fine, but a; can grow as f2//2 > f2. We need to show that
they are canceled by the corresponding ||x5 || ;- In particular,

we will show that Hﬂfsj H1 > Q(a;)—0(279/2 f2 H /7]
with high probability—at least wherever a; > ||a|; / (2r

Let U € [r] be the set of j with a; > ||a||, /(2r), so that
lawrll; > llall, /2. We have

2 r 2
2T Z |emermaal,

2
Hx[zjk/ﬂHQ = HI[%/P]

< ez, WE% 10

For j € U, we have

.
> a} <ajllall, <2ra)
i=)

so, along with (32 + 22)1/2 < y + 2, we turn Equation (10)

into

HmeHz < Hffm ot

< 3 2r
<\ % e, + iFY

When choosing S;, let T € [n] be the set of indices
chosen in the sample. Applying Lemma 3.3 the estimate
z* of x1 has

. f
la* ~ o1l </ 5o |27,

%c k Hw[k/fs] .

1 f2 o
%?H%/M ]

2r a;
e k

2r
+/ 7 |zl
for j € U.

Let @ = [27k/f]\ (SoU---US;_1). We have |Q| >
27'k/f so E|lQNT[] > k/2f and |QNT| > k/Af
with failure probability e=*(*/f), Conditioned on |Q N T'| >
k/Af, since xr has at least |Q NT| > k/(4f) = 2T/2k:/4 >
27/2k /4 possible choices of value at least S5
must have at least k27/2 /4 elements at least ]xgj k/ f‘ —
|z* — 7| . Therefore, for j € U,

k21/? 2r
=2 feanyd]

1
les, 2 =575 ez, +

and therefore
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Using (9) and (11) we get
&= ol — |l25]),
r 1 9
: (w ' O(f)> e,
+§; N N L
c 8 ik/f

<f me = f2 H%Hl

for some ¢ = O(r?

). Hence we use a total of Fklogn =

log%/fk log n measurements for 1 + f2-approximate ¢1 /¢
recovery.

For each j € {0,...,r} we had failure probability
ek 1) 4= (from Lemma 3.3 and |Q N T| > k/2f).
By the union bound, our overall failure probability is at most

1

(log ?)(e—ﬂ(k‘/f) + n—Q(l)) <

e~ QUk/F) =),

proving Theorem 3.2.

4. LOWER BOUNDS FOR NON-SPARSE OUTPUT AND p = 2

In this case, the lower bound follows fairly straightfor-
wardly from the Shannon-Hartley information capacity of a
Gaussian channel.

We will set up a communication game. Let F C {S C
[n] | |S] = k} be a family of k-sparse supports such that:

o |SAS| >k forS#S e€F,

o Prgerxli € S] =k/n for all i € [n], and

e log|F| = Q(klog(n/k)).

This is possible; for example, a Reed-Solomon code on
[n/k]* has these properties.

Let X = {z € {0,£1}™ | supp(z) € F}. Let w ~
N(0,a®1,) be iid. normal with variance ak/n in each
coordinate. Consider the following process:

Procedure: First, Alice chooses S € JF uniformly
at random, then x € X uniformly at random subject to
supp(z) = S, then w ~ N(0,a%1,). She sets y = A(z+w)
and sends y to Bob. Bob performs sparse recovery on y to
recover 2’ ~ x, rounds to X by & = argmingc x [|Z — 2'[|,,
and sets S’ = supp(Z). This gives a Markov chain S —
z—y—a — 9.

If sparse recovery works for any z + w with probability
1 — § as a distribution over A, then there is some specific
A and random seed such that sparse recovery works with
probability 1 — § over x + w; let us choose this A and
the random seed, so that Alice and Bob run deterministic
algorithms on their inputs.

Lemma 4.1. 1(S;5") = O(mlog(1 + é))

Proof: Let the columns of AT be v, ™. We may
assume that the v" are orthonormal, because this can be
accomplished via a unitary transformation on Axz. Then

we have that y; = (v',z + w) = (v',z) + wj, where
wj ~ N(0, ok HUZHE /n) = N(0,ak/n) and

i i k
E.[(v",2)%] = Bs[Y_(v})’] = -
jes
Hence y; = z; + w} is a Gaussian channel with power

constraint E[ )< k Hv ||2 and noise variance E[(w})?] =

ak Hv H2 Hence by the Shannon-Hartley theorem this chan-
nel has information capacity

1

max [(z;y;) =C < = log(1+ )

Vi

By the data processing inequality for Markov chains and the
chain rule for entropy, this means

1(8;8") < I(zy) = H(y) — H(y | 2) = H(y)
—ZH(sz,w’l,...,wLI)
—ZHw’ <ZHyi ) — H(w})
=ZH(y¢)— (i | 2:) = I(yi; 1)
m

|

We will show that successful recovery either recovers

most of x, in which case I(5;5") = Q(klog(n/k)), or

recovers an e fraction of w. First we show that recovering
w requires m = Q(en).

IN

Lemma 4.2. Suppose w € R"™ with w; ~ N(0,0?) for
all i and n = Q(%1og(1/6)), and A € R™ " for m <
den. Then any algorithm that finds w' from Aw must have
lw" — w||§ > (1—¢) ||w\|§ with probability at least 1—O(0).

Proof: Note that Aw merely gives the projection of w
onto m dimensions, giving no information about the other
n — m dimensions. Since w and the /5 norm are rotation
invariant, we may assume WLOG that A gives the projection
of w onto the first m dimensions, namely T = [m]. By the
norm concentration of Gaussians, with probability 1 — ¢ we
have ||w]|2 < (1 + €)no?, and by Markov with probability
1— 4 we have ||wp||3 < eno?.

For any fixed value d, since w is uniform Gaussian and

P
wi is independent of w,

Pr{|lw’ — wll3 < d] < Pr(|(w’ - w)ll; < d]
< Pr|lwz]; < d].

Therefore
Pr(llw’ — wl; < (1= 3¢) [|w]3]
< Prf|lw’ — w|f; < (1 - 2€)no?]
<Prf||lwz|; < (1 — 2€)no”]
<Prf|lwz|; < (1—e)(n—m)o?] <6

~H(y—z]2)



as desired. Rescaling € gives the result. ]
Lemma 4.3. Suppose n = Q(1/€? + (k/e)log(k/¢€)) and
m = O(en). Then 1(S;S") = Q(klog(n/k)) for some oo =
0(1/e).

Proof: Consider the 2’ recovered from A(z + w), and
let T = S US’. Suppose that ||w||zo < O(%’“logn) and
Hw||§ /(ak) € [1 + €], as happens with probability at least

(say) 3/4. Then we claim that if recovery is successful, one
of the following must be true:

13)
(14)

2 2
—xfly < 9eflwl
(1 —2€) |l

27

o = wll; <

To show this, suppose |z —x|\2 > 96”’11}”2 > 9||wTH§
(the last by |T'| = 2k = O(en/logn)). Then

2
(&' = (z +w)rlly > (l2" — zlly — [lwrlly)?
2
> (2]]a" — |, /3)* > de w5 .
Because recovery is successful,
2 2
2" = (z +w)lly < (1+€) [lwl]l; -
Therefore
2 2
(z +w)rlly = [z — (z + w)ll,
2
< (1 +e) llwls
2
< (1= 3e€) [Jwllz
2
< (1 —2¢) [Jwllz

|2 — we[; + Il —
2 — w5 + de ]l

2% = wl; = llwrll3

as desired. Thus with 3/4 probability, at least one of (13)
and (14) is true.

Suppose Equation (14) holds with at least 1/4 probability.
There must be some = and S such that the same equation
holds with 1/4 probability. For this S, given 2’ we can
find 7" and thus 2. Hence for a uniform Gaussian wz,

. /
given Awzg we can compute A(z + wz) and recover z

— )||wf||§ By Lemma 4.2 this
) and m = Q(en) by

xf — wg H (1
is impossible, since n — |T| = (%
assumption.

Therefore Equatlon (13) holds with at least 1/2 probabil-
ity, namely |z/, — yc||2 < 9¢ ||w\|2 < 9¢(1—e€)ak < k/2 for
appropriate «. But if the nearest £ € X to z is not equal to
z,

|2 — &[|3
= |2 ls + |2 — 2[5 > [l + (o = lly — ||t — 2] )2
> [|olls + Ok = k/2)? > [Jaf|2 + [l — ||} = lla’ = 13,

a contradiction. Hence S’ = S. But Fano’s inequality states
H(S]S") <1+ Pr[S" # S]log|F| and hence

1
1(8:8) = H(S)=H(S|S) > ~1+7 log| F|

as desired. |

Theorem 4.4. Any (1 + €)-approximate {3/l5 recovery

scheme with € > \/MO% and failure probability § < 1/2
requires m = Q(Lklog(n/k)).

Proof: Combine Lemmas 4.3 and 4.1 with & = 1 /¢ to
get m = Q580 — (Lklog(n/k)), m = Q(en), or
n = O(Lklog(k/e)). For € as in the theorem statement, the

first bound is controlling. [ ]

5. BIT COMPLEXITY TO MEASUREMENT COMPLEXITY

The remaining lower bounds proceed by reductions from
communication complexity. The following lemma (implicit
in [9]) shows that lower bounding the number of bits
for approximate recovery is sufficient to lower bound the
number of measurements. Let B (R) C R" denote the £,
ball of radius R.

Definition 5.1. Let X C R" be a distribution with x; €
{—nd, nd} for all i € [n] and x € X. We define a
1 + e-approximate {,/¢, sparse recovery bit scheme on
X with b bits, precision n~¢, and failure probability ¢
to be a deterministic pair of functions f: X — {0,1}®
and g: {0,1}* — R™ where f is linear so that f(a + b)
can be computed from f(a) and f(b). We require that, for
u € B (n™°) uniformly and x drawn from X, g(f(z)) is
a valid result of 1 + e-approximate recovery on x + u with

probability 1 — 6.

Lemma 5.2. A lower bound of )(b) bits for such a sparse
recovery bit scheme with p < 2 implies a lower bound of
Qb/((1+c+d)logn)) bits for regular (1+ €)-approximate
sparse recovery with failure probability § — 1/n.

Proof: Suppose we have a standard (1 + ¢)-approximate
sparse recovery algorithm .4 with failure probability § using
m measurements Az. We will use this to construct a
(randomized) sparse recovery bit scheme using O(m(1 +
¢ + d)logn) bits and failure probability 6 + 1/n. Then
by averaging some deterministic sparse recovery bit scheme
performs better than average over the input distribution.

We may assume that A € R™*" has orthonormal rows
(otherwise, if A = UXVT is its singular value decomposi-
tion, XtUT A has this property and can be inverted before
applying the algorithm). When applied to the distribution
X +u for u uniform over B (n~¢), we may assume that
A and A are deterministic and fail with probability ¢ over
their input.

Let A’ be A rounded to tlogn bits per entry for some
parameter ¢. Let = be chosen from X. By Lemma 5.1 of [9],
for any x we have A’z = A(x — s) for some s with ||s]|; <
n22- 00 2| so |lsll, < 0237 o, < ndFHIL Let
u € BJ(n®5+9=") uniformly at random. With probability
at least 1 — 1/n, u € By ((1 —1/n®)n>5t4=") because the

= Q(klog(n/k)) balls are similar so the ratio of volumes is (1-1/n*)" > 1—



1/n. In this case u + s € By (n®>T9~"); hence the random
variable v and u+ s overlap in at least a 1 — 1/n fraction of
their volumes, so z+s+wu and x+w have statistical distance
at most 1/n. Therefore A(A(z +u)) = A(A’x + Au) with
probability at least 1 — 1/n.

Now, A’z uses only (t+d+1)logn bits per entry, so we
can set f(x) = A’z for b = m(t+d+1)logn. Then we set
9(y) = A(y+Au) for uniformly random u € B} (n>5+4~1),
Setting ¢t = 5.5+d+c, this gives a sparse recovery bit scheme
using b = m(6.5 + 2d + ¢) log n. [ |

6. NON-SPARSE OUTPUT LOWER BOUND FOR p =1

First, we show that recovering the locations of an e
fraction of d ones in a vector of size n > d/e requires {2(ed)
bits. Then, we show high bit complexity of a distributional
product version of the Gap-{., problem. Finally, we create
a distribution for which successful sparse recovery must
solve one of the previous problems, giving a lower bound
in bit complexity. Lemma 5.2 converts the bit complexity to
measurement complexity.

6.1. £1 Lower bound for recovering noise bits

Definition 6.1. We say a set C C [q]? is a (d,q,€) code if
any two distinct ¢,c’ € C agree in at most ed positions. We
say a set X C {0,1}%4 represents C if X is C concatenated
with the trivial code [q] — {0,1}7 given by i — e;.

Claim 6.2. For ¢ > 2/q, there exist (d, q,¢) codes C of size
qQ(Ed) by the Gilbert-Varshamov bound (details in [9]).
Lemma 6.3. Let X C {0,1}% represent a (d,q,€) code.
Suppose y € RY satisfies ||y — z||; < (1 — €) ||z||,. Then
we can recover x uniquely from y.

Proof: We assume y; € [0,1] for all ¢; thresholding
otherwise decreases ||y — «||,. We will show that there exists
no other 2’ € X with [y —=z||; < (1 — ¢)[lz[;; thus
choosing the nearest element of X is a unique decoder.

Suppose otherwise, and let S = supp(z),T = supp(z’).
Then

(1 =) lzlly = [z =yl
= llzlly = llyslly + llyslly
lyslly = llysll, + ed

Since the same is true relative to ' and 7', we have

lyslly + llyrlly = llysll, + vzl + 2ed
2 ||ySr‘1TH1 >2 ||?/WH1 + 2ed
[ysnrll, = ed
[SNT| > ed
This violates the distance of the code represented by X. H

Lemma 6.4. Let R = [s,cs] for some constant ¢ and
parameter s. Let X be a permutation independent distri-
bution over {0,1}™ with ||z||, € R with probability p. If y

satisfies ||z — yl|; < (1 — €)||z||, with probability p’ with
P — (1 —p) =Q(1), then I(z;y) = Q(eslog(n/s)).

Proof: For each integer ¢ € R, let X; C {0,1}"
represent an (z,n/%, €) code. Let p; = Pryex|[||z|; = ¢]. Let
Sy, be the set of permutations of [n]. Then the distribution
X'’ given by (a) choosing ¢ € R proportional to p;, (b)
choosing o € S,, uniformly, (c) choosing x; € X; uniformly,
and (d) outputting ' = o(x;) is equal to the distribution
(v € X ||lall, € R).

Now, because p’ > Pr[||z||; ¢ R]+(1), 2’ chosen from
X' satisfies [|2" — y||; < (1—¢€)||2’||; with § > p' —(1—p)
probability. Therefore, with at least §/2 probability, 7 and
o are such that |lo(z;) —yll; < (1 — €)|lo(z;)||; with
0/2 probability over uniform x; € X;. But given y with
ly — o(x:)|, small, we can compute y' = o~ !(y) with
lly" — «;||; equally small. Then by Lemma 6.3 we can re-
cover x; from y with probability 6 /2 over z; € X;. Thus for
this ¢ and o, I(z;y | i,0) > Qlog | X;|) = Q(deslog(n/s))
by Fano’s inequality. But then I(z;y) = E; [I(z;y |
i,0)] = Q(6%eslog(n/s)) = Q(eslog(n/s)). |

6.2. Distributional Indexed Gap {,

Consider the following communication game, which we
refer to as Gap&i, studied in [2]. The legal instances
are pairs (x,y) of m-dimensional vectors, with x;,y; €
{0,1,2,..., B} for all 4 such that

o NO instance: for all i, y; — x; € {0,1}, or
« YES instance: there is a unique % for which y;—x; = B,
and for all j # i, y; — z; € {0,1}.
The distributional communication complexity D, s(f) of a
function f is the minimum over all deterministic protocols
computing f with error probability at most J, where the
probability is over inputs drawn from o.

Consider the distribution o which chooses a random
i € [m]. Then for each j # 4, it chooses a random
d €{0,...,B} and (x;,y;) is uniform in {(d, d), (d, d+1)}.
For coordinate 4, (z;,y;) is uniform in {(0,0), (0, B)}.
Using similar arguments to those in [2], Jayram [14] showed
D, s(Gapt) = Q(m/B?) (this is reference [70] on p.182
of [1]) for ¢ less than a small constant.

We define the one-way distributional communication com-
plexity D’ “*Y(f) of a function f to be the smallest
distributional complexity of a protocol for f in which only
a single message is sent from Alice to Bob.

Definition 6.5 (Indexed Ind¢%:Z Problem). There are r pairs
of inputs (x',y%), (z2,y?),...,(x",y") such that every pair
(x%,y") is a legal instance of the GaplZ problem. Alice
is given x',... x". Bob is given an index I € [r] and
y',...,y". The goal is to decide whether (x!,y") is a NO
or a YES instance of GaptZ.

Let n be the distribution ¢” x U,., where U, is the uniform
distribution on [r]. We bound D;:;way(lndfoo)T’B as follows.



For a function f, let f” denote the problem of computing
r instances of f. For a distribution ¢ on instances of f, let
Dé_}“‘“’*( /) denote the minimum communication cost of
a deterministic protocol computing a function f with error
probability at most § in each of the r copies of f, where
the inputs come from (".

Theorem 6.6. (special case of Corollary 2.5 of [3]) Assume
D, s(f) is larger than a large enough constant. Then

DLW (f7) = Q(rDas(f)).

Theorem 6.7. For § less than a sufficiently small constant,
DL (IndenP) = Q(6%rm/ (B2 log ).

Proof: Consider a deterministic 1-way protocol II
for Ind¢%:P with error probability § on inputs drawn
from 7. Then for at least r/2 values ¢ € [r],
Pr[Il(zt, ... 2"yt ... y" I) = GaplE(zl,yl) | T =
i] > 1 — 2. Fix a set S = {i1,...,4,/2} of indices with
this property. We build a deterministic 1-way protocol IT’
for f7/? with input distribution o"/2 and error probability
at most 66 in each of the r/2 copies of f.

For each ¢ € [r] \ S, independently choose (x¢,y) ~
o. For each j € [r/2], let Zj be the probability that
O(zt,...,2" 9yt ...,y 1) = GaplE (2%, y%) given T =
i; and the choice of (x¢,y*) for all £ € [r]\ S.

If we repeat this experiment independently s =
O(6~2logr) times, obtaining independent Z ,Z3 and
let Z; = >, Z%, then Pr[Z; > s —5-30] > i l So there
exists a set of s = O(671logr) repetitions for which for
each j € [r/2], Z; > s — s - 36. We hardwire these into II’
to make the protocol deterministic.

Given inputs ((X',...,X"/?),(Y',...,Y"/?)) ~ o"/2
to IT’, Alice and Bob run s executions of I1, each with z% =
X7 and y% = Y7 for all j € [r/2], filling in the remaining
values using the hardwired inputs. Bob runs the algorithm
specified by II for each i; € S and each execution. His
output for (X7,Y7) is the majority of the outputs of the s
executions with index i;.

Fix an index ¢;. Let W be the number of repetitions for
which Gap/Z (X7,Y7) does not equal the output of II on
input i;, for a random (X7,Y7) ~ o. Then, E[W] < 34. By
a Markov bound, Pr[W > s/2] < 66, and so the coordinate
is correct with probability at least 1 — 60.

The communication of IT' is a factor s = ©(6~2?logr)
more than that of II. The theorem now follows by Theorem
6.6, using that D, 125(GaptZ) = Q(m/B?). [ |

6.3. Lower bound for sparse recovery

Fix the parameters B = ©(1/e'/2),r = k, m = 1/¢%/2,

and n = k/e3. Given an instance (z',y'),..., (2", y"), I of
Ind¢7:B, we define the input signal z to a sparse recovery

problem. We allocate a set S of m disjoint coordinates in
a universe of size n for each pair (z*,y"), and on these
coordinates place the vector y* — z*. The locations are

important for arguing the sparse recovery algorithm cannot
learn much information about the noise, and will be placed
uniformly at random.

Let p denote the induced distribution on z. Fix a (1 +¢€)-
approximate k-sparse recovery bit scheme Alg that takes b
bits as input and succeeds with probability at least 1 — §,/2
over z ~ p for some small constant 0. Let S be the set of top
k coordinates in z. Alg has the guarantee that if it succeeds
for z ~ p, then there exists a small u with |Jul|, < n™2 so
that v = Alg(z) satisfies

o=z —ully < A+ ||z + wmps]|,
(1+€) [lzpunsl, + 2 +e)/n?

< (14 2¢) [|l2pp s

[o = z[|; <

and thus

Iw =2l + |0 = sy < 0+ 20 zpapslh (15)

Lemma 6.8. For B = O(1/¢'/?) sufficiently large, suppose
that Pr.p[l[(v — 2)sll1 < 10€ - [[z(ap\sll1] = 1 — d. Then
Alg requires b = Q(k/(e'/?logk)).

Proof: We show how to use Alg to solve instances
of Ind¢%:5 with probability at least 1 — C' for some small
C, where the probability is over input instances to Ind¢%;?
distributed according to 7, inducing the distribution p. The
lower bound will follow by Theorem 6.7. Since Alg is a
deterministic sparse recovery bit scheme, it receives a sketch
f(z) of the input signal z and runs an arbitrary recovery
algorithm g on f(z) to determine its output v = Alg(z).

Given z',...,2", for each i = 1,2,...,7, Alice places
—2' on the appropriate coordinates in the block S? used in
defining z, obtaining a vector z4j;c., and transmits f(24zice)
to Bob. Bob uses his inputs 4',...,y" to place y’ on the
appropriate coordinate in S°. He thus creates a vector zgep
for which zajice +250b = 2. Given f(zjice), Bob computes
f(z) from f(zajice) and f(zpop), then v = Alg(z). We
assume all coordinates of v are rounded to the real interval
[0, B], as this can only decrease the error.

We say that S? is bad if either

« there is no coordinate j in S* for which |v;| > £ yet

(x%,9%) is a YES instance of Gap/%Z, or

« there is a coordinate j in S for which |v;| >

either (¢, y%) is a NO instance of Gap/%:F or j

the unique j* for which y}. — z%. = B
The ¢;-error incurred by a bad block is at least B/2 — 1.
Hence, if there are ¢ bad blocks, the total error is at least
t(B/2—1), which must be smaller than 10¢- ||2[,\ s 1 With
probability 1 — . Suppose this happens.

We bound ¢. All coordinates in z[,)\ s have value in the
set {0, 1}. Hence, ||zp\sll1 < rm. So t < 20erm/(B —2).
For B > 6, t < 30erm/B. Plugging in r, m and B, t < Ck,
where C' > 0 is a constant that can be made arbitrarily small
by increasing B = O(1/¢'/?).

yet

B
2
is not



If a block S? is not bad, then it can be used to solve
Gap/:B on (x%,y") with probability 1. Bob declares that
(x%,y%) is a YES instance if and only if there is a coordinate
j in S* for which |v;| > B/2.

Since Bob’s index I is uniform on the m coordinates
in Ind¢%:B, with probability at least 1 — C' the players
solve Ind¢%P given that the ¢; error is small. Therefore
they solve Ind¢%:Z with probability 1 — § — C overall. By
Theorem 6.7, for C' and § sufficiently small Alg requires
Q(mr/(B?logr)) = Q(k/(e'/?logk)) bits. [ |

Lemma 6.9. Suppose Pr...,|[[|(v — 2)ppsll1] < (1 —8e) -
llzinp\slli] > 6/2. Then Alg requires b = Q(ﬁklog(l/e)).

Proof: The distribution p consists of B(mr,1/2) ones
placed uniformly throughout the n coordinates, where
B(mr,1/2) denotes the binomial distribution with mr
events of 1/2 probability each. Therefore with proba-
bility at least 1 — §/4, the number of ones lies in
[0mr/8,(1 — §/8)mr]. Thus by Lemma 6.4, I(v;z) >
Q(emrlog(n/(mr))). Since the mutual information only
passes through a b-bit string, b = Q(emrlog(n/(mr))) as
well. ]

Theorem 6.10. Any (1 + ¢)-approximate {1/, recovery
scheme with sufficiently small constant failure probability
0 must make Q(ﬁk /log®(k/€)) measurements.

Proof: We will lower bound any /1 /¢, sparse recovery
bit scheme Alg. If Alg succeeds, then in order to satisfy
inequality (15), we must either have [|(v — 2)g|/1 < 10€ -
|2\ sll1 or we must have |[(v — 2)ppslli < (1 — 8e) -
l|2fn)\sl1- Since Alg succeeds with probability at least 1 —
0, it must either satisfy the hypothesis of Lemma 6.8 or
the hypothesis of Lemma 6.9. But by these two lemmas, it
follows that b = Q(ﬁk /log k). Therefore by Lemma 5.2,
any (1 + €)-approximate ¢;/¢; sparse recovery algorithm
requires Q(ﬁk/ log?(k/€)) measurements. [ |

7. LOWER BOUNDS FOR k-SPARSE OUTPUT

Theorem 7.1. Any 1+e-approximate {1 /{1 recovery scheme
with k-sparse output and failure probability § requires m =
Q(L(klogl +1log3)), for 32 < 1 < né?/k.

Theorem 7.2. Any 1+e-approximate {s [l recovery scheme
with k-sparse output and failure probability § requires m =
Q& (k+1log %)), for 32 < ¥ < ne?/k.

These two theorems correspond to four statements: one
for large k and one for small § for both ¢; and /5.

All are fairly similar to the framework of [9]: they use
a sparse recovery algorithm to robustly identify = from Az
for « in some set X. This gives bit complexity log|X]|,
or measurement complexity log | X|/logn by Lemma 5.2.
They amplify the bit complexity to log | X |log n by showing
they can recover z; from A(x; + 1—10552 + ..+ %x@(logn))
for z1,...,2g(10gn) € X and reducing from augmented

indexing. This gives a log|X| measurement lower bound.
Due to space constraints, we defer full proof to the full
paper.
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