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Abstract. The elastic-mode formulation of the problem of minimizing a nonlinear function
subject to equilibrium constraints has appealing local properties in that, for a finite value of
the penalty parameter, local solutions satisfying first- and second-order necessary optimality
conditions for the original problem are also first- and second-order points of the elastic-mode
formulation. Here we study global convergence properties of methods based on this formulation,
which involve generating an (exact or inexact) first- or second-order point of the formulation,
for nondecreasing values of the penalty parameter. Under certain regularity conditions on
the active constraints, we establish finite or asymptotic convergence to points having a certain
stationarity property (such as strong stationarity, M-stationarity, or C-stationarity). Numerical
experience with these approaches is discussed. In particular, our analysis and the numerical
evidence show that exact complementarity can be achieved finitely even when the elastic-mode
formulation is solved inexactly.
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1. Introduction

We consider a mathematical program with equilibrium constraints (MPEC),
defined as follows:

minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
0 ≤ GT x ⊥ HT x ≥ 0,

(1)

where f : IRn → IR, g : IRn → IRp, and h : IRn → IRq are all twice continuously
differentiable functions (at least in a neighborhood of all points generated by
our methods), and G and H are n×m column submatrices of the n×n identity
matrix (with no columns in common). Hence, the constraints GT x ≥ 0 and
HT x ≥ 0 represent nonnegativity bound constraints on certain components of
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x, and the notation GT x ⊥ HT x signifies that (GT x)T (HT x) = 0. This special
form of the complementarity constraints does not sacrifice generality; it can
always be attained by introducing artificial variables as needed. We use this
form because some of our results require the nonnegativity constraints GT x ≥ 0
and HT x ≥ 0 to be satisfied exactly even when x is only an inexact solution
of the subproblem in question. Such conditions are readily satisfied by most
interior-point and active-set methods.

MPEC has been well studied in recent years, with many solution meth-
ods proposed; see [2,3,5,13,15–17,19,21,23] and references therein. Although an
MPEC can be formulated as a nonlinear program by rewriting the complemen-
tarity constraint as an equality constraint (GT x)T (HT x) = 0 or as an inequality
constraint (GT x)T (HT x) ≤ 0, the resulting nonlinear program is highly degen-
erate; that is, it does not satisfy the linear independence constraint qualification
(LICQ) nor the Mangasarian-Fromovitz constraint qualification (MFCQ). Thus,
in order to achieve global convergence, specialized methods have been proposed
that exploit the special structure of the complementarity constraint. These meth-
ods generate a sequence of points in IRn whose accumulation points satisfy, un-
der suitable assumptions, certain necessary optimality conditions for the MPEC
(1). Different types of necessary optimality conditions have been developed, the
strongest and most desirable of which is strong stationarity [23]; see Definition 1
below. Under MPEC-LICQ (see Definition 2), strong stationarity is equivalent
to the notion of B-stationarity [6]. Two weaker conditions, M-stationarity and
C-stationarity [18,23], will also be of interest (see Definition 3).

A regularization method of Scholtes [24] achieves M-stationarity under MPEC-
LICQ and achieves strong stationarity under an additional upper-level strict
complementarity (ULSC) condition. A relaxation method of Lin and Fukushima
[15] and a penalty method of Hu and Ralph [10], penalizing the complementarity
constraint, have similar global convergence properties. A smoothing method of
Fukushima and Pang [6] achieves strong stationarity under MPEC-LICQ and an
additional asymptotically weak nondegeneracy condition. All these methods are
conceptual, in that they assume the generation of a sequence of points satisfying
exactly certain second-order necessary optimality conditions. Only in the case
of linear constraints has a practical method been developed (Fukushima and
Tseng [7]). We are led to ask: Can global convergence (to C- or M- or strongly
stationarity points) be achieved under weaker assumptions or for more practical
methods?

In this paper, we study this question for a nonlinear programming formula-
tion of (1) that uses an explicit penalization of the complementarity constraint,
also known as the “elastic mode.” For a given penalty parameter c ≥ 0 and fixed
upper bound ζ̄ ∈ [0,∞), this formulation can be written as follows:

PF(c) : minx,ζ f(x) + cζ + c(GT x)T (HT x) subject to
g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq, 0 ≤ ζ ≤ ζ̄,
GT x ≥ 0, HT x ≥ 0,

(2)

where el is the vector (1, 1, . . . , 1)T with l components. A similar formulation was
studied by Anitescu [1,2], while a variant with ζ fixed at zero was investigated
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by Ralph and Wright [21]. The penalty method in [10] is based on this variant.
Our analysis may also be extended to this variant, as well as to a mixed variant
whereby ζ is fixed at zero for a subset of the constraints (see Section 5). For ζ̄
sufficiently large, a feasible point of (2) is easily found, and there are appealing
correspondences between points x∗ that satisfy first-order optimality conditions
for (1) and points (x∗, 0) that satisfy first-order optimality conditions for (2)
(see Theorem 2).

The algorithms we consider in this paper generate a sequence of (exact or
inexact) first- or second-order points (xk, ζk) of PF(ck), where {ck} is a positive
nondecreasing sequence. We study the stationarity properties of the accumula-
tion points of {xk}. The upper bound constraint ζk ≤ ζ̄ helps to ensure the
existence and boundedness of (xk, ζk).

Our analyses draw on global convergence analyses of Scholtes [24] and An-
itescu [2]; the latter studied a variant of (1) known as parametric mixed-P varia-
tional inequalities. In Section 3, we study stationarity properties of termination
points and accumulation points of {(xk, ζk)}. In Subsection 3.1, (xk, ζk) is an
inexact first-order point of PF(ck), and we show that each feasible accumula-
tion point satisfying MPEC-LICQ is C-stationary for (1). In Subsection 3.2,
(xk, ζk) is an exact second-order point of PF(ck), and we show (somewhat sur-
prisingly) termination at a strongly stationary point for ck sufficiently large; oth-
erwise accumulation points either are infeasible or fail to satisfy MPEC-LICQ.
In Subsection 3.3, (xk, ζk) is an inexact second-order point of PF(ck), and we
show that each feasible accumulation point satisfying MPEC-LICQ is either M-
stationary or strongly stationary (depending on boundedness of {ck}). Moreover,
if exact complementarity holds between bound constraints and their multipliers,
then xk satisfies exactly the complementarity condition (GT xk)T (HT xk) = 0 for
all ck sufficiently large. In Subsection 3.4, we introduce a strengthened version
of MPEC-LICQ and prove another result concerning exact satisfaction of the
complementarity condition for sufficiently large ck–even when the subproblems
PF(ck) are solved inexactly. In Subsection 3.5, we present a practical algorithm
for generating (xk, ζk) as an inexact second-order point of PF(ck).

Section 4 discusses a “regularized” nonlinear programming formulation of
(1) [24] and presents examples to illustrate and compare the behavior of meth-
ods based on elastic-mode and regularized formulations. Section 5 presents some
numerical experience, corroborating the aforementioned result of exact comple-
mentarity under finite penalty.

In what follows, we use ‖·‖ to denote the Euclidean norm ‖·‖2. The notations
O(·) and o(·) are used in the usual sense. We denote by eq a vector of length q
whose entries are all 1, that is, eq = (1, 1, . . . , 1)T .

2. Assumptions and Background

In this section, we summarize some known results concerning constraint qual-
ifications and necessary optimality conditions for MPEC and its elastic-mode
formulation. We discuss first-order stationarity conditions and constraint quali-
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fications for MPEC (1) in Subsection 2.1 and first- and second-order stationarity
conditions for PF(c) (2) in Subsection 2.2. Subsection 2.3 describes the corre-
spondence between certain first-order points of the elastic form (2) and first-order
points of the MPEC (1).

2.1. Stationarity Conditions and Constraint Qualifications for MPEC

We start by defining the following active sets at a feasible point x∗ of MPEC
(1):

Ig
def= {i ∈ {1, 2, . . . , p} | gi(x∗) = 0}, (3a)

IG
def= {i ∈ {1, 2, . . . ,m} |GT

i x∗ = 0}, (3b)

IH
def= {i ∈ {1, 2, . . . ,m} |HT

i x∗ = 0}, (3c)

where Gi and Hi denote the ith column of G and H, respectively (in each
case, a column from the identity matrix). Because x∗ is feasible for (1), we have
IG ∪ IH = {1, 2, . . . ,m}.

Using the active sets, we define our first notion of first-order stationarity for
(1) as follows.

Definition 1. A feasible point x∗ of (1) is strongly stationary if d = 0 solves
the following linear program:

mind∇f(x∗)T d subject to
g(x∗) +∇g(x∗)T d ≥ 0, h(x∗) +∇h(x∗)T d = 0,

GT
i d = 0, i ∈ IG\IH ,

HT
i d = 0, i ∈ IH\IG,

GT
i d ≥ 0, HT

i d ≥ 0, i ∈ IG ∩ IH .

(4)

Let us introduce Lagrange multipliers and define the MPEC Lagrangian as
in Scholtes [24, Sec. 4]:

L(x, λ, µ, τ, ν) = f(x)− λT g(x)− µT h(x)− τT GT x− νT HT x. (5)

By combining the (necessary and sufficient) conditions for d = 0 to solve (4)
with the feasibility conditions for x∗, we see that x∗ is strongly stationary if and
only if x∗ satisfies, together with some multipliers (λ∗, µ∗, τ∗, ν∗), the following
conditions:

∇xL(x∗, λ∗, µ∗, τ∗, ν∗) = 0, (6a)
0 ≤ λ∗ ⊥ g(x∗) ≥ 0, (6b)

h(x∗) = 0, (6c)
τ∗ ⊥ GT x∗ ≥ 0, (6d)
ν∗ ⊥ HT x∗ ≥ 0, (6e)

τ∗i ≥ 0, i ∈ IG ∩ IH , (6f)
ν∗i ≥ 0, i ∈ IG ∩ IH . (6g)
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Under the following constraint qualification at x∗, the multipliers (λ∗, µ∗, τ∗, ν∗)
are in fact unique.

Definition 2. The MPEC-LICQ holds at a feasible point x∗ of (1) if the follow-
ing set of vectors is linearly independent:

K def= {∇gi(x∗)}i∈Ig
∪ {∇hi(x∗)}i=1,2,...,q ∪ {Gi}i∈IG

∪ {Hi}i∈IH
. (7)

The following result, dating back to Luo, Pang, and Ralph [17] but stated
here in the form of Scheel and Scholtes [23, Theorem 2], shows that, under
MPEC-LICQ, strong stationarity is a set of (first-order) necessary optimality
conditions for the MPEC.

Theorem 1. Suppose that x∗ is a local minimizer of (1). If the MPEC-LICQ
holds at x∗, then x∗ is strongly stationary, and the multiplier vector (λ∗, µ∗, τ∗, ν∗)
that satisfies the conditions (6) is unique.

Our analysis also uses two weaker notions of first-order stationarity for (1)
that have been studied in previous works; see, for example, Outrata [18] and
Scheel and Scholtes [23].

Definition 3. (a) A point x∗ is C-stationary if there exist multipliers
(λ∗, µ∗, τ∗, ν∗) satisfying (6) except that the conditions (6f), (6g) are replaced
by τ∗i ν∗i ≥ 0, for each i ∈ IG ∩ IH .

(b) A point x∗ is M-stationary if it is C-stationary and if either τ∗i ≥ 0 or ν∗i ≥ 0
for each i ∈ IG ∩ IH .

Notice that M-stationarity allows such situations as τ∗i < 0 and µ∗i = 0 for some
i ∈ IG ∩ IH but does not allow the situation τ∗i < 0 and µ∗i < 0, which is
allowed by C-stationarity. In particular, strongly stationary ⇒ M-stationary ⇒
C-stationary.

2.2. Necessary Optimality Conditions for PF(c)

In this subsection, we discuss the exact and inexact first- and second-order nec-
essary optimality conditions for PF(c) defined in (2). We start by defining the
Lagrangian for this problem as follows:

Lc(x, ζ, λ, µ−, µ+, τ, ν) = f(x) + cζ + c(GT x)T HT x− λT (g(x) + ζep)(8)
−(µ+)T (ζeq − h(x))− (µ−)T (ζeq + h(x))− τT GT x− νT HT x.

The Karush-Kuhn-Tucker first-order necessary optimality conditions for this
problem are as follows:

∇xLc(x, ζ, λ, µ−, µ+, τ, ν) = 0, (9a)
c− eT

p λ− eT
q µ− − eT

q µ+ = π− − π+, (9b)

0 ≤ (π−, π+) ⊥ (ζ, ζ̄ − ζ) ≥ 0, (9c)
0 ≤ λ ⊥ g(x) + ζep ≥ 0, (9d)
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0 ≤ µ+ ⊥ ζeq − h(x) ≥ 0, (9e)
0 ≤ µ− ⊥ ζeq + h(x) ≥ 0, (9f)

0 ≤ τ ⊥ GT x ≥ 0, (9g)
0 ≤ ν ⊥ HT x ≥ 0. (9h)

We call (x, ζ) satisfying these conditions a first-order point of PF(c). Since these
conditions cannot be satisfied exactly in practice, we consider the following in-
exact first-order conditions.

Definition 4. We say that (x, ζ) is an ε-first-order point of PF(c) (ε ≥ 0) if
there exist multipliers (λ, µ−, µ+, τ, ν, π−, π+) satisfying

‖∇xLc(x, ζ, λ, µ−, µ+, τ, ν)‖∞ ≤ ε,
|c− eT

p λ− eT
q µ− − eT

q µ+ − π− + π+| ≤ ε,
0 ≤ (π−, π+), (ζ, ζ̄ − ζ) ≥ 0, ζπ− + (ζ̄ − ζ)π+ ≤ ε,
0 ≤ λ, g(x) + ζep ≥ −εep, |(g(x) + ζep)T λ| ≤ ε,
0 ≤ µ+, ζeq − h(x) ≥ −εeq, |(ζeq − h(x))T µ+| ≤ ε,
0 ≤ µ−, ζeq + h(x) ≥ −εeq, |(ζeq + h(x))T µ−| ≤ ε,
0 ≤ τ, GT x ≥ 0, τT GT x ≤ ε,
0 ≤ ν, HT x ≥ 0, νT HT x ≤ ε.

(10)

The conditions (10) are well suited to situations in which PF(c) is solved by
interior-point methods or active-set methods, since such methods can enforce
the bound constraints GT x ≥ 0 and HT x ≥ 0 explicitly (also the nonnegativ-
ity constraints on the multipliers, in the case of interior-point methods), while
allowing the constraints involving nonlinear functions to be satisfied inexactly.

We now introduce the notions of approximately active constraints and of
exact and inexact second-order (stationary) points of PF(c).

Definition 5. Given a function r : IRn → IR, a constraint r(x) ≥ 0 or r(x) = 0
of a nonlinear program is δ-active (δ ≥ 0) at a point x̂ if |r(x̂)| ≤ δ. The
constraint is active at x̂ if r(x̂) = 0.

Definition 6. We say that (x, ζ) is a second-order point of PF(c) if there exist
multipliers (λ, µ−, µ+, τ, ν, π−, π+) satisfying (9) (so (x, ζ) is a first-order point
of PF(c)) and

ũT∇2
(x,ζ)(x,ζ)

Lc(x, ζ, λ, µ−, µ+, τ, ν)ũ ≥ 0,

for all ũ ∈ IRn+1 in the null space of the gradients of all active constraints of (2)
at (x, ζ).

Definition 7. We say that (x, ζ) is an (ε, δ)-second-order point of PF(c) (ε, δ ≥
0) if there exist multipliers (λ, µ−, µ+, τ, ν, π−, π+) satisfying (10) (so (x, ζ) is
an ε-first-order point of PF(c)) and

ũT∇2
(x,ζ)(x,ζ)

Lc(x, ζ, λ, µ−, µ+, τ, ν)ũ ≥ −C‖ũ‖2,

for all ũ ∈ IRn+1 that are simultaneously in the null space of the gradients of all
active bound constraints (GT x ≥ 0, HT x ≥ 0, 0 ≤ ζ ≤ ζ̄) of (2) at (x, ζ) and in
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the null space of the gradients of δ-active nonbound constraints (g(x) ≥ −ζep,
ζeq ≥ h(x) ≥ −ζeq) at (x, ζ). Here C ≥ 0 is an arbitrary constant independent
of (x, ζ).

We shall see in Subsection 5.3 that the bounded indefiniteness condition given
in Definition 7 is numerically easier to verify than the more standard positive
semidefiniteness condition (corresponding to C = 0). In particular, when we
use an off-the-shelf code to solve PF(c), we generally have no knowledge and
no control of how the active constraints are computed, if they are explicitly
computed at all. Hence, it is difficult to check numerically whether the final
point output by the code satisfies the positive semidefiniteness condition because
this condition is sensitive to the value of the (unknown) tolerance δ. On the
other hand, as our numerical experience in Subsection 5.3 suggests, the bounded
indefiniteness condition seems fairly insensitive to δ.

2.3. Relating First-Order Points of the MPEC and the Elastic Form

The following result identifies certain first-order points of PF(c) (2) with the
strongly stationary points of the MPEC (1).

Theorem 2. If (x, ζ) is a first-order point of PF(c) with c ≥ 0 and x is feasible
for (1), then (x, 0) is also a first-order point of PF(c), and x is strongly stationary
for (1).

Proof. To prove the first claim, we show that when x is feasible for (1), ζ can
be replaced by 0 in the conditions (9) and they will still be satisfied, without
changes to the other variables. It is easy to see that the conditions (9d), (9e),
and (9f) continue to hold after this substitution, while (9b) is not affected. Also,
we have from (9c) that

0 ≤ π+ ⊥ ζ̄ − ζ ≥ 0. (11)

If ζ̄ = 0, we must have that ζ = 0 already, so that the substitution of 0 for ζ
is inconsequential. If ζ̄ − ζ > 0, we must have π+ = 0, so (11) still holds after
ζ is replaced by 0. The final case is ζ = ζ̄ > 0 with π+ > 0. By the conditions
0 ≤ π− ⊥ ζ ≥ 0, we have π− = 0, so the right-hand side (9b) is negative. On
the other hand, since x is feasible in (1) and ζ > 0, we have g(x) + ζep > 0,
ζeq − h(x) > 0, and ζeq + h(x) > 0, so it follows by complementarity in (9d),
(9e), and (9f) that λ = 0 and µ− = µ+ = 0. Hence, the left-hand side of (9b) is
nonnegative, a contradiction. Thus, we must have π+ = 0, so the conditions (11)
will continue to hold after we replace ζ by 0. The first statement of the theorem
is proved.

For the second statement, we can identify (9a) with (6a) by setting x∗ = x,
ζ = 0, and

τ∗ = τ − cHT x, ν∗ = ν − cGT x, λ∗ = λ, µ∗ = µ− − µ+. (12)
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3. Global Convergence Results

In this section we state and prove results for methods in which PF(ck) is solved
for a nondecreasing sequence of positive scalars {ck}. By “solved” we mean that
either an exact or inexact first- or second-order point xk of PF(ck) is com-
puted; we analyze various cases in the subsections below. We are interested
particularly in techniques that achieve exact complementarity finitely; that is,
(GT xk)T (HT xk) = 0 for all iterates k with ck exceeding some threshold c∗.

3.1. A Sequence of Inexact First-Order Points

Here we consider the situation in which an inexact first-order point (xk, ζk) of
PF(ck) is generated, for k = 0, 1, . . ., and give conditions under which accumula-
tion points of {xk} are C-stationary. The proof is long and somewhat technical.
It borrows some ideas from the proofs of Scholtes [24, Theorem 3.1] and An-
itescu [2, Theorem 2.5].

Theorem 3. Let {ck} be a positive sequence, nondecreasing with k, and {εk}
be a nonnegative sequence with {ckεk} → 0. Suppose that (xk, ζk) is an εk-first-
order point of PF(ck), k = 0, 1, . . .. Let x∗ be any accumulation point of {xk}
that is feasible for (1) and satisfies MPEC-LICQ. Then x∗ is C-stationary for
(1), and for any S ⊂ {0, 1, . . .} with {xk}k∈S → x∗, we have {ζk}k∈S → 0.

Proof. Suppose without loss of generality that {xk} → x∗. Since ck ≥ c0 >
0 and {ckεk} → 0, we have {εk} → 0. Let (λk, µ−k, µ+k, τk, νk, π−k, π+k) be
multipliers associated with (xk, ζk) (from (10)).

From the final row of (10), we have that, for all k,

νk
i (HT

i xk) ≤ (νk)T (HT xk) ≤ εk, i = 1, 2, . . . ,m, (13)

so for i /∈ IH , since HT
i xk is bounded away from zero, we have that νk

i = O(εk).
By similar reasoning, we have that τk

i = O(εk) for i /∈ IG. Using these two facts,
we can write the first row of (10) as follows:

0 = ∇f(xk)−
p∑

i=1

λk
i∇gi(xk)−

q∑
i=1

(µ−k
i − µ+k

i )∇hi(xk)

−
∑
i∈IG

(τk
i − ckHT

i xk)Gi −
∑
i∈IH

(νk
i − ckGT

i xk)Hi

+ck

∑
i/∈IG

(HT
i xk)Gi + ck

∑
i/∈IH

(GT
i xk)Hi + O(εk).

Since x∗ is feasible for (1), we have IG∪IH = {1, 2, . . . ,m}, and the set of indices
i /∈ IG is simply IH\IG. Similarly, i /∈ IH ⇔ i ∈ IG\IH . Hence, we can restate
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the relation above as follows:

0 = ∇f(xk)−
p∑

i=1

λk
i∇gi(xk)−

q∑
i=1

(µ−k
i − µ+k

i )∇hi(xk)

−
∑

i∈IG∩IH

(τk
i − ckHT

i xk)Gi −
∑

i∈IG∩IH

(νk
i − ckGT

i xk)Hi (14)

−
∑

i∈IG\IH

[
(τk

i − ckHT
i xk)Gi − ck(GT

i xk)Hi

]
−

∑
i∈IH\IG

[
(νk

i − ckGT
i xk)Hi − ck(HT

i xk)Gi

]
+ O(εk).

We examine the final summation in (14) more closely. This term can be
written as follows:∑

i∈IH\IG

[
(νk

i − ckGT
i xk)Hi − ck(HT

i xk)Gi

]
=

∑
i∈IH\IG

(νk
i − ckGT

i xk)
[
Hi +

HT
i xk

GT
i xk

Gi

]
− νk

i

HT
i xk

GT
i xk

Gi (15)

=
∑

i∈IH\IG

(νk
i − ckGT

i xk)
[
Hi +

HT
i xk

GT
i xk

Gi

]
+ O(εk),

where the final inequality is a consequence of {GT
i xk} → GT

i x∗ > 0 for i ∈ IH\IG

and 0 ≤ νk
i HT

i xk ≤ εk (see (13)). Hence, by defining

H̃k
i

def=

Hi +
HT

i xk

GT
i xk

Gi, for i ∈ IH\IG ,

Hi, for i ∈ IG ∩ IH ,
(16)

we deduce from (15) that∑
i∈IH\IG

[
(νk

i − ckGT
i xk)Hi − ck(HT

i xk)Gi

]
=

∑
i∈IH\IG

(νk
i − ckGT

i xk)H̃k
i + O(εk).

(17)
Since {HT

i xk/GT
i xk} → 0 for i ∈ IH\IG, we have from (16) that

{H̃k
i } → Hi, for i ∈ IH .

A similar definition of G̃k
i for i ∈ IG yields for the second-to-last summation in

(14) that∑
i∈IG\IH

[
(τk

i − ckHT
i xk)Gi − ck(GT

i xk)Hi

]
=

∑
i∈IG\IH

(τk
i − ckHT

i xk)G̃k
i + O(εk).

(18)
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By substituting (17) and (18) into (14) and using the definitions of H̃k
i and G̃k

i ,
we have

0 = ∇f(xk)−
p∑

i=1

λk
i∇gi(xk)−

q∑
i=1

(µ−k
i − µ+k

i )∇hi(xk) (19)

−
∑
i∈IG

(τk
i − ckHT

i xk)G̃k
i −

∑
i∈IH

(νk
i − ckGT

i xk)H̃k
i + O(εk).

We turn now to the term in (19) involving λk. By taking a further sub-
sequence if necessary, we assume that there is a constant ρ > 0 such that
gi(xk) ≥ ρ for all i /∈ Ig and all k. From the fourth row of (10) we have
|(g(xk) + ζkep)T λk| ≤ εk and therefore∑

i 6∈Ig

(gi(xk) + ζk)λk
i ≤ εk −

∑
i∈Ig

(gi(xk) + ζk)λk
i ≤ εk + εk

∑
i∈Ig

λk
i ,

where the second inequality follows from the fact that λk
i ≥ 0 and gi(xk) + ζk ≥

−εk for all i (due to the fourth row of (10)). Since i /∈ Ig ⇒ gi(xk) + ζk ≥
gi(xk) ≥ ρ > 0, it follows that

ρ
∑
i/∈Ig

λk
i ≤ εk + εk

∑
i∈Ig

λk
i , for all k. (20)

When
∑

i∈Ig
λk

i ≥ 1, we have immediately from (20) that∑
i/∈Ig

λk
i∑

i∈Ig
λk

i

≤ 2εk

ρ
. (21)

Then
p∑

i=1

λk
i∇gi(xk) =

∑
i∈Ig

λk
i

[
∇gi(xk) +

∑
j /∈Ig

λk
j∇gj(xk)∑

j∈Ig
λk

j

]
=

∑
i∈Ig

λk
i g̃i,

where the vector g̃k
i is defined in the obvious way. Because of (21) and {xk} → x∗,

we have {g̃k
i } → ∇gi(x∗). Otherwise, when

∑
i∈Ig

λk
i < 1, we have from (20) that∑

i/∈Ig

λk
i ≤

2εk

ρ
= O(εk), (22)

so that
p∑

i=1

λk
i∇gi(xk) =

∑
i∈Ig

λk
i g̃k

i + O(εk),

where we set g̃k
i

def= ∇gi(xk). Thus, in both cases, we have that

p∑
i=1

λk
i∇gi(xk) =

∑
i∈Ig

λk
i g̃k

i + O(εk) and {g̃k
i } → ∇gi(x∗), i ∈ Ig.
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Using the first relation, we can write (19) as follows:

0 = ∇f(xk)−
∑
i∈Ig

λk
i g̃k

i −
q∑

i=1

(µ−k
i − µ+k

i )∇hi(xk) (23)

−
∑
i∈IG

(τk
i − ckHT

i xk)G̃k
i −

∑
i∈IH

(νk
i − ckGT

i xk)H̃k
i + O(εk).

Since x∗ satisfies MPEC-LICQ, we can invoke Lemma 2 to deduce from (23) the
existence of λ∗i for i ∈ Ig, τ∗i for i ∈ IG, and ν∗i for i ∈ IH such that

0 = ∇f(x∗)−
∑
i∈Ig

λ∗i∇gi(x∗)−
q∑

i=1

µ∗i∇hi(x∗)−
∑
i∈IG

τ∗i Gi −
∑
i∈IH

ν∗i Hi,

and, moreover,

{λk
i } → λ∗i , for i ∈ Ig, (24a)

{µ−k
i − µ+k

i } → µ∗i , for i = 1, 2, . . . , q, (24b)
{τk

i − ckHT
i xk} → τ∗i , for i ∈ IG, (24c)

{νk
i − ckGT

i xk} → ν∗i , for i ∈ IH . (24d)

We now analyze (24c) and (24d) for i ∈ IG ∩ IH . Since τk
i , νk

i , GT
i xk, and

HT
i xk are all nonnegative, we have

(τk
i − ckHT

i xk)(νk
i − ckGT

i xk)
= τk

i νk
i + c2

k(HT
i xk)(GT

i xk)− ck(τk
i GT

i xk + νk
i HT

i xk)
≥ −ck(τk

i GT
i xk + νk

i HT
i xk)

≥ −2ckεk,

where the final inequality follows from (10). Taking limits as k →∞ and using
{ckεk} → 0, we conclude that τ∗i ν∗i ≥ 0 for i ∈ IG ∩ IH , implying C-stationarity.

To complete the proof, we show by contradiction that {ζk} → 0. If this
limit did not hold, we could assume by taking a subsequence if necessary that
ζk ≥ ζ > 0 for all k. Since x∗ is feasible, we have that gi(x∗) ≥ 0 for all i, so for
all k sufficiently large we have

gi(xk) + ζk ≥ ζ/2, for i = 1, 2, . . . , p.

Hence, we have from the fourth row of (10) that

eT
p λk ≤ 2εk/ζ,

for all k sufficiently large. Similarly, since h(x∗) = 0, we have that

ζk − hi(xk) ≥ ζ/2, ζk + hi(xk) ≥ ζ/2, for i = 1, 2, . . . , q.

Hence
eT
q µ−k ≤ 2εk/ζ, eT

q µ+k ≤ 2εk/ζ,
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for all k sufficiently large. This together with the second row of (10) yields

π−k − π+k = ck + O(εk).

Since π+k ≥ 0, this implies π−k ≥ ck + O(εk). Also, from the third row of (10),
we have ζkπ−k ≤ εk. Thus

ζk ≤
εk

π−k
≤ εk

ck + O(εk)
→ 0 as k →∞,

contradicting our positive lower bound on ζk.
Without loss of generality, we could assume in Theorem 3 that {ck} is increas-

ing (rather than nondecreasing). However, allowing {ck} to be nondecreasing is
convenient when, for example, (xk, ζk) is the point generated at the kth iteration
of an iterative method that allows ck to remain unchanged from one iteration to
the next; see Algorithm Elastic-Inexact in Section 3.5.

The following corollary gives additional global convergence properties of the
sequence {(xk, ζk)}.

Corollary 1. Suppose that the assumptions of Theorem 3 hold, where x∗ is an
accumulation point of {xk} that is C-stationary for (1) and satisfies MPEC-
LICQ. Then for any S ⊂ {0, 1, . . .} such that {xk}k∈S → x∗, we have that

{ckGT
i xk}k∈S → 0, for i ∈ IG\IH , (25a)

{ckHT
i xk}k∈S → 0, for i ∈ IH\IG, (25b)

{ck(GT
i xk)(HT

i xk)}k∈S → 0, for i ∈ IG ∩ IH , (25c)
{ckζk}k∈S → 0. (25d)

Proof. We first prove (25b); the proof of (25a) is analogous. If {ck} is bounded
(from above by c̄, say), then the result follows from

0 ≤ ckHT
i xk ≤ c̄HT

i xk → c̄HT
i x∗ = 0, as k ∈ S, k →∞, i ∈ IH\IG.

Suppose instead that {ck} ↑ ∞. Assume for contradiction that there is some
S̄ ⊂ S, some i ∈ IH\IG, and some constant ρ > 0 such that ckHT

i xk ≥ ρ for all
k ∈ S̄. From the final row of (10), we have that νk

i HT
i xk ≤ (νk)T HT xk ≤ εk,

implying
νk

i ckHT
i xk ≤ ckεk → 0, as k ∈ S̄, k →∞.

It follows from ckHT
i xk ≥ ρ that {νk

i }k∈S̄ → 0. From the limit (24d), we then
have that

{ckGT
i xk}k∈S̄ → −ν∗i .

Since {ck} ↑ ∞, this limit implies that {GT
i xk}k∈S̄ → 0. Since {xk} → x∗, it

follows that GT
i x∗ = 0, implying that i ∈ IG. This contradicts our choice of

i ∈ IH\IG, so (25b) must hold in this case too.
If {ck} is bounded, then (25c) follows from the feasibility of x∗ for (1). Sup-

pose instead that {ck} ↑ ∞. Assume for contradiction that there is some S̄ ⊂ S,
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some i ∈ IG ∩ IH , and some constant ρ > 0 such that ck(GT
i xk)(HT

i xk) ≥ ρ for
all k ∈ S̄. Thus by (24c), we have

τk
i = ckHT

i xk + O(1) ≥ ρ

GT
i xk

+ O(1) ≥ ρ

2GT
i xk

,

for all k ∈ S̄ sufficiently large. However, from the second-to-last row of (10), we
have τk

i GT
i xk ≤ (τk)T (GT xk) ≤ εk, so that τk

i ≤ εk/GT
i xk, yielding the desired

contradiction since {εk} → 0.
To prove (25d), we see from the third row of (10) that, for all k,

ckζk ≤ ζk(eT
p λk + eT

q µ−k + eT
q µ+k + π−k − π+k) + εkζk. (26)

Because of (24a) and {ζk}k∈S → 0 (Theorem 3), we have that {ζkeT
p λk}k∈S → 0.

Similarly, it is immediate that {εkζk}k∈S → 0. From the fifth and sixth rows of
(10) and (24b), we also have

ζk(eT
q µ+k + eT

q µ−k)

≤ h(xk)T (µ+k − µ−k) + 2εk

≤ ‖h(xk)‖∞‖µ+k − µ−k‖1 + 2εk

≤ (ζk + εk)‖µ+k − µ−k‖1 + 2εk → 0, as k ∈ S, k →∞.

Lastly, from the third row of (10), we have ζk(π−k − π+k) ≤ εk − ζ̄π+k ≤ εk.
Hence, by taking limits in (26), we have the desired result (25d).

In Theorem 3, we assumed that the accumulation point x∗ is feasible for
(1). This assumption is fairly mild and, as we show below, is satisfied under the
following assumptions on {(xk, ζk)} and {ck}.

Assumption 1 (a) {f(xk)} is bounded from below.
(b) {f(xk) + ckζk + ck(GT xk)T (HT xk)} is bounded from above.
(c) There exist positive sequences {ωk} → 0, {ηk} → ∞ such that ck+1 ≥ ηk+1

whenever ζk + (GT xk)T (HT xk) ≥ ωk.

Assumption 1(a) holds if f is bounded from below over the feasible set of
PF(ck). Assumption 1(b) holds if (i) the method for solving PF(ck) has the
property that the final point (xk, ζk) it generates has objective value no greater
than that of the starting point whenever the starting point is feasible for PF(ck);
and (ii) this method is started at (x̄, 0), with x̄ a feasible point of (1). Then (x̄, 0)
is feasible for PF(ck), with objective value f(x̄), so that

f(xk) + ckζk + ck(GT xk)T (HT xk) ≤ f(x̄), for all k.

Assumption 1(c) holds if we choose ck+1 ≥ max{ck, ηk+1} whenever
(GT xk)T (HT xk) +ζk ≥ ωk. Assumption 1 contrasts with the infeasible-point
MPEC-LICQ assumption used in [10, Lemma 3.2].

Lemma 1. Let {ck} be a positive sequence, nondecreasing with k, and {εk} be
a nonnegative sequence with {εk} → 0. Suppose that (xk, ζk) is an εk-first-order
point of PF(ck), k = 0, 1, . . ., and that Assumption 1 is satisfied. Then every
accumulation point of {xk} is feasible for (1).
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Proof. It suffices to show that

{ζk} → 0, {(GT xk)T (HT xk)} → 0. (27)

Then any accumulation point (x∗, ζ∗) of {(xk, ζk)} satisfies (GT x∗)T (HT x∗) = 0
and ζ∗ = 0, implying that x∗ is feasible for (1). (The other constraints of (1) are
satisfied by x∗, from rows 4 to 8 of (10) and {εk} → 0.)

We divide our argument into two cases. First, suppose that

ζk + (GT xk)T (HT xk) < ωk, (28)

for all k sufficiently large. Since ζk ≥ 0, GT xk ≥ 0, HT xk ≥ 0 for all k and
{ωk} → 0, the bound (28) implies (27). Second, suppose that (28) fails to hold for
all k in some infinite subsequence. Then, by Assumption 1(c), ck+1 ≥ ηk+1 for all
k in this subsequence. Since {ck} is nondecreasing and {ηk} → ∞, we have that
{ck} ↑ ∞. Assumptions 1(a) and 1(b) imply that {ckζk + ck(GT xk)T (HT xk)} is
bounded from above. Since ζk ≥ 0, GT xk ≥ 0, HT xk ≥ 0 for all k and {ck} ↑ ∞,
(27) follows.

3.2. A Sequence of Exact Second-Order Points

In this subsection, we consider the situation in which an exact second-order point
(xk, ζk) of PF(ck) is generated (Definition 6), for k = 0, 1, . . ., with {ck} ↑ ∞.

Algorithm Elastic-Exact
Choose ck > 0, k = 0, 1, . . ., with {ck} ↑ ∞;
for k = 0, 1, 2 . . .

Find a second-order point (xk, ζk) of PF(ck) with Lagrange multipliers
(λk, µ−k, µ+k, τk, νk, π−k, π+k);

if ζk = 0 and (GT xk)T (HT xk) = 0,
STOP.

end (if)
end (for)

We show below that either the algorithm terminates finitely—in which case,
the final iterate xk is strongly stationary by Theorem 2—or each accumulation
point of {xk} either is infeasible or fails to satisfy MPEC-LICQ.

Theorem 4. If Algorithm Elastic-Exact does not terminate finitely, then ev-
ery accumulation point x∗ of {xk} either is infeasible for (1) or fails to satisfy
MPEC-LICQ.

Proof. Assume for contradiction that the algorithm does not terminate finitely
and that there is an accumulation point x∗ that is feasible for (1) and satisfies
MPEC-LICQ. Let S ⊂ {0, 1, . . .} index the subsequence for which {xk}k∈S → x∗.
Since (xk, ζk) is a first-order point of PF(ck), with multipliers

(
λk, µ−k, µ+k, τk, νk,

π−k, π+k
)
, Theorem 3 (with εk ≡ 0) shows that x∗ is C-stationary. Our aim is
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to show that in fact xk is feasible for (1) for sufficiently large k ∈ S, and hence
the algorithm terminates finitely.

For any k, if ζk > 0, then (9c) would imply that π−k = 0, and hence

ck − eT
p λk − eT

q (µ−k + µ+k) = −π+k ≤ 0. (29)

Moreover, (9e) and (9f) would imply that, for each i, either µ−k
i = 0 or µ+k

i =
0, and hence ‖µ−k + µ+k‖ = ‖µ−k − µ+k‖. Since (24a) and (24b) hold when
restricted to k ∈ S, and since {ck} → ∞, we have that (29) cannot hold for all
k ∈ S sufficiently large. Thus, we have

ζk = 0, for all k ∈ S sufficiently large.

We next show that because (xk, ζk) satisfies the second-order necessary opti-
mality condition for PF(ck), we must have (GT

j xk)(HT
j xk) = 0 for all j ∈ IG∩IH

and all k ∈ S sufficiently large. Suppose not. By passing to a further subsequence
if necessary, there must be an index j ∈ IG ∩ IH such that (GT

j xk)(HT
j xk) 6= 0

for all k ∈ S. Define a direction dk satisfying the following conditions:

∇gi(xk)T dk = 0, for i ∈ Ig,
∇h(xk)T dk = 0,

GT
i dk = 0, for i ∈ IG with i 6= j,

HT
i dk = 0, for i ∈ IH with i 6= j,

GT
j dk = 1,

HT
j dk = −1.

(30)

Since {xk}k∈S → x∗ and MPEC-LICQ holds at x∗, the gradients in this defi-
nition are linearly independent for all k ∈ S sufficiently large, in which case dk

satisfying these equations is well defined. In fact, we can choose dk so that

‖dk‖ = O(1).

Since {(xk, ζk)}k∈S → (x∗, 0), the set of active constraints of (2) at (xk, ζk) is
a subset of the active constraints at (x∗, 0) for all k ∈ S sufficiently large, in
which case the direction (dk, 0) lies in the direction set described in Definition 6
corresponding to ck, (xk, ζk, λk, µ−k, µ+k, τk, νk). (Notice that the constraints
GT

j x ≥ 0 and HT
j x ≥ 0 are not active at (xk, ζk) because (GT

j xk)(HT
j xk) 6= 0.)

Also, (9d) implies λk
i = 0, i 6∈ Ig, for all k ∈ S sufficiently large.

From Definition (8) and using λk
i = 0 for i 6∈ Ig, we have

∇2
xxLck

(xk, ζk, λk, µ+k, µ−k, τk, νk) = ∇2f(xk)−
∑
i∈Ig

λk
i∇2gi(xk)

−
q∑

i=1

(µ−k
i − µ+k

i )∇2hi(xk)

+ck

m∑
i=1

(
GiH

T
i + HiG

T
i

)
,
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for all k ∈ S sufficiently large. Also, (24a) and (24b) hold when restricted to
k ∈ S, so the first three terms on the right-hand side of the above relation
(involving ∇2f , ∇2gi, and ∇2hi) are O(1). Thus, we have that[

dk

0

]T

∇2
(x,ζ)(x,ζ)

Lck
(xk, ζk, λk, µ+k, µ−k, τk, νk)

[
dk

0

]
= (dk)T∇2

xxLck
(xk, ζk, λk, µ+k, µ−k, τk, νk)dk

= O(1) + ck

m∑
i=1

(dk)T
(
GiH

T
i + HiG

T
i

)
dk

= O(1)− 2ck,

where the last equality uses (30) and IG ∪ IH = {1, 2, . . . ,m}. Since {ck} → ∞,
the right-hand side is negative for all k ∈ S sufficiently large, thereby contradict-
ing the assumption that xk is a second-order point of PF(ck). Hence, we have
(GT

j xk)(HT
j xk) = 0 for all j ∈ IG ∩ IH and for all k ∈ S sufficiently large.

Now consider any i ∈ IG\IH . Since HT
i xk is bounded away from 0 and (24c)

holds when restricted to k ∈ S, we see from {ck} → ∞ that τk
i > 0 for all

k ∈ S sufficiently large, implying that GT
i xk = 0 (see (9g)). Similarly, we have

HT
i xk = 0 for all i ∈ IH\IG and all k ∈ S sufficiently large.

We conclude that xk is feasible for (1) for all k ∈ S sufficiently large, and so
the algorithm terminates finitely, yielding the desired contradiction.

An algorithm based on exact solution of PF(ck) that chooses ck+1 substan-
tially larger than ck whenever xk is not feasible for (1) would generate a strongly
stationary point for a finite k, assuming that all accumulation points x∗ of {xk}
are feasible for (1) and satisfy MPEC-LICQ. By Lemma 1, feasibility of x∗ is
guaranteed under Assumption 1(a),(b). (Assumption 1(c) is satisfied because
{ck} → ∞ whenever the algorithm does not terminate finitely.)

3.3. A Sequence of Inexact Second-Order Points

In this subsection, we study the convergence properties of a sequence of inexact
second-order points of PF(ck) as k →∞, showing that accumulation points are
M-stationary under mild assumptions. If the sequence {ck} is bounded, then
the accumulation points are strongly stationary. We show that, when PF(ck) is
solved by methods that enforce exact complementarity between the constraints
GT x ≥ 0 and HT x ≥ 0 and their respective multipliers at each iteration (includ-
ing active-set methods such as filterSQP [4]), the generated point xk will become
exactly feasible with respect to the complementarity constraints GT x ⊥ HT x,
once ck exceeds a certain threshold.

Theorem 5. Let {ck}, {εk}, and {δk} be nonnegative sequences with ck > 0
nondecreasing with k, {ckεk} → 0, and {δk} → 0. Suppose that (xk, ζk) is an
(εk, δk)-second-order point of PF(ck), with Lagrange multipliers(
λk, µ−k, µ+k, τk, νk, π−k, π+k

)
, for k = 0, 1, . . .. Let x∗ be any accumulation
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point of {xk} that is feasible for (1) and satisfies MPEC-LICQ. Then there is a
threshold c∗ such that if ck ≥ c∗ for all k sufficiently large, the following results
hold:

(a) x∗ is M-stationary for (1).
(b) If {ck} is bounded, then x∗ is strongly stationary for (1).
(c) Suppose that exact complementarity between bound constraints and their mul-

tipliers holds at all iterations (that is, τk ⊥ GT xk and νk ⊥ HT xk for all k).
Let S ⊂ {0, 1, . . .} be such that {xk}k∈S → x∗. Then, for all k ∈ S sufficiently
large with ck ≥ c∗, we have (GT xk)T (HT xk) = 0.

Proof. (a) Since (xk, ζk) is an εk-first-order point of PF(ck), we have from The-
orem 3 that x∗ is C-stationary, with corresponding multipliers (λ∗, µ∗, τ∗, ν∗).
Since ck ≥ c0 > 0 for all k and {ckεk} → 0, we have {εk} → 0.

Let S ⊂ {0, 1, . . .} be such that {xk}k∈S → x∗. Theorem 3 implies that
{ζk}k∈S → 0. Also, the fourth row of (10) together with (24a) and {εk} → 0
imply {λk

i }k∈S → 0, i 6∈ Ig. Since {(xk, ζk)}k∈S → (x∗, 0) and {δk} → 0, the set
of δk-active constraints of (2) at (xk, ζk) is a subset of the active constraints at
(x∗, 0) for all k ∈ S sufficiently large. Then, defining dk by (30), the proof of
Theorem 4 can be readily adapted to show that there is a threshold c∗ (depending
on x∗ and C from Definition 7) such that

(GT
i xk)(HT

i xk) = 0, i ∈ IG ∩ IH ,
for all k ∈ S sufficiently large with ck ≥ c∗. (31)

Suppose that τ∗i < 0 for some i ∈ IG ∩ IH . Since τk
i ≥ 0 and (24c) holds

when restricted to k ∈ S, we have

ckHT
i xk = τk

i − τ∗i + o(1) ≥ −τ∗i /2, (32)

for all k ∈ S sufficiently large. This inequality implies that HT
i xk > 0 and so, by

(31), GT
i xk = 0. Since (24d) holds when restricted to k ∈ S, this in turn implies

νk
i − ckGT

i xk = νk
i → ν∗i , as k ∈ S, k →∞.

From (32) and the eighth row of (10), we have

νk
i ≤

εk

HT
i xk

≤ 2εkck

−τ∗i
→ 0, as k ∈ S, k →∞,

so we conclude that ν∗i = 0. Similar reasoning shows that if ν∗i < 0 for some
i ∈ IG ∩ IH , then τ∗i = 0. Hence, the accumulation point x∗ is M-stationary.

(b) Suppose that {ck} is bounded by a constant c̄. We argue by contradiction.
Suppose that τ∗i < 0 for some i ∈ IG ∩ IH . We have from (32) that

HT
i xk ≥ −τ∗i

2ck
≥ −τ∗i

2c̄
,

for all k ∈ S sufficiently large. This bound contradicts {HT
i xk}k∈S → 0. Similar

logic shows that we cannot have ν∗i < 0 for any i ∈ IG ∩ IH . Hence τ∗i ≥ 0 and
ν∗i ≥ 0 for all i ∈ IG ∩ IH , so x∗ is strongly stationary.
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(c) For any i ∈ IG\IH , we have as in the final part of the proof of Theorem 4
that τk

i > 0 for all k ∈ S sufficiently large. It follows from exact complementarity
that GT

i xk = 0 for all k sufficiently large. An analogous argument shows that
HT

i xk = 0 for all i ∈ IH\IG and all k sufficiently large. These observations
together with (31) yield that (GT

i xk)(HT
i xk) = 0 for all i = 1, 2, . . . ,m and all

k sufficiently large with ck ≥ c∗, thus proving the result.
By Lemma 1, the feasibility of x∗ is guaranteed under Assumption 1. Thus,

if we further assume in Theorem 5 that {(xk, ζk)} satisfies Assumption 1, then
the assumption that x∗ is feasible for (1) can be dropped.

3.4. Another Condition for Finite Exact Complementarity

In this subsection, we describe a strengthened version of the MPEC-LICQ un-
der which exact complementarity (GT xk)T (HT xk) = 0 holds for sufficiently
large ck, where (xk, ζk) is an inexact second-order point of PF(ck). In contrast
to Theorem 5(c), exact complementarity between bound constraints and their
multipliers need not hold at all iterations.

Definition 8. The strengthened MPEC-LICQ (MPEC-SLICQ) holds at a fea-
sible point x∗ of (1) if the vectors in each of the following sets are linearly
independent:

K ∪ {Hj}, for j ∈ IG\IH , K ∪ {Gj}, for j ∈ IH\IG,

where K is the set of active constraint gradients at x∗ defined in (7).

Clearly, MPEC-SLICQ ⇒ MPEC-LICQ. Using this constraint qualification,
we have the following result.

Theorem 6. Let {ck}, {εk}, and {δk} be nonnegative sequences with ck > 0
nondecreasing with k, {ckεk} → 0, and {δk} → 0. Suppose that (xk, ζk) is an
(εk, δk)-second-order point of PF(ck), k = 0, 1, . . .. Let S ⊂ {0, 1, . . .} be such
that {xk}k∈S → x∗, where x∗ is feasible for (1) and satisfies MPEC-SLICQ.
Then there is a threshold c∗ such that, for all k ∈ S sufficiently large with
ck ≥ c∗, we have (GT xk)T (HT xk) = 0.

Proof. We have from the proof of Theorem 4(a) that (31) holds, that is,
(GT

j xk)(HT
j xk) = 0 for all j ∈ IG ∩ IH and all k ∈ S sufficiently large so that

ck ≥ c∗, for a suitably large c∗.
For j ∈ IG\IH , suppose for contradiction that GT

j xk > 0 for infinitely many
k ∈ S. Since {xk}k∈S → x∗, we have HT

j xk > 0 for all k ∈ S sufficiently large.
Define a direction dk similarly to (30) as follows:

∇gi(xk)T dk = 0, for i ∈ Ig,
∇h(xk)T dk = 0,

GT
i dk = 0, for i ∈ IG with i 6= j,

HT
i dk = 0, for i ∈ IH ,

GT
j dk = 1,

HT
j dk = −1.

(33)
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Since MPEC-SLICQ holds at x∗, the gradients in this definition are approaching
the linearly independent set K ∪ {Hj}, so dk satisfying (33) exists for all k ∈ S
sufficiently large and can be chosen so that ‖dk‖ = O(1). Moreover, for k ∈ S
sufficiently large, (dk, 0) lies in the direction set defined in Definition 7. We can
now follow the proof of Theorem 4 to obtain a contradiction. Thus GT

j xk = 0
for all k ∈ S sufficiently large.

A similar argument shows that HT
j xk = 0 for all j ∈ IH\IG, and all k ∈ S

sufficiently large. The result then follows.
By Lemma 1, if we further assume in Theorem 6 that {(xk, ζk)} satisfies

Assumption 1, then the assumption that x∗ is feasible for (1) can be dropped.
A natural question to ask is whether MPEC-SLICQ has a high likelihood

of holding at the solution point. We approach this question experimentally, in
the numerical examples that we discuss in Section 5. But we also investigate
whether there is some quantifiable way to assert that MPEC-SLICQ holds “al-
most always” or “generically.” That is, can we define a function space containing
the problem data, and a topology in the space (typically, the Whitney topology
[9]), and then argue that the property in question holds for an open and dense
subset in the data space? In this vein, Jongen, Jonker, and Twilt [11,12] have
shown that LICQ holds “almost always” for nonlinear programs, and Scholtes
and Stöhr [25] have shown that MPEC-LICQ holds “almost always” for MPEC.

The corresponding conjecture for MPEC-SLICQ, for the same function space
and topology as the one used in [25] would be as follows: The set of infinitely
differentiable (g, h) for which the MPEC satisfies the MPEC-SLICQ at any fea-
sible point is dense in the Whitney topology. However, a counterexample to this
conjecture can be constructed as follows:

x ∈ IR3, g vacuous, h(x) = x2
1 − x2 + 1, GT x = x2, HT x = x3.

Consider the feasible point x∗ = (0, 1, 0)T , at which the constraints h(x) = 0
and HT x = x3 ≥ 0 are active. MPEC-SLICQ requires the three vectors ∇h, G,
and H to be linearly independent. However, for any small infinitely differentiable
perturbation of h, {∇h(x∗),H} remains a linearly independent set so that, by
the implicit function theorem, there is a point x in the neighborhood of x∗

satisfying h(x) = 0, GT x > 0, HT x = 0. Then x is a feasible point of the
MPEC, but {∇h(x), G,H} is a linearly dependent set.

The above example suggests a way to amend the conjecture of MPEC-SLICQ
genericity, as follows: The set of infinitely differentiable (g, h) for which the
MPEC satisfies the MPEC-SLICQ for all points in an open and dense subset
of the feasible set (in the relative topology of the feasible manifold) is open in
the Whitney topology and dense in the set of infinitely differentiable (g, h) that
satisfy MPEC-LICQ at every feasible point, provided that the number of active
constraints is one less than the number of variables. Specifically, we have the
following conjecture.

Conjecture 1. Consider any index sets Îg ⊂ {1, 2, . . . , p}, ÎG ⊂ {1, 2, . . . ,m}, and
ÎH ⊂ {1, 2, . . . ,m} satisfying

ÎG ∪ ÎH = {1, 2, . . . ,m}, n∗
def= n− n̂G − n̂H − n̂g − q > 0, (34)
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where n̂G, n̂H , and n̂g are the cardinalities of ÎG, ÎH , and Îg, respectively. Define
the following sets associated with the above index sets:

X
def= {x ∈ IRn |GT x ≥ 0, HT x ≥ 0, GT

ÎG
x = 0, HT

ÎH
x = 0},

L
def= {y ∈ IRp+q | yi > 0, for i ∈ {1, 2, . . . , p}\Îg, yi = 0 otherwise},

V def= {(g, h) ∈ C∞S (IRn, IRp+q) | (g, h)−1L ∩X 6= ∅, MPEC-LICQ holds
at each x∗ ∈ (g, h)−1L ∩X},

V̂ def= {(g, h) ∈ C∞S (IRn, IRp+q) | (g, h)−1L ∩X 6= ∅, MPEC-SLICQ holds
at each x∗ in some open and dense subset of (g, h)−1L ∩X},

where (g, h)−1L ∩ X may be seen as an n∗-dimensional submanifold. Then V
is an open set in C∞S (IRn, IRp+q), and V̂ is open and dense in it, in the relative
topology. Here, C∞S (IRn, IRp+q) is the space of infinitely differentiable functions
from IRn to IRp+q, endowed with the Whitney topology.

The scarcity of differential topology techniques that deal with such issues
(because we are now referring to the induced topology in the feasible manifold
itself, and we are leaving the realm of transversality for which most of these
techniques are designed) and the complexity of the result make the proof quite
difficult to construct, and we postpone this task for future research.

Another reasonable extension would be to include the objective function in
conjectures about the MPEC-SLICQ being generic at “critical points” of MPEC,
as was done for MPEC-LICQ in [25, Theorem 3(1b)]. However, the analog of
[25, Theorem 3(1a)] does not hold in our case, as is shown by our example, so
techniques specific to MPEC-SLICQ need to be developed for such an analysis.

3.5. An Algorithm Based on Inexact Second-Order Points

In this subsection, we analyze a practical algorithm for generating an inexact
second-order point (xk, ζk) of PF(ck). This algorithm will be the basis of our
computational study in Section 5.

Algorithm Elastic-Inexact
Choose parameters c0 > 0, ε0 > 0, Mε > Mc > 1, and positive sequences

{δk} → 0, {ωk} → 0;
for k = 0, 1, 2, . . .

find an (εk, δk)-second-order point (xk, ζk) of PF(ck) with
Lagrange multipliers (λk, µ−k, µ+k, τk, νk, π−k, π+k);

if ζk + (GT xk)T (HT xk) ≥ ωk,
set ck+1 = Mcck;

else
set ck+1 = ck;

end (if)
choose εk+1 ∈ (0, εk/Mε].

end (for)
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Notice that our algorithmic choices imply that, for all k,

ck+1εk+1

ckεk
≤ Mc

Mε
< 1. (35)

We show below that the sequences generated by Algorithm Elastic-Inexact
satisfy Assumption 1(c), and we accordingly apply Lemma 1 and Theorems 5
and 6 to obtain the desired convergence result.

Theorem 7. Consider the sequences generated by Algorithm Elastic-Inexact.
Suppose that they satisfy Assumption 1(a),(b). Then every accumulation point
x∗ of {xk} is feasible for (1). If x∗ satisfies MPEC-LICQ, then the following
results hold.

(a) x∗ is M-stationary for (1).
(b) Suppose that {ck} is bounded. Then x∗ is strongly stationary for (1).
(c) Suppose that either x∗ satisfies MPEC-SLICQ or τk ⊥ GT xk and νk ⊥ HT xk

for all k. Let S ⊂ {0, 1, . . .} be such that {xk}k∈S → x∗. Then, there is a
threshold c∗ such that, for all k ∈ S sufficiently large with ck ≥ c∗, we have
(GT xk)T (HT xk) = 0.

Proof. Clearly {ck} is nondecreasing, and, by (35), {ckεk} → 0. Also, since
ck+1 = Mcck whenever ζk + (GT xk)T (HT xk) ≥ ωk, we see that Assumption
1(c) is satisfied. (Take ηk = ck if k ≤ k̄, and take ηk = ck + k if k > k̄,
where k̄

def= sup{k | ζk + (GT xk)T (HT xk) ≥ ωk}.) Then, by Lemma 1, every
accumulation point x∗ of {xk} is feasible for (1). This observation, in conjunction
with Theorems 5 and 6, yields the desired conclusion.

An interesting research topic is to identify the conditions under which {ck}
remains bounded in Algorithm Elastic-Inexact.

4. Discussion and Examples

In this section, we present two examples that illustrate the convergence behaviors
(both strengths and limitations) of the algorithms studied in Section 3. We also
compare them with the convergence behaviors of the regularized formulation
of Scholtes [24] on these examples, illustrating why global convergence results
similar to those in Section 3 cannot be proved for the latter formulation.

4.1. Regularized Formulation

In Scholtes [24], the problem (1) is approximated by the following nonlinear
program:

Reg(t): minx f(x) subject to
g(x) ≥ 0, h(x) = 0,
GT x ≥ 0, HT x ≥ 0, (GT

i x)(HT
i x) ≤ t, i = 1, 2, . . . ,m,

(36)
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where t is a nonnegative parameter. For t > 0, this formulation tends to avoid the
constraint degeneracy associated with the nonlinear programming formulation of
(1). Scholtes [24, Theorem 4.1] showed that if (1) has a strongly stationary point
x∗ that satisfies MPEC-LICQ and certain second-order sufficient optimality con-
ditions, then for t > 0 sufficiently small, Reg(t) has a first-order point x(t) near
x∗ that satisfies LICQ and second-order sufficient optimality conditions for (36).
Generally, however, x(t) does not coincide with x∗ for t > 0 sufficiently small
(unless restrictive assumptions are made). The relationship between Reg(t) and
(1) is studied also by Ralph and Wright [21].

The following theorem summarizes global convergence properties for algo-
rithms based on exact solutions of the regularized formulation.

Theorem 8. Let {tk} be a sequence of positive scalars decreasing to 0, and let
xk be a first-order point of Reg(tk) with {xk} → x∗, where MPEC-LICQ holds
at x∗. Then x∗ is C-stationary for (1).

If, in addition, xk is a second-order point of Reg(tk) (defined analogously as
for PF(ck)) for all k, then x∗ is M-stationary for (1).

Proof. See Scholtes [24, Theorems 3.1 and 3.3].
It also follows from the proof of [24, Theorem 3.3] that if, in addition,

each (GT
i xk)/(HT

i xk), i = 1, 2, . . . ,m is uniformly bounded between two pos-
itive scalars (akin to the asymptotically weakly nondegeneracy condition of
Fukushima and Pang [6]), then x∗ is strongly stationary.

A natural question is whether a finite termination property like those in
Section 3 that are based on second-order points of PF(ck) also holds for second-
order points of Reg(tk). Example 2 below answers this question in the negative.
We show in this example that a sequence of second-order points of Reg(tk) may
approach an M-stationary point of (1) that is not strongly stationary.

4.2. Examples

Our first example is one in which the algorithms of Section 3 can terminate
at local solutions of (1), while algorithms based on the regularization Reg(tk)
achieve convergence to the global solution of (1).

Example 1. Consider the following MPEC in two variables:

min
x

1
2 (x2 − 1)2 subject to 0 ≤ x1 ⊥ x2 ≥ 0, (37)

whose global solution is x = (0, 1) but which also has strongly stationary points
at (x1, 0) for all x1 > 0. ((0, 0) is only M-stationary.) The elastic-mode formula-
tion is

PF(ck) : min
x

1
2 (x2 − 1)2 + ckx1x2 subject to x1 ≥ 0, x2 ≥ 0, (38)

with ck > 0. The Hessian of the Lagrangian function for PF(ck) is

∇2
xxLck

(x, τ, ν) =
[

0 ck

ck 1

]
,
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respectively. Since the Hessian has a negative eigenvalue for all ck > 0, it follows
that at any second-order point of (38), at least one of the bounds x1 ≥ 0 or
x2 ≥ 0 must be active. Hence, such a point is feasible for (37), and Algorithm
Elastic-Exact will terminate finitely, as is indicated by Theorem 4. One such
second-order point is xk = (0, 1), which is a global solution of (37) satisfying
MPEC-LICQ. The other second-order points of (38) are

xk(α) =
[

1
ck

+ α

0

]
, for all α ≥ 0,

which are all local solutions of (37) satisfying MPEC-LICQ. Algorithm Elastic-
Exact may terminate finitely at one of these local solutions.

The regularized formulation of (37) is

Reg(tk) : min
x

1
2 (x2 − 1)2 subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ tk. (39)

It can be verified that, for each tk > 0, the first-order points of (39) are

xk(α) =
[

α
1

]
, α ∈ [0, tk],

all of which are global solutions and second-order points of (39). In particular,
any sequence of first-order points of Reg(tk) will converge to the global solution
of (37).

The behavior of Algorithm Elastic-Exact in Example 1 above is not particu-
larly surprising. If it terminates finitely at a point (x1, 0) with x1 > 0, it yields
a local solution of (1), which is all we expect from most optimization methods.
For large ck, however, points with lesser function values are “just around the
corner” from these local solutions. Algorithms that can detect such local solu-
tions reliably and move away from them along feasible descent directions are the
subject of ongoing investigation.

The next example demonstrates that a sequence of second-order points of
Reg(tk) may approach an M-stationary point of (1) while Algorithm Elastic-
Exact terminates finitely at a strongly stationary point of (1). It is constructed
from Robinson’s [22] example of a strict local solution that is not isolated.

Example 2. Consider the function F : IR → IR defined as follows:

F (y) def=

y∫
0

t6 sin(1/t) dt.

It is easy to verify that F is three times continuously differentiable over IR. Our
example MPEC is

min
x
−x1 − F (x2) subject to 0 ≤ x1 ⊥ x2 ≥ 0, (40)

where x1 and x2 are scalars. It is not difficult to verify that this MPEC has
an M-stationary point at x∗ = (0, 0), with unique multipliers τ∗ = −1 and
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ν∗ = 0, and that the MPEC-LICQ is satisfied at this point. It also has strongly
stationary points arbitrarily near (0, 0), as we shall see.

We consider the behavior of Algorithm Elastic-Exact on this MPEC and then
show how the results of Section 3 apply. The elastic-mode formulation of (40) is

PF(c) : min
x
−x1 − F (x2) + cx1x2 subject to x1 ≥ 0, x2 ≥ 0, (41)

with c > 0. Its first-order stationarity conditions are

0 ≤
[

−1 + cx2

−F ′(x2) + cx1

]
⊥

[
x1

x2

]
≥ 0. (42)

The Hessian of the Lagrangian for (41) is

∇2
xxLc(x, τ, ν) =

[
0 c
c −F ′′(x2)

]
.

Since this matrix has a negative eigenvalue for all c > 0, it follows that at any
second-order point of (41), at least one of the bounds x1 ≥ 0 or x2 ≥ 0 must be
active. Hence, such a point is feasible for (40), and Algorithm Elastic-Exact will
terminate finitely, as is indicated by Theorem 4.

More precisely, notice that the second-order points of (41) cannot have the
form (x1, 0) for any x1 ≥ 0, as the first-order conditions (42) cannot be satisfied
at such points. Hence, the second-order points of PF(c) must be (0, x2) for some
x2 > 0. From (42) and the second-order necessary optimality conditions for (41),
we must have

x2 ≥
1
c
, F ′(x2) = 0, F ′′(x2) ≤ 0,

from which we deduce that

x2 ≥
1
c
, sin

1
x2

= 0, cos
1
x2

= −1,

so that x2 = (2nπ + π)−1 for some integer n ≥ 0. Notice that each of these
points is strongly stationary for the MPEC (40).

It is of course possible that the method for solving (41) will avoid these local
solutions and detect the direction of unboundedness along the positive x1-axis.
The outcome will depend on the particular solution method and its initialization.

The regularized formulation of (40) is as follows:

Reg(t): min
x
−x1 − F (x2) subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ t. (43)

Its first-order necessary optimality conditions are[
−1

−F ′(x2)

]
−

[
1
0

]
τ −

[
0
1

]
ν +

[
x2

x1

]
γ =

[
0
0

]
,

0 ≤

 τ
ν
γ

 ⊥
 x1

x2

t− x1x2

 ≥ 0.
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Since τ ≥ 0, the first equation implies γ 6= 0 and hence x1x2 = t at any first-
order point of (43). This in turn implies ν = τ = 0 and γ = 1/x2, so that the
first-order conditions reduce to

t

(x2)2
− (x2)6 sin(1/x2) = 0.

For certain values of the parameter t, it is easy to identify values of x2 that
satisfy this condition. These include the following (tk, xk

2) pairs, defined for any
k = 0, 1, 2, . . .:

xk
2 = (2kπ + π/6)−1

, tk =
1
2

(2kπ + π/6)−8
, k = 0, 1, 2, . . . .

At a first-order point of (43), since the constraint x1x2 ≤ t is active, a sufficient
condition for local optimality is that the Hessian of the Lagrangian be positive
definite over the null space of the gradient (x2, x1)T , that is,

[
d1 d2

] [
0 γ
γ −F ′′(x2)

] [
d1

d2

]
> 0 whenever x2d1 + x1d2 = 0, (d1, d2) 6= 0.

Using γ = 1/x2 and x1 = t/x2, one can reduce this condition to the positivity
of

−2t

(x2)3
− 6(x2)5 sin(1/x2) + (x2)4 cos(1/x2),

which, when evaluated at the (tk, xk
2) pairs above, yields

− (2kπ + π/6)−5 − 3 (2kπ + π/6)−5 + (
√

3/2) (2kπ + π/6)−4
.

Since the last term dominates for k sufficiently large, the above quantity is
positive for all k sufficiently large. It follows that

xk =
(

tk
xk

2

, xk
2

)
=

(
1
2

(2kπ + π/6)−7
, (2kπ + π/6)−1

)
is a local minimizer of Reg(tk) satisfying second-order sufficient optimality con-
ditions, for all k sufficiently large. Notice that {xk} approaches the M-stationary
point x∗ = (0, 0), which is not strongly stationary.

5. Numerical Results

We present numerical results for Algorithm Elastic-Inexact applied to a set of 18
MPECs, showing the outcomes for each problem and analyzing whether exact
complementarity, MPEC-LICQ, MPEC-SLICQ, or the second-order conditions
were satisfied at the final point generated by the algorithm.
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5.1. Problems and Formulation Details

Our MPECs all arise from a model of an elastic membrane hanging on top of an
obstacle. The membrane is attached to a support whose shape is parametrized by
the variables in the optimization problem. Descriptions of all our problems can
be found in Outrata, Kocvara, and Zowe [19]. We use the AMPL formulations
from the MacMPEC Library of Leyffer [14]; see also Fletcher and Leyffer [5].

– Incidence set identification [19, Section 9.4]. This MPEC seeks the shape
of the support so that the contact region is as close as possible to a pre-
scribed shape. The objective function is a measure of the difference between
the current and desired shapes of the contact region. This problem class is
referred to as incid-set by [5]; we use the abbreviation is.

– Packaging problem with pliant obstacle [19, Section 9.3]. This MPEC
seeks the shape of the support that minimizes the area of the membrane while
keeping the membrane in contact with the obstacle over at least a prescribed
region. The obstacle here is pliant—it can deform under pressure from the
membrane—while the objective function is the area of the membrane. This
class is referred to as pack-comp by [5]; we use the abbreviation pc.

– Packaging problem with rigid obstacle [19, Section 9.2]. This MPEC is
the same as the previous one except that now the obstacle is rigid. This class
is referred to as pack-rig by [5]; we use the abbreviation pr.

We formulate six variants of each of these problems. First, we perform finite
element discretizations on three different grids. We include the strings 8, 16, and
32 in the problem names to indicate 8×8, 16×16, and 32×32 grids, respectively.
Second, we consider two types of obstacles. A linear obstacle [19, Example 9.1]
is indicated by the digit 1 in the problem name, while a parabolic obstacle [19,
Example 9.2] is indicated by the digit 2.

We implemented Algorithm Elastic-Inexact with parameters c0 = 10, ε0 =
10−3, Mε = 15, Mc = 10, ωk = min{(k + 1)−1, c

−1/2
k }. To solve each sub-

problem PF(ck), we used the filterSQP code of Fletcher and Leyffer [5]. This
code uses active set and second-order information and thus is likely to produce
inexact solutions that satisfy the assumptions of Theorem 7. (The parameter
δk, which determines approximate activeness of the constraints, is determined
internally by filterSQP.) The algorithm is terminated at (xk, ζk) when either
ζk + (GT xk)T (HT xk) ≤ 10−7 and εk ≤ 10−315−6 (at least 6 tolerance updates)
or filterSQP is unable to solve the subproblem PF(ck) to optimality at some
iteration k, where εk ≥ 10−315−8 (that is, before 8 tolerance updates have been
made).

Before describing the results, we give a few more details of our AMPL formu-
lations. First, we note that the models contain a discretization of a state variable
and of a differential operator. The equality constraints that do not include the
action of the operator are not relaxed. For each of the equality constraints that
include the action (those arising from the Galerkin equations for the finite ele-
ments), we replaced its zero right-hand side by a slack variable and constrained
the slack to lie between −ζ and ζ, as in the formulation (2). Our reasons for
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formulating the equality constraints in this way have to do with the postpro-
cessing required to compute the diagnostic quantities for our results. The theory
of earlier sections still applies.

The constraints ζ ≥ 0, GT x ≥ 0, and HT x ≥ 0 were implemented as bound
constraints, defined at the time the corresponding variables were declared. The
upper bound constraint ζ ≤ ζ̄ was omitted because {ζk} remained bounded
without it. Preprocessing was turned off, as AMPL tends to “process out” the
bound constraints when it is enabled.

Bound constraints are also present on some of the (noncomplementary) vari-
ables in the models. When defined as bounds in AMPL, these are treated dif-
ferently from general inequalities. For purposes of our tests, we define the set of
components of the final point xk that are away from their respective bounds as
follows:

F =
{
j ∈ {1, 2, . . . , n} | lj + δ ≤ xk

j ≤ uj − δ
}

,

where l and u are the vectors of lower and upper bounds on x and δ is a tolerance
(we used δ = 10−6). In forming the Jacobian and Hessian matrices, we retain
only the rows and columns corresponding to “free” variables—those indexed by
F . We use nF to denote the number of elements in F .

Checking of the MPEC-LICQ condition at the final point xk requires us to
collect the gradients of the equality and inequality constraint functions at xk,
along with the active constraint indices for the inequality constraints and the
bound constraints GT x ≥ 0 and HT x ≥ 0. Postprocessing is required to extract
this information, to remove the “duplication” of the equality constraints that
occurs as a result of the relaxation of these constraints. As AMPL provides
no simple mechanism to do this, we wrote the final gradients into a file and
processed it with Perl and shell scripts to remove duplicates and generate the
active constraint gradients.

5.2. Quality of Computed Solutions

Feasibility and optimality properties of the final point xk generated by our al-
gorithm are shown in Table 1. We show the final objective function value (Obj),
the manner in which filterSQP terminated on solving the last subproblem, the
final values of the algorithmic parameters ck and εk, and the final value of the
infeasibility (violation of the MPEC constraints) at xk.

As a measure of the complementarity at the final point we define the indicator

CompInd = max
i=1,2,...,m

min{GT
i xk,HT

i xk}.

On all problems, a final point with ζk = 0 and CompInd = 0 was obtained.
Feasibility was attained to high precision on all problems but is-1-32. The
code filterSQP terminated normally on all but three of the problems. On two
problems, an error message indicated difficulty in finding a feasible point locally
in 1,000 or fewer iterations (“Local Inf”). On the remaining problem, the trust



28 Mihai Anitescu et al.

Problem Obj Termination Message ck εk Infeas
is-1-8 3.81e–17 Optimal 10 10−315−6 2.60e–17
is-1-16 1.20e–16 Optimal 10 10−315−6 3.14e–13
is-1-32 2.33e–07 Small Trust Region 10 10−315−6 2.25e–07
is-2-8 5.04e–03 Optimal 10 10−315−6 6.20e–17
is-2-16 2.99e–03 Optimal 10 10−315−6 1.93e–15
is-2-32 1.77e–03 Optimal 103 10−315−7 1.86e–15
pc-1-8 6.00e–01 Optimal 10 10−315−6 5.89e–17
pc-1-16 6.16e–01 Optimal 102 10−315−6 8.26e–14
pc-1-32 6.52e–01 Optimal 103 10−315−6 3.49e–17
pc-2-8 6.73e–01 Optimal 102 10−315−6 3.81e–17
pc-2-16 7.27e–01 Optimal 105 10−315−7 1.10e–13
pc-2-32 7.82e–01 Local Inf 104 10−315−6 6.06e–12
pr-1-8 7.87e–01 Optimal 102 10−315−6 2.77e–17
pr-1-16 8.26e–01 Optimal 103 10−315−6 4.38e–13
pr-1-32 8.50e–01 Optimal 106 10−315−8 3.31e–15
pr-2-8 7.80e–01 Optimal 102 10−315−6 1.21e–16
pr-2-16 1.08e+00 Optimal 105 10−315−6 1.07e–16
pr-2-32 1.13e+00 Local Inf 106 10−315−8 5.68e–13

Table 1. Numerical Results: Final Objective Function, Termination Message from filterSQP,
Final Parameters and Constraint Infeasibility.

region became too small (“Small Trust Region”). We interpret abnormal termi-
nation of filterSQP as an indication that the solver could not find an inexact
first-order point of the last subproblem.

We note that because CompInd is exactly zero for each problem (even those
for which abnormal termination was reported), the outcome of Theorem 7(c)
is verified. Computation of CompInd requires only comparisons (not floating-
point arithmetic operations); hence, we can attain CompInd= 0, even in finite-
precision arithmetic.

5.3. Numerical Verification of Constraint Qualifications

We now investigate numerically whether the constraint qualifications assumed at
various points in this paper are indeed satisfied. We include in our investigation
even the three problems with abnormal termination, because the final points
generated for those problems are almost feasible and satisfy exact complemen-
tarity.

We used the interface to Matlab that is provided by AMPL to import from
filterSQP the primal variables (xk, ζk), the Lagrange multipliers
(λk, µ−k, µ+k, τk, νk), the constraint gradients, and the Hessian of the Lagrangian
for the last subproblem PF(ck). (See Gay [8] for details on access to AMPL struc-
tures by functions defined in Matlab.) We then compute the active sets at xk,
using a tolerance of δ = 10−6, as follows:

Ig
def= {i ∈ {1, 2, . . . , p} | gi(xk) ≤ δ},

IG
def= {i ∈ {1, 2, . . . ,m} |GT

i xk ≤ δ},

IH
def= {i ∈ {1, 2, . . . ,m} |HT

i xk ≤ δ}.
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With these definitions, we compute the gradients of the active constraints, and
extract those components that correspond to free variables F . Our reduced Ja-
cobian is therefore defined as follows:

Jact
def=

[
[∇gi(xk)]i∈Ig

, [∇hi(xk)]i=1,2,...,q, [Gi]i∈IG
, [Hi]i∈IH

]
F .

(The final subscript F indicates that we save only the free-variable rows.) We
also define the Hessian of the Lagrangian with respect to the free components
of x as follows:

H
def=

[
∂2

∂xi∂xj
Lck

(xk, ζk, λk, µ−k, µ+k, τk, νk)
]

i∈F,j∈F
.

We compute the following QR decomposition of Jact:

JactΠ = Q

[
R
0

]
,

where Π is an mact×mact permutation matrix, Q ∈ IRnF×nF is orthogonal, and
R ∈ IRmact×mact is upper triangular with nonnegative diagonal elements such
that R11 ≥ R22 ≥ . . . ≥ Rmact,mact ≥ 0.

We use the preceding Q and R factors to test satisfaction of the constraint
qualification and second-order point assumptions as follows.

– MPEC-LICQ holds (with active set tolerance δ) if R is nonsingular. To allow
for numerical error, we set εmach to IEEE double-precision machine epsilon
(approximately 2.2 × 10−16; see Overton [20, Table 4.4]) and compute the
quantities

cond2(Jact)
def=

σmax(R)
σmin(R)

, cond∗(Jact)
def=

max diag(R)
min diag(R)

,

where σmax and σmin denote the smallest and largest singular values, respec-
tively. We judge MPEC-LICQ to be satisfied if

max (cond2(Jact), cond∗(Jact)) is “small” compared to ε−1
mach.

If MPEC-LICQ holds, we define the matrix Q2 to be the last nF − mact

columns of Q. The columns of Q2 then define an orthonormal basis for the
nullspace of JT

act. If MPEC-LICQ fails to hold, we define the numerical rank
r of Jact to be the largest integer for which Rrr/R11 is significantly greater
than εmach. In this case, we take Q2 to be the last nF − r columns of Q. In
either case, Q1 is the complement of Q2 in Q.

– MPEC-SLICQ holds if MPEC-LICQ holds and none of the vectors Gi, i /∈ IG

or Hi, i /∈ IH lie in the span of the columns of Q1. Since each column of
[[Gi]i∈IG

, [Hi]i∈IH
] is a column of the identity matrix, and since Q2 is the

orthogonal complement of Q1, a reasonable way to test this condition is to
compute the following quantity,

χspan
def= min

(
min
i/∈IG

‖QT
2 Gi‖2, min

i/∈IH

‖QT
2 Hi‖2

)
,
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Problem nF mact cond2(Jact) cond∗(Jact) χspan λmin

(
QT

2 HQ2

)
is-1-8 193 181 3.45e+03 3.58e+02 1.95e–03 0
is-1-16 763 742 4.39e+04 7.24e+03 6.84e–04 0
is-1-32 3042 3020 5.26e+05 8.89e+04 3.90e–09 0
is-2-8 184 180 2.17e+03 8.58e+01 5.66e–04 1.08e–04
is-2-16 750 745 6.46e+04 1.69e+03 8.44e–05 4.10e–07
is-2-32 3032 3025 ∞ ∞ 0 -1.48
pc-1-8 228 228 1.96e+02 1.66e+01 0 ∞
pc-1-16 970 964 9.38e+03 1.75e+02 1.91e–06 5.55e–02
pc-1-32 3997 3972 4.48e+04 2.04e+02 1.22e–08 4.88e–01
pc-2-8 233 228 3.40e+03 1.40e+02 1.27e–04 1.37e+00
pc-2-16 977 964 1.34e+04 1.78e+02 4.34e–06 6.62e–01
pc-2-32 4001 3972 7.82e+04 3.72e+02 7.61e–09 2.06e–01
pr-1-8 186 179 1.10e+03 4.04e+02 2.96e–17 2.61e–07
pr-1-16 754 739 4.11e+03 3.59e+02 1.35e–18 0
pr-1-32 3040 3011 8.99e+07 1.12e+06 3.56e–19 4.34e–01
pr-2-8 185 179 3.22e+03 2.66e+01 1.47e–18 4.88e–01
pr-2-16 743 739 3.07e+03 4.36e+01 1.91e–23 2.12e–01
pr-2-32 3027 3011 7.62e+03 2.63e+01 8.92e–24 1.79e–01

Table 2. Verification of the Constraint Qualifications and Second-Order Conditions.

and judge MPEC-SLICQ to hold if MPEC-LICQ holds and

χspan is “large” compared to εmach.

– Following Definition 7, the final primal variables (xk, ζk) form an (εk, δk)-
second-order point of PF(ck) if they form an εk-first-order point of PF(ck)
and uT Hu ≥ −C‖u‖2 for all u ∈ IRnF satisfying JT

actu = 0, where C is
independent of the iteration count. The latter second-order part is equivalent
to

λmin(QT
2 HQ2) ≥ −C,

where λmin denotes the minimum eigenvalue. Of course, we have no idea
how large or how small C should be by looking only at the results from the
final iteration. Following the proof of Theorem 4, however, we judge inexact
second-order stationarity to hold if

max
(
0,−λmin(QT

2 HQ2)
)

is “small” compared to “large” ck.

The results, tabulated in Table 2, contain in the first three columns the prob-
lem name, the number of free variables nF, and the number of active constraints
mact. Based on these results, we make the following observations.

– We see that cond2(Jact) and cond∗(Jact) are both less than 108 � ε−1
mach on

all problems but is-2-32, where Jact is clearly rank deficient. For these 17
problems we conclude that MPEC-LICQ holds.

– We see that χspan is greater than 10−9 � εmach on 10 problems, which sug-
gests that MPEC-SLICQ holds for these problems. MPEC-SLICQ appears
not to hold on any of the pr problems. It also fails to hold on is-2-32 (as a
consequence of failure of MPEC-LICQ) and on pc-1-8 (since Jact is a square
nonsingular matrix in this case, so Q2 is null and MPEC-SLICQ is trivially
not satisfied).
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– We see that λmin(QT
2 HQ2) is nonnegative on all problems on which the

matrix is not vacuous, with the single exception of is-2-32, the problem for
which MPEC-LICQ failed to hold. If Q2 were defined in this case to be the
last nF −mact columns of Q, then QT

2 HQ2 would be positive semidefinite.
However, since we define Q2 to span the full nullspace of JT

act, we obtained
the modestly negative number −1.48 shown in the table. Since this number
is significantly smaller in absolute value than the final value 103 of ck, we
believe that Definition 7 is satisfied for all 18 problems.

– We note that for all 18 problems the final values of the objective function
are very similar to the ones reported in [5].

We conclude that MPECs that satisfy our assumptions are broadly represented
in the test problems used in our computational study.
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A. A Technical Lemma

Lemma 2. Let A be a matrix with full column rank and g be a given vector.
Let {Ak} and {gk} be two sequences such that {Ak} → A and {gk} → g, and
in addition gk ∈ Range(Ak). Then there exist unique v such that Av = g and a
sequence {vk}, uniquely defined for all k sufficiently large, such that Akvk = gk

and {vk} → v.

Proof. By the given properties, we have g ∈ Range(A), so that there exists v
with Av = g. Uniqueness of v follows from A having full column rank.

Since gk ∈ Range(Ak), there exists a vk such that Akvk = gk. Since Ak must
have full column rank for all k sufficiently large, the uniqueness of vk follows.
Moreover, there is a constant β such that for all k sufficiently large, we have

Aks = t ⇒ ‖s‖ ≤ β‖t‖.

Since
gk − g = Akvk −Av = Ak(vk − v) + (Ak −A)v,

so that
Ak(vk − v) = gk − g − (Ak −A)v.
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Hence, we have

‖vk − v‖ ≤ β
(
‖gk − g‖+ ‖Ak −A‖‖v‖

)
,

which implies that {vk} → v, as claimed.
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25. S. Scholtes and M. Stöhr, How stringent is the linear independence assumption for
mathematical programs with complementarity constraints?, Mathematics of Operations
Research, 26 (2001), pp. 851–863.

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


