Occam's Razor and Alphabet Soup:

What anisotropic elastic parameters can we reasonably measure in borehole seismic experiments?

Douglas E. Miller

Schlumberger-Doll Research

MIT-ERL Friday Informal Seminar Hour
October 21, 2005

Occam's Razor and Alphabet Soup: What anisotropic elastic parameters can we reasonably measure in borehole seismic experiments?

Entities are not to be multiplied beyond necessity

- William of Ockham as paraphrased by John Ponce of Cork.

Entities must not be reduced to the point of inadequacy

- Walter of Chatton as paraphrased by Karl Menger.

Crosswell Seismic Example

-The anisotropic solution is a good predictor of other coherent arrivals.

The isotropic solution is not.
-Conclusion: The shales are anisotropic.

$\mathfrak{c i c}_{\substack{\text { sun } \\ \text { uncase }}}$ Walkaway VSP Example

Anisotropy 101

The spatial gradient of the traveltime function is the Phase Slowness Vector

Hooke's Law

- isotropic
$\left[\begin{array}{l}\sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \hline \sigma_{13} \\ \hline \sigma_{23}\end{array}\right]=\left[\begin{array}{cccccc}\lambda+2 \mu & \lambda & \lambda & & \\ \lambda & \lambda+2 \mu & \lambda & & & \\ \lambda & \lambda & \lambda+2 \mu & & & \\ & & & & \mu & \\ \\ & & & & & \mu \\ \hline\end{array}\right]\left[\begin{array}{c}\epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{23} \\ \hline\end{array}\right.$

(b) Simple extension

To achieve a unit of pure longitudinal strain along the 1 -axis:

- Pull left-right with traction $\lambda+2 \mu$
-Pull up-down, in-out with traction λ

To achieve a unit of pure shear strain:

- Squeeze opposite corners with differential traction μ

Hooke's Law

- TIV - rotational symmetry around 3 -axis
$\left[\begin{array}{l}\sigma_{11} \\ \sigma_{22} \\ \hline \sigma_{33} \\ \hline \sigma_{12} \\ \hline \sigma_{13} \\ \hline \sigma_{23}\end{array}\right]=\left[\begin{array}{cccc}c_{1111} & c_{1111}-2 c_{1212} & c_{1133} \\ c_{1111}-2 c_{1212} & c_{1111} & c_{1133} & \\ c_{1133} & c_{1133} & c_{3333} & \\ \hline & & c_{1313} & \\ \epsilon_{22} \\ \epsilon_{33} \\ \hline & c_{1313} & \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{23}\end{array}\right]$

(b) Simple extension

(e) Pure shear

To achieve a unit of pure longitudinal strain along the 3-axis:

- Pull up-down with traction
C_{3333}
-Pull left-right, in-out with traction C_{1133}

Hooke's Law: Reduced (Voigt) Notation

- TIV - rotational symmetry around 3 -axis

(b) Simple extension

(e) Pure shear

To achieve a unit of pure 13 shear strain:

- Apply 13 traction C_{55}

Christoffel (Dispersion) Relation

$\mathrm{HL}+F=m a+\mathbf{u}=\hat{\mathbf{g}} e^{(i \omega(\mathbf{p} \cdot \mathbf{x}-t))}$ gives the
Christoffel (Eigenvalue) Equation:

$$
\left[p_{i} p_{l} c_{i j k l}-\rho \delta_{j k}\right] \hat{g}_{k}=0
$$

- A solution exists when $\operatorname{Det}($ matrix $)=0$. This is the Christoffel Relation that implicitly defines the phase slowness surface:

$$
\mathcal{S}=\left\{\mathbf{p}:\left|\left[p_{i} p_{l} c_{i j k l}-\rho \delta_{j k}\right]\right|=0\right\}
$$

$$
\begin{gathered}
a_{i j k l}=c_{i j k l} / \rho \\
A_{11}=a_{x x x x}, A_{13}=a_{x x z z}, A_{55}=a_{x z x z}, \ldots
\end{gathered}
$$

Dispersion Relation:

$$
\begin{gathered}
A_{11} A_{55} p_{1}^{4}+A_{33} A_{55} p_{3}^{4}+A p_{1}^{2} p_{3}^{2}-\left(A_{11}+A_{55}\right) p_{1}^{2}-\left(A_{33}+A_{55}\right) p_{3}^{2}+1=0 \\
A=A_{11} A_{33}+A_{55}^{2}-\left(A_{13}+A_{55}\right)^{2} \\
\mathbf{p} \cdot \mathbf{v}=1
\end{gathered}
$$

N.B.: Given $A_{i j}$'s and p_{1}, this yields a quadratic equation for $\left(p_{3}\right)^{2}$

White, et al., 1983

Meisner, 1961

3 - gomuin pach
3 = imegnary shor point
4 a imeginery endpoints of rojts
tabeilled with Iravet timper of
corresponding shot
5 . shals
J. Gaiser (1992) used this method to estimate phase slownesses which he inverted for TIV parameters.

Fig. 2. Wave-front aliagram.

Squared Phase Slowness

TI Parameters from Phase Slowness:

Let $X=S_{x}^{2}, Z=S_{z}^{2}$, and

$$
A=A_{11} A_{33}+A_{55}^{2}-\left(A_{13}+A_{55}\right)^{2} .
$$

Assuming a TI medium, the Christoffel relation can be written:

$$
A_{11}\left(A_{55} X^{2}-X\right)+A_{33}\left(A_{55} Z^{2}-Z\right)+A X Z=A_{55}(X+Z)-1
$$

Given data points $\left\{X_{i}, Z_{i}\right\}$ and a choice of A_{55}, the above equation becomes a linear system to be solved for A_{11}, A_{33}, and A.
A is then solved for A_{13} assuming $A_{13}+A_{55}>0$:

$$
A_{13}=\left(A_{11} A_{33}+A_{55}^{2}-A\right)^{.5}-A_{55}
$$

Question: Can we optimize the fit as a function of A55 to determine all four "saggital" parameters from qP data only?

Question: Can we optimize the fit as a function of A_{55} to determine all four "saggital" parameters from qP data only?

Answer: No

Question: Does a good TI fit to data from a single vertical plane imply that the medium has negligible azimuthal anisotropy?

- Fractured TIV

$$
\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{11} & \frac{c_{13} c_{22}-c_{23} c_{11}}{c_{23}-c_{13}} & c_{13} & & & \\
\frac{c_{13} c_{22}-c_{23} c_{11}}{c_{23}-c_{13}} & c_{22} & c_{23} & & & \\
c_{13} & c_{23} & c_{33} & & & \\
& & & c_{44} & & \\
& & & & c_{55} & \\
& & & & & c_{66}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4} \\
\epsilon_{5} \\
\epsilon_{6}
\end{array}\right]
$$

Question: Is this case typical?

Shale Morphology

\square Photomicrograph of shale showing clay platelets distributed around the horizontal. Inset graph shows the distribution of the normal to the platelet, distributed around vertical.

Shale Model

Solve for aligned inclusions of a fluid-clay composite

N.B.: Think about excess horizontal shear compliance

Average over
distribution function

\square Wavefront velocities for synthetic shales. qP- and qS-wave velocities are computed for a shale with all clay platelets oriented horizontally (left). The shale synthesized with a realistic clay platelet distribution shows computed velocities (right) similar to those of the real shale depicted on the previous page.

Hooke's Law Revisited

To get a unit of pure strain (assuming $\rho=1$):

Mode	Direction	Stress
P	0°	A_{11}
P	90°	A_{33}
S	0°	A_{55}
S	90°	A_{55}
P	45°	$.25\left(A_{11}+A_{33}+2\left(A_{13}+2 A_{55}\right)\right)$
S	45°	$.25\left(A_{11}+A_{33}-2 A_{13}\right)$

Perturbation Result (Chapman \& Pratt, 1992)

$$
\begin{aligned}
& \delta p \simeq-\frac{1}{2} p^{3} \delta a_{i j k l} \hat{p}_{i} \hat{p}_{l} \hat{g}_{j} \hat{g}_{k} \\
&=-\frac{1}{2} p^{3}\left\{\hat{p}_{1}^{2} \hat{g}_{1}^{2} \delta A_{11}+2 \hat{p}_{1} \hat{p}_{3} \hat{g}_{1} \hat{g}_{3} \delta\left(A_{13}+2 A_{55}\right)+\hat{p}_{3}^{2} \hat{g}_{3}^{2} \delta A_{33}\right. \\
&\left.\quad+\left(\hat{p}_{1} \hat{g}_{3}-\hat{p}_{3} \hat{g}_{1}\right)^{2} \delta A_{55}\right\} .
\end{aligned}
$$

> Analyze consequences of setting delta_p $=0$ under the approximation that phase and polarization vectors are parallel or orthogonal.

PushPin Parameters

$P_{0^{\circ}}$	A_{11}
$P_{90^{\circ}}$	A_{33}
$S_{0^{\circ}}$	A_{55}
$S_{90^{\circ}}$	A_{55}
$P_{45^{\circ}}$	$.25\left(A_{11}+A_{33}+2\left(A_{13}+2 A_{55}\right)\right)$
$S_{45^{\circ}}$	$.25\left(A_{11}+A_{33}-2 A_{13}\right)$

If an arbitrary Tl medium is perturbed in a way that preserves a given push-pin, then slowness points in the associated direction and mode will be approximately preserved in the new medium.

PushPin Parameters

$P_{0^{\circ}}$	A_{11}
$P_{90^{\circ}}$	A_{33}
$S_{0^{\circ}}$	A_{55}
$S_{90^{\circ}}$	A_{55}
$P_{45^{\circ}}$	$.25\left(A_{11}+A_{33}+2\left(A_{13}+2 A_{55}\right)\right)$
$S_{45^{\circ}}$	$.25\left(A_{11}+A_{33}-2 A_{13}\right)$

Thomsen Parameters

$$
\begin{gathered}
\varepsilon=\frac{C_{11}-C_{35}}{2 C_{33}} ; \\
\gamma=\frac{C_{64}-C_{44}}{2 C_{44}} ; \\
\delta \equiv \frac{1}{2}\left[\varepsilon+\frac{8^{*}}{\left(1-\beta_{0}^{2} / a_{0}^{2}\right)}\right] \\
=\frac{\left(C_{13}+C_{44}\right)^{2}-\left(C_{33}-C_{44}\right)^{2}}{2 C_{33}\left(C_{33}-C_{44}\right)} .
\end{gathered}
$$

Livi

TIV-Stressed Isotropic Medium (Bag of Marbles)

```
c11:=lambda+2 mu+e (2 nu (2 lambda+3 mu+A+4 B+2 C)-(lambda+2 B+2 C))
c33:=lambda+2 mu+e (2 nu (lambda+2 B+2 C)-(3 lambda+6 mu+2 A+6 B+2 C))
c55:=mu+e(2 nu (lambda+mu+A/4+B)-(lambda+2 mu+A/2+B))
c13:=lambda+mu+e (nu (lambda+mu+A/2+4 B+4 C)-(lambda+mu+A/2+3 B+2 C))-c55
c66:= mu + e (2 nu (lambda + 2 mu + A/2 + B) - (lambda + B))
```

Simplify[c11+c33-2(c13+2 c55)]
0

Figure 22: A coincident source and receiver profile over the French model calculated by Born volume integration (top) and Kirchhoff surface integration (bottom).

9 TI Zero-offset GRT Migration/Inversion

9.1 GRT inversion formula:

$$
\begin{aligned}
& \left\langle f\left(\mathbf{x}_{o}\right)\right\rangle= \\
& \quad \frac{1}{\pi^{2}} \int d^{2} \xi\left(\mathbf{s}, \mathbf{x}_{o}\right) \frac{\left|\beta\left(\mathbf{s}, \mathbf{x}_{o}\right)\right|^{3}}{A\left(\mathbf{s}, \mathbf{x}_{o}\right)^{2}} u_{s c}\left(\mathbf{s}, t=\tau_{o}\right)
\end{aligned}
$$

9.2 Simplification

$$
d^{2} \xi \frac{\beta^{2}}{A^{2}\left(\mathbf{s}, \mathbf{x}_{o}\right)}=d s_{1} d s_{2} \cos (\alpha)
$$

where α is the vertical phase angle at the surface.
9.3 What I Calculated:

$$
\int d s_{1} d s_{2} \cos (\alpha)\left|\beta\left(\mathbf{s}, \mathbf{x}_{o}\right)\right| u_{s c}\left(\mathbf{s}, t=\tau_{o}\right)
$$

Turning-ray migration of Vertical Object

Anisotropic

Isotropic

(vertical velocities)

Turning Ray Images

Isotropic Migration

Isotropic Migration using vertical velocity profile systematically defocuses and mislocates vertical object

Isotropic Migration using a velocity profile that focuses the vertical object mislocates the horizontal object.

Local, interval VTI estimation

Phase method (Gaiser, 1990; Miller and Spencer, 1993)

- Vertical and horizontal direct time derivatives yield phase slowness crossplot, fitting yields moduli
- Assumptions about overburden simplicity

Apparent Slowness + polarization method (de Parscau and Nicoletis, 1987; Hsu and Schoenberg, 1989; Horne and Leaney, 2000)

- Extraction of Sv and reflected parameters required picking
- Parametric waveform inversion (Leaney and Esmersoy, 1989) and downhole tools with sufficient vector fidelity have made it a commercially viable method.

Phase method

Slowness+polarization method

$\underset{\substack{30 \\ \text { on } \\ 21 \\ \hline}}{3}$ Better sensitivity to ε, ellip.

Comparison: phase slowness versus slowness+polarization

