Occam's Razor and Alphabet Soup:

What anisotropic elastic parameters can we reasonably measure in borehole seismic experiments?

Douglas E. Miller Schlumberger-Doll Research

MIT-ERL Friday Informal Seminar Hour

October 21, 2005

Occam's Razor and Alphabet Soup: What anisotropic elastic parameters can we reasonably measure in borehole seismic experiments?

Entities are not to be multiplied beyond necessity

- William of Ockham as paraphrased by John Ponce of Cork.

Entities must not be reduced to the point of inadequacy

- Walter of Chatton as paraphrased by Karl Menger.

Crosswell Seismic Example

- •Anisotropic Solution with 53x3 parameters
- Isotropic Solution with 56x56 parameters
- •Similar (good) fit to data

Crosswell Seismic Example

The anisotropic solution is a good predictor of other coherent arrivals.
The isotropic solution is not.

•Conclusion: The shales are

anisotropic.

4 DM 21 Oct 05

⁵ Walkaway VSP Example

Anisotropy 101

6 DM 21 Oct 05

The spatial gradient of the traveltime function is the Phase Slowness Vector

Hooke's Law

• isotropic

σ_{11}		$\lambda + 2\mu$	λ	λ]	ϵ_{11}
σ_{22}		λ	$\lambda + 2\mu$	λ			ϵ_{22}
σ_{33}	_	λ	λ	$\lambda + 2\mu$			ϵ_{33}
σ_{12}	_				μ		ϵ_{12}
σ_{13}					μ		ϵ_{13}
σ_{23}						μ	ϵ_{23}

(b) Simple extension

(e) Pure shear

To achieve a unit of pure longitudinal strain along the 1-axis:

• Pull *left-right* with traction $\lambda + 2\mu$

•Pull *up-down, in-out* with traction λ

To achieve a unit of pure shear strain:

- Squeeze opposite corners with differential traction $\ \mu$

Hooke's Law

• TIV - rotational symmetry around 3-axis

σ_{11}	ſ	$- c_{1111}$	$c_{1111} - 2c_{1212}$	c_{1133}]	$\left[\epsilon_{11} \right]$
σ_{22}		$c_{1111} - 2c_{1212}$	c_{1111}	c_{1133}		1	ϵ_{22}
σ_{33}	_	c_{1133}	c_{1133}	C_{3333}			ϵ_{33}
σ_{12}					c_{1313}		ϵ_{12}
σ_{13}					c_{1313}		ϵ_{13}
σ_{23}		-			c_{1212}		ϵ_{23}
			>		To achieve a unit of nu	ro lo	naitudinal

To achieve a unit of pure longitudinal strain along the 3-axis:

```
• Pull up-down with traction C<sub>3333</sub>
```

•Pull *left-right, in-out* with traction C_{1133}

Hooke's Law: Reduced (Voigt) Notation

• TIV - rotational symmetry around 3-axis

Christoffel (Dispersion) Relation

HL + F = ma + $\mathbf{u} = \hat{\mathbf{g}}e^{(i\omega(\mathbf{p}\cdot\mathbf{x}-t))}$ gives the Christoffel (Eigenvalue) Equation:

$$[p_i p_l c_{ijkl} - \rho \delta_{jk}]\hat{g}_k = 0$$

 A solution exists when Det(matrix) = 0. This is the Christoffel Relation that implicitly defines the phase slowness surface:

$$\mathcal{S} = \{ \mathbf{p} : |[p_i p_l c_{ijkl} - \rho \delta_{jk}]| = 0 \}$$

$$a_{ijkl} = c_{ijkl}/
ho$$
 $A_{11} = a_{xxxx}, \; A_{13} = a_{xxzz}, \; A_{55} = a_{xzxz}, \; ...$

N.B.: Aij have units of velocity^2

11 DM 21 Oct 05

Dispersion Relation:

$$\begin{aligned} A_{11}A_{55}p_1^4 + A_{33}A_{55}p_3^4 + Ap_1^2p_3^2 - (A_{11} + A_{55})p_1^2 - (A_{33} + A_{55})p_3^2 + 1 &= 0 \\ \\ A &= A_{11}A_{33} + A_{55}^2 - (A_{13} + A_{55})^2 \\ \\ \mathbf{p} \cdot \mathbf{v} &= 1 \end{aligned}$$

N.B.: Given A_{ij} 's and p_1 , this yields a quadratic equation for $(p_3)^2$

White, et al., 1983

Meisner, 1961

J. Gaiser (1992) used this method to estimate phase slownesses which he inverted for TIV parameters.

Fig. 2. Wave-front diagram.

Squared Phase Slowness

N.B.: Isotropy would require a line at 45°

DM 21 Oct 05

15

TI Parameters from Phase Slowness:

Let $X = S_x^2, Z = S_z^2$, and

$$A = A_{11}A_{33} + A_{55}^2 - (A_{13} + A_{55})^2.$$

Assuming a TI medium, the Christoffel relation can be written:

$$A_{11}(A_{55}X^2 - X) + A_{33}(A_{55}Z^2 - Z) + AXZ = A_{55}(X + Z) - 1$$

Given data points $\{X_i, Z_i\}$ and a choice of A_{55} , the above equation becomes a linear system to be solved for A_{11} , A_{33} , and A.

A is then solved for A_{13} assuming $A_{13} + A_{55} > 0$:

$$A_{13} = (A_{11}A_{33} + A_{55}^2 - A)^{.5} - A_{55}$$

Question: Can we optimize the fit as a function of A55 to determine all four "saggital" parameters from qP data only?

Question: Can we optimize the fit as a function of A_{55} to determine all four "saggital" parameters from qP data only?

Answer: No

Question: Does a good TI fit to data from a single vertical plane imply that the medium has negligible azimuthal anisotropy?

• Fractured TIV

Schlumberger

Answer: No

DM 21 Oct 05

18

Question: Is this case typical?

Answer: It is not rare

Shale Morphology

⊢____10 μm −_____

□Photomicrograph of shale showing clay platelets distributed around the horizontal. Inset graph shows the distribution of the normal to the platelet, distributed around vertical.

Shale Model

Solve for aligned inclusions of a fluid-clay composite

Average over distribution function

Components of a shale model. Individual model clay platelets (top) are oriented according to the distribution measured in the shale photograph on previous page (middle). Silt particles are added (bottom) to resemble real shales.

N.B.: Think about excess horizontal shear compliance

□Wavefront velocities for synthetic shales. qP- and qS-wave velocities are computed for a shale with all clay platelets oriented horizontally (left). The shale synthesized with a realistic clay platelet distribution shows computed velocities (right) similar to those of the real shale depicted on the previous page.

21 DM 21 Oct 05

Hooke's Law Revisited

To get a unit of pure strain (assuming $\rho = 1$):

Mode	Direction	Stress
Р	0°	A ₁₁
Р	90°	A_{33}
S	0°	A_{55}
S	90°	A_{55}
Р	45°	$.25(A_{11} + A_{33} + 2(A_{13} + 2A_{55}))$
S	45°	$.25(A_{11} + A_{33} - 2A_{13})$

Perturbation Result (Chapman & Pratt, 1992)

$$\begin{split} \delta p &\simeq -\frac{1}{2} p^3 \delta a_{ijkl} \, \hat{p}_i \, \hat{p}_l \hat{g}_j \hat{g}_k \\ &= -\frac{1}{2} p^3 \left\{ \hat{p}_1^2 \hat{g}_1^2 \, \delta A_{11} + 2 \hat{p}_1 \hat{p}_3 \hat{g}_1 \hat{g}_3 \, \delta (A_{13} + 2A_{55}) + \hat{p}_3^2 \hat{g}_3^2 \, \delta A_{33} \right. \\ &\quad + \left(\hat{p}_1 \hat{g}_3 - \hat{p}_3 \hat{g}_1 \right)^2 \delta A_{55} \right\}. \end{split}$$

Analyze consequences of setting delta_ p = 0 under the approximation that phase and polarization vectors are parallel or orthogonal.

PushPin Parameters

If an arbitrary TI medium is perturbed in a way that preserves a given push-pin, then slowness points in the associated direction and mode will be approximately preserved in the new medium.

Schlumberger

24

DM

PushPin Parameters

$P_{0^{\circ}}$	A_{11}
$P_{90^{\circ}}$	A_{33}
$S_{0^{\circ}}$	A_{55}
$S_{90^{\circ}}$	A_{55}
$P_{45^{\circ}}$	$.25(A_{11} + A_{33} + 2(A_{13} + 2A_{55}))$
$S_{45^{\circ}}$	$.25(A_{11} + A_{33} - 2A_{13})$

Thomsen Parameters $\varepsilon = \frac{C_{11} - C_{33}}{2C_{33}};$ $\gamma \equiv \frac{C_{66} - C_{44}}{2C_{44}};$ $\delta \equiv \frac{1}{2} \left[\varepsilon + \frac{\delta^*}{(1 - \beta_0^2 / \alpha_0^2)} \right]$ $=\frac{(C_{13}+C_{44})^2-(C_{33}-C_{44})^2}{2C_{33}(C_{33}-C_{44})}.$

Schlumberger

21 Oct 05

TIV-Stressed Isotropic Medium (Bag of Marbles)

c11:=lambda+2 mu+e (2 nu (2 lambda+3 mu+A+4 B+2 C)-(lambda+2 B+2 C))

c33:=lambda+2 mu+e (2 nu (lambda+2 B+2 C)-(3 lambda+6 mu+2 A+6 B+2 C))

c55:=mu+e(2 nu (lambda+mu+A/4+B)-(lambda+2 mu+A/2+B))

c13:=lambda+mu+e (nu (lambda+mu+A/2+4 B+4 C)-(lambda+mu+A/2+3 B+2 C))-c55 c66:= mu + e (2 nu (lambda + 2 mu + A/2 + B) - (lambda + B))

> Simplify[c11+c33-2(c13+2 c55)] 0

Figure 22: A coincident source and receiver profile over the French model calculated by Born volume integration (top) and Kirchhoff surface integration (bottom).

9 TI Zero-offset GRT Migration/Inversion

9.1 GRT inversion formula:

$$\begin{aligned} \langle f(\mathbf{x}_o) \rangle &= \\ \frac{1}{\pi^2} \int d^2 \xi(\mathbf{s}, \mathbf{x}_o) \; \frac{|\beta(\mathbf{s}, \mathbf{x}_o)|^3}{A(\mathbf{s}, \mathbf{x}_o)^2} \; u_{sc}(\mathbf{s}, t = \tau_o). \end{aligned}$$

9.2 Simplification

$$d^2 \xi \frac{\beta^2}{A^2(\mathbf{s}, \mathbf{x}_o)} = ds_1 ds_2 \ \cos(\alpha)$$

where α is the vertical phase angle at the surface.

9.3 What I Calculated:

$$\int d\mathbf{s}_1 \, d\mathbf{s}_2 \, \cos(\alpha) \, |\beta(\mathbf{s}, \mathbf{x}_o)| \, u_{sc}(\mathbf{s}, t = \tau_o)$$

Turning-ray migration of Vertical Object

Anisotropic

Isotropic (vertical velocities)

Schlumberger

32 DM 21 Oct 05

Turning Ray Images

Isotropic Migration using vertical velocity profile systematically defocuses and mislocates vertical object

Isotropic Migration using a velocity profile that focuses the vertical object mislocates the horizontal object.

Local, interval VTI estimation

Phase method (Gaiser, 1990; Miller and Spencer, 1993)

- Vertical and horizontal direct time derivatives yield phase slowness crossplot, fitting yields moduli
- Assumptions about overburden simplicity

Apparent Slowness + polarization method (de Parscau and Nicoletis, 1987; Hsu and Schoenberg, 1989; Horne and Leaney, 2000)

- Extraction of Sv and reflected parameters required picking
- Parametric waveform inversion (Leaney and Esmersoy, 1989) and downhole tools with sufficient vector fidelity have made it a commercially viable method.

Local VTI anisotropy:

Comparison: phase slowness versus slowness+polarization

38