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ABSTRACT

For fast anisotropic formations, such as the North
American gas shales, sonic logs measure group slow-
ness for propagation with the group angle equal to
the borehole inclination angle. For deviated wells,
the distinction between group and phase angle is as
important as the distinction between phase and group
velocity. When inverting from sonic data to elastic pa-
rameters, the use of an incorrect correspondence rule
can lead to inconsistent and unrealistic values, partic-
ularly for C13 or equivalently, Thomsen’s δ.

SUMMARY

With increased interest in gas production from shale for-
mations, there has been a corresponding increase in the
need to make accurate geophysical measurements of these
formations for use in planning and interpreting formation
treatments. Because these shale formations are largely
composed of microscopically aligned platelets which are
also significantly laminated at a macroscale, they are of-
ten morphologically anisotropic, with rotational symme-
try about a symmetry axis perpendicular to bedding, typ-
ically a vertical axis. In such transversely isotropic (VTI)
media small perturbations of stress or strain, with respect
to a stable reference state, are linearly related via an elas-
tic tensor with five free parameters.

In order to recover elastic parameters from sonic data,
one needs a correspondence rule relating velocities Vl(ψbh)
extracted from sonic waveforms in a borehole with incli-
nation angle ψbhto the underlying elastic moduli.

Using the Voigt notation (C11 for C1111, C13 for C1133,
C55 for C1313, etc) for elastic moduli, and identifying the
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symmetry axis as the (vertical) 3-axis, the density-normalized
moduli Cij/ρ have units of velocity squared. Five elas-
tic moduli are required to define VTI anisotropy; these
are C11, C33, C55, C66 and C13. The first four are re-
lated to the squared speeds for wave propagation in the
vertical and horizontal directions. V11 =

√
C11/ρ is the

wavespeed for horizontally propagating compresional vi-
bration; V66 =

√
C66/ρ, the wavespeed for horizontally

propagating shear vibration with horizontal polarization;
V55 =

√
C55/ρ, the wavespeed for vertically propagating

shear vibration, as well as for horizontally propagating
shear vibration with vertical polarization; V33 =

√
C33/ρ,

the wavespeed for vertically propagating compressional vi-
bration.

The remaining parameter, C13, cannot be estimated di-
rectly, and cannot be estimated at all from measured prop-
agation speeds without either making off-axis measure-
ments or invoking a physical or heuristic model with fewer
than five parameters. Nevertheless, accurate measure-
ments of C13 are essential for interpreting the results of
mini-frac’ing experiments (Thiercelin and Plumb, 1991),
for calibrating the relation between sonic measurements
and other reservoir characterization measurements (Vernik,
2008), for geomechanical studies (Amadei, 1996; Suarez-
Rivera, et al., 2006), and for accurate location of hydrofracture-
induced microseismicity (e.g. Warpinski, et al., 2009).

Dipole sonic logs recorded in deviated wells have been
used for determination of elastic parameters in a number
of studies (e.g. Hornby, et al., 1995; Walsh, et al., 2007).
Somewhat surprisingly, there has been a lack of consensus
on how the logged sonic wavespeeds are related to the
elastic parameters in deviated wells.

Hornby, Howie and Ince (2003) argued that logged com-
pressional speeds were group velocities and found good
agreement with field data. Hornby, Wang and Dodds
(2003) reported synthetic tests confirming this correspon-
dence rule, concluding ‘we are measuring the group veloc-
ity for all wave modes excited by the dipole sonic tool.’

Sinha, et al., (2004) disclosed a variety of ways to de-
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rive elastic moduli from logged wavespeeds, based on a
weak anisotropy assumption that logged speeds are phase
velocities for propagation with phase direction aligned to
the borehole axis. Sinha, Simsek and Liu (2006) reported
synthetic tests apparently confirming this correspondence
rule, concluding ‘Processing of synthetic waveforms in de-
viated wellbores using a conventional STC algorithm or a
modified matrix pencil algorithm yields phase slownesses
of the compressional and shear waves propagating in the
nonprincipal directions of anisotropic formations.’

Thus, there appear to be two conflicting correspondence
rules reported in the literature. In point of fact, since the
borehole inclination can be matched either to group or
phase angle, there are three.

Wavefronts (surfaces of constant traveltime) generated
by a point source in a homogeneous anisotropic elastic
medium are not in general spherical, leading to two nat-
ural notions of “propagation direction” and “propagation
speed”. The direction connecting the source to a point on
the wavefront is the group (or ray) direction, and appar-
ent speed in this direction is the group (or ray) velocity.
The direction normal to the wavefront is the phase (or
planewave) direction and apparent speed in this direction
is phase velocity.

Mathematically, the relationship between phase and group
velocities for VTI anisotropy can be written as

vG
2(θ) = vP

2(θ) + [
∂vP
∂θ

]
2

(1)

where θ, the phase angle, is the angle of the wavefront nor-
mal relative to the symmetry axis, vP is the plane wave
(phase) velocity, and vG(θ) is the group (point source) ve-
locity associated with phase angle θ. φ = φG(θ), the group
angle, is the angle of the group velocity vector, relative to
the symmetry axis. The two angles satisfy

tan(θ − φG(θ)) =
[∂vP∂θ ]

vP (θ)
(2)

It is of critical importance to distinguish the function
vG which gives group velocity as a function of phase angle
from the related function vg which gives group velocity
as a function of group angle. vg is typically computed by
using (1) and (2), or their equivalents, to calculate both
vG and φG as functions of phase angle and to iteratively
solve or interpolate the equation

vg(φG(θ)) = vG(θ) (3)

to determine vg at arbitrary group angles φ.
It follows from the definitions that

vg(ψbh) ≤ vP (ψbh) ≤ vG(ψbh). (4)

Moreover, it is a fundamental principle that no energy can
propagate in any direction faster than the group velocity
in that direction. The introduction of a fluid-filled bore-
hole or other heterogenetity which only supports propa-
gation at slower velocity can only lower the propagation
speed.

That is,

Vl(ψbh) ≤ vg(ψbh). (5)

When vg(ψbh) and vP (ψbh) are distinct, the logged veloc-
ity must be a better approximation to the former than the
latter.

For synthetics created with a borehole inclination an-
gle ψbh, Hornby and his coauthors compared vP (ψbh) with
vg(ψbh) and determined that the latter gave a better match
to Vl(ψbh).

Using synthetic data similar to that of Hornby et al.,
Sinha and his coauthors compared vP (ψbh) with vG(ψbh)
and determined that the former gave a better match to
Vl(ψbh). That is, in making their comparisons, Sinha, et
al., matched the borehole angle to the phase angle rather
than to the group angle as Hornby had done. Both of
the rules considered by Sinha, et al., are inconsistent with
propagation in strongly anisotropic media. Their conclu-
sion that the phase velocity agreees better with the syn-
thetic data than the group velocity is due to their use of
vG(ψbh) with vg(ψbh).

In weakly anisotropic media, the distinction between
vP (ψbh), vG(ψbh) and vg(ψbh) has no practical signifi-
cance. However, for shales or other strongly anisotropic
media, the difference can lead to extreme differences in
estimated elastic parameters, particularly for C13.

The present study was motivated by a field example
in which sonic data from a pair of wells in a gas shale
were remarkably consistent with a single TIV model over
a wide range of angles and over all modes of propaga-
tion, provided the correct correspondence rule was used.
They could not be consistently interpreted using either
rule from Sinha, Simsek and Liu (2006). We hope that
that example will be released in time to be the main focus
of the workshop presentation. For this abstract, we focus
on synthetics created to confirm conclusions drawn from
the field data and the mathematical observations given
above.

Using a 3D finite-difference code developed at the MIT
Earth Resources Laboratory (Cheng, 1994), we created a
full-waveform synthetic similar to those used by (Hornby
et al., 2003) and (Sinha et al., 2006), but based on param-
eters from our field example. The modeled borehole was
inclined at ψbh = 55◦ from the vertical symmetry axis.

Figure 1 shows a pressure snapshot at time 1.080 msec
(540 timesteps) from the start of the simulation. Over-
lain are the geometry of the experiment, together with
two copies of the analytic wavefront surface for the mod-
eled formation, scaled to represent travelimes of .813 msec
and .693 msec, respectively. Away from the borehole, the
shape of the finite-diference wavefront matches the ana-
lytic surface, an indication that the source radiates into
the solid as an approximate point-source. Near the bore-
hole there is a small distortion of the wavefront shape and
a loss of energy to the somewhat complicated reverberant
signal in the borehole. In successive snapshots, the patern
moves outward, but does not change, an indication that
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Figure 1: Snapshot of the wavefield at 1.080 milliseconds,
overlain by experimental geometry and wavefronts cor-
repsonding to the phase (blue dotted line) and group (red
continuous line) velocities.

the coupling is at the axial slowness associated with the
wavefront in the direction aligned to the borehole. That
is, at the group slowness associated with a group angle
equal to the borehole inclination angle. Careful observers
will note a planewave connecting a bright spot on the
borehole wall between the red curves to a point at about
2 m along the horizontal axis. That’s a quasi-shear wave
whose phase slowness, projected onto the borehole axis
matches the group slowness of the qP signal and borehole
pressure signal to which it is coupled. There is also some
evident direct qSV signal above and below the borehole
at about x = 1.4 m, z = 1 m. A bright Stoneley wave in
the borehole is evident starting at about x = 1 m, z = .7
m.

Figure 2: Waveforms overlain by parallel lines correspond-
ing to the phase (blue dotted lines) and group (red con-
tinuous lines) velocities from Figure 1.

Figure 2 shows synthetic waveform from thirteen cen-

tered monopole pressure receivers at the locations indi-
cated by gray squares in figure 8. These are spaced to
match the tool used to collect our field data. Overlain are
two red parallel lines with slope equal to 4.08 m/msec, the
group velocity for the modeled formation at group angle
equal to ψbh. Also shown are two blue dotted lines with
slopes equal to 4.31 m/msec, the phase velocity for the
modeled formation at the phase angle equal to ψbh. It
is evident that the signal is aligned to the group velocity
and that, while it has an extended signature, it exhibits no
significant temporal dispersion. Sonic modelers will rec-
ognize this as ‘Partially Transmitted’ (PT) compressional
signal.

Figure 3: Temporal phase slownesses of the synthetic
waveforms.

Figure 3 plots a dispersion analysis for the waveforms
from Figure 2, calculated at each frequency, f , as the
slowness Smax(f) which maximizes semblance at that fre-
quency. We use subscripted s to denote the reciprocal of
the corresponding velocity. Thus, for example, the group
slowness at phase angle ψbh is sG(ψbh) = 1/vG(ψbh).

Horizontal lines indicate slownesses sG(ψbh) = 222 µsec/m,
sP (ψbh) = 232 µsec/m, and sg(ψbh) = 245 µsec/m, to-
gether with the total semblance maximizer Smax = 248 µsec/m.
The extracted slownesses are consistent with our equa-
tions (4) and (5) and inconsistent with the interpretation
of the measured slowness as either sG(ψbh) or sP (ψbh).
That is, they are inconsistent with either interpretation
matching phase angle to the borehole inclination angle.
The semblance max at 248 µsec/m is 1% larger than
sg(ψbh), 7% larger than sP (ψbh), and 12% larger than
sG(ψbh). For comparison, pi is 5% larger than 3.

The bar graph at the bottom of the figure shows a scaled
plot of total energy at each frequency. Note that the es-
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timated slownesses lie at or above sg(ψbh). That is, they
are at axial wavenumbers that correspond to evanescent
qP and oblique outgoing qSV or SH in the solid. This is
as expected for PT signal. The decay and small dispersion
result from the partial conversion of energy into the trans-
mitted shear modes each time the signal reflects from the
fluid/solid boundary. The energy-weighted average of the
Smax(f) agrees with the global semblance max, Smax, to
four significant digits.

Standard processing of this data would extract a com-
pressional wavespeed at the semblance max, Smax = 248 µsec/m.
If this speed is incorrectly interpreted as a measurement
of the phase slowness, sP (ψbh) and substituted as such
into the Christoffel equation together with correct values
for C11, C33, and C55, a value for C13 (or equivalently,
Thomsen’s δ) is obtained which is far from the correct
value and has the wrong sign, i.e., a material with a neg-
ative Poisson ratio.
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