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SUMMARY

In this paper, we formalize the linearized inverse scattering problem for a general
anisotropic, elastic medium and describe two approaches to the construction of a stable
inversion procedure. The first uses generalized Radon inversion and requires extra
information limiting the independent variation of material parameters. The second uses
a stationary phase approximation and requires extra information to the effect that the
medium is everywhere locally stratified with known dip.

The point of common departure is the single-scattering or Born approximation Lo the
scattered field in perfectly elastic media.

The formalism is simple to outline; the medium being modelled (or reconstrucied) is
thought of as a perturbation of a simpler, known, background medium. We are to find the
unknown medium perturbation, given the scattered field, which isdefined as the difference
between the actual (total) field and the background field that would have been present if
the actual medium were replaced by the background medium. If the background medium
is sufficiently smooth, the background field can be well approximated within the frame-
work of ray theory for elastic waves. If the background medium is sufficiently close to the
actual medium, the scattered field can be well approximated by an integral involving
the background field and linear in the medium perturbation (the Born approximation).

Within this régime we show how to find which combinations of parameters can be
determined for a given arrangement of sources and receivers (acquisition geometry).
Many expressions simplify when sources and receivers coincide (zero-oflset). but then
only one parameter may be reconstructed.

Al several points we use ‘generalized’ linear inversion, implemented through a
singular-value decomposition, which enables us to find and rank the best-determined
linear combinations of the unknown parameters.

Our first method of inversion depends upon the inversion formula for the generalized
Radon transform (GRT)to leading order asymptotically for high spatial frequencies. Our
second method benefits from the use of further information to the effect that the medium
has a locally stratified microstructure within which the medium properties vary rapidly
in the direction normal to the local layering, and, assuming that the orientation of the
Jayering can be estimated separately, the scattering problem becomes locally 1-D and the
inversion procedure reduces to an amplitude versus (scatlering) angle (AVA) analysis.

Key words: amplitude-versus-angle analysis, anisotropy, elasticity, generalized Radon
transform, inversion, migration.

1 INTRODUCTION

General background

In this paper, we formalize the linearized inverse seattering
problem for a general anisotropic, elastic medium and describe
two approaches to the construction of a stable inversion pro-
cedure. The first uses generalized Radon inversion and requires
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extra information limiting the independent variation of
material parameters. The second uses a stationary phase
approximation and requires extra information to the effect that
the medium is everywhere locally stratified with known dip.

The common point of departure is the single-scatrering or
Born approximetion to the scattered field in perfectly elastic
media, as iniroduced by Cohen & Bleistein (1977) and Bleistein
& Cohen (1979).
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The method is simple: the medium  being modelled
(or reconstructed) is thought of as a perturbation of « simpler,
known. background medium. The scattered wavefield is the
difference between the actual (total) field and the background
field that would have heen present il the actual medium were
replaced by the background medium. If the background
medium is sufficiently smooth, the background field can be well
approximated using ray theory for clastic waves. If the back-
ground medium is sufficiently close to the actual medium,
the scaitered field can be well approximated by an integral
involving the background field and linear in the medium
perturbation (the Born approximation).

In the space-time domain, the integral operator that
describes the forward scattering may be put into the form of a
generalized Radon translorm (GRT): the scattercd displace-
ment field at veceiver r and time 7 due to source s is represented
as-an integral over an isochron surface defined as the set of
points x satisfying

t=1t{s, x)+7x, r), {1.h

where tlx, y)=1t(y, x) is the ray-thcoretical traveltime from
x to y calculated in the background medinm. The word
‘generalized’ in GRT refers to the fact that the integrals are
over curved surlaces rather than planes. In the general case,
the integrand is a linear combination of multiple parameters,
the perturbations in the material parameters at the scattering
point, with cocfficients that depend on the geometry of the
rays. Given a sufficient supply of seismic data and sufficient
knowledge of the nature of the material perturbations
(described below), the scatiering medium can be approximately
reconstructed by using a linear combination of generalized
weighted backprojections, that is, infegrals of the data over
diffraction surfaces defined by the same traveltime equalion
(1.1), now 1aken as defining 4 relationship among t, s and r.
with x fixed.

The (wo requirements {smooth background and small
perturbation) define the limits of the method. Not all media
can be decomposed in a way that sausfies both. By extending
the formalism of Born forward modelling and inversion
to the most general elastic media. we hope 1o increase the
applicability of the method by widening the elass of media
available as background media. In particular, some media
actually found in sedimentary basins (sce ¢.g. Miller, Leaney &
Borland 1994) may become tractable by these methods. once
the background medium is allowed o be unisotropic.

Such technigues have been studied extensively for isotropic
media. The observation that the forward lincarized acoustic
wave cquation could be cast as a forward GRT and approsi-
mately inverted by a weighted backprojection operator wus
made by Norton & Linzer (1981) for coincident source/receiver
geometry and by Miller, Oristaglio & Beylkin (1984) and
Beylkin (1984) for other gcometries. These papers tied the
analysis 1o early work on diffraction-stack migration and to the
theary of generdlized Radon inversion that had been developed
previously by Beylkin (1984. 1985). Bevlkin & Burridge (1990)
extended the method to elastic isotropic medig and showed
how to cxploit the angle dependence of the scattering to solve
a multiparameter inversion problem. Relations between the
multiparameter problem and various “scalunzations’. as well as
a GRT formalism for multiparameter inversion combined with
dip-moveout (DMO) preprocessing, were deseribed in Miller

& Burridge (19923, The multiparameter (tensorial) inversion
described in the present paper generalizes Beylkin & Burridge
(1990) to anisotropic media and makes additional use of
amplitudes as lunctions of scaltering angle and azimuth to
recopstruct as many parameter combinations describing the
medium perturbation as the data admit.

The present work is a.revised version of u 1994 Schlumberger
Confidential Report (Burridge, de Hoop & Miller 1994), which
was graciously released by Schlumberger and submitted for
publication in 1995, Tt has subscquently been modified con-
siderably in the light of u referce’s helplul suggestions. The
original Schiumberger Report has been. partially reported,
referred 1o, quoted, and extended extensively in subsequent
publicatians. For instance, De Hoop er af (1994) uses the
techniques of this paper to study which combinations of para-
meters are best resolved by a particular acquisition geometry.
De Hoop, Spencer & Burridge (1996) contains an cxtensive
historical review and synthetic tests of the method. Most
recently the work formis the basis of De Hoop & Bleistein
{1997), in which the authors proceed to invert for reflection
coefficients, which. within the Kirchhoft' approximation.
appear linearly in the scattering formulace even when material
cantrasts across interfaces are not small. a uselul step towards
a fully non-tincar inversion,

The Born approximation for the scatiering eguation in
anisotropic media was discussed by Gibson & Ben-Menahem
(1991). Different migration techniques have been generalized to
transversely isotropic media. and have been applied to real
data (see Gonzalez, Lynn & Robinson 1991: Uren, Gardner &
McDonuld 1990). Larner & Cohen (1993) have discussed the
mispositioning of reflectors when isotropic operators are used
o migrate data acquired from anisotropic media.

Qur inversion method is a synthesis of GR'T migration and
amplitude-versus-angle (AVA) analysis, and it follows an
inversion formalism first introduced by Cohen & Bleistein
(1977}, Bleistein & Cohen (1979) and Bleistein (1987) by
which boundary dala muy be inverted to find perturbations
in material parameters as functions of position. Methods of
migration go back to Hagedoorn (1954).and bevond (see Miller
et al. 1984: Gardner 1985; the recent review by Stolt & Weglein
1985),

The multi-parameter aspects of the problem are treated
using generalized linear inversion, which has been exiensively
studied in isotropic amplitude-versus-offset (AVO) analysis
(see e.g. Van Rijssen & Herman 1991}, This becomes apparent
if the local dip of the discontinuity is reconstructed prier to the
inversion in the framework ol u stationary phase analysis, our
second method. Then we can cast our formalism in a form that
resembles AVA inversion. The separate problem ol estimating
the dip using pre-stack depth migration has been addressed by
Lumley (1993).

Summary of the paper

In Section 2 we introduce some baste mathematical notation,
state the anisotropic elastodynamic equation, define the
Green’s tensor, and introduce the perturbation scheme in
which the medium perturbations act as scatterers. In Section 3
we introduce the traveltime function and the slowness. we
approximate the Green's function by ray theory, and we non-
dimensionalize the unknown guantities. The main result of
Section 3 is the expression (3.32) for the first-order scattered
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field written as an integral, over an isochrone surface, of
a linear combination of the non-dimensionalized unknown
perturbations, the coefficients being functions of the ray
theoretic quantities defined earlier. The section ends with some
remarks on reducing the number of unknown parameters. In
Section 4 we concentrate on a particular image point p, and in
preparatiorn for use of the GRT inversion formula we set time ¢
equal to the two-way traveltime (source s to y to receiver r)
in (3.32). This caunses the argument of a certain S-function,
which is a function of position, to vanish at y. We then scale
this argument so that it has a unit gradient at y to obtain the
mtegral representation for the scattered field in a new form
(4.7) closely related to Beylkin's form of the Raden inversion
formula. We first specialize to coincident source and receiver
and find that we can then invert for only one combination
of parameters tor each type of scattering used (quasi-P
to quasi-P, or quasi-S to quasi-S. say). We next allow
source and recciver 10 vary independently, This enables us
to use generalized linear inversion techniques, to solve for the
unknown quantities listed as the vector ¢!V, The results are
estimates (4.18) for a single unknown parameter and (4.38)
for several unknown parameters. In Scetion 3 we make use of
extra geological information to the effect that the medium is
stratified, so that Jocally the material parameters are rapidly
varying functions of the curvilinear coordinate normal to the
local layering. This extra information enables us to avoid using
the GRT and leads to an inversion procedure less sensitive to
deficiencies in angular coverage. Here, by means of a further
asymptotic approximation to the scattered field, cach data
point is directly interpreted as revealing information about
the neighbourhood of a purticular specular reflection peint, as
m an AVA analysis. In Sections 4 and 5 the use of genceralized
inversion involving a singular value decomposition enables
us to rank linear combinations of the unknown parameters
in order of our ability to resolve them. The body of the paper
ends with Section 6, which contains some concluding remarks.
A glossary of symbols, the list of references, and several
appendices follow, which deal with anisotropic ray theory,
generalized inversion, and the form of certain Jacobians used
to express integrals over ray directions ut the image point as
integrals over source and receiver positions.

2 THE BASIC EQUATIONS

In this section we will discuss the single-scartering or Born
approximation to the scattered field in perfectly elastic
anisotropic media.

As indicated above, the formalism is simple to outline: the
medium being modelled (or reconstructed) is thonght of as a
perturbation of a simpler background medium. The scattered
wavefield is the difference between the actual (total) field
and the background field that would have been present if the
actual medium were replaced by the background medium. If
the background medium is sufficiently smooth, the background
field can be well approximated within the framework of geo-
metrical clasticity {(ray theory). If the background medium is
sufficiently close to the actual medium, the scaftered field can
be well approximated by an integral, the Born scattering
formuld. of terms involving the background field and the
medium perturbations (see formula 2.21). The two require-
ments (smooth background, small perturbation) are sufficient
for the validity of the method.
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The formalism that captures this discussion in the case of a
general anisotropic medium will be developed in this section.
Equation (3.32), repeated below, is the key equation to be
derived and explained in this and the next section:

B0, s 0= = [ G050
b3

% 81— T 0w T (x)eW(x) dx. (3.32)

Here otV(x) is the vector of unknown material parameéter

perturbations and &, A. T, w depend upon r, 5, x and the

background medium. The detailed meaning of the varions
symbols will become apparent as we proceed.

Notation

First we introduce some basic notation. Let

x=(xy, X2, x3) be a Cartesian position vector, 2.0
s==(s1, 52, 53) be the source point, (2.2)
r=(r, r. r3) be the receiver point, (2.3)
¢ be the time . 2.4)

Let 4 stand Tor &y, let the overdot ™ or  stand for @, and ¥,
stand for convolution in 1.

Let
plx) be the density of the medium, (2.5)
cyre(x) be its clastic stifTness tensor . (2.6)

The waveficld is described by the displacement vector
w(x, fy=(u(x, 1) 1020x, 0, u3(x, 1)) . (2.7)

It is generated by a source distribution of body force with
density

Six. 0=(flx, 0. falx 0. filx 1)) (2.8)

We will employ the Einstein summation convention with
regard to repeated subscripts in Cartesian tensors; see e.g.
Jeffreys (1963), p. 3.

The single-scattering equation

As outlined above, we consider the scattering medium to be a
perturbation of a smoother (possibly anisotropic) background
medium by seiting

p= pw) +p(U , (2.9)
Cige =g+ (2.10)
=12, .11
u=d"+u", 2.12)

where u and o salisfy respectively the full elastodynamic
wave equation,

piti = (Cgrti.e) 4 =fi, (2.13)
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and the background ¢lastodynamic wave equation,

0y (0) (“) (1 (0) ¢
PO — (Gl =1, (2.14)

Here, and in what follows, the double dots indicate a second
partial derivative taken with respect to timc We shall assume
that the material perturbations 'V, ¢ ,\l and consequently
the scattered wavefield &', are small ﬁrst order’ gquantities.
Then, within the single-scattering (Born) approximation, the
scattered wavefield #!'? satisfies

ay;:(1) o (1) R ~
o juﬁ (2 ’) Fais ( +{¢ w\’g“% (2.15)

/AE“/\ 7
Thaus ' satisfes the background equation with forcing terms
which depend upon the zero-order field and the medium
perturbation. The two foreing terms niay be identified as

gi“ = —p‘”i'/‘»m.,, the scattering body forcc

(2.16)

Dt ) < : ;
m cU”uA « » the scattering moment density .

The tensor m 7 Y inherits symmetry from the c& ,3; and so hus six

independent components, each representing a double foree

system (vector dipoles on the diagonal and double couples off

the diagonal); sec Gibson & Ben Menahem (1991) for a detailed
description.

We consider three independent body-foree point sources by
taking in turn

S0 =810 —5)8(1) @17

for g=1, 2, 3, which labels the three canonical force directions,
Here, 3y, is the Kronecker delta, while 8(¢) is the Dirac distri-
bution. Because ofeqgs (2.19), (2.14) and (2.17), for given s and ¢
we may identify the displacement vector u#'¥i(x, t) with the
Green's tensor for the background equation (2.14);

11:»0)(,1', N=Gilx. 5. 1), (2.18)

where the dependence upon ¢ is now explicit, and satisfics
(¢f. 2.14)

pmjf?,-p —-(cf%Gk,,‘;)_j= Opd(x —s33{(ty. Gyp=0 Tfor r=<0.
219

Sustituting (2.18) in the right member of (2.15) and then using
the Green's function again to solve (2.15). we find that

TN
z;“)(r s, l)—J [—p“)(},-,,(x, 5 1+ ((;ik)e\(x;‘-,,;)‘i(x, s. 0]
P ]

*Gyilr, x, ndx. (2.20)

This is the p-component of the scattered displacement field at
receiver r and time 7 due to a concentrated instantancous point
body-force in the ¢ direction al source point s and time 0. On
taking into account (2.18), we see that the factor in bruckets is
the i component of the body Torce of (2.15). which includes the
propagation from the body force in the direction g at the source
s to component i at the integration point x. The other factor
represents propagation from component / at the integration
point x to component p at the receiver r. The contributions
from the varions i and x are summed and integrated. All sub-
scripts, except p and g, are repeated and therefore summed
from 1 to 3,

Integration by parts to transfer one time denivative to the
other factor in the first term and the j-derivative to the other

factor in the second will put (2.20) into a more symmetrical
form, i.e.

u“q’(r 5ot j [,D(“G,(”(\‘. 5 0% Gf(r, x. 1

—c'g;k?;GA.q,[(.t. 5, 130,Gy i, x, D] dx, (2.21)

which exhibits reciprocity between » and s when we recall
that Gplr. x, 3=Gpdx. r. 1). We ‘shall refer to (2.21) as the
single-scatrering equation.

3 ASYMPTOTIC ANALYSIS
Asymptotic ray theory

In this seetion we make a ray-theoretical approximation to G
in order to ohbtain a more tsable and geometrically inter-
pretable form of eq.(2.21), namely (3.32), or the slightly
modified form (3.35).

We begin by replacing G by the leading term in its
ligh-Trequency, rav-theoretical approximation. Thus we shall
write

Gplx. 5. )=y AN (x, 98 0 s)ali— e 0] B

N
Here N indexes the sheets of the slowness surface (see
Appendices A and B).
In (3.1) the arrival time ™ and the associated normalized
polarization vector £ satisfy (¢f. A8 in Appendix A)

[/ ﬂl)" _((2‘)‘ AN (V)-l »(JV)_O ('lt all X3, (32)

which implies the eikonal equation

)‘r(”{] 0 (atall x). (3.3)

05
det{p*dy —c”,ur

As a first-order partial differential equation, (3.3) may be
solved by the method ol churactenistics (see e.g. Garabedian
1964). For this purpose we define the slowness vector 3V by

M) = T, 9. (3.4)

Given initial vadues x. y and 4. the ray and transport equations
provide a system of ordinary diflerential equations which can
be solved to give x(@), oD, and A{¢'™) us continuous
functions of traveltime . The spatial components x(z*¥)) of
the characteristic curves (x(z%), 3M™), ¥ are the rays.

The wave front for wave-type N passing through x due to a
source at s is denoted by (x| 5). This is the set of points x*
such that 2% (x". )=1"x, 5). Eq. (3.4) shows that, for fixed s,
x) is normal to the wave front £¥(x, x) at x. We shall
assume that the region of interest in x is covered simply by the
family of rays. Then ¥, ¥ and 4Y may be obtained as
functions of x. The simple covering by characteristics excludes
caustics from consideration here. but methods exist for dealing
with them if necessary.

Eq. (3.3) constrains y 1o lic on the sextic surface .«/(x). called
the slowness surface, given by

det [p" 8~ 3] =0. (3.5)

</(x) consists of three sheets /™ x), N =1, 2, 3, each of which
is a closed surlace surrounding the origin. The amplitudes 4™
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satisfy the transport equation

[ E (A Y) =0, (3.6)

where N again indicates the mode of propagation associated
with the sheet of the slowness surface on which the corre-
sponding slowness vector lies (sce Appendix A, in particular
A29). For instance, if the medium is transversely isotropic,
N=1 might refer to quasi-P waves, N=2 to quasi-S¥ and
N=310SH.

It follows from the ray equations (A22) that the charae~
teristic, or group, velocities #¥) = dx/ dr'™ are normal to
M xy at #¥ and satisty
LA I (3.7
The normal or phase-velocity P i the component of ¢ in
the direction of ¥, Tt is given by

- ik I

AN g YT 2

¥ v RTINS (3.8)
From Eq. (3.7) it follows that

¥ = 1M os ¢, 3.9

whete 7 is the angle between ¢ and 9 see Fig. 1. In (3.7),
(3.8) and in what follows, a dot between two vectors signifies
the vector dot product.

It is shown in (A31) that z',;}\’c(f)\’fﬁ\'),(\) —p‘“)t,';‘v’. Thus
(3.6) may be rewritten as

YV p@ AN M =0, (3.100
leading to

1 dAw

T8 dem —~V’ (PN, (3.11)

Cos x = ]lﬂ

Q=5

Figure 1. The central projection of the slowness direction §, which
lies on the unit sphere ©, into the slowness y lying on branch ¢ 7

of the slowness surface /. (We have taken N or M =3 merely for
ilustration.) The surface clement dO(§) of Q is projected onto the
surface element dS(y) of %, The normal & 1o &M which is also the
group-velocity dircction, makes an angle ¢ with slowness direction 3.
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the differentiation being along the ray. The amplitudes can be
expressed in terms of the Jacobians (see Appendix B)
I

jt{‘vj = 17
Ar[pO () p s 4]
with
ds™(x, ), o
it(S)lV(A)—W (3.12)

Here d.o/"(s) and dE¥x, ) are surface area clements of the
surfaces /& at ¢ and ¥'(x, s) at x. The mapping from
& PNs) 10 TV (x, 5) is defined by integrating the ray equations
(A18) from (3(0). 5) at © =0 to (y(z'¥), x') at 7Y —1“"(x ).
in this process s is held fixed so that, as p(0) varies on . #M(s),
x varies on FYx, 5). and for a certain starting value 3 of 3(0)
at ¥ =0, ¥ (™ x, ) =x. Thus in general a neighbourhood
of 3 on '~ (s) is mapped onto a neighbourhood of x on

¥ x .

We casily verify that the physncal dimension of 4%
[to be distinguished from . \’(s)] is [time]’ x [mass] ™",
which upen multiplication by force, with dimensions
[11mss]x[lénglh]x[timc]‘z, gives the dimension of displace-
ment, i.c. [length]. It may be shown that .4 is symmetric in
{x. 5), so the expression (3.1) for 4 satisfies reciprocity as it
should.

It is convenient here to introduce the slowness direction
F¥ =%/ 1| 1t lies on the unit sphere 7. If we project S
radially onto sheet &/"/(s) of the real slowness surface .+/(s),
then from (3.8) and (3.9) we have

N2
. (,\»‘}:h’( ls da(\/; II(S)[ ~¢’v’ ~
W= onl, e G193

(sec Fig. 13 In (3.13) we have used the notation d;“‘" and
df¥" 1o denate the differential area elements on .o/ para-
metrized by ¥, and on §7 parametrized by §V1. We shall use
similar notation in similar situations where a vector variable of
integration is constrained to lic'on a surface,

The single-scattering equation

Following the notation of Aki & Richards (1980}, in which®
denotes a downgoing wave and “denotes an upgoing wave, we
write

Axy =AM s), A=Y a0, (3.14)

and then substitute cg. (3.1) into eq. (2.21) to get

W (r. s. I)—Z Z u},‘,,"-"‘"‘“(r, s, 1), (3.1%)
N
where
WIS 5 = — [ () A (X)E (3N EUPELX)
Ra7e

x 8t -1 (x)—T(x))
[P0+ gl dr. (3.16)

Here, &,(s} s &, for the incident ray in mode N from s to x and
evaluated at s, and £,(r) is £, for the (reversed) scattered ray
in mode A7 from r to x and evaluated at r. The quantity

WDNHYp, 5. 1) represents scattering from incident mode N to

outgeing mode M.
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The integrand in eq. (3.16) represents a polarization com-
ponent £,(s) at the source, propagated to components &i(x) at
x, scattered by the bracketed tensor to components £{(x), and
then propagated to component &x(r) at the receiver. In special
cases some simplifications are possible. If the background is
isotropic with P velocity ¢ and both incident and scattered
modes are longitudinal, then yr{(x)= ZHx)/ v, et

For a given source~receiver pair (s, r) and time / the integral
over x in (3.16) is restricted by the support of the 3 to the
isochrene surface

™™, 8) 4+, x)=1.
In (3.16) we introduced the slowness vectors at x {¢f. 3.4):
P )=V x, 5), y (=Y M, ). (317

the associated directions, i.e. the unit vectors:

U S 3

F=io, §=-1, (3.18)
7 vl

and the normal velocities (¢f. eq. 3.8):

1

Pre=—, Viee—, 3.19)
I ¢

We may now define

P ) =y (x)+p ). (3.20)

For quantities like this, which depend on the two rays, one
from s to x in mode N (*), and the other from r to x in mode M

N M

image
point y

1sochrone

Figure 2. A 2-D representation of the image point y and the iso-
chrone passing through it. Shown dashed are the ray in mode N from s
to y and the (reversed) ray in mode M from r to p. The (reversed) wave
front. the surface of equal traveltime from r, passing through y. is
marked Z. The wave {ront from £ through y is also shown, The dashed
circle represents the unit sphere §2 of slowness directions. The vector ¥,
the sum of the slownesses ¥ and ¥, and its direction ware also indicated,

("), this dependence will be indicated by a*, which combines
both symbols as 2 mnemonic device. Thus we have written
y(x) as shorthand for ¥+ x_s). Let v be the direction of
y{x), e

RACIY (21)
[y ()]
The vector v(x) is a function of s, r and x. We shall refer to it as
the isochrone normal (see Fig. 2). The term 8°(1— 7' (x) — 1 (x))
in the integrand guarantees that large contributions to the
integral in eq. (3.16) arise when v is normal to the local layering
at x, Le.when the isochrone surface is tangent to the local
layering (see Section 3). ¥ will play a central role in con-
siderations concerning the inversion of the generalized Radon
transform in the next section.

For later use. we introduce the local ray directions (¢f.
eq.3.7)

. v

B , v

)= FT(x) =

& =57 5= v (3.22)
We also define the two-way traveltime 77

Tx) =T x, sy= M, 5+ M0, x). (3.23)
Then, from egs (3.17) and (3.20) we see that

VI {xy=y"(x). (3.24)

Fortixed s, rand s, the surfaces TW¥)(r, x, 5)=1in the space
of x are the isochrone surfaces. In practice, computation of
TUMY will use tabulated values of t'9(x, 5) =M (s, x).

With a view to non-dimensionalizing the unknown
quantities in (3.29) and (3.32) we shall need a quantity with
the dimensions of velocity and independent of mode number
and ray direction. One such quantity is -, the (local) normal
velocity in the background medium, for ¥ in the 3-direction.
The notation . is meant to emphasize that the quantity does
not depend upon the rays or mode types. We could instead
have used the normal velocity averaged over all phase angles;
however, the present choice fits in naturally with borehole
measurements which might be integrated into our inversion
procedure. To simplity the notation, we introduce the dyadic
products

()= 5 PGy + S xomit]. (3.25)

1

2

ag(xy=5 F[Ex)fx)+ Stz {3.26)

which occur because of the symmeiry of the ¢y, and the
product of scalar amplitudes,

A7) = (A (x4, (3.27
Eq. (3.16) then reduces 1o

u“ HANM)

g AT s 1)

o [ SANSS)A Te= T () (x) ™

x [P )EOE X))+ <-§;j‘,31(x) V7 ag(x)adx)] dx. (3.28)

The «j represent the radiation pattern of the scattering
moment source density introduced in the previous section.
To simplify the notation further, we group together the 22
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independent perturbations in one vector. Thus we set

. M .
iy [ £1R) CipeelX) -
e x)= (p(m(x)’ 20} 2(x) (3.29)

und define, using the symmetries of (E/l;.),
; NUIPUURINE DU , . 2a
W)= <§i(-\‘ )i, 5[(lzf(x)flke(x)+akr‘(x)0fj(~\‘)]> . (3.30)

In this 22-component notation, the independent components
of cf;,gf are naturally weighted in accordance with the rank-4
tensor contractions. Because of egs (3.25),(3.26), (3.30) and the
symmetries of fcf;k"é, the tensor forming the second component
of w* in (3.30), which we write as

el )= S (X)) + i )iy (331)
is 1/8 of the sum of & 3”&y over the permutations {jké, jik(,
kif, ki ik, jitk, £kij, Fkji of its subscripts.

Note that w™ is a function of x as well as of §'(x) and §'(x)
because once x, N and 7" are chosen, ¥, & are determinced;
therefore. by eq.(3.25), 50 is aj.. Similarly, M, §’determine ajj:
Thus, when x and N*, M7, 7, § are given, ajji is determined by
eq. (3.30). The function w has been studied by Ben-Menahem &
Gibson (1990) and Gibson & Ben-Menahem (1991) in the case
of an isotropic background medium and is a generalization of
the work of Tarantola (1986) and Wu & Aki (1985).

We now arrive, by substitution into (3.27), at the approxi-
mate expression for the NAf-scattered displacement field.
i.c. the scattered fisld in the Ath mode due to an incident ficld
in the Nth mode:

e N e J SHNEN AT
¥

% 5 — T Gew T e ) dx (3.32)

This important equation forms the basis for the inversion
schemes presented later in this paper. All quantities appearing
init, except ef)(x), are associated with the background medium
and are regarded as known. The o, ¥"(r, 5. 0) are known
from (he seismic data and the quantities on the right of (3.32),
which depend upon the background medium which is assumed
known, are obtained from a preliminary analysis. Thus the
equation is regarded as an integral equation for ethix).
However, ¢V{x) is a vector with 22 unknown components.
Typically the data are not sufficient for the determination
of more than two, or possibly three, independent parameters.
One way to address this deficiency is to make use of further
information which might reduce the number of independent
unknowns and improve the condition number of the problem.
Before ending this section we shall show how this may be done.

Parametrization

To link the single-scattering theory with rock physics, it is
advantageous to allow for reparametrizations of the medium
perturbation. So far, we have based our analysis on 4 per-
turbation of the full stifiness tensor. If the stiffness tensor per-
turbation can be parametrized by fewer than 22 independent
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parameters, o' :((1‘]”, e d(,,”). say, with P < 22, then

(x)= [;{;:ﬂ Tl r i (3.33)
vields the perturbation of the medium. Then we may define
— [(w»)r fﬁ;‘(‘]”)}] ’ (3.34)
and rewrite (3.32) as
@G5 0= | GGHA

x 8" — T (W7 (x)d N (x) dx. (3.35)

The net effect is that (w”)? has been replaced by (%*)” and
M{x) by £ x).

This substitution will be implicitly assumed, if appropriate,
in the remainder of this paper. Tt will stabilize the inverse
problem introduced in the next section. Effective media may be
used to reduce the number of parameters if the perturbations
vary on & scale much smaller than a wavelength; the new
parameters might then be, for instance, the volume {ractions of
sand and shale in a finely laycred sand-shale sequence.

4 ANISOTROPIC INVERSION VIA AN
INVERSE GENERALIZED RADON
TRANSFORM

The assumption that the background medium varies only on
a scale much larger than a wavelength, while the medium
perturbations p' and cﬁ?, vary on a scale comparable with a
wavelength, implies that 2 is negligible compared with 2!V in
the measurements, except for / near any ©"(r. s}, the times of
arrival of the direer body waves from s to . Henee for practical
purposes we may treat #') as if' it were in fact the deconvolved
seismic data. As in the acoustic and isotropic elastic cases
(see Miller er al 1984; Beylkin & Burridge 1990}, eq.(3.32)
recasts the scattering integral as a form of generalized Radon
transform, which suggests an inversion scheme based on the
inversion formula for the generalized Radon transform. The
Radon transform is ‘generalized” in the sense that the surfaces
of integration are curved. rather than plane as for the Radon
transform.

Under special {possibly impractical) circumstances, the
medium variation can be parametrized in terms of a scalar
function of location. For example, the replacement of 4 small
volume of liquid with gas in an otherwise known medium may
be parametrized by the volumme fraction replaced through an
effective medium theory connecting this scalar parameter with
the components of ¢'Y(x). The inversion preblem can then be
reduced to a scalar GRT inversion. as shown below in
Subsection 4.1

Preconditioning the integral

In preparation for applying the GRT inversion formula we
shall consider the family of isochrones passing through a fixed
image point y. For fixed r, s and y. these are surfaces in x-spacc




764 R. Burridge et al,

given by TW¥(r x 5)=7W¥(r 3 5). As r and s vary one
obtains different members of the family. Thus in eq.(3.32) we
shall set =7y, y_s). We shall also scale the argument of
8" so that its gradient at y is a unit vector. This leads to

(NN AN,
Uoy AR 8 T, p8)

|
lr o

sw T (e (s ( w) dx, (4.1)
[ ()

--| gmamaw
_/::p

which is the scattered field at the urrival time associated
with the point y. In Fig. 2 the relevant quantities are shown.
The obliguity fuctor 1/ i;r"P in eq.(4.1) arises because 6° is
homogeneous of degrec —3.

We shall now contract with :""’(r . NENMUs; y, 5) and
multiply both sides by —[y")f /4 “(y) so tlml the factor
before w7 (x)ct(x) in the integrand reduces to unity when
x=y. This may be regarded as projecting onto the unit
polarization vectors associaled with the given modes at source
and receiver, and undoing the amplitude propagafion loss and
the oblguity effect.

Write

*

(/ll,\(:\’dl)(r y.5)
. » Yo

= {‘L (‘(V:I) &My, NEN(s; v, s)u;,E,"N‘”)(r, s T)
N A (x )““‘”(r ),},u/)( o N5y, 928 x s)
R ¥ N ST A0 ol TR
x WA T(n ¥, 8)ePx)
. T"(.x)—‘]‘“(v))
X[ — ) e #+.2)
‘ ( )]

As before. we have assumed that () #0. Otherwise, (urther
analysis is required. From the first line of (4.2} we sce that
CIOWNIDG 5 5) may be calculated from the seismic data and
information oblainable from knowledge of the background
medium. The unknowns ¢!'(x) appear in the integral. which is
closely related to a generalized Radon transform.

To emphasize the form of (4.2). write

F(r, x, y, &')~j~,§;) My, &M x, )

xEV(s; y. sy x. 8) (4.3)
and
@lr, x. y, 3) 27_(1)_;}3_;_2) (4.4)
Note thant
Fir, x, ¥, 8)=1+Ol]x—y]) (4.3)
and
e x, po sl o =vlx—y) +O(!x—y{3), (4.6}

with ¥ a unit vector. Then eq. (4.2) may be rewritten

Ulr.y. )= —| Flr,x, y, s)wr(r. x, )M (x)

S

x 8"flr, X, y, )] dx,
- [ [+ Ohx— " (r, x. $)eV(x)
gL

% 8" Tifx — )+ Ojx— pP)) dx. “.7)

4.1 Zero-offset scalar inversion

For clarity we have suppressed the dependence upon N and Af
on both sides of (4.7). but this equation forms a system of
integral equations for ¢'"{x). each equation corresponding to
one of the nine vulues of the pair-N, M.

To clarify the relationship between the multiparameter
inversion problem and the generalized Radon transform, it
will be helplul first to consider a simpler scalar anisotropic
inversion problem. viz. the problem of recovering a single
parameter using zero-offsel data.

For zero-offset data in the single mode N, we have the
following simplifications:

(1) r=s;

(2) N=M:

Q) y=y=pf=§=§&==g

(@) YV, y, )= 25, y), whereas v=7:

(5) & =a’=a: W)y, (). F=w 1y, )], which now
exhibits additional symmetries.
The single-scattering equation
Set the two-way traveltime
T, ) =T (s, y, 5). (4.8)

Using eq. (4.2), we arrive at the approximate expression for the
scattered displacement field:

LENVAY YN}
W s, s Ty, 5)]

> - J avisg ’\)(s)/)‘m(y)[rf(\‘(y)]‘
5 ,Wu 5 8T8, Py 0+ O y1)
A7, prHy—x)+ O(I.v~)’j3)]svw"r[y, s, M (x) dx.
4.9
Thus (¢f. eq.4.7),

U5, . )= MJ

24

w5 w1t o

x 508 ¥ —y)+ Olix -y Ndx.  (4.10)

We shall assume that ¢P(x) depends upon one scalar
parameter ¢'Y(x) so that we have a special case of eq.(3.34)
with ¢!¥(x) depending upon o'V (x) according o (3.32);

Aet™y
d Dy,

c‘”(x)—— dMixy. 4.11)
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Then (4.10) becomes

U[‘VM(S. 8= ( WM‘)T[},’ (s, )’)]([‘“(.\’)

iy
X 8" (rs, y)rx—p)+Ollx—yNdx, (412
where

8((:‘ 1 })

). (4.13)

Wy, s, =Wy, ws, p)]

We call this the scalarization of the perturbation.

Inversion

For ye % we may use
[ [T+ Oflx— y)3"[vly — x)) + O(}x—y|2)]dv
Ja?

= — 817 8(x — y)+smoother terms (4.14)

in a neighbourhood of y in which the isochrones through y do
not form envelopes. This result may be obtained by applying
the Laplacian to the casily proved formula

[ (14 Ot — piloL(y — 200) + Ol x — p )] dv
457

47

= —— . gmoother terms. {4.15)
x—y|

[See Beylkin (1982}, (1984) for a more rigorous approach. The
suggested argument was motivated by Chapter 1 of John
(1955).] In (4.14) and (4.15) O(x—y|) and O(jx —y{*) may
depend upon » and dre smooth away from the diagonal x=y.
To invert {4.10) using (4.14) we simply take advantage of the
correspondence between source position s and ray direction
at the image point ¥(s, y), introducing a Jacobian term and
integrating with respect to v over the unit sphere, viz.

; 2
Snzd“)(y):[ 1 A(v)

S R—— (J'“{NN)(S, ', .S) —
Jog Wy, s, )] AT ¥

ds, (4.16)

where 168 is defined in (4.13); see also (3.34),
Since

alv)

&8

- 1671‘\'p(m(5)pm’()’) Vi/\’)(s)[ ;"{N)('V)]S[/“'\”(y)]z V‘i;; .

v
@.17)

the amplitude contributions to the Jacobian cancel a similar
amplitude factor in U and we have

(V)¢ 3
= [ s s B
dtiy) —.Ls A YIS0 Wy, Y]

< SN s s, T, 0] is)ed ds
(4.18)
LN L uaTy
16 [ P sy

a5 WOy v(s, )l

L ANY NS Mgy AN Gaal e
x & (s)u,u)‘ [5,5. T (v, 9N, i) ds.

Eg.(4.18) is the anisotropit extension of the zero-offset
acoustic GRT inversion formula derived by Miller, Oristaglio
& Beylkin (1987), eq. (29).
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4.2 Multi-offset multiparameter inversion

We return to the general case. The basic plan is to take
advantage of the multivariable correspondence between sotirce
and receiver positions, the isochrone normal, and the scatter-
ing angles at the image point. The analysis is similar to the
multiparameter isotropic elastic case treated by Beylkin &
Burridge (1990). but is less well conditioned becanse there are
more paramelers to unravel and because the dependence on
scattering angle of the scattering tensor w is.not independent
of v,

Since we shall eventually employ an inversion formula
(4.14), which involves an integration in » over the unit sphere
57, we shall parametrize r and s by v and two further para-
meters: (), the angle between ' and §°, and ., the azimuth of
the plane containing 7 and §° about v (like the third Euler
angle). Thus

cosfi=F-§", 4.19)

Then, for fixed y, N and M, the parameters v, f and W are
functions of $'and # and hence of rand s. We shall assume that
these functional dependences are invertible, so that
r=r My, 5= v 0. (4.20)
s=sy, §7)=rY0 v 0, 9. (4.21)
The corresponding differential relationships may be written
a5 d =" T g e ST gy (4.22)
éis, ¥) v, 0, )
We shall eventually integrate first over (0 and ¢ on the right
side of (47) and then over v. However, because the data
appearing on the left side are naturally parametrized by rand s,
we shall there express the integral in terms of these variables
(¢f. Bevlkin & Burridge 1990).

The angles on the right-hand side potentially vary through
the ranges 0¢e[0, i}, veS® and Y [0, 27). In practice. their
ranges will be restricted by the acquisition gecometry. The
Jacobians are taken at the image point y, which is fixed for the
remainder of this subsection.

To carry oul the multiparameter inversion, we introduce
the covariance function o7,[f(y), 7 (»)] associated with an
a posieriori noise probability distribution from the measure-
ments (sce Appendix C) and the covariance matrix o)
assaciated with the a priori probability distribution of the
material parameters. In the inversion process the normal
matrix is given by

WA (g y. ri=w(s, ¥, r)a[,:wr(s, y.r (4.23)
(see Appendix C), where the covariance a7, may be a function
of y, 0. yrand ». If 07, is a multiple of the identity then (4.22)
may be written

Mgy r)=tr[;3w(s, y.rwl (s y. ). (4.24)
where now o7, is interpreted as a scalar quantity.

Figs 3, 4 and 3 show the values of some of the ¢P—¢P com-
ponents of w as functions of scattering angle # and azimuth
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Figure 3. Total radiition patiern for a c333: perturbation as a function of scattering (a) or incidence (b) angle and azimuih for a g P-¢ P conversion in

a TT background medium (symmelry axis || »),

i for a TI background medium when the dip » is parallel to
the symmetry axis. We integrate the normal maltrix over the
scattering and azimuthal angles @ and i at y holding v constant
(see egs 4.22 and 4.23) and set

F .7
o, 0,)

AYM) s square and is dependent only on the background
medium and on the source-receiver geometry through v, hence
its values can be tabulated like the traveltimes, We shall assume
here that this matrix may be inverted; see Appendix C for the
maximum-likelihood interpretation. When this is not the case
for certain dirsctions v we seek an appropriate reduction in the
number of parameters as in the previous section, or we may use

AFMYy yy= [ P ) diodp 4672, (423)

() ¢35 nu=0

.1

0.05.

v U4

-0.054

further information about the local layering, for instance (sec
Section 3). Note thut for zero-offset inversion w*} depends on v
and y only. Hence, the matrix 2™ =w® w7 is of rank 1,
and has only one non-vanishing eigenvalue. If the associated
cigenvector is substituted for c})“, we would obtain only the
linear combination

20 ="y M) {4.26)

of the anknown components of ¢!,

Returning to the general case, we shall now operate upon
(4.7 so that (4.14) may be applied to it, at least approximately.
We shall take a[;: 1o be a scalar as in (4.23). First we multiply
(4.7 by 47" d§’a > wir, y, s) and integrate with respect to f and

thy ¢33 ny=Q

-5

< -t

-0.154

5N .1
[ERE3 (\\ ’ ‘/
]
> "
{103 o
¥ U -6 <

Figure 4. Total radiation pattern for a cya; perturbation as a function of scatlering (a) or incidence (b) angle and azimuth for a Py P conversien in

2 TI background medium {symmetry axis || »).
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Figure 5. Total radiation pattern for a ¢33 perturbation as a function of scattering (a} or incidencet (b) angle und uzimuth fora ¢/-¢P conversion in

a TI background medinm (symmetry axis | v).

1 1o get

o AP ,
ds J a0y 5L ey UG, . 9

o7, §7)
=dy|an 3 . 0.
dy J dél dir Jg dx F(r, x, ¥, 5) &, 0. )

x agzw(r. v, s)[wir, x. ST V)8 (DU x. p. )

dx F(r, x. y, 5) Ay . 7)

= dyJ didy ‘[‘/ &v. 0, )

X ap Wi, y, s)wir,y,$)" + O(x —ple N (x)8 (D, x, . )
= dv L dx [domp[/:‘”f‘”(r, .50+ Ollx—w]]

% e D) Il ~ x)) + O x = ¥
= va dx[AMp 1+ O(lx — y)leMix)

< 0" [y — 20+ Ox —y[)]. ©(4.27)
Next we multiply by the inverse [A™*)(p, v)] 7! to get

e ) =12 ,
» [ Mﬁ{v, ) w)d()dvﬁ[/\(y, W e pTwlr, y. s)Ur, p, )
~dy J dx[7 + Ot x — ¥l P08 Ty — 20+ O(x—y Pl

(4.28)

and integrate with respect to v over S?, using (4.14), to get
JJ [AYMY s w1 hanwr, y, YU 3, $)dF dF7
= —822¢etP(y)) + smoother terms. 4.29)
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Thus

o i s =1 a .
CREDE T8 J . Ay v, y, s w0, )
S =OR

A3 7

:bllf\’:‘l-) LY.
> (r,y.5) 2

drds. (4.30)
Ad

Here, because we have neglecled smoother terms in the
generalized Radon transform, {¢""(y)> is not precisely equal to
Uy, but for the moment <e'(¥)> will be taken as our best
estimate for inversion in the absence of further information.
We analyse this expression in detail in Appendix C, where it
is shown to be the maximum-likelihood solution. For an
important special case of using further information, see the
next section, where we take into account the fact that the for-
mation is layered by introducing a new curvilinear coordinate
norma) to the layering along which the medium varies rapidly.

To carry oul the inversion we still have to evaluate the
relevant Jacobians introduced in eq. (4.22). The Jacobian in the
right member of eq.{4.22) occurs in the integrated normal
matrix and is derived in Appendix D as (D30). Thus

ay. iy sin @30
Ate, 0. 1+ (ly |y 171y itan g — tan 7)) sin @) ’
where (sce Fig. 1)

PPN ) VRS &
cosy =6F =— and cosy =8 =— (4.32)

vl

The Jacobian in the middle member of eq.(4.22) is directly
related to quantities calculated during dynamic ray tracing. It
factorizes as

LT _dFed
aAs. 1) sy A

(4.33)

Each factor is essentially the reciprocal of the cross-sectional
area of a4 narrow tube of rays emanating from x. The factors
can be expressed in terms of the ray amplhitodes, which are
inversely proportional to the square root of the cross-sectional
area of the same narrow tube ol rays. For a discussion of the
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anisotropic ray-tracing equations and the transport equations
governing the variation of ray amplitudes, sce Appendices A
and B. The first factor on the right is

s} 1 P

rypenad - - —— ——— , {4.34
A7) 1612 p0(5)p @)V (5 V 1) A () ss)5 (8) )

where ng(s) is the unit normal to 45 at the source 5. Note that
#'(s) is the normal to the wave front at s. Similar expressions
hold for 8(r)/ &(5") with obvious changes.

In the case of a homogeneous background medium (in which
the rays are straight), we have the following simplifications:

N SRR TARIE TP A 5 o

;x;—(b AL La((bs)) ).Z;:—:;;3' (4.35)
where

&= Gaussian curvature of the slowness surface at §°,

Thus,

o) | syl (4.36)

a7, Vingy
It is now clear that the relevant Jacobians combine with the
amplitudes hidden i UV (¢f . Miller er af. 1984).

Combined mode conversions

Rather than using the coordinates (§7°, #7) at y we consider
the ungles (v, 8, ¢) as preferred coordinates. Then, for each
N. M,

s=sT0 00, r=rNM0 0.

By ordering the integrations over (s. ) as

J dy [d[)drp.
57 E

we identify the inner intcgral (for fixed p) as a 3-D AVA
inversion and the outer integral over v as a migration. This
particular ordering of integrals is used to derive the inversion
formula (4.38) below.

To combine different mades in the inversion, instead of using
(4.25) we define

1) o (N é(})‘~ 7’) dod -1 437
Afw)= VZV J'/. —_—~E(i'. 0 ytal . (4.37)

The more terms included in the summation over N, M the
greater the resolving power of A(v). Thus, summing U™ gver
the modes and integrating the result with respect to s and r, we
obtain

1

My e Uy ey e
¢d3) SnZ.LMSA . vir. 3. 51

(NATY 2 g ANM i ay .y ~
% E w g 2 UM Gy, sy ———1| | ,drds,
Nt sy

(4.38)

replacing eq. {4.30). This requires that we set £= T™¥! for cuch
(NAS) scattering process incorporated into the sum.

5 MULTIPARAMETER INVERSION:
STRATIFIED PERTURBATION

In this section we use further information concerning the
unknown medium, to the effect that it is locally stratificd in
the sense that ¢!!/(x) may be represented in the form

- elex, ). (5.0

Here ¢ i5 a smootb function which may be interpreted as a
curvilinear coordinate whose gradient is in the direction in
which ¢t (x) varies most rapidly, and whose level surfaces are
possible interfaces in the medium. ¢ is another small parameter
and the first argument of ¢ on the right represents a possible
slow variation on which the medium perturbation varies
faterally. Thus 'V varies mainly in the direction of V¢, but may
vary slowly in other directions. By the chain rule wesee that to
leading order in small e

Vd..l)[(,x’ A(x)] =ty Vo, o= &&(U . (5.2)

We will omit the first argument of ¢/ in the remainder of this
section, and take into account only the leading term in the
gradient of the perturbation.

The single-scattering equation

In this scction we shall consider & and M to be fixed and
employ the shorthand notation

TE) =T r x,5). y'=V,T. Aux)=A"()ENI) .
(5.3)

Then aq. (3.32) may be rewritten
M s = —J AW (e Mo x)]8"[r - T(0)] dx .
£

(5.4)

To make use of (5,2) we will integrate expression {3.4) by parts
using the obvious identity

FVT(0)S— Tx)] = — ¥ - VTr — T(x)]. (5.5)

which holds for arbitrary ¥e 5% Then

. PVl ;
N s, z)=—J ApgOIW TV =ZE] S T d
i v:

VT

(5.6)

Here it is assumed that the unit vector ¥ = #(x) is slowly varying
in space. and may be chosen normal to the local geological
fayering:

_ V¢ -
S (5.7)
Now write
o] = [ LB — L) L. (5.8)

The level surfaces of . ie. the geological interfuces, and
the isochrone surlaces are iliustrated in Fig. 6. Substituting
eq.(3.8) into e¢q.(5.6) and interchanging the order of
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Figure 6. Locally stratified medium perturbation.

integration yields

a;‘q)w’w(r. 5, )= Jm dL F,Z [ ; ‘4f’fz(x)w"7‘ (e (L)

Vo

Jd{x)~ LIH [ — T(x)] dx

X

X

- _j drd? [ dx Apy (0w (x)e (L)
R Jo=L

v -V

A I 2 1 L el A &
xﬁ~y"|V<ﬁ>{ H{i—T(x)}

X

= —J dLé; j dx A (W T o)t V(L)
R Ap

P Hp - Tl (5.9)

X

"y.)r

In the last member of (5.9) [, dx is the surface integral with
respect 1o x over the surface A, given by ¢(x)=L. As a
consequence we also have

o Srp NS s ‘s
t?,lf(”[‘v’")(?\ s, 1):1;;;(’)!;,{(3)(?,}(1(‘7‘{;('\ /)(’,8 5. 1)
=‘J dLJ dx A" T (e (L)
1N =l

“’"'np
M
Fey

5"t —T(x)]. (5.10)
RY
We may identify w7 ¢!V with the small contrast approximation
to the reflection coeflicient from incident mode A to reflected
mode M across an interface locally coinciding with g= L.

‘We next cvaluate the integral in (5.9) by the method of
stationary phase. For variations of x lying on A, the phasc
Tix} is stationary at points ¥(L) where V7 is normal to 4, i.c.
where
vz%—;—lsm. (5.11)
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To make the caleulation explicit we choose local Cartesian
coordinates (x,, z), =1, 2, in the neighbourhood of each such
specular point y(L)€ Ay, so that

vy, {xptlvss (5.12)
see Fig. 6. The function Tp(L)] has a derivative given by

ar_|v7]
dr” [V L) )

(3.13)

while, by the implicit lunction theorem, the function Ly{/)
satisfying

TOIL(O =1

exists. Indeed, several may exist if the scattered ficld develops
caustics. Taylor expansions of the level and isochrone surfaces
up 1o the second-order curvature terms in x, yield

. 1
0=a(x) ~@ly)=|Vily) !:+§-\’p@‘>m(y)x\- .
: (5.18)
T{x)= T(}’) + !v T(_}’) l: -+ 5 A T/n’(}’)v\'v .

The first equality in (5.14) amounts to the equation of the level
surface ¢= L,

Xy

ECE e
Substituting this into the second equality gives

T{x)= T(y)+% [V TN x, T (X (3.16}
where

Y= T _(b_,‘,(

mEwT| Vel

for x constrained Lo lie on the level surface ;. We shall assume
that the matrix T, which may vary with the level L, is non-
singhlar. but may be negative definite, indefinite or positive
definite. The case of singular Y leads to analysis akin to that
required for caustics (coalescent points of stationary phase)
and will not be treated here. However, for non-singular 7,
when £ is near T{y), we have the intermediate result

& [ H[i— T(x)] dA(x)
Jp= L

2 . ] )
=¢, J . h’[’"‘ r(y)'—; IVT(.Y)II';'TM()’).\\-] d-‘ﬂ d”"l
R” =

22— T )

N 4D
where
& it T is positive definite,
o*={ #§ if Y isindefinite, (5.18)

. —d i 7T is negative definite .

and . denotes the Hilbert transform. These results appear
as eqgs (6.2), (6.4) and (6.3) in Burridge (1963), where u
time-dependent derivation is given.
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On using {5.17) to evaluate the integral in eq. (5.9) we abtain

[ dr.éa J dew T L) 22
JR a=1L

Yo | H[i—T()].
Py,

w T L))et (L) F-v, . -
=2 dL L ——— o [t— 0L
ﬂ‘{m rIVIdet ()] F-»7 L) [ O
2y M DENIL O] ""fi’ (5.19)
y WV Idet AT L) ¥ 27 L, i) .

Then, on substituting eq.(3.13) into eq.(5.19) and using the
result in eq. (5.9), we see that

WO oy (VAW T GILOL Y 2 e Ly (0]
AR Vet () 1y’ '

(5.20)

since at the specular point we have v=v,. This formula is an
extension to three dimensions of the 1-D convolutional model.
In (5.19) and (5.20),

C(U!ﬂy(;)’], for T positive definite,

VL] =< etV [Lyn)], for T indefinite, {(5.21)

— e Ln].  for T negative definite.

I oY contains a step function, the numerdtor represents the
angle-dependent reflection coefficient in the small-conirast
approximation: multiply eq. (3.20) by the amplitudes (eqs 3.12
and 3.27) according to eq, (4.2) to obtain the displacement, and
substitute eq. (3.13); extracting the phuse velocities at the image
point from the amplitudes, we obtain the following expression
for the linearized reflection/ transmission coefficients at y(L):

N ¥
(w}"}’): 312102 57
(1 V2 P

w\l}'c( e

(MY 22
Ry (5.22)

assuming that y* and p” for a given », satisfy Snell's law, ie.
¥ +7" is parallel to v, [then (0, ) are the only degrees of

freedom in w”]. Backsubstituting (3.22) into (5.9) illusirates
this:

Fad NG s = l d.l [ d.x'A'(x)R&:“”[x, ¥ (), P
JIR do=1

) (- wp )Ty &= T, (5.23)

with

A= AT () VP (xP T (5.24)

Eq.(5.22) provides a tool to quantify o posieriori the
accuracy of the single-scattering or Born approximation by
comparison with the solution of the full Zoeppritz equations
at the specular direction. Such a comparison for a gP-gF
reflection in a transversely isotropic medium (a shale overlying
a gas-hearing sandstone) is shown in Fig. 7. note that the
linearization breaks down for wide angles. Eq.(5.22) relates
the linearized reflection/transmission coefficients to the
kernels of the volume scattering formulation (eq.4.1). The
radialion patterns associated with those kernels, and oricnted
with respect to the geological layering, predict which medium
perturbations will be mainly responsible for causing the
lincarization to fail; these are the ones that imply radiation
patterns containing lobes parallel 1o the geological layering.
For our example (Fig. 7), this is illustrated in Fig. 8, from which
it becomes clear that in this case the perturbations in ¢y, =
and ¢13;3 = ¢35 are hard to determine in the linear regime.

Inversion

We can [ollow two approaches to carry out the linearized
inversion. Either we can base the procedure on the Kirchhoff-
Born-type representation eq. {5.10) or we can base it on the
further asymptotically reduced representation cq. (3.20).

In the inversion of eq. (5.20), where the variations in §" and
$° are constrained by the condition that the isochrone is
tangent o the layering, w=v,, leaving (€. ) as the only
degrees of freedom, the Radon transformation plays no role,
The inversion formula reduces 10 a 3-D AVA analvsis and
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Figure 7. Exact (solid line)and lineurized ¢ P~¢P reflection coefficients: an example. (The average medium properties across the interface are taken

as the background.}
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corresponding techniques can be applied to invert for the
medium derivatives. In accordance with our procedure, we
multiply €q.(5.20) on the left by

_/Idetmiy

-1
7

integrate over (0. ), und invert the matrix A for v=v, as
before. Thus we define

A van ST Y) . 5 951
Alr)= /\zw { ) mdl) dyr 4o, (5.25)
as in (4.37). to give

1 . 3 3
L)) = AT ‘(v)Jd()ddz}det(“f)]"z YA
) s gy LT (5.26)

Mg, O, )

Note that both the orientation of the lavering v, and its
curvature, contained in [det(T)}, need to be known at the
specular point y(r) in order 10 carry oul the procedure.

Alternatively, even when the medium has fine structure of
the form (5.1), we may use the GRT as in Section 4. However, if
the angular coverage is not suflicient for a good approximation
using the GRT, it may be preferable to use the method of this
section.

6 DISCUSSION

We have developed a procedure for lincarized, multiparameter
inversion that combines GRT migration with AVA analysis
and that is. in principle, valid in general anisotropic media.
With general anisotropy. we have excluded the cases of
truly weak anisotropy {near isotropy) and the occurrence of
shear-wave polarization coupling, for example near osculating
singularities of the slowness surface. Further, we have excluded
the occurrence of caustics in the background medium when
they imply conflicting migration dips at the image point. The
polarization coupling can be treated with the generalized
Born approximation {Chapman & Coates 1994). The caustic
problem can be addressed with Maslov's theory, and, away
from conflicting dips. leads to the appropriate phase changes
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{(through the KMAH index) and amplitude corrections in the
background Green's functions. Turning rays are naturally
included this way.

The extension from isoiropic to anisotropic media led to a
partially weak formulation of the inverse problem in terms of
maximum likelihood. The explicit freedom in parametrization
of the medium perturbation allowed for a reduction in the
number of free parameters, which aids in stabilizing the inverse
problem.

Our theory is essentially based an Born scattering developed
for body-wave reflections and transmissions and thus handles
general. surface and borehole seismic-acquisition geometries.
It does not, however, treat head waves correctly. Although the
inversion formula remains stable for any scattering angles,
accuracy is lost at large angles.

Our formulation can handle realistic, irregular acquisition
geometries. In practice, due o poor sampling of the scattered
field, we will be restricied to applying an incomplete inverse
Radon transformation: the relevant integration over the
double spheres has to be supplemenied in some way to com-
pensate for missing data. In connection with this, we carried
out a careful resolution analysis (sec De Hoop e al. 1996).

In our formulation we have identified linearized reflection
and transmission coefficients whenever the medium per-
turbation is known 1o jump by a small amount. This provided
a way to validate the Born approximation after the inversion
has been carried out, Information about the local orientation
and curvature of the geological fayering will further stabilize
the inversion when the acquisition geometry is insufficient to
reconstruct the contrast pointwise. In this context De Hoop &
Bleistein (1997) have recently suggested inverting first for the
reflection cocRicients themselves, which appear linearly in the
scattering forniulae, and subsequently performing & non-linear
inversion (AVA analysis) for the material parameters.
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APPENDIX A: ANISOTROPIC RAY
THEORY AND THE TRANSPORT EQUATION

In this appendix, we shall derive the transportequation (eq. 3.6)
for 4™ from the hamogeneous Torm of the elastodynamic
waveequation {eq. 2.8). namely

0 0
7 ’u,—(('wm =0, (A1)

We seek @ in the form given by the following ansatz:

u= Z Afn)(.i‘)j;z{l - 7{x)]. (A2)
H=u

where

/;; :,f;lr-] . (A3)

Thus, regarded as functions of time, ¢ach term in the series
eq.(A2) is one integration step smoother than the one before.
The traveltime function 7 is a scalar function of x in this
appendix, but elsewhere it may also depend on a seurce point
x’ and a mode of propagation ¥, and we then write ™ x, 2.
Moreover, p® and °1/0kt- and therefore u, may depend upon
the parameter ¢. Here we shall leave only the x dependence
explicit.
For ease of notation later we define

Axi=0 for n<0. (Ad)

To obtain equations for  and 4“? we shall need to substitute
(A2) into (A1), so we calculate

=S AP fyalt — <0

n =4}

(A5)
“r’\'.f")_‘( ‘71‘11}\ ju 1+ 4/:];fu)
4=
and
(0) S
My — J0 [ i -
(‘g,'k{"kf)lj'z [ 7Ty " - ‘_‘(‘i;l\)z‘r.?-"‘zl)),/_/u—X
=t}
oo o)
- (l:ikl‘r ") //}-—l +(“:,1‘), '11) jl}]
(A6)
(0 { O =)
_z (et A ")——(c,,,\'(r, SR P
n=1{
0] m—l} (l)) (t~_l .
—CTArr A ) nea
Substizuting eqs (AS5) and (A6) into (A1) leads to
kA
0 0 0 -1
38k — T4 T AT
n=\
KU {n-1) J0) g2 -
+ e A = (AL N f2 =0 (A7)
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Let us equate individual coeflicients of f,.» to zero
successively, starting with the most singular term n=0. Then,
for A==0 we get

(p 8y — T Al =0, (AS)
leading to
det p(o’c‘i,-k — cg?(z_ To=0. {A9)

This is a first-order partial differential equation for 7. Tt also
states that the slowness vector,

y=Vr1, (A10)

lies on & sextic surface ./, say. This surface consists of three
ovoid sheets 7™, N =1, 2, 3, each surrounding the origin. Ta
see this we define

1
Ve=—\, $=Vy, {ALl)
Iyl
so that § is the unit vector in the direction of p. Eq. {A8) may
now be written as

0 o o 0 2 40
"2;.«){}’174*’1,( U =pt® ;/’;4: ’ (A12)

so that 4™ is an eigenvector, belonging o the eigenvalue
POV of the positive symmetric matrix with & entry
c% F;#e. Thus for each direction § there are three positive, not
necessarily distinct, values V™x, ), ¥=1,2.3. of ¥ and
three orthonormal cigenvectors V) belonging to them. Let us
assume that FU> P> 3 Then, as 7 sweeps out the unit
sphere, each y=(1/1"")$ sweeps out a closed sheet 'Y of o/
surroﬁnding the origin. For general y, not necessarily on o/, let
¥ y) be defined by

det (VY54 — lyr =0 {A13)

Then the FWi(x, p) are positive homogeneous of degree 1 in y
and the surface .Y is given by
PNy vy=1, ' (A1)
Also F™(x, §) are the ¥ already defined by (A12).
Now let us return to the solution of (AS8) for 7. We may write

it in the alternative form

P, Vo)=1. (A15)
On solving this by the method of characteristics onc obtains
do; dz dv;

N1 AN pANT
Vi wiVa Vi

{A10)

By the homogeneity of ™) in y and Euler’s theorem we have
LN N (
gV = =1, (A17)

so (A16) leads to the Hamiltonian system

E=PWL == (AI18)
where we have written "for d/dz. The paths (x(1), (1)) are the
characieristics of (A15), and since this is the characleristic
equation of the elastodynamic equation, they are sometimes
referred 1o as the bicharactervistics of that equation. The traces
x(7) of these curves in ordinary space are the rays, and (A18)
are called the ray equarions of the system, We shall assume that
the region of interest is simply covered by a (two-parameler)

family of rays. Then, for fixed N, t and y are defined uniquely as
functions of x. Let v=2x. Then from (A17) and (A18) we sce

that o is normal to the surface /™ and

yov=1, (A19)
leading to

Fep= VI, (A20)

So. v is normal to & and the component of v=x along the
direction § is ¥ =1/{y.

Next we equate to zero the coefficient of £ in eq. (A7), so
setting =1 we obtain

{0} 0y, .y 4 0) ., 40 (0., 40
08— A+ e Al + Al =0, (a21)

[f we contract this with 4 ,f“’ the first term vanishes by (A8) and
we gel

g0 J0) i E(U T SR (R

A, (cW,,,A& )J-}-cijk, Af e, =0. (A22)
However, the symmetry of ¢y; shows that

A0V Oy, 40 _ A0} (0) {0 3
Cgep Ay /jAk_l;_Ai.j Ctikf}‘fAk . (A23)

Hence, combining this with eq. (A22), we find that

Ay 0 gi00,
(e A A0 =0 (A24)
However, 4 i3 a multiple of the normalized cigenvector & so

we may write AW = AD¢ in (A24) 1o get

[ 7 (AVP) =0, (A25)

4
We shall now reduce this equation slightly by making use of the
ray equations. First notice, from the fact that & is a normalized
eigenvector, that

20T I () 5

Crice BTk T e (A20)
and then

KA N {1 -
(,,-“:f:'rCiCk—P( ' {A27)

Let us suppose thal y=p(s) on """ is parametrized by s 50 that
on differentiating with respect to 5 we obtain a vector y' tangenl
10 .. Then differentiating (A27) we get

v

(L 0y Lz o2 R A s
e ¥PrS ik Ce PV rCish F Ce ¥tk +‘g;u}j:rl,ik,k*—0 .

(A28)
but by (A26) and the normalization &.&, =1,
Ay L+ riedith= PG + GaD =0. (A29)
Hence (A28) reduces to
it i S =2 € =0 (A30)

by the symmetry of c‘lj(g. However, y is any vector tangent to
2 Hence. if we define » by

Oy = el pedile - (A31)

4 ikETe

v is a vector normal to &™), and by (A27) ;= 1. Thus, by
comparing this v with ¢ of (Al9), we find that they are equal.
So, finally, (A25) may be written as

v [;)‘”’Am‘lv]=0. (A32)
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On differentiating this product we get
2 V[ A0 V- o [p 0 407 =0, (A33)

which on using #= dx/dr may be rewritien

W 4t o,
Llaconl d’: 9o pp040% =0, (A34)
or
d W 402 35
alog[p AN )= —Vp. (A33)

On integrating (A32) over a narrow tube of rays terminated by
small patches ¢; und o3 of wave fronts, we find that

PO 402, = 1A ey (A36)

where the subscripts ;5 indicate evaluation on ¢y 2. so that

c

AV (A37)
Vi e

where C is a constan! and ¢ is the area cut oul by the narrow

tube of rays on the waveiront at the point where 2% and ¥ are

evaluated.

APPENDIX B: SOLUTION OF THE
TRANSPORT EQUATION

Tn this appendix, we shall solve the transport equation (3.6) for
AW We begin by integrating the lelt member of the eguation
over the interior of a4 narrow ray tube terminated at one end by
the source, ut s, and at the other by the wave front =5y,
through x. and parametrized by x*. Let the rays emanating
from the source be parametrized by the slowness vector
p? =3¥(s) in the surface o7 =.o/(s). Then. by (A37). we
find that

) AN i) 4m? (BI)
’ A
is conserved ulong a ray. Thus

B (B2)

AYx, 5=
((x )

)

To tind the constant B{s) in the latter expression, we allow x to
approach s and make use of

p‘”‘(\f) pe ’(x)

L X-5 .y
lim == =¢'"¥g)
-t 7

From eq. (B2}, we obtain

. ‘ b, ax’)
~ I A
m‘; 2 A(UV = By (s) lllj‘n 3000 (x )5(7’1)
. (B3)
P (s) de ) EEY)
B‘)(S) ﬂ(a;\) B (},.T/’) i
with (¢f . eq. 4.36)
E,(v:\’) ile\')P
& (i;l\ [ LAY (84)
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(¢f.3.13) and

Pyt

T

f ,/.) =5, (B35)
a7

where w? is the Gaussian curvature of the slowness surface =7
at y*’,

Substituting eqs (B4)-(B3) into eq. (B3) yields

T L Y L) TP

= === N B6
11-[}8 2 AIO)' Bz(s) lv (x“ K (B6)
Restating in the notation of this paper eq.{6.7) of Burridge
(1967) foor the field due to a point source in a yniform medinm,
modified slightly by a factor of 1/p'® to allow for a different
definition of the source, we have

1 2N (N}

= Sk S st (ol
T TS -y (x—s]. (B

Gre(t, x)~

Tdentifying the first factor as A" we obtain

lim 14" = ——~1—— (B8)
t=e0 ArpM e 172t NI

Then, comparing this with eq. (B6) leads to
B(s) 1

: —5= - 5, (B9
[p"”(s‘)lv“‘”(s)fxd]"' Arp @) 2N
50 that
!
10 P — (B10)
( 47[[@“”{5‘)‘0“’“(5’)”\’:"
Finally, substituting eq. (B10) into eq. (B2)., we obtain
i
AW(x, 5)= = (B11)
[ T o Y el
4| Oy A Y ()
'rtp ()M ()| ()] X) )

in agreement with eq. (3.12).

APPENDIX C: THE GENERALIZED
INVERSE—A BAYESIAN ANALYSIS

We consider eqs (4.2) prior to applying the generalized Radon
inversion, with y and v fixed. This may be lormalized as a
generalized linear inverse problem of the form

U,,:Z,,ch+n,, (Ch

for the medium parameter perturbations ¢. Here #, is random
Gaussian noise, J is a compound index which includes not only
the discrete index. sunmmed from | 1o 22, but also possibly the
dependence upon x integrated over %, and # is a multi-index
including dependence upon N, M, (?, Y. We suppress the
explicit dependence upon y and v since these are fixed for the
moment. ¢ may also contain a directional derivative of ¢V, U/
contains U and factors such ae the appropriate Jacobians,
and the functions Z contain w’ and any further Jacobians
dependent on (f, v. ¥). J and possibly x, The parameters f# and
¢ parametrize the source and receiver locations through the
functions s(y, 0, v, ) and r(y, 0, v. ), which may be computed
in the course of ray tracing.
We begin by rewriting (C1) in matrix notation:

U=Ze¢c+n. (CH
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We shall supposc that the probability density of n=U— Ze is

P{n}=P{U]|c} ,_”l. S cxp( ﬂén/a']ﬁ:n> . (C3)
v("t)'!‘ det (a7 ) -

where o-z is the covariance matrix of (the components of) # and
dy is the dimension of ¥ and henee also of a.
We shall assume an o prieri probability density for e, also
Gaussian:
P{ }_‘_ I v ’ ! ro-2, C4)
c——ﬁ_:u\p —sealTe). (C
(2m)* det (03)

where ¢ is the covarianee matrix of (the components of) ¢ and
d, is the dimension of ¢.
The conditional probability density of e given U/is by Bayes’s
theorem
P{U[c}P{c}
P{U}
and the maximum-likelihood estimate of ¢ is the value ¢™ of ¢
which maximizes P{U|c}P]c}, since P{U} is independent of ¢.
Thus

P{c|U}= (C5)

e =argmax, {exp[——(UT—c 2TV (U - ét)J

1
= exp[—s— cTa‘f‘ch } \ (C6)
ie.
T, 1 ..
-drgmm f_ (UT—cer)a'(j‘(U—Zc)-i-;)- ¢! (T(:'lc} .

()]

By setting to zero the derivative with respect to ¢ of this
quadratic form, we are led to the linear system

(Z'o?Z+0 e=7"a U . (C8)
Putting in the subscripts this may be rewritten as

(/'IJJ(f Z'l +('( 2 er= 'PJrL oy (”7 (C())

)
In (C9) repeated indices imply summation over discrete com-
ponents or integration over continnum components. Thus
repeated J' implies summation over the 22 subscripts of ¢ and
integration over x. The repeated y implies summation over
(selected values of) N and M and integration ovu' the variables
0 and i through rand 5. If it is assumed that o}, 1S @ multiple
of the identity, then we may rewrite (C9) as

(GIZZZIIJZHJ’ + Q’E:}J‘)Cf = ’I-JGE.::']I[' U’P’ M (C] 0)

Compare this with the use of {(4.23), (4.25) in (4.30) and the
summations and integrations used in those equations where
only one pair NM is used, and again with the use of (4.23),
(4.37) in (4.38), where there is a summation over multiple
values of the pair NM.

APPENDIX D: VOLUME FORMS ON
SPHERES

In this appendix we will generalize the results of Burridge &
Beylkin (1988) on the volume form on 52 x S7 (¢f . eq, 4.22). We

treat the problem independently from the main text and hence
introduce a separate notation, Set £= §°, y= 7. then

v=AME, &+ . My, (32

where (¢f. eq. 3.21)

: Iyl ¥l

A= e f==e (D2
T )

We have

Ee8t, pes? and veS?. (D3)

We introduce the angle f between the unit slowness directions
as

cosfl=&-p. O&l0, 7). (D4)

In view of eq, (D3) we have the constraint
Byt +20ucos=1. (D35
Further, we introduce the unil vector

g:w]__.(s/\:,)f\; M
sinf

sind
The vectors &, o, v and ¢ lie in the same plane; also £ Lv. Nate
that for v fixed, £eS*. We shall analyse the transformation
(&, ) —{v. B. 1), where ¥ denotes the angulur displacement of
¢, and evaluate the associated Jacobian.

First. let § and y vary in their own plane, i.e. the plane they
initially span. The associated infinitesimal angular displace-
ments of the relevant vectors will be denoted by the super-
script |, Then. in terms of angles , rin a fixed reference frame,
we write

(D6)

sinu cos
E=| 0 |, &,= 0
Cos u — §ing
. (D7)
sinr cos e
= 0 .oy = 0 ,
cos v — sine
while 4= i(n. ¢) and = piu, r). Note that
r—u=0. (D8)

In general, from egs (D1) and (D7) 1t follows that for in-plane
variations

dy= {4, du+2,de)s + A8 du+ (e du-+ u dedr+ wyde. (D9)

We introduce the unit vector (¢f. eq. D3)

V= A, 06, - ulu, ey, (D1D)
Note that
Euls, n Ly, Vi, {D11)

while &, &, o, 57,0, v and ¥ all lie in the same plane.
Since ¥+ dv=0, the angular displacement dv! of v is given by

dvl =o' dv = [ 4 A (8, - )+ A€ 1) + A, )] du

FLAE )+ o AS D+ i (o Y+ pTde . (DI2)
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On the other hand, using eq. (D8),
df=de—du. (D13}

In our notation du=d&! and de=dy'. Coembining eqs (D12)
and (D13) leads to the Jacobian

vt h

fu, )

PG, — g sin 04 rcos 0 2 + (A, — &) sin 0+ A cosd

-1 1

=i 4y 4 2igeos 0+ [Ap -+ 1) — L+ Aol sin 0. (D14)
Using cq. (DS5), this results in

2. ST IC ;
R LA Y [0 RS -)] 9. D15
5(5",1;‘7) + A6, +2,) og(v{ sin ( )

Sccond, consider the case where ¢ and y are varied per-
pendicular to the planc they initially span. The resulting
infinitesimal changes will be denoted by the superseript +. We
first write the analogue of (D9):

dv=dA&+AdEt + dugtudyt. (D16)

Because the variations of v due to in-plane variations of § and »
are also in the &—n plane, for the purpose of calculating the
Jacobians we only need the component of dy perpendicular to
that plane. This component is

dvt = A&, ) dE + (& ) dnt . (D17)
Similarly, using (D6) instead of (D1}, we find that

coszdyt — cos fd&t
- sin @

d¢ . (DI18)

where ¥ and f are defined by

cosz=E-v, cosfi=pq-v. {D19)
Note that
at =1 (D20)

The sine rule applied to the triangle with sides A&, oy and v

gives

sing sinfi .

sinz_sif_ oy (D21)
n A
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Substituting (D21) into (D17) then yields

sin fd&* 4 sinadyt
sin @ '

Note that &' = di. Combining (D22) and (D18} yiclds

dvt =

(D22)

At oh R sinff  sing 1
Tsing’

— D23
HES pty sin o (b23)

—cosfi cosz

Putting (D13) and (D23) together, we get

a0,y 2l o) 20t ¢y I+iu [(é,,-ké,ﬁ) Iog([/‘f)] sinf)

HE ) A& ghyaEt. gty sinf
(D24)
Thus
A& sin ¢
; é(&, m__ ‘ sin ¢ : . (D25)
alv, 0 4f) l+/'.;¢[(c7,,+f?r)log(£r)} sin0
[n this final expression we can substitute
u_ K@) _ VEw)
L (D26
2oV ap V) )
where 7 denotes the phase velocity as before, so
@u+ e log(£) =2 tog V(& ~4 Tog Fin)
- (D27)
= —d, log[y'| -+, logly].
Returning to the notation of the main text yields
cologiy'l= 7 =tany with cosy =0-§. (D28)
. I P e a
& logly |:=W= tany” with cosy'=8-§" (D29)

Then, on substituting (D28) and (D29) into (D27), and the
result into (D23), making unse of (D2). we obtain

AL ¥) sin 0
v 0090 1y iy /1y P tan g — tan ) sin 6
which is (4.31).

(D30)




