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BOREL SELECTORS FOR SEPARATED QUOTIENTS

DOUGLAS E. MILLER

We use a nonstandard version of the Kuratowski, Ryll-
Nardzewski general selection theorem to establish the exis-
tence of Borel measurable selectors for certain equivalence
relations on Polish spaces.

The two main results of this paper establish the existence of
Borel measurable selectors of determined complexity for certain
equivalence relations on Polish spaces.

THEOREM A. Let G be a Polish topologίcal group which acts
continuously on a Polish space Y inducing an equivalence E on Y.
Suppose A QY is an invariant Borel set of ambiguous class a ^ 0
such that quotient Borel space AjE is countably separated by pro-
jections of invariant sets of ambiguous class a. Then there is an
a-Borel measurable selector function for E on A.

Given 7 e ω19 let 7* = sup(7 + β: β < 7), so 7* = 7 + β when

7 — ̂  + i ? 7* = 7 . 2 when 7 is a limit ordinal.

THEOREM B. Let Y be a Polish space and let E be an equivalence
on Y whose equivalence classes are Gδ sets. Suppose that the E-
saturation of each open set in a given basis is of ambiguous class
7 > 0. Then there is a 7*-Borel selector function for E on Y.

This work was stimulated by a recent paper of Burgess [1] in
which some techniques from Vaught [11] were used to obtain a Borel
selector in the case A = Y of Theorem A. The selector in [1] is
obtained via an application of Suslin's theorem, so its complexity is
very hard to estimate. We will use Vaught's method in a different
way to provide a more direct (and simpler) construction in which
the complexity of the selector is apparent.

Burgess's result extends a theorem of E. Effros [2] on locally
compact groups. Theorem A will be proved as a special case of a
more general result (3.2) about Borel actions. The existence of a
Borel selector for noncontinuous actions appears to be new in all cases.

The existence of a Borel selector (of unknown complexity) under
the hypothesis of Theorem B is a recent result of S. M. Srivastava
[10]. The special case, 7 = 1, was previously established by the
present author in [8]. These results extend earlier work by Kallman
and Mauldin [3] and Kuratowski and Maitra [5]. Theorem B is a
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special case of a slightly stronger result (3.4) with a weaker require-
ment on the equivalence classes.

Our arguments are based on a "nonstandard" version of the
well-known general theorem on selectors of Kuratowski and Ryll-Nard-
zewski. This result is proved in §1. Section 2 collects some material
concerning topologies generated by Borel sets and the main results
are proved in §3.

Throughout the paper we reserve boldface notation (Y, etc.) for
topological spaces. Formally, we regard Y as a pair (Y, J7~) where
Y is the underlying set and ά^ is the collection of open subsets of
Y. However, we make free use of the common identification of Y
with Y when no confusion will result (as in the previous sentence).
X x Y is X xY with the product topology; A £ Y is A with the
relative topology; 2ω is 2ω with the product topology (i.e., the Cantor
space).

The author wishes to thant Professor R. L. Vaught for many
helpful comments on a preliminary version of this paper.

!• Measurable choice functions* Suppose Y= (Y, ^) is a
topological space, X is an arbitrary set, and F is a function on X
to the power set &*(Y). A choice function for F is a map / : X-+Y
such that f(x) e F(x) for each xe X. (We reserve the common term
"selector" for its other meaning connected with equivalence relations.)
Given 3f Q &(X), we say that / is £&-measurable provided f~\O) e
& whenever 0 e άΓ. &σ is the countably additive family generated
by ^ .

An operator #: J7~ -> &*(X) is countably additive provided
Uieω (Of) — (Uieω O,)* whenever {Otι ί G a)} £ ^Z # is a semisaturation
operator for F provided

( i ) Y* = X
(ii) 0* C {x: Fix) Π 0 φ 0} for each 0 e J?~.
The simplest example of an additive semisaturation operator is

obtained by setting 0# = 0+ = {x: F{x) n 0 Φ 0}. Two further examples
will play essential roles in §3. The standard case "# = +" of Theorem
1.1 is the main result of Kuratowski and Ryll-Nardzweski [6]. Our
proof is abstracted from theirs.

THEOREM 1.1. Assume that Yisa Polish space, F is function with
domain X whose values are closed subsets of Y and #: Jf —> ^(X)
is a countably additive, semisaturation operator for F. Suppose that
& is a field of subsets of X such that for every 0 e^~,0* e 3$o.
Then there is a ^-measurable choice function for F.

Proof. For U £ Γ, let U be its closure. Fix a complete metric
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d for Y which is bounded by 1, and let έ%f be a countable basis for
Y with F e ^ We also fix an enumeration of ω x ω as {(aif δ<): i eω).

We enumerate ί%f as {Un: nzω} such that Uo ~ Y and any
singletons are listed infinitely often. For each n, we choose a sequence
{Bntk: Jceω} Q 3f such that VI = \JkBn,k. We also define

In = {m> n: diameter (Um) < l/2n and Um C UJ .

It follows that Un = \JmeInUm.
For each xe X, we define, by induction on n, a sequence

{pn(x): neω} satisfying:
(a) pn(x) ̂  n and pn+1(x) e JPn(a0
(b) xeU*n{x).
The construction is started by setting 2>0(#) — 0. Now assume

that pn(x) = pn is given; we show how to define Pn+^x).
By condition (b) and the fact that # is countably additive, x e

\JmeiPnUi = Ume/^ Uλeω Bm,k. Let i be the first natural number such
that aieIPn and xeBa.,b.. We set pn+1(x) — at. Clearly (b) holds and
since at e IPn, at> pn^ n so (a) holds as well.

Now fix x and write ph — pk(x) for each keω. By (a) and the
definition of the sets In, we have UPo 2 UPl ΏUPι^UP2^ with
each diam(£7pfc) < 1/k. It follows that Γ\keωUPk is a singleton. We
define f(x) to be the unique element of f\kUPk. We must show that
/ has the required properties.

By (b), for each k, x e U*k C U+k. Thus, each F(x) f]UPkΦ 0. It
follows that f{x) is the limit of a convergent sequence from F(x).
Since F(x) is closed, f(x)eF(x). Thus / is a choice function for F.

It remains to show that / is ^-measurable. First we prove a
lemma:

(1) For each n, f~\Un) - U U {^ rn = pt(α;)} .

Inclusion from right to left is obvious since m = pk(x) implies
fix) e UmQUn. For the reverse inclusion suppose fix) e Un. Since
Un is open we may choose k > n such that {y: d(/(sc), 2/) < 1/&} £ Z7n.
Since diam(^(a?)) < 1/Jb and /(a?) 6 C/̂ ĉ , we have UPk[x) QUn. Thus
pkix)eln and the lemma is established.

Now set Ck,m = {#: m = pfc(a?)}. By (1) it suffices to show that
each Ck,m belongs to 3ίam This is easily checked by induction on k
using the assumption that 3f is a field of sets, together with the
observation:

= m if and only if

(2) (3r < m)[m e Ir and pkix) = r and (3i)(m = α* and

a? e Ba.,h and (Vi < ί)(α, £lr or x£ Boj,hj)] . Π
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REMARK. Note that if we drop the assumption that each F(x)
is closed, the construction still provides a map / with the property
that f(x)eF(x) whenever F(x) closed.

2Φ Borel-generated topologies* The second set of observations
that we require deals with the notion of Borel generated topologies
on Polish spaces. It is well-known that if B is a Borel subset of a
Polish space F, then there is a topology on Y compatible with the
Borel structure on Y in which B is both closed and open (cf. [4], p.
448). In this section we examine this remark with special concern
for the Borel complexity of the sets generating the new topology
on Y. Our approach is closely akin to the techniques from mathe-
matical logic of closing a set of formulas under subformulas and of
adding Skolem predicates to a language.

Throughout this section, Y = (Y, J7~) is a fixed Polish space.
Sίf is a fixed countable basis for Y and & is the collection of Borel
subsets of F. Sa, Ma, and Aa respectively denote the αth additive,
multiplicative and ambiguous classes in the Borel hierarchy on Y (so
So = ^ 7 Sx = Fo, At = Fσf] Gδ, etc.). A function s: F-> Z is a α-Borel
provided S~\0) e Sa whenever 0 is open in Z.

For any Borel set B define r(B) to be the least ordinal a such
that BeAa. We say that a collection ^ of Borel sets is supported
provided ^ is closed under complementation and for all £ e ^ , if
r{B) — a > 1 then there exist collections {Bi3 : i, j e ω) and {Ciά\ ί, j e ω)
included in %7 Π \Jβ<a Aβ such that

LEMMA 2.1. Suppose a >̂ 1. Let £f he a countable collection
of Aa sets which is closed under complementation. Then there exists
a countable collection ^ Q \Jβ«x Aβ such that ^ U S^ is supported.

Proof. We proceed by induction on a. The case a = 1 is treated
trivially by setting ^ = 0 .

Let a and S? be given with a > 1 and S? = {Rn: n e ω}. Assume
that the lemma holds for all β < a. For each neω choose sets B%,
Cίj e UiS<α Aβ(i, j 6 ώ) such that

Applying the induction hypothesis, choose for each triple n, i, j
a supported collection <£>% Q U <̂« Aβ such that B%, C& 6 <&%. It is
evident that ^ = \Jn Ui U i ^ i h a s t b e required property. •

LEMMA 2.2. Suppose Sf £ & is countable and supported. Let



BOREL SELECTORS FOR SEPARATED QUOTIENTS 191

J/~' be be the topology generated by 6^ U J^T Then Yf = (F, J^~') is

Proof. Enumerate £/* as {I?,: i e ώ). Given y e Y define ξy e 2ω

by the equation ^(i) = 1 ^ 1/ e ΰ^. Define G = {(#, fy): 2/eF}£
Γ x 2". The map / : Y' -> G defined by f(y) = (?/, ίy) is apparently
one-to-one and onto. Since for each ί,

f{B<) = GΠ {(y, ξ): £(i) - 1}

and for each O e .y~ f(O) = G Π {(1/, ς): 2/ e 0}, / is open. Since
/- ] (0 x {{y, ξ): ς(j) = k}) is either 0 Π B, or 0 Π (-B,) (as fc = 0 or 1)
and Sf is closed under complementation, / is continuous. Thus, Y'
is homeomorphic to 6?. Since any Gδ subspace of a Polish space is
Polish, it suffices to show that G is Gδ in Y x 2ω.

For each ΐ e ω we define a (?j set Ĝ  as follows: If r{B^) > 1 we
use the fact that ,9* is supported to choose functions pίf qt such that

Bt = Π U BpiVcu — ~ Π U Bqi(k,D

with each r(BPiUejl)), r{Bq%UcΛ)) < r(B%). In this case we define

G< - {(2/, ί ) : ς(ΐ) - 1 and (VλO(3ί)(£(p*(fc, ί) - i))}

U {(2/, ί): f (i) = 0 and (Vfc)(3i)(ς(9<(&, ?) - i))} .

If r(Bi) ^ 1 we choose open sets Ul, Vjc such that

Bt = c\uk= ~nvi9
k k

then define

Gt = {(y,ζ):ξ(i) = l and (yk)y e Uk}

U {(y, ί): |(i) - 0 and ( V % e 7 J .

A straightforward induction on r(B%) shows
(a) For all y e Y, {y, ζy) e G, and
(b) For all (y, ζ) e Π Gif f(i) - ζy(ί).

Thus G = Γ\z Gi and the lemma is proved. Π

Combining 2.1 and 2.2 we obtain

THEOREM 2.3. Suppose &' Q Aa is countable and closed under
complementation with a ^ 1. Then there is a countable collection
rέ? £ \Jβ<aAβ, such that 3ίf U £f U r<f generates a Polish topology on
Y.

3. Selectors* Suppose E is an equivalence relation on a space
A. We write A/E for the set of E'-equivalence classes and
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denote the associated projection map 7c:yt^[y]. A selector for
E on A is a map s: A -* A satisfying (i) (yy)(s(y) e [y]) and
(ii) (yy1y2)(y2^[yi]s=s>s(y1) = 8(y2)). A transversal for ί? is a set
which intersects each equivalence class in a singleton. Note that if
s is a selector for E9 then the fixed points of s form a transversal
T8 for E. If s is α-Borel, then T8 is an Ma subset of A. Given
B £ A, we say that a collection ^ of j^-invariant sets separates B/E
provided (yy e B)([y] = Π {S 6 ̂ : [2/] £ S}).

As promised, we will use the constructions of §1 and §2 to
obtain two results on the existence of Borel selectors for certain
equivalence relations on Polish spaces. In each case we introduce a
Borel-generated topology on the relevant space A in which the equi-
valence classes are closed. We then consider the identity map
F: A/E —> &(A) and introduce a semisaturation operator derived from
the constructions of Vaught [11]. Theorem 1.1 provides a choice
function / for I, foπ is the required selector. •

A. Borel actions. Throughout this subsection, G is a nonmeager
topological group with a countable basis. In the most notable case,
G is Polish. Y is a Polish space and J: G x Y-+Y is a Borel mea-
surable function. For g eG, J9 is the function y \~> J(g, y) — gy. We
assume that J defines an action of G on F, i.e., that the map g \-^J9

is a homomorphism from G to the group of permutations of Y. The
action induces the equivalence relation Ej = {y9 gy): y e F, g e G} on
F.

Following Vaught [11] we write, for B Q F, y e F By = {g: gy e B}9

B+ = {y: By Φ 0}, Bά = {y: By is meager}.
It follows from the definitions and the fact that G is a Baire

space that for A, B, B, £ F.
(2) BΔ is .E^-invariant and BΔ ^ B+.
( 3 ) (Uieω#i) J = UieωSΛ

(4) If A is invariant then AΔ = A and (A Π #) J = A Π £ J .
The following lemma is proved in [11] for the case 7 = 0 and in

[7] for the general case. (In [7] it is asserted only that B1 is Borel,
but the argument establishes the stronger result 3.1.)

LEMMA 3.1. Suppose J is Ί-Borel and BeSβ. Then BΔeSr+β.

THEOREM 3.2. Let a ^ 1, 7 ^ 0. Assume that J is a Ί-Borel
action on Y. Suppose A QY is an invariant Aa set and that S^ is
a countable collection of invariant Aa sets which separates AjEj.
Then there exists a 7 + a-Borel selector for E on A.

Proof. We assume without loss of generality that i e y and
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that .ζf is closed under complementation and finite intersection. By
2.3 we can choose a countable set ^ Q \Jβ<aAβ such that .i/* U r^ U
3ίf generates a Polish topology .y~' on Y. Write Yf = (F, .y~') Let
33 be the closure of ^ U c^7 under finite intersections. Then Y'
has the basis :Xίf = {B ΓΊ S: B e 25, S e .9*}.

Let A! be A with the relative topology from Y'-A' has the basis
/A" = {Ke,/r':KQ A}. Since A is closed in Y', A! is Polish.

Set X = AjE and let F be the the identity function from X to
&>{A'). For 0 £ 4 ' define O; = τr(CM). It follows from (2) and (4) that
# is a semisaturation operator for JP7 and from (3) that # is countably
additive.

Let ^ be the field generated by {K":Ke^f} and let &f =
( r t ΰ J ΰ G ^ } . Since each iί J is invariant, ^ ' is just the field
generated by {KΔ: Ke 3Γ\. Each Ke<%r has the form Bf]S with
S-invariant Aa and -BeU^<«Sp; by (4) and 3.1, K —B ΓiSeAr+a.

It follows that

(5) ^ £ 4 + β .

Since .5^ separates A/EJ9 each [j/] is closed in Ά. Thus, we may
apply 1.1 to obtain a immeasurable choice function f:A/Ej—>A',
Define s = /°π. Clearly, s is a selector for i? on A. We claim that
s is 7 + α-Borel with respect to A. Since A' refines A it suffices to
establish:

(6) s is a 7 + #-Borel map from A to Af .

Consider an arbitrary open set 0 £ JL\ Since / is ^-measurable
we may choose A e S such that f~\O) = U<eωA Then s-^O) =
π-1(/"1(O)) = Uteα.π-m)- By (5) each ^ ( J D J e A ^ so 8-\O)eSr+a

as required. •

B. Equivalence relations with relatively large equivalence classes.
Assume throughout this subsection that E is an equivalence relation
on a Polish space Y, such that each equivalence class is Borel in Y
and a Baire space in its relative topology. In the most notable
special case, each equivalence is Gδ in Y. For B QY we continue to
w r i t e B+ - {y: [y]Γ)BΦ 0 } .

^f is a fixed countable basis for Y with Ye.y^f. U, V will
always denote elements of 3ίf. We write

LEMMA 3.3 (Compare [8] Lemma 2.) ,S^ separates Y/E.

Proof. Given ?/ e Y let
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Sί = {U+:Un[y]* 0}U{~(U+):Uf)[y] = 0} .

We must show [y] = Π Sζ.
Inclusion from left to right is immediate from the definition of

S^. For the reverse inclusion suppose x$[y].
There are two cases to consider.

Case 1. [x] £ [y] ( the closure of [y]).

Let z6[x], z£ \y\. Then for some Ue^f, zeU and Uπ[y] = φ.

Then ~ (C/+) 6 ̂  and x έ - (£7+) so £e n ^ J .

Case 2. [a] S [#].
We claim that [x] is not dense in [y]. This suffices since we then

obtain Ue££* with U Π [y] ^ 0, U Π [x] = 0 so U+eS% and #£ U+.
To verify the claim suppose arguendo that [#] is dense in Jy\, i.e.,
[̂ /] = [χ\. Let C = [y\. Since [cc] is a Baire space, [x] is not meager
in itself, and hence [x] is not meager in C. Since [x] is Borel, [x]
is almost open in C so [#] Π C7 Π C is comeager in U Π C for some U.
Since [?/] is dense in C,[y]f)U Pi C ̂  0 . Since [2/] is a Baire space,
|>] Π U Π C is not meager in C. But [y] Π *7 Π C S Ϊ7 n C - [a?] which
is meager in C. This contradiction establishes the claim and, thereby,
the lemma. Π

When S^ £ Ar we say that i7 is a 7-decomposition for (F,
TFe assume that this is the case, 7 ^ 0 . Thus we are in a situation
similar to subsection A.

We need an operator analogous to Vaught's Δ. Our solution is
a kind of local version of the transform, cf. the remarks in [8] and
[9] where such a version was described. For B QY, Ue£^, we define

BΔU = {y: U f] B Π [2/] is not meager in [#]} , BΔ =

We have for 5, 2?t Borel in Y (and, by convention, U, V

(7) 5 j C / g ( 5 n c/)+

(8) vΔU = (unv)+

( \ΔU

\JBt) =\JBf
ieω / ieω

(10) (~ B)iU = \J(V+~B<>V)
VCU

(11) BΔ is invariant and if S is invariant then (S f) B)Δ = S Γ) BΔ.

The proofs of (7)-(ll) are essentially similar to corresponding
arguments in [11]. For completeness we indicate them here.
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For (7): The empty set is meager in any space so a nonmeager
subset of [y] is nonempty. Thus, for any y, y e Bu => UΔ Π B Π [y] Φ 0 .

For (8): By (7) it suffices to check inclusion from right to left.
Since [y] is a Baire space, any nonempty open subset of [y] is non-
meager. Thus, U n B n [y] Φ 0 =» y e BΔU.

For (9): Using the fact that a countable union of meager sets
is meager, note the equivalence y e (\}iB^ΔU ^ UΓ[\JiBif)[y] is
nonmeager <=> (3i)( Z7 ΓΊ Bt Π [#] is nonmeager) <=* y e \Jt (B?u).

For (10): Since B is a Borel set, [y] Π 5 is almost open in [y]
for each y; say B Π [y] is congruent to Cy modulo a [?/]-meager set,
where Cy is closed in [y]. Let [#] ~ Cy = Oy f] [y] where Oy is open
in Y. Then making repeated use of the fact that [y] is a Baire
space and £tf is a basis, we compute

y e (~ 2?)JZ7 <=> (17 ~ 1?) Γ) [l/] is nonmeager in [y]

<=* (i7n OJ Π [i/] is nonmeager in [y]

<=> (UπOy Π |>]) is nonempty

^ 0 and F S O , )

/ ] ^ 0 and VnCy= 0)

= * (3FSί7)(FΠ [y] Φ 0 a n d F n C , is meager in [?/])

= (3FCΣ7XFΠ [y] Φ 0 and FίΊ £ is meager in

For (11): The invariance of BΔ (and of any BΔU) is apparent
from the definition. If S is invariant, then for any y, either [y] Π
S = 0 or [y] £ S. Thus,

ye(SΓ) B)Δ <===> Sf]Bn[y] is nonmeager in [#]

<=^ [y] £ S and J5 Π [y] is nonmeager in [y]

<=> y eS and y eBΔ .

Corresponding to 3.1 we have the somewhat stronger:

LEMMA 3.3. For all a, if B e Sa then BΔU is a countable union
of invariant Ar+a sets.

Proof. We proceed by induction on a.

For a = 0 note that any open set 0 can be written 0 — U*<α»̂ <
with each Vt e ^ Then by (9) and (8), OΔU = (\JtVtY

u = \Ji iYiu) =
U ί ( ^ n C / ) + . Since J f is a basis, F ί Π ^ e ^ ^ : Since E is a 7-
decomposition for (F, ^ ^ ) , each (7* Π C7)+ e Ar. For a ^ 1, write
B̂ = Uieω ^ ^ with each Bt e \JB<a Sβ and note that
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B«° = u< (~ BiYυ = U U (v+ n Bf). •

As in the introduction, we write 7* = sup{7 + β: β < 7}.

THEOREM 3.5. Suppose E is a ^-decomposition for (F, Sίf), 7 ^ 0 .
Then there is a y*-Borel selector for E on Y.

Proof. First consider the case 7 = 0. In this case Theorem 1.1
(or rather its classical antecedent) can be applied directly. By 3.3
each [y] is an intersection of clopen sets and, hence, is closed. Set
X — Y/E, & — {π(C): C is an i7-invariant clopen set}, and for each
open 0 £ Y set

O* = π(O+) = {[y]: [y] n 0 Φ 0 }

and UQθ} .

Theorem 1.1 then applies to provide a choice function f:Y/E—*Y
which is ^-measurable. Define a selector s by setting s = foπ.
Then for any open 0, s~\O) is of the form ^ ( U i π(Pt)) = \Ji π^π^)
where each Ci is invariant clopen. Since π~λπ{C) = C for any invariant
set C, each s~\O) is open and s is continuous as required.

Now suppose 7 ^ 1 . As before, we imitate the above argument
by introducing a new topology and substituting A for +. By 2.3
we can choose a countable collection ^ £ \Jβ<r Aβ such that S^ U
^ ^ S(f generates a Polish topology J ^ ' on Γ. For 0 £ Γ' = (F, ά?~')
we define 0* = π(OΔ) using our new J operator and, using (7) and (9),
again observe that # is a countably additive semisaturation operator
for the identity map YIE^^(Y').

Set 3f = {τr(A): A is an invariant Aα set}. We claim

(12) If 0 is open in F', then 0* 6 ^ σ .

Let <^ ' be the collection of sets of the form B Π S where B is
a finite intersection of elements of ^ U £έf and S is a finite intersec-
tion of elements of St Since 3ίff is a basis for Yr and # is countably
additive, it suffices to check that (12) holds for 0 e 3ίf'. Given 0 =
Bf]S with 5, S as above we have 0* = 7r(# Π S) J = π(BΔ n S). Noting
that BeSβ for some /3 < 7, we may apply 3.3 to conclude that 2?J

is a countable union of invariant Aΐ+β sets. Since S is invariant
Ar, Bd f] S is a countable union of invariant Ar+β sets. Since 7 +
/3 ^ 7* and projection commutes with union, π(BJf)S)e&σ as
required, establishing (12).

As in 3.2 we note that each [y] is closed in F'. Thus, we are
again in a position to apply 1.1 to obtain a immeasurable choice
function f:Y/E—>Y'. As before, the map s = foπ is a selector. In
this case, however, it follows directly from our definition of 3f that
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s is an α-Borel map from Y to Y', a fortiori an α-Borel map from
Y to Y. The theorem is proved. •

COROLLARY 3.6. Suppose A is an Ar subspace of Y with basis
έ%f' — {UΠ A: UG£^}. Suppose E' Q A x A is a Ί-decomposition
for {A, J%fr). Then there is an y*-Borel selector for Ef on A.

Proof. When 7 ^ 1 , we can apply 3.5 directly to the Polish
space A. For 7 > 1, set E = Ef U {(y, y): y e Y}. Then for any
Ue^, U+I3 = (U ~ A) Ό (U Π A)+L'e Ar. It follows easily that E
is a 7- decomposition for (F, J%?). 3.5 provides an 7*-Borel selector
for E whose restriction to A is an 7*-Borel selector for Ef. •

As an application of 3.7 we can derive a multifunction version.1

COROLLARY 3.7. Let 7 ^ 1 and let Z be Polish.

Suppose G C Z x Y is an Ar set such that

( i ) For each zeZ,Gz = {y: (z, y) e G} is Gδ

( i i ) For every Uej%f, {z: Gz Γ\U Φ 0 } is Ar. Then there is an

Mr* set which uniformizes G.

Proof Let £έf" = {0 x U: 0 is open in Z and Ue<S%?}, <%f7' =

{B n G: Be <%?"}. Set E = {(z, y), (zr, y') eG x G : Z = Z% For W =

( O x ί 7 ) n f f e £ίff we have W^E = {(z, y)eG:zeO and GynUΦ 0 } e

Ar so E is a 7-decomposition for (G, £%ff). Let s be the 7*-Borei
selector for E on G provided by 3.6. Then Ts = {{z, y) e G: (z, y) =
s«A v))} i s a n -̂ r* uniformization for G. •
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