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INVARIANT DESCRIPTIVE SET THEORY AND 

THE TOPOLOGICAL APPROACH TO MODEL THEORY 

by 

Douglas Edward Miller 

Abstract 

We study various types of topological sPfces with ·equivalence 

relations ("topological equivalence spaces") which arise in connection 

with model theory and we apply topological results and methods to the 

study of languages and structures. 

Most of our model theoretic applications derive from considera-

tion of the natural topological space formed by the set of countable 

structures of any fixed countable similarity type. Given a similarity 

type 'p, for illustration consisting of a single binary relation, we 

identify the structure (w,R) with the characteris tic function of R 

and form the usual topological product space l£, = 2 
WXw 

Logic deals primarily with sets BCX 
- P 

which are closed under 

isomorphism, i.e. invariant under the equivalence relation I = 

{(R,S): (w,R) = (w,S)}. While the study of the topological equivalence 

space (X , I) 
p 

in connection with model theory dates from the thirties, 

the subject has received increased attention since the intensive study 

of the language L was commenced in the early sixties. 
wlw 

One indica-

tion of the close connection between the topological equivalence space 

(X ,I) and infinitary logic is given by Lopez-Escobar's result: 
p 

BCX 
P 

is an I-invariant Borel set if and only if 

some sentence a E L (P) • 
w1w 

B = X n Mod(a) 
p 

for 



Salient features of the space 

2 

(X ,I) include .the following: 
p 

(i) (X ,I) is a Polish (separable, completely metrizable) topological 
p 

space and I is a (analyt ic) subset of x 
p 

2 
x x X . 

p p' (ii) 

is induced by a "Polish action", i.e., a continuous action on the 

I 

Polish space x 
p 

by a Polish topological group, viz. w! , the group 

of permutations of the natural numbers given the relative t opology from 

the Baire space w 
w • 

In the first two chapters of this work we study in turn the 

spaces which satisfy each of these hypotheses . In chapter III we apply 

some of the mat erial from chapter II together with some additional 

results proved just for the logic spaces to obtain new facts in model 

theory. 

In chapter I we study spaces (X,E) such that X is a Polish 

space and the equivalence relation E is a El 
~1 

(analytic) subset of 

2 
X. We introduce an invariant version of the prewellordering property 

and apply it to prove that the collections of E- invariant (PCA) 

and III 
~1 

(CA) sets have the reduction property. Assuming projective 

determinacy, these results are extended to 
1 

k2n+2 and for 

all new. An invariant uniformization principle is also considered 

1 
and shown to follow for ~n' n > 2 from the axiom of constructibility. 

With suitable restrictions on X effective versions of all the r esults 
) 

are obtained. These effective results are proved in a "set t heoretically 

primitive recursive" context which has a wider applicability than the 

traditional "lightface descriptive set theory." 

1 
The invariant ]1 prewellordering and reduction theorem is due 

to Solovay based on a conjecture of the author. The results on reduction 
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extend theorems of Vaught and Moschovachis, who proved invariant 

reduction for the spaces (X ,I), ~. Vaught [44]; Vaught, who proved 
p 

invariant and 1 
k.2 reduction for Polish actions, see Vaught (46) 

and Burgess, who proved invariant reduction for pairs of sets 

under the hypotheses of Chapter I, see Burgess-~!i11er (11). The 

result on uniformization was obtained jointly with Burgess and appeared 

in (11) as did much of the material of Chapter I. It extends unpublished 

work of Kuratowski. 

Chapter II deals with Polish actions and, more generally, with 

spaces (X,G,J) such that G is a nonmeager topological group with a 

countable basis, X is a topological space, and J: G x X + X is a 

Borel map which defines an action of G on X. The main tool and sub-

* ject of interest in this chapter is the *- transform, B ~ B = 

{x: {g: J(g,x) E B} is comeager}, which was introduced in Vaught (45). 

We contribute both to the basic theory of the transform and to the list 

of applications of the transform to the theory of group actions. Perhaps 

the most important result from this chapter is the invariant version of 

the well-known strong 
o 

l!a separation theorem of Hausdorff and Kuratowski 

(cf. Kuratowski (26) or Addison [3 J). 
o 

IT Cx) 
~(l 

is the ath multiplicative 

level of the Borel hierarchy on X 
o 0 

(s0!l2 = Go' 113 = F aO' etc.). We 

prove 11.4.3: If J is continuous in each variable, X is Polish, 

E J is the equivalence relation ((x,y): <3 g) (J(g,x) = y)} and 

1 ~ a < w , then disjoint E -invariant ]:+1 sets ~ be separated £z 

a countable alternated union ~ EJ-invariant ITo 
-a 

sets, ~ fortiori £z 

an invariant set. For a = 1 the result is proved for the much 

wider class of equivalence spaces (X,E) such that E is lower semi-

continuous (open). 
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In chapter III we apply topological results and methods to model 

theory, obtaining several new results and giving new proofs of several 

·known theorems. In the latter · case, the topological proofs are generally 

shorter than previously known arguments. Moreover, they make explicit 

a causal connection between classical topological theorems and their 

model theoretic analogues. 

Topics discussed in this chapter include a II 
'0 

separation 
-a 

theorem, a recent global definability theorem of M. Makkai, a generali-

zation of a result on the definability of invariant Borel functions due to 

Lopez~EscoDar and a result on continuous selectors . for elementaryequiva-

lence. Our treatment of the II 
'0 

-a 
separation theorem illustrates most 

of the types of results proved in the chapter. 
'0 

II 
~ a denotes the ath 

level of the natural hierarchy on formulas of L in which, for ex-
wlw 

ample, classes have the form Mod(/\Vx Y::J ye (l<Y)) with each n ....... m.:e! run 

e 
nm 

finitary, quantifier-free, ~. Vaught [46]. The basic 
'0 

II 
- a 

separa-

tion theorem is an unpublished result of Reyes. We give two new proofs 

of the basic theorem: Disjoint 
'0 

II a+l classes (1 .:: a) can be separated 

EY~ countable alternated union of 
'0 

II 
- c:. 

classes. One proof is based on 

11.4.3; the second is a .model theoretic translation of the classical 

topological proof. We use some ideas of D. A. Martin to obtain an ad-

missible version of the theorem and we apply an approximation theorem of 

J. Keisler to obtain the well- known finitary version (Shoenfield's V O 

-u 

interpolation theorem). We also apply the result to study the complexity 

·of L 
wlw 

definitions of isomorphism types. We prove several theorems . 

The following is typical: 
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11.4.2: If a complete L WUl theory T has a countable model 

such that the isomorphism ~ of 0( is E,o-over-L then 
~ 2 ww, T 

is Ul-categorical. This extends a theorem of M. Benda. o E' -over-L ..., 2 ww 

classes have the form Mod( V 3x each 
n 

e £ L 
nm ww 
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CHAPTER a : INTRODUCTION 

A brief summary of this work may be found in the preceding 

Abstract. 

Descriptive set theory deals with Borel and projective sets 

in metrizable spaces and especially in the spaces wW, 2
w 

and other 

"Polish" (separable, completely metrizable) spaces. This "classical" 

work goes back to Lebesgue, Lusin, Suslin, Sierpinski and others. The 

best known reference is Kuratowski [26]. The first application of 

descriptive set theory to logic was maae by Kuratowski in 1933 in [25] 

where he defined the infinitary language L 
wlw 

and showed that the 

collection of well-orderings is not an L -elementary class. Since 
wlw 

that time and especially during the last fifteen years, the connections 

between classical descrip~ive set theory and model theory have been 

studied by many authors. See, for example, Addison [2-4], Scott [38] 

Lopez-Escobar [28], Grzegorczyk, ~. al., [16], Morley [33] and Vaught[44-46]. 

Some authors, notably Addison and his students, have expounded 

the analogies which exist between the classical theory of Polish spaces 

and the model theory of the finitary predicate calculus, L ww Other 

authors, such as Lopez-Escobar in [28] and Vaught in [44] have found 

similar analogies with the model theory of L w
1

w In fact, topological 

considerations were an important factor leading Scott and Ryll-Nardzewski 

to propose Lw w as the "natural" infinitary first-order language in 
1 

the early sixties (cf. Scott [38]). 

Most recently, Vaught in [45] and [46] introduced a powerful 

method to show that many infinitary results can be derived from their 

classical counterparts. As we shall remark in III §2 below, the 

1 
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corresponding finitary theorems often follow by an approximation 

theorem of J. Keisler. Moreover, the theorems in logic are obtained 

as special cases of theorems about Polish actions or certain other 

kinds, of action spaces. 

This is the type of result with which we will be primarily 

concerned. It accomplishes several things. First, it gives a "causal" 

explanation for the analogies found by previous authors. Second, by 

showing that certain results in model theory are special cases of 

general results on equivalence spaces or action spaces, it enables us 

to compare the restrictiveness of the hypotheses under which the general 

results are obtained. On the basis of this comparison, we can then 

classify some results as more "model theoretic" than others. Finally, 

it leads us to new theorems about actions or equivalence spaces as 

generalizations of results in model theory and to new theorems in 

model theory as invariant versions of classical theorems of descriptive 

set theory. 

For a summary of the topics to be considered in this work we 

refer the reader to the abstract and to the table of contents. In the 

remainder of the introductory chapter we will establish some notational 

conventions and review some of the basic definitions which we will require. 

Sets and Topological Spaces 

ON is the collection of ordinals, each ordinal being the set of 

preceding ordinals. Cardinals are initial ordinals, Ul and are the 

first two infinite cardinals. n, S, y will always be ordinals, A will 

always be a limit ordinal, K will always be a cardinal. B is the 
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cardinality of B. peA) = {B: Be A} and P(K) (A) = 

~B £ peA): B < d. (a, b) = {{a},{a,b}} and < B.: i £ I> = 
~ 

{(i,B.): i £ I}. BA is the set of functions on B to A. 
~ 

A topological space X = (IXI,T) is a pair such that Ixi is 

a set and T C p(IXI) contains ~ and Ixi and is closed under 

finite intersections and arbitrary unions. T is the collection of 

open subsets of x. B(X), the collection of Borel subsets of X 

is the smallest collection which includes T and is closed under 

complementation and countable unions. The Borel hierarchy on X 

is defined recursively by the conditions 

.E~(X) = T 

rro(X) .; {- A: A £ EO (X)} 
..... (1 ""'0. 

lI
o

(X) = U {[oS (X): S < cd 
"'(a} 

f~(X) {U <1>: <I> £ ~Wl) (~) (X» } 

° ° gll!3' etc. were classically known as Go' F ClO' etc. 

lI
o
(X) n EO(X) . .... a ..... (1 

A function f on X to a topological space Y is Borel 

measurable, (respectively (Eo (X) ) when-
~a ) 

° ever A £ fl (Y). f is a Borel isomorphism, «cr,8) -generalized homeo-

morphism») if f is 1-1, onto, and both 

-1 a -Borel, f is S -Borel). 

f and 
-'1: f ·· are Borel, (f is 

Note. Our l+a.-Borel maps are "measurable at level a " in the terminology 

of Kuratowski. That is because is the Oth additive level of his 

hierarchy. 
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W 
W and ZW are the topological spaces formed on the sets 

W Wz w, by taking the product topology over the discrete spaces W and 

If I is any index set and G is a function on Ip(X) to p (X) , 

we say G is an I-Boolean operation provided 
-1 

s (G ( <Ai: i e: 1» = 

-1 
G ( <s (A") : i e: I» whenever 

~ 
s is a function on X to X. Given a 

Boolean operation G and r::: P(X) we define G(r) = " {G(A): A e: In 

Clearl~ each class G(I~(X)) is closed under inverse continuous images. 

Working with W. Wadge's theory of reducibility by continuous functions, 

R. Steele and R. Van Wesep have recently showed that in a certain natural 

sense, for "almost all" r ~ B(Zw) such that r closed under inverse 

continuous images, r has the form r = G(I~(X)) where G is a w-

Boolean operation. 

2. 

AC X is nowhere dense if the closure of A includes no non-empty 

open subset. A is meager (of first category) if A is a countable union 

of nowhere dense sets. A is almost open (has the Baire property) if there 

exists an open set 0 such that the symmetric difference 0 t, A is meager. 

X is a Baire space if no non-empty open subset of X is meager. X is 

separable if X includes a countable dense subset. 

X is a Polish space if X is separable and admits a complete 

metrization. X is a Suslin (analytic) space if X is a metrizable 

continuous image of some Polish space. X is a Lusin (absolutely Borel) 

space if X is a metrizable, continuous one-one image of some Polish 

space. 

Given a product space X x Y let n
l

: X x Y ~ X be the pro-

jection mapping (x,y) ~ x. For any X, the projective hierarchy on X 

is defined by setting 



.. 

1 1 
~l' .!h, 

~i(X) {~l (A): A e B(X x Y) for some Polish Y) 

IT\X) = {-A: A E El(X)} 
~n ~ 

l . 1 
fn+l (X) = {~l (A): A e lln(X x Y) for some Polish Y} 

1 1 1 
6 (X) = L (X) n IT (X). _n ~n ~n 

5 

1 
and £2 subsets of Polish spaces were classically known as 

analytic, coanalytic, and peA sets respectively. 

There are many useful normal form results for Polish, Lusin 

and Sus lin spaces. The following is a partial list (cf. Kuratowski 

[ 26 D: Every Lusin space is a continuous one-one image of a closed G 

'" '" 
a '" 

. f) •• N""""'''' • ......,A 
subset of and of a l!z subset of 2. Every uncountable ' Polish 

space is a union of a countable set and a set homeomorphic to '" '" . 
All uncountable Lusin spaces are Borel isomorphic and every metrizable 

space which is Borel isomorphic to a Lusin space is Lusin. Every 

a Ez subspace of a Polish space is Polish. If a subspace of. a Polish 

a 
space is Polish then it is Ez. Every Borel subspace of a Lusin space 

is Lusin. If a subspace of a Lusin space is Lusin, then it is Borel. 

I 
Every ~ subset of a Sus lin space is Suslin. If a subspace of a 

Sus lin space is Sus lin, it is A subset A of a Polish space X 

is Suslin if and only if it can be obtained by the operation (A) 

applied to Borel sets; that is, A = U riB for some collection 

.-

~£ww n ~tn 
. {B : s £ S ) c S(X). s = u f ",: n£ w} is the set of finite sequences s q - q 

of natural numbers. One important effect of these normal forms is to 

reduce questions about Polish, Lusin, and Suslin spaces to questions 

about Borel and projective subsets of 

Actions and Equivalence Relations 

'" '" or 2'" • 

A topological group G = (I G I ,T, 0, ) is a triple such that 
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(IGI,T) is a topological space, (IGI,o) is a group, and the function 

(g,h) ~ g 0 h-l is a continuous map on the product space G x G to G. 

G is a Polish group, L\lsin group, etc. if the space ( IG I ,T) is 

Polish, Lusin, etc. 

Given J: G x X + X we define 
? 

~:X+X for g £ G and 

for x £ X by the condition 
g x 

J (x) = J (g) = J(g,x). If 

G is a group and the map g ~ J
g 

is a homomorphism on G to the 

group of permutations of X, then J = (X,G,J) is an action . If X 

is a Polish ~p!,ce, G is a Polish group, and J is continuous, then 

J is a Polish action. When no confusion will arise, we write gh for 

g o h and gx for J(g,x). Given an action of G on X) we obtain 

an action of G on P(X) by setting gA = {gx: x £ A}. 

Every action J = (X,G,J) induces an equivalence relation 

E J = {(x,y): (jg £ G) (gx = y)}. If X and G are Suslin and J is 

Borel (~ fortiori, if J is a Polish action), then EJ is easily seen 

to be a 
1 II subset of X x X. 

Given an equivalence relation E on a set X, we say that 

AC X is E-invariant if x £ A and yEx implies y £ A. For arbitrary 

ACX, A+E={y: (3x £ A) (yEx)} and A-
E

= {y: (Vx)(xEy~ x £A}. 

When no confusion will result we write A + and A for A +E and -E A . 

A + and A are respectively the smallest invariant set including A 

and the largest invariant set included in A. For x £ X, 

is the E-equivalence class or orbit of x. If B II is an invariant set 

such that 
- /I + 

B C B c: B we say is an E-invariantization of B. 

X/E is the set of E-equivalence classes and ~E is the pro-

jection map x~ ~lE. When X is a topological space, X/E is 
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t6pologized by .giving it the strongest topology such that rr
E 

is 

continuous. E is lower semicontinuous (respectively upper semi-

. continuous) if A+ is open (closed) whenever A is open (closed). 

An equivalent condition is that rr E be an open (closed) mapping. 

Bourbaki [9] refers to lower (upper) semicontinuous equivalences as 

open (closed) equivalences. We have chosen our terminology, which 

agrees with that in Kuratowski [Z6] when equivalence classes are closed, 

to avoid confusion with equivalences whose graphs are open or closed. 

When X is Suslin, we say 
1 

E is a In equivalence on X pro-

1 
vided E is an equivalence on X and E is a In subset of X x X. 

If El and EZ are equivalences on X and Y respectively, 

then El x E2 = {«xl'Yl) , (x 2'y 2)) : xlElxZ & Yl EZYZ} is the product 

equivalence on X x Y. 1 will always be the identity equivalence. If 

J l and J 2 are actions of G on X and Y respectively, then the 

product action J l x J 2 of G on X x Y is defined by setting g(x,y) 

(gx,gy). Note that EJ xJ is not generally the same as EJ x EJ . 
1 2 1 2 

Logic 

If new and R is any set then R = (l,TR,n)) is an n-ary 

relation symbol and n = n(!) is the arity of R. For any set c, 

c = (l,(c,O)) is a constant symbol. 

A similarity ~ is a set of relation symbols and constant sym-

boIs. If p 

symbols of p 

is a similarity type, then R is the set of relation 
p 

and C is the set of constant symbols of p. 
p 

= 



.-

and 

For any set 

IT 
~R 
- p 

8 

is the set 

x 

x 
p ,A 

is the corresponding topological product space formed over 

the discrete topologies on 2 and A. If SEX A then (A,S) is 
p, 

a p-structure with universe A. v 
p 

is the class of all p-structures 

and X, 
p 

the canonical logic space of ~ P, is X 
p,'" 

Since we will be interested in questions of effectiveness for 

L we adopt a standard set theoretic "arithmetization" of the language 
"'1'" ' 

as follows: 

The set of symbols L 
"'1'" 

(p) contains each symbol in P, plus 

variables v (3, (n,O» for each n E tIl, and logical connectives 
--n 

= = (0,(~,2», -, = 4, V= 5, 3 = 6, 1\= 7, \/= 8. 
~ 

/V ~ '" -
Atomic formulas are and 

where each is a variable or constant 

symbol and R is a relation symbol. J cp is (4,cp), is 

As is (7,@), - 3 v <I> is (6, (v, cp» , tvcp is ' (8,(v,cp». -
If cp is an atomic formula, then <1>," <I> are subbasic' formulas. 

A basic ' formula is a conjunction 1\9 where 
~ 

~ is a finite set of 

subbasic' formulas. An open' (E'o) formula is an arbitrary (possibl!'t" 
~l 

uncountable) disjunction \/@ where each e E e is of the form 
'V 

;2V1 ,· .. , ~VnM where v1,· .. ,v
n 

are variables and M is basic'. 
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Here and below, disjunctions and conjunctions can only be formed 

which have finitely many free variables. The set L (p) of infinitary 
wlw 

(first order) formulas of type p is the smallest set which includes 



" 
9 

. the set of open' formulas and contains I~, ve, /\e, ·3.vp, · Jyp 
'" ~ "" 

when it includes e U {.p}, v is .a variable, and e is countable. 

These definitions correspond to those in Vaught [46]. They 

differ from the usual definitions of L in allowing some uncountable 
"'1'" 

disjunctions when p is uncountable, They have the virtue of being more 

natural from the topological standpoint. We obtain a hierarchy on 

L (p) which is analogous to the Borel hierarchy by defining the 
"'1'" 
'0 £ 1 formulas as abov~ and then recursively defining 

'0 
= h <p: <p e: E (p)} 

~(l 

. '0 
= u l~ (p): B < (l } 

= {Va: 8 is countable and each . 6 e: II is of the form -
where k e: "', each is a variable, and 

A subset L of L", '" (Pt is a fragment if L contains every atomic 
1 

formula and L is closed under subformulas, finite conjunctions and dis-

junctions, and negations. 

The finitary predicate calculus L (p) 

"'''' 
is the fragment of 

L (p) obtained by restricting all disjunctions to be finite. The 
"'1'" 

usual prefix hierarchy on L 

"'''' 
is defined by setting 

Vo '0 
(p) = IT (p) n L (p) 

_n ,../n woo 

and 

o '0 3 (p) = E (p) n L (p) • 
........ n -n row 

An n-formula is a formula with free variables among v, . . . ,V l' 
" -,:t-

A O-formula is a sentence. A propositional formula is one with no vari-

abIes at all. is the result of replacing a by b in ~ . 
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We will use standard abbreviations (~A $ for /\{~,$}, -
~ .. $ for ,($ 1\ ,$), etc.) to simplify formal expressions. 

abbreviates 

where j is the smallest such that v. 
-:J 

does not occur in $. 

Given similarity types p and P
l

, P + P
l 

is the result of 

adding the symbols of P
l 

to p. It is defined by setting 

{(i, ((p,a),n): 

and then defining 

A f'! (2nd order) formula £f~ P is an expression of the 

form 

where are countable similarity t ypes and 

ojJ E L (p+ P 1+ .•• +p ). 
wlw n 

In Vaught (44) and IT,l were denoted as 
~n 

and 

respectively. We will use the expressions -::1 1 
~ to denote the 
~n 

corresponding classes of finitary 2nd-order f ormulas obtained by re-

stricting ojJ to belong to L (P+Pl+ •.. +p ) ww n 
in the definition of 
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For K C V • 
- p 

K(n) C v . is defined by the equation 
- p U{Q •... ,n-l} 

. K(n) = {( ) A,S,a , •.• ,a 1: o n- a , ••. ,a 1.£ A & o n- (A,S) .£ K}. If 4> is 

an n-formula, (A, S) is a structur~ and a , ... ,a 1 
o n-

are elements of 

A which satisfy 4> in (A,S) (in the obvious sense), we say 

(A,S,a , ... ,a 1) is a model of 4> and write 
o n-

(A,S,a , ••. ,a 1) 
o n-

(n) ~ .£ Mod (4)) or (A,S,a , • .• ,a 1) r 4>. When n = 0 
o n-

we drop the superscript. MOd
K

(4))= Mod (4)) n K. If r is a collection 

of p-formulas and 

. {Mod (n) (4)) n K(n): 

~,l .f 
t.. , etc., 1 
~n 

K c: V we define p , 

4> is an n-formula in 

l:,l(v ) t 
I"t.J n p' e c .. 

We say K 

J = (X ,wI ,J ), 
p p p 

the canonical logic action of ~ p, is 

defined as follows: 

w! is the group of permutations of w given the relative 

topology as a subspace of w 
w • 

For g E w!, gS = J (g,S) is the usual isomorph of S 
p 

under g. Thus, for each R.£ R and each c.£ C 
P 

(gS) = g(S ). 
c c 

It is easily seen that J 
p 

is a Polish action whenever 

I = EJ P P 
is the usual isomorphism relation on X . 

p 

p is countable. 
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Let P
N 

= {~: nEw}. If p is disjoint from P
N

, then Borel 

and projective subsets of x 
P 

are naturally described by propositional 

formulas of type p U PN as follows. An atomic name is an expression 

or c = i where and 

<f> is a p-name if <I> is propositional and every atomic subformula of 

<I> is an atomic name. If 

etc., we say <f> is a Borel p-name, 
o 

E -p-name, 
~a --

<I> names the set [<1>] = {S: (w,S,O,l, ... ) P<l>}. 

1 \) E' (p P
N

) , 
~n 

1 r -p-name, etc.~ 
~n --

Clearly, B Co X is 
p 

Borel, o 
1: , 
-a 

1 
j:n' etc. if and only if B has a Borel-name, o 

1: -name, 
. -a 

1 
L -name, etc. 
~n 

We assume throughout the dissertation that P
N 

is disjoint from 

all other similarity types which are mentioned. 

Subsets of X are also defined by arbitrary sentences of t ype 
p 

p. Thus, if e is a (first or second order) n-formula of type P, we 

identify 5 e: X with (",,5) and set [e(n)]]= Mod(n)(S) nX(n ) . It 
P P 

is apparent that [e(n)D is invariant under the canonical equival ence 

on X 
P 

n 
x III • It is also apparent that is 

o 
1: , 
-a 

Borel, 
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EI, etc. when e is 
~n 

L , 
0l10l 

I2a 

o 
etc. (A E -name 

"'<l 

etc. for [e(n)] may be obtained by inductively replacing subformulas 

3 vcp 
v 

E: w}). of the form by disjunctions V{cp(.): i Thus, B is 
~ '" ~ 

I -invariant EO 
-a' 

El, etc. whenever B is E'o 
- a' 

E,l 
- n' 

etc . 
p ~n 

For each of the Borel and projective classes the converse of the 

above holds and we have the identities "E,l(X ) = invariant 
~ n p 

invariant B(X )," 
p 

"E'o(X ) = invariant 
- a p 

e is a 
1 E -p-name then the equation 

-n ' 

indicates that is E,l. 
'" n 

Since B B+ when 

If 

i < j < w}) 11 

B is invariant, 

the first identity follows. The second, for countable p, follows from 

the first and the Lopez-Escobar interpolation theorem: 

The third identity is a recent result 

due to Vaught ([46]). It refines the second and extends it to arbitrary 

p. In chapter III we will add to the list of identities by proving 

"countable alternated union of lI'o sets = invariant countable alter­",a 

nated union of nO sets." These sets coincide with the invariant 
""Cl 
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sets when p is countable. 

Effectiveness 

In chapter I and chapter III we will prove "effective" versions 

of topological and model theoretic results. For us it will be most 

convenient to formalize the concept of "effectiveness" in terms of 
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hereditarily countable sets, admissible sets and primitive recursive 

set functions. 

The canonical reference for primitive recursive set functions 

is Jenson-Karp [20]. We recall the basic definitions: A set function 

is primitive recursive (prim) if it can be obtained from the initial 

functions by substitution and recursion as follows: 

Initial functions : 

(i) P ,(xl""'X) = x. ; 1 < n < w, 1 < i < n 
n,1. n ~ 

(ii) F(x,y) = x 13 {y} 

(iii) C(x,y,u,v) = x if u £ v, y otherwise 

Substitution: 

Recursion: 

If are sets, a function F if 

there exists a prim function G such that for all vl, . . . ,v
m

' 

F(vl, ... ,vm) = G(vl, ... ,vm,xl""'~)' y is prim(xl""'~) if the 

constant function F(v) = y is prim(xl""'~)' It is apparent that 

y is prim(xl , ""~) if and only if y = G(xl""'~) for some prim 

function G. The s et of all such y is the prim-closure of (xl""'~)' 

A set "A is transitive if y £ x £ A implies YEA. Given a 

set x, the transitive closure, Tc(x) , of x is the smallest transi-

tive set A such that x £ A. X is hereditarily countable (x £ He) 

if Tc(x) < w. 
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As an example, note that the definition TC(y) =: 

yu U{TC(z): z E y} . shows that the function F(y) = TC(y) is primi-

tive recursive. 

If p is hereditarily countable then x C HC 
P -

and all of the 

first and second order formulas of type p are hereditarily countable; 

Moreover, all of the syntactical notions ("e is a formula,""~ is a 

subformu1a of .p," etc.) we will use are easily seen to be set 

theoretically primitive recursive (cf. Cut1and [14] or Barwise [7 ]). 

In particu1a~ the function e ~ eN which maps p-formulas to p-names 

by replacing variables by special constants is prim(p) for p E HC. 

Consider, for illustration the case p = {£} where E is binary. 

Then e ~ eN is defined by the recursive conditions: 

dually for 

The language of set theory is L ({e:}) 
ww -

where 8 is binary . 

~ E L ({E}) is 6 if every quantification in $ is restricted; 
ww - 0 

that is, of the form C~v) (v£w ~ ••. ) or of the form C;Lv)Cv£w A •.• ). 

The set of E-formulas is the smallest which includes the 6 
o 

formulas and is closed under finite conjunctions and disjunctions, re-

stricted universal quanification and arbitrary existential quantification. 

A set A is admissible if A is transitive, prim-closed and 

satisfies the L-reflection principle: 
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If e is l:, a1, •.• ,an e: A and (A,e:,al, .. . ,an)i= ~, then 

for ~ transitive b e: A, a
l

, ... ,an e: band (b,e:,a
l

, .. • ,an) ~ e. 

A subset X of A is 1:,-definable on A (X e: I (A)") if for some 

., n 
n e: w, some b e: A, and some n+l-formula ~ e: l:, X = 

., 
" {a: (A,e:,b,a) i=¢}. X is k-definable (X e: 11 (A)) if both X and -
A - X are l:-definable. 

~ 

All the facts we require about admissible sets may be found in 

[6] or [23]. 

For a. '== HC, p e: tl, II}' 1" 
);;;n ' 

r[d] (X ) = {[~]: ~ e: a and ~ is a r-p-name}. 
p 

etc.) we define 

In I §2, we will require some standard results about the con-

ventional "lightface" classes 

is known tha t if p is finite, 

admissible set containing x, 

l:!, n~ as found e.g. in [39]. It 

X € X , 
P 

and A = A x' 
the smallest 

then our classes l:°[A](X ), 
~CL p 

coincide with the lightface classes o l: (Hyp x), 
CL 

I l: (x). 
n 

Thus, 

the approach via prim-closed and admissible sets, subsumes and refines 

the lightface approach for our purposes. 

The only results connecting "lightface" with "prim-closed" which 

are required for our arguments are the following obvious facts: 

(i) 

{w} • 

Numbered Items 

where a. is the prim-closure of 
w 

Certain statements in the body of the dissertation will be num-

bered. To assist the reader we have a ssigned these numbers in logical 

order rather than in the order of appearance in the text. 



CHAPTER I: PROJECTIVE EQUIVALENCE RELATIONS AND INVARIANT 

PREWELLORDERINGS 

Moschovakis D5] and Vaught ~4] established invariant ITI 
~l 

and El reduction theorems (and, implicitly, corresponding invariant -vI 

prewellordering theorems) for canonical logic actions. In [46] 

Vaught did the same for arbitrary Polish actions. The main subject of 

this chapter (§l and §2) is a proof that these results hold for arbitrary 

£~ equivalence relations on arbitrary Suslin spaces. For suitable 

spaces X the results are obtained in a very effective "primitive 

recursive" version) (Theorem 2.1) -- as were the effective theorems 

of [44]. Assuming projective determinacy, (PD), the same arguments, (which 

are based on the ordinary prewellordering theorem~ extend without 

alteration to yield invariant reduction theorems for and 

!;n+2' all new. 

The present chapter is the latest version of work begun jointly 

with John Burgess in Ill]. That paper contained proofs of the invariant 

El prewellordering and reduction theorems (due to the author) and of 
~2 

the invariant reduction theorem for pairs (due to Burgess). At 

that time we conjectured the full invariant prewellordering theorem, 

but could prove only a very special case of the theorem for ITI 
~2n+l 

(n ::. 1) assuming PD ([11) 4.2). The conjecture (and, hence, full 

invariant reduction) was established by R. Solovay based on an 

idea of the author (see our remark III, p.40 for more details). This 

argument forms a central part of the proof of 2.1 below. Solovay's 

proof is sufficient to establish a corresponding "lightface" theorem 

as is a second argument (for invariant prewellordering) due to 

Burgess [10]. The additional argument of §2 which establishes the stronger 

16 
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"primitive recursive" part of 2.1 is new. It is closely related to 

the methods of Vaught [44]. 

§ 3 contains a discussion of the invariant unifor mization 

principle. Assuming V = L we show that the principle holds for 

1 ka Cn ~ 2). We prove a general result on counterexamples which is 

related to previous work of Dale Myers. 



§l. Invariant Prewellorderings and the Invariant Reduction Principle 

We begin by recalling some of the basic definitions. If B = 

< Bi : i E I> and A = < Ai: i E I> are sequences of subsets of X, 

we say that B reduces A provided that 

(i) B. C~ 
~-

for each i E I 

(ii) U{Bi : i E I} = U{A. : i 
~ 

E I} 

(iii) Bi n Bj = 0 whenever i,j E I and i f j 

r ~ P(X) has the reduction property if for every A E W r there exists 

W 
B E r such that B reduces A. The reduction property for pairs is 

obtained from the reduction property by replacing W with 2. 
u 

If r has the reduction property for pairs, then r = 

{-A: A E r} has the (weak) first separation property: 

v 
If 'b,A 1 are disj oint elements of r, then there exists 

such that Ao <:: B ~ -Al , (B separates A 
o 

from \). 

To prove ' this consider B such that (B,-B) reduces (-Al,-A
o
)' 

A related concept is that of a uniformization. If B and A 

are subsets of a product space X x Y, B is said to uniformize A 

provided 

(i) B C A 

(ii) If (x,y) E A, then (3y) ((x,y ) E B). (domain (B) 

domain (A». 

(iii) If (x'Yl) , (x'Y2) E B, then (B is a function). 

18 
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rex x Y has the uniformization property if every member of r can 

f i d b b f For B,A e: wp(X ) be uni orm ze y a mem er- o r. it is easy to 

" ' see that B reduces A ' if and only if B = {(x,i): x e: Bi } uni-

1\ 
formizes A = {(x,i): x e: Ai}' Thus, the reduction property for, say, 

1 
is equivalent to the uniformization property for £lex x w). 

A relatively difficult theorem of descriptive set theory states 

1 
that for arbitrary Polish': spaces X, Y, the collections Ih (X x Y) 

and r;(X x Y) have the uniformization property. Assuming PD, the 

same is true for E;n+l' £;n+2 for each n e: w, cf. Kechris-Moschovakis 

[21]. On the other hand, if we assume the axiom of constructibility 

(V = L), then El(X x Y) has the uniformization property whenever 
-n 

x, Yare Polish and n ~ 2, (Addison [1] ). We will show that this 

last result has an invariant version while the other uniformization 

theorems do not. 

Now suppose E is an equivalence relation on X and 

r ~ P(X)" Let E-inv(r) be the collection of E~invariant members of 

-
r. We are interested in E-invariant versions of the reduction and 

uniformization properties. The E-invariant r-reduction property is 

easy to formulate, viz. E-inv(r) has the reduction property. The 

E-invariant uniformization property is a bit more complicated. If 

X = Y x Z and AC X is E-invariant, we say that B is an E-uni-

formization of A provided 

(i) B is E-invariant 

(ii) Be A 

(iii) If (y,z) e: A, then (jz) ((y,z) e: B) ' 

(iv) If (y,zl)' (y,z2) e: B, then (y,zl) E (y,z2)' 
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Condition (iv) says that B is as close to being a function as is 

consistent with E-invariance. r has the E-uniformization property 

-if every E-invariant A E r has an E-uniformization which is a mem-

ber of r. 

Note that if E = E xl, 
~ 

where 1 is the identity relation 
~ 

on Z, then an E-uniformization is just a uniformization which is 

E-invariant. 

This definition of the E- uniformization property is essentially 

due to Vaught, see [ 44]. He formulated it for the special case 

1 
X = X x Xp ' , E = E] x] and asked whether lh (X) has the E-uniformi-p 

p p' 

zation property in this case. D. Myers answered that question in the 

negative in [36] and [38] . 

To see the relation between the invariant reduction and uniformi-

zation properties, let A E wp(X) be a sequence of E-invariant sets and 

let B =< B . : iE W > 
~ 

be a sequence which reduces A. 

each B
i
- -is- E-invariant just in case 

uniformization of - {(x, i): x E A_}. 
~ -

Thus, for 

It is apparent that 

is an Ex 1-
~ 

or "J?- " ",,' 

E- inv(r(X)) has the reduction property if and only if 
(1) 

reX x w) has the E x l-uniformization property . 
'" 

An important tool for our treatment of the ~ .l.'1 and re-

duction theorems is the notion of a prewellordering [5]. Given a_ 

set A, a prewellordering on A is a transitive, relexive, connected, 

well-founded relation on A. If ~ is a prewellordering on A, the 

associated norm ~~: A + ON is obtained by defining $~(a) to be the 

~-rank of a. Conversely, every map $: A + ON induces a prewellordering 
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i.. on A by setting a -< a' if and only if q,(a),; q,(a'). 
~ -'i . 

Given A C X and r ~ P(X
2
), we define a r-prewellordering on A 

to be a triple (i,Q,Q') such that < is a prewellordering on A, 
. u 

Q E r, Q' E r and for every a E A and x E X 

(x E A & x ~ a) ~(x,a) E Q ~(x,a) E Q' . 

If etc . and A~ X, then a r-prewellordering on 

A is a r(X
2
)-prewellordering on A. If X = X and pEa c He, 

p 

then a r[GLl-prewellordering is a r-prewellordering (i,Q,Q') such 
U 

that Q E r[ 0..]' Q' E r[ eLl. 

Now suppose or The utility of prewell-

orderings in proving reduction theorems stems from the fact: 

(2) If A E rex x w) and (::{,Q,Q') is a r-prewellordering on 

A, . then the set 

B = . {(x,p): (x,p) E A and p is the smallest natural number which 

minimizes ~~(x,p)} 

{(x,p): (x,p) e:A & !\[«x,m),(x, p» EQ'=" «x,p),(x,m» EQl 
mEW 

& /\[«x,n),(x,p») ~ Q']} 
n<p 

is a member of r (X x w) which uniformizes A. 

Thus, if every A E r (X x w) has a r «X x w) 2)-prewellordering, 

thEm nX x w) has the uniformization property. 

When X = X 
p' P E He, 

uniform and effective. That is 

the definit i on of B in (2) is 
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(3) There is a prim(w) function P such that if $ is a 

r-name for a subset of X x wand q, q' are r-names such 
p 

that ([ $]2 n [q], [q], [I q' ]) is a r-prewellordering on 

[~], then P($,q,q') is a r-name for a set which unifor-

mizes [$]. 

Suppose E is an equivalence relation on X, and that A, 

(~,Q,Q') and B are as in (2). Assume further that A is 

E x I-invariant. It is clear from the definition of B that: 
~ 

If Ex A:. is a congruence for -< (i. e. if (x,m)'::; (x' ,m) 
(4) 

whenever xEx'), then B is E xl-invariant. 
~ 

In a slightly more general context, suppose we are given a 

Sus lin space X, an equivalence E on X, and a E-invariant set 

A C X. Then an E-invariant r-prewellordering on A is a r-prewell-

ordering,_ (::5.,Q,Q') on A such that -< is an Ex E-invariant subset 

of X2. 

If every E-invariant A E reX), (respectively, r[CL](X
p

)), has 

an E-invariant f-prewellordering, (r[ a.]-pre,,'ellordering), we say that 

X, (X,.), has the E-r-prewelIordering property, (E-r [O-]-prewellordering 

property). 

Theorem 1.1. Let "rl! be or Assume that X is a Sus lin 

space ~th an equivalence E such that X x w has the (E x l)-r--
prewellordering property. Let El be an arbitrary equivalence on w. 

Then 



(a) r (X x w) has the (E x E )-uniformization property. 
1 
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(b) Suppose X = X 
p' P E He. Then there is a prim(w) 

function P 
o such that if is a r-name for an ExE 

1 
invariant 

subset of X x w, 1jJ is a r-name for E
1

, and q, q' are respectively 

v 

r ,r-names which witness an (E x I)-invariant r-prewellordering on 
~ 

[ <p l, then Po (<p,q,q' ,ljJ) is a r-name for an (E x El)-uniformization 

of [<Pl. 

Proof. 

First suppose El = 1. Then the conclusions (a) and (b) are 

immediate from (4) and (2) and (3) respectively. The general case is 

easily reduced to this case as follows. , 

Let A C X x w be E x El-invariant and suppose B E r (X x w} 

is an Ex l-uniformization of A. Let B' = B +(ExEl) = 
~ 

{(x,p): V «x,m) E B & mEl p)}. B' is obviously EXEl-invariant. 
mEw 

Since A --is Ex El-invariant and B~A, B'CA. dom(B') = ' dom(B) 

so dom(B' ) = dom(A) . Finally, if (y ,m
l
), (y,m

2
) E B, then m

l
E

l
m

2 

so (y,m1)E x El (y ,m2). Thus, B' is an EX E1-uniformization of A. 

It is apparent from our definition of B' that when X = X p' a 

r-name for B' can be obtained primitive recursively from w and 

names for Band E
l

. (b) then follows by (3). o 



§ 2. The Invariant and Prewellordering Theorems. 

The main result of this section is 

Theorem 2.1. There exist prim"(w) functions P 1 ,P 2 with the 

following property. Assume P E HC is a similarity type and ~ 

is a 
1 

~l-name for an equivalence on x 
P 

Then 

(a) If 4>1 
1 

is a ~l-name for a [~]-invariant set, then 

PI (P,~,4>l) is an ordered pair of names which witnesses the existence 

of a [~]-invariant E~-prewellordering on [4>1]. 

(b) If is a 1 
~2-name for a [~]-invariant set, then 

P2(P,~,4>2) is an ordered pair of names which witnesses the existence 

of a [~]-invariant l~-prewellordering on [ 4> 2]. 

2.1 yields 

Corollary 2.2. 

(a) If X is Suslin, E equivalence on X, and 

or "El" then X x w has the 
~ 2 , (E x 1) - r-prewellordering 

N 

property. 

(b) With X, E as in (a), both E-invQITi(x» 

have the reduction property. 

(c) The (respectively -f~ [a]), 

and 1 
E-inv (h (X) ) 

subsets of x w 

have the E x ETuniformization property whenever a ~HC is prim-

closed, w,p E a, E is a .\:~[ a] equivalence on X p , and El is a 

~ ~[a.], 1 %[CL]), equivalence on w. 

Proof of Corollary. 

(c) is immediate from 2.1 and 1.1. 

24 
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(b) is immediate from (a) and 1.1. 

Since all uncountable Polish spaces are Borel isomorphic, 

(a) is immediate from 2.1 when X is Polish. For the general case, 

let X, E be as in (a) and let A E r(X) be invariant 

or "l~")' Let f be a Borel measurable function on ZW onto X. 

Defining E' by the 
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equation R:!. E Hz <= f (R:!.) E f (Hz)' we see that E' is a 1i 
equivalence and 

-1 w· 
f (A) E E'-inv(r(2 ». By 2.1 there is an E'-r-

-1 
prewellordering ("i,Q,Q') on f (A). Setting Q A = 

{(x,y): (VRl ,R2 )( (f (Rl ) = x 

~ = {(x,y): (3Rl,R2)(f(Rl) 
2 

& 

= x & f(Rz) = y 
, 

~ A = Q n A, it is easily seen that (~ ,~ ,~) is an E- r-prewell-

ordering on A. D 

1 1 
The l!l and 12 cases of 2.1 will be treated separately. The 

argument for the l!i case is substantially longer than that for ~ 
It is the only part of this dissertation which makes essential use of 

"lightface" notions and involves two separate parts (the first is due 

to Solovay -- see Remark III, p.40). In part one we prove the lightface 

version of the theorem --

If p is finite) 

1 

is an equivalence on x > p 

(8) and A E III (X
p 

) is E-invariant, then A . .lla~ an E-invariant 

1 
1l1-prewellordering. 

In part two we consider a particular "very universal" ~ set and 

ri equivalence and derive the general case of 2.1 by a process of taking 

"pseudo cross-sections". 

The argument for the ~ case is more direct -- we derive the 

invariant primitive recursive ~ prewellordering theorem (2.1) from 

the non-invariant primitive recursive ~ prewellordering theorem. 

Both our arguments are logically based on the ordinary 

(lightface) prewellordering theorem so we have the following (see Remark I, 

p.38 for details): 
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Corollary 2.3. (to the proof ' of 2.1) Assume n ~ 1 and every 

subset of prewellordering. Then 2.1 and 2.2 hoid 

with IIJI2 n 

~l ' 
"Ell! 
~l ' 

and respectively replaced by 

"EI" and fltl II 

~+l 
throughout. In particular, the conclusion holds 

~n 

whenever n is odd and all 

Proof of 2.l(a), part 1. 

Let x 
o 

games are determined. 

For i,j E {O,l} let 

<> •. : X.xX ..... X .. 
~J ~ J ~. J 

be a recursive bijection with recursive inverse 

s .. : 
~J 

We will use i, ••. ,n with subscripts to denote 

members of wand u, ... ,z with: subscripts to denote members of 2w. 

We will drop the subscripts on our pairing functions whenever possible. 

l( w 1 Let WEIll 2 x w) be a universal III 

let Wi = {x E 2
w

: (x, i) E W}, (so Ili (Zw) = 

assume that W is "canonical" in that 

set. 

{W. : 
~ 

For each 

i E w}). 

(i) There exist recursive functions f
i

: w .... w, i 

such that for all n,m 

W = {x: (Vw) (<w,x> E W )}. 
fl(n) n 

W = {x: (jm) «m,x> E W )} f
2

(n) n 

W = W UW f
3

«n,m» n m 

W = WnW f 4 «n,m» n m 

i E W 

We further 



26a 

(ii) For every recursive h: 2w ->- 2"' there exists recursive 

* h : 
"' ->- "' 

such that for every n, Wh* (n) 
= {x: hex) € W }. 

n 

(iii) W 
a 

{<x,n>: (x,n) € W}, 
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Given y £ ZW, n £ W let W' =" {x:<y,x> £ W}. 
n n The fo1-

lowing well-known "uniform boundedness lemma" is the key to our 

proof of (8). It is originally due to Moschovakis. The reader should 

have no difficulty in transferring the proof of Lemma 9 in [34] 

to our context. 

(5 ) 

(8). 

(7) 

Assume (~,Q,Q') is a ~-prewel10rdering on Wo. There 

. . f . b·. ZW ~ ZW h h f 15 a recurSlve unctlon ~ sue t at or every 

Y £ ZW, n £ w, if -we W then b«y,n» £ Wand 
n - 0 0 

-W;:.::= {z: b«n,y» f.z}. 

The next lemma is the central part of the argument establishing 

Suppose E = {(x,y):< x,y> 

that W is E-invariant. 
0 

~ prewellordering on W 
0 
. 

~ ~} is a ri equivalence such 
o 

Then there exists an E-invariant 

Proof of (7). 

Let 
I (SQ,Q ) be an ordinary prewel10rdering on W 

o 

and suppose Q = " {(x,y): <xy> ¢ ~}. It follows from our uniformity 
1 

assumptions (i-iii) on W that there is a recursive function h: ~ ... W 

such that 

-~(O) = {<X,y>: (]z)(zEy 
• 

& (z ,x) E Q )} 

{<X, y>: ( :3 z) « z, y> ¢ ~ & <z JX> ¢\ ) 
0 1 

and for all i E W 
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-Wh(i+l) = {<x,y>: (:Jz,,,)(zEy & (",x) e: Q' & V (z,b( h(j),w » e: Q')} 
j .q 

Define 

Define 

Since f 

= U {<x,y>: 
jsi 

w) w f: (w x 2 + 2 

(3 zw) «z,y> f w
k 

o 

& <z ,b «h (j ) ,101» > ~ W
k 

}. 
I 

by the recursive conditions: 

f(O,x) = x, f(i+l,x) = b«h(i),f(i,x»). 

-< '= {(xy): (3i e: w)(x '" f(i,y»} 

Q = {(x,y): C:3i e: w)(x,f(i,y» e: Q)} 

Q' = {(x,y): (~i e: w)«x,f(i,y» e: Q')}. 

is recursive, Q and Q' are respectively I 
III and I 

r l · 

We claim that (-<, Q, Q' ) is an E-invariant lIi-prewellordering : 

Using the defining property of b, one easily verifies by in-

duct ion that 

(i) (Vi" w)(Yw " 2w)(w "W ~ b(h(i),w) " W ). 
o 0 

A second induction using (i) shows 

. (ii) (Vi" w)(Vx " 2w)(x e: W => f(i,x) "W) . o 0 

Thus if X " W o 
and (y,x) e: Q or (y,x) " Q', 

-< = Q nw2 
= Q' n w2

. Also, if and it follows that 
o 0 

then Y" W , 
o 

X "W and 
o 
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yEx then hence Y :s f (1, x) and y -:'S. x. Thus 

~ is E-invariant. x ~ y implies x-< y so ~ is well-founded 

and connected. 
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It remains only to show that -< is transitive. The transi-

tivity of ~ will follow from 

(6) 
Suppose i < j < w, x,y ~ Wand f(i,x) < f(j ,y). 

o 

Then f(i+l,x) < f(j+l,y). 

Proof of (6). 

We must show f(i+l,x) ~ f(j+l,y) = b(<h(j),f(j,y»). It 

suffices to show that f(i+l,x) ~ _wf(j,y) i.e. that there exist 
h(j) 

k < j, z, w such that 

, 
Z E f(i+l,x) and (w,f(j,y» ~ Q and (z,b(<h(k),w») ~ Q 

This condition 'is satisfied if we choose z = f(i+l,x), w = f(i,x), 

k = i. (6) follows. 

Now to verify that -< is transitive, suppose x::: y and 

y ~ z ~ W; say x ~ f(i,y) and y ~ f(j,z). Since y ~ f(l,y) we 
- 0 

may assume j > O. By repeated application of (6) we obtain 

f(i,y) .::': f(j+i,z). Then x.:: f(j+i,z) so x~ z. This completes the 

proof of (7). 

Proof of (8). 

Suppose p is finite, 

A ~ IIi(Xp) 

Then f-\A) 

is E- invariant4 

I w 
E II I (2 ), say 

E c. X
2 is a 
p 

Let f: 2
w ... X 

p 

f-I(A) = W
n

· W 0 

E I equivalence" and 
I 

be a recursive surjection. 

is invariant under . the 

equivalence E = {(x,y): x = y or (3z,w) (x = <z,n> & y = <w,n> 

& fez) E few)}. Applying (7), let (~,Q,Q) be an E -invariant 
I 

II -I 



prewellordering on W. 
o 

Define 

Q= {(R,S) € X2: (\!x,y € 2"') «f(x) = R 
P 

Q' = {(R,S) € x2: 
P 

(3x,y "' € 2 )(f (x) = R 

It is easily checked that (QnA2 ,Q,Q') 

A. This completes part 1 of 2.l(a). 

Proof of 2.l(a), part 2. 
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& fey) S) => (x,y) € Q)} 

& fey) = S & (x,y) € Q')}. 

is a III 
1 

prewellordering on 

Let I, ~ be the binary relation symbols (1,(0,2» and 

(1,(1,2» respectively and let Po = {I,V}. We will be concerned with 

members (F,V) of X such that for 
Po 

some p € He, F "codes" a 

pair of p-names and V "codes" a member of X via F. The material 
Po 

of this section is closely related to Vaught's "oG-logic" as found in 

[44]. The present situation is simpler than that of [44J in that 

we need only consider satisfaction for applied propositional logic 

(i.e. names). It is more complicated than that of [44] in that we 

must define not only a universal set but a universal equivalence. 

We first collect some helpful observations. When p is a 

similarity type and ~ is a Borel p-name, at(p) and sub(~) re-

spectively denote the set of atomic p-names and the set of subnames 

(subformulas) of ~ . Given R € Xp let V
R

: at(p) ~ {O,l} be the 

characteristic function of R with respect to at(p). V is a p-

valuation if (jR € Xp)(V=VR)· Note that V is a p-valuation if 

and only if V is a function on at (p) to 2 and for every c € C - p 

there is a unique i € w such that (~~, 1) € v. Thus~ it is apparent that 
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(9) 

that 

There is a I-formula Val E L (p) such that for any 
ww 0 

similarity type p, if 11 is a transitive set which 

contains at(p) and · V C (C then (a,E , V,at(p» p Val 

if and only if V is a p-valuation. 

If V is a p-valuation let \r be the unique REX 
p 

V = VR · Let B = (1,(0,1». By considering the natural 
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such 

inductive 

definition of IIR e: [,p]" it is apparent that 

(10) 

There is a 2-formula Sat E L (p U {B}) such that for any 
ww 0 -

similarity type p and Borel-p-name ,p, if Gt is a transitive 

set which contains both at(p) and sub(,p), p-

valuation, and B s:. 0.., then (a,E,V,B,at(p),sub(,p»p Sat if 

and only if B = {tjI E sub(,p): \r E [tjll} . 

Given a E HC, 
WXW 

suppose F E 2 is such that (W, F) = 

(TC({a}),E). Then we say that F is a representing relation and that 

F represents a. We further specify that TC({a}) = i(F). Let 

~: (w,F) ... (i(F) ,0) be the unique isomorphism. For b E i(F), 

cs:.i(F) b
F -1 (F) . F 

we specify ~ (b), c = { b : b E c} . 

It is not generally possible to effectively associate to each 

a E HC a specific structure which represents a. We do however have 

the following approximation: 

(ll) 
There is a prim (w) func tion Fo such that for any a E HC, 

Fo(a) is a Borel name for {F E X{F}: F represents a}. 
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Proof. 

Consider the prim functions a ~ aa a 1'+ e" 
a 

defined by 

the conditions: 

" 
ab (~l)) A. (yvl)(!.(~l'~) 

, 
Then for any set a, Hod(a ) = {e,(: 0( = (TC({a}),e:)}. Let F (a) 

a o 

be (a ')N where a ~ aN is the prim(w) function which replaces 
a 

variables by numerical constants which was defined in the introduction. 

Clearly F has the required property. 
o 

Given b e: HC, let eb(n) denote 

F is a representing relation and b e: i(F), then F e: [eb(~)l 

if and only if n = 

Now suppose F is a representing structure, at(p) e: i(F), 

{(~ 
F .F 

(~, i) VR}· R e: X Define V = , ~ ): e: In this case we say p RF 

V = VRF is a P-F-valuation and specify R = RVF' RvF is the unique 

R e: X satisfying the condition 
p 

1\ [Ve: [~(~,m)]~ V (Fe: [e~(~)l\el(!'!.)lI\Re: [~]) 
n,me:w ~e:at(p) 

From this expression and (9) it is apparent that 

There is a prim(w) function Fl such that if F is a 

(12) representing structure, p e: HC and at(p) e: i(F) then 

F 1 (p) 
wxw 

is a Borel Po + p-name such that for V e: 2 
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R E Xp ' (F,V,R) E [ Fl(p)j if and only if V is a 

p-F- valuation and R ~ Ryy. 

Also note 

, 
If (w,F,V) ~ (w,F ,V), F is a representing structure 

(13) and V is a p-F-valuation, then the same is true of F 

and V, and RvF ~ Rv'F'· 

One final remark is needed for our construction of the universal 

2 
equivalence. If At;; Xp is an arbitrary relation, then EA, the 

o 
smallest equivalence relation wpich includes A, may be obtained by 

setting 

A ~ A U {(x,x): x I': ~ } u {(x,y): (y,x) I': A} 
o 

and then defining 

& x ~ y 
n 

& 
I 

(Ym < n )«x,x ) E A ». 
m m+1 

It is apparent that 

(14 ) If A I': then 

Now we are in a position to define the universal equivalence. 

Given p let ~ ~ pp (so p +p ~ pUp); given ~ ~ 

II 
(i,(a,n» E P, let ~ ~ (i,«p,a),n» be the" corresponding symbol in 

Let S(Vl' ... ,VS) E L ({F}) be such that Mod(S) ~ ww -

{(A,F,a
1

, •.. ,a
8

): (A,F) is transitive and extensional and bas a 

A p. 
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maximal element m such that (A,F) F m = (a1'··· ,as)}. 

A = [(-3L~.>!!.1X3vl' ... ,vS)cre 1\ (Yvw)(!(v,w) ++I(v,w» 
~ - ~ 

"Va1(!,~,v1) 1\ va1c£,.Q.,v3) 1 ->- [Val(!,!!.,v4) 1\ ext (!!.,.'{) 

1\ 

1\ ext (!!.,.'D 1\ Sat(F,W,B,v4'vS) 1\ ~(v6) D. 

Then~' 

(15 ) 

If F represents " . (at (p) , at (p+p 1) , at (p) , at ( (p U ~) +p) , $, 1jJ, 

sub($), sub(IjJ» where IjJ is a Borel 
1\ . 

(p U p )+p Z-name, V is 

a ~-F-va1uation and V' is a p-F-va1uation then (F,V,F,V') E A 
) 

Clearly A E E i(X +p). Let E1 be the smallest equivalence 
Po 0 

which includes A, and let E be the smallest equivalence which con-

tains 
, , , 

E1 U {(F,V,F ,V): (w,F,V) " (w,F ,V)}. 
1 

E EEl (X + ). 
Po Po 

Suppose F, 1jJ, V, V are as in (15) and moreover that 
, 

[(3 p'zh f is -
an equivalence. Then (F,V,F,V) E E1 if and only if 

(RFV,R
FV

,) E [(2 P zlljJ]· Using this observation toge ther with (13) we 

obtain 

Assume the hypothesis of (15) and additionally that 
, 

(16) EF = [(.3 p zlljJ 1 is an equivalence. Then (F, V ,F, V ) E E 
~ 

if and only if (RFV'R FV ,) E EF 
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• u and henee U also, is 

Assume the hypothesis of (16) and additionally tha,t 4> is 

(17) a Borel P+Pl name and [('iP l )4>] = AF is ~-invariant. Then 

(F,V) E U if and only if ~ E AF • 

Proof. 

• • 
By (9), (10) and the definition of U, (F,V) E U if and only 

if ~ E ' ~. The eonelusion of '(17) follows by (16) and the assumption 

that Ay is EF invariant. D 

Now we c an prove our main result on ~i-names. For the reader's 

convenience we restate it: 

(18) 

Proof. 

There is a prim(w) funetion PI sueh that if p E He is a 

similarity type, 'I' is .. a ~i-p+p-name for an equivalenee on 

and is a 
1 

lll-name for a ['1'] • invariant set, then 

is an ordered pair of names whieh witness a ['I' )-invariant 

~i-prewellordering on [~]. 

• 
Applying (8) suppose (SQ,Q ) is an E-invariant 

prewellordering on U. 

Let F2 be the prim(w) map 

F2 : (p, (~Pl)1/J'(:t P2H)) ... (at(p) ,at(P+Pl),at(p),at(p u'P+P2), 

q, ,1/J,sub(q,),sub(1/J)): 

Given p, 'I' = c.:jpl)1/J, ~ 
~ 

(~Pl)1/J we (uniformly) define 
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Q (p ,'I' ,~) 

, , , 
Q 

(p ,'I' ,~) = [(R,R) EO xp-!?:(3F EO [FO(F2(P,'I',~»])«F,VRF),(F,VR'F» EO Q} 

It is straightforward using (12) prim(w) 
1 p 2 to define maps P 1 ' 1 

such that for all (p ,'I' , ~) in (18) , 1 
is a 

1 for s = as P 1 (8) ..IT I-name 

2 1 , 
Qs ' p 1 (s) is a Jl-name for Q • 

s , , 
Fix s = (p,'I',~) as in (18) • Let Q = ~, Q = Q s' -<= 

Q n [<1>]2. We claim that " (-i,Q,Q ) is a .l.!i-prewellordering on [<1>]. 
, 

From the corresponding properties of (~,Q,Q), it is immediately 

apparent that Q' n [~]2 is connected and reflexive, QI"\ [<1>]2 is well 

founded and transitive, and Q'n X x [<1>] c Q' nX x [<1>]. Also, if 
p p , , 

R EO [<1>] and (R,R) EO Q as witnessed by F, then (F,VR'F) E U, 

«F,VRF),(F,VR'F» E Q, hence 

only to show that Q'n [~]2~ 
, 

(F,VRF ) EO U and R E [<1>]. It remains 

Qn [<1>]2. Suppose R
l

, R2 E [~] and 

(R
l

,R
2

) EO Q as witnessed by F. If F is any member of 
, , 

[F
o

(F
2

(p,'f,<I»)] then (w,F) ~ (w,F), hence ~ (w,F ,VR F')' 
i 

i = 1,2. Since < is E-invariant, 

, , 
hence «F ,V

R 
F,),(F ,VR F'» E Q Thus, (Rl ,R2) E Q as required. 

1 2 
Finally, suppose (R

l
,R2) EO ['1'] n [~]2, and F EO [Fo(F2(P''I',~»]. 

Then by (16), «F,V
R 

F,F,V
R 

F»E E and, since < is E-invariant, 
1 2 , , 

«F,VR F)' (F,VR F» E Q 
1 2 

E Q. Thus, < is ['f) - invariant 

and the prim function satisfies the requirements of (18). 

The proof of 2.l(a) is complete. o 
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In contrast to the above proof, the argument which establishes 

the 1~ case of 2.1 is quite direct. We simply "invariantize" the 

classical derivation of -E~ prewellordering from 1Ii prewellordering. 

Th·is proof appeared in (Ill. 

Proof of 2.1 (b). 

Suppose is an equivalence relation, 
1 

B "111 (Xp+P ), 
1 

and A~ ' {R: (3 S "x ) ((R, s) EO B))} is E-invariant. Given a 
PI 

Ei prewellordering (~q,q) on B with associated norm ~: B + ON, 

we define an E-invariant prewellordering on A as follows: 

~ ~ {(R
l

,R
2
): min{~(R,S): R E Rl & (R,S) EO B} < 

min {~(R, S) : R E R
Z 

& (R, S) EO B}} 

Q {(R
l 

,R
2
): (3R,5)(R E Rl & (R,5) "B & 

,f' 'f 1 f' 
(VR,5 )((R E R2 & ((R,5 ),(R,5)) EO q)) + ((R,5),(R ,5 )) 

EO q)]} 

Q 
•• • 

(VR,S )((R E RZ & 
• • 

(R ,S ) EO B) + 

(jR,5)(R E Rl 
•• • 

& . ((R, 5) , (R ,5 )) EO q ) 1 } 

It is apparent that Q 1 
is ~2' Q is TIl and that appropriate names 

~2 

for Q and Q can be (uniformly) primitive recursively obtained from 

names for E, B, q, and q Any name for A directly yields a 

1 
]l-name for a suitable B, so the conclusion of 2.1 will follow from 

(18), (or 4.8 of Vaught (44]), once we show that (i,Q,Q') is im E-invariant 

l~-prewellordering. 
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Suppose Rl E R
Z

' RZ 8 A. Then for every R,S, 

(R E R & 
1 

(R,S) 8 B) => (R E RZ 
& (R,S) e: B) 

hence Rl ~ R
Z 

,so -< is E-invariant. 

Transitivity, connectedness, and I<ell-foundedness for -< are 

immediate from the definition and the fact that image(~) 8 ON. 

Finally, suppose RZ e: A and (Rl,RZ) 8 Q as I<itnessed by R, S. 

Then R e: A, hence and if R, S 
o 0 

I , 

are such that 

~ (R ,S ) = min {~(R, S'): R' E R
Z 

& 
o 0 

(R,S) 8 B}, then 

, 
(HR ,S ) < ~(R,S) => ((R ,S ), (R,S» 8 q ). 

00- 0 0 

It follows by the definition of Q that 

(~(R ,S » < ~(R,S) => ~(R,S) < i;(R ,S ). 
o 0 - - 0 0 

Thus, (R
Z 

8 A & (Rl,R
Z

) 8 Q) =:- &Z 8 A & R
l

'-;' R
Z
)· 

Similar calculations complete the proof that ~ = Q n X x A = 
p 

, '1 
.Q n Xp x A. Thus, (~,Q,Q) is a .t2-prewellordering on A and the 

proof of 2.1 is complete. o 

Remarks 

1. On 2.3 

Our proof of the case of 2.1 (including (5» depended on 

(i) The ordinary prewellordering theorem, (ii) the existence of 

the "canonical" complete · III set Wand (iii) the construction of 
1 0 

U and E carried out in Part 2. It is well-known that similar 

III sets exis C£or all 
n 

nEW .• The construction canonical complete 
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u 1 
(iii) is easily modified to yield a very universal" II set and 

n 

El equivalence for each n -- one merely adds suitable alternating 
n 

quantifications over valuations in the definitions. -- For example, 

in the case n ~ 2, one would consider F's which represent sets of 

the form (at(p) ,at(p+P l ) ,at(P+Pl+P2) ,at(~) ,at(plJp+P3) ,at(p v'P+P3+P4)' 

.l. ,I. sub(.l.) sub("'» to discuss names of the form V P "'p .l. "', "', "', '" ~ 1;\ 2"" 

Since our proof of the El 
~2 

case of 2.1 depended only on 

cas~we can carry out the complete argument (for 2.1) for 

larger n) provided only that a suitable analog of (i) holds. 

II. In [10] Burgess gave a second proof of 2.2(a). This argument 

also yields the "lightface" result (8). The two distinct arguments 

for (8) fall naturally into the pattern established by previous proofs 

of related results. Thus, Burgess' proof of (8) -- like Vaught's proof 

of invariant separation and reduction theorems in [44] and our proof 

above of invariant prewellordering and reduction -- proceeds by 

invariantizing a proof of the analogous classical theorem. Solovay's 

proof of (8) - like the Ryll-Nardzewski proof [46] of invariant 

(strong) 1st separation, and both proofs in [11] of III reduction for 
~l 

pairs -- derives the invariant theorem directly from the classical re-

sult (as usual by an w-sequence argument). Burgess' argument appears 

to be somewhat shorter. Our argument gives a single proof for both the 

rrl case and for the results on PD. Furthermore, assuming the possibility 
",1 

of, say, reduction without ",1 
-2 

slightly stronger result (Cor. 2.3). 

determinacy, our argument gives a 
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III. It follows immediately from 2.2(a) that 

If X is a Sus lin space, E C X2 is a El 
~l 

equivalence 

(19) on X, and A is a E-invariant III 
~l 

set, then A is 

a union of wI invariant Borel sets. 

This fact has a simple proof from the ordinary boundedness theorem 

(cf. Kuratowski [26] 39 VIII) as follows: 
, 

Let A, X, E be as in (19). Let (SQ,Q ) be a 

prewellordering on A with associated nOrm ~. The constituents 

B , 
a 

a E wI' of A are defined by setting B = . {x: ~ (x) < a} • 
a 

Each 

B 
a 

is Borel and A = It suffices to show that 

{a: B is invariant} is cofinal in wI' Let a E wI' a 0 
Since E 

. El B+ is El and by the boundedness theorem, B+ 
1.5 ...., l' a ~l a 

0 0 

c. B for 
- a 

1 

some a l E wI' Inductively chose (li' i E w, such that B+ C B 
a i - a i +l 

Let a = U a .. Then B = U B+ is invariant and a > ct. Since 
- 0 

ic:w 
1. a 

iEW 
a. 

1. 

a
o 

was arbitrary, (19) is proved. 

This proof contains the essential w-chain construction which 

is central to the proof of (8). After proving (19) the author learned 

of the effective boundedness theorem and conjectured that it could be 

used to prove invariant ~i-prewellordering. He discovered an argument 

for deriving 2.2(a) from a proposed "improvement" of the effective 

boundedness theorem. Solovay then showed that this "improvement" was 

untenable and gave a correct proof corresponding to ·our (7) and (8) 

above. A short time late~ Burgess discovered the argument of [10] for the 

same result. 
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IV. In the classical theory one uses the ordinary analogue of (19) 

and the Jll 
..... 1 

a union of 

uniformization theorem to show that every El 
~2 

Borel sets. Although it is true for Polish actions 

(see Vaught [46] >. the corresponding strengthening of (19) does not 

hold in general. To see this, let X be Polish, 1 1 
A E -El (X) -.lJl (X) , 

and define E = ' {(x,y): x y or x,y E A}. Clearly, A is E-

invariant El 
""2 

but A is a single equivalence class and cannot be 

a union of invariant Borel sets. This example also shows that the 

invariant uniformization principle does not hold in general: If 

A = "1 (B) for some 

E x l-uniformizes 

BCXxy then there is no III 
-I set B which 

B. (If there were, we could apply (19) to write 

B as a union of E x l-invariant Borel sets and hence, to write A 

as a union of E-invariant Borel sets, which is impossible). 



§ 3. Strong Well-orderings and the Invariant Uniformization Principle 

. I 
In the preceding section Ye . showed that invariant ~l and 

uniformization principles hold for certain product equivalences on 

Suslin spaces of the form X x w. It is natural to ask whether these 

results can be extended to spaces of the form X x 2w in analogy with 

the non-invariant theory, or to a larger class of e quivalences on spaces 

X x w (such as the collection of equivalences induced by product actions). 

As we will remark below, such extensions are impossible for TIl 
~l 

or for any projective class r such that every r-subset of 2w is 

almost open. If we assume the axiom of constructibility, however, we can 

obtain positive results for r ~ 1i!, n > 2 in full analogy with the well­

known theorem of Addison [1]. 

The main results of this section (3 . la,3 . 2,3.3) were obtained 

jointly with John Burgess and appeared in Burgess-Miller [11] . An 

unpublished result very close to 3.1 was presented at a Berkeley 

colloquium in 1972 by K. Kuratowski. He showed that the existence of 

a ~~ (not necessarily strong) well-ordering of 2w implies the exis-

tence of a selector for any equivalence relation such that 

every equiv alence class is countable. 

'Fa" x E 2w and 

i 
(x . )(m) ~ x(2 (2m+l». 

]. 

binary relation 1 on 

well orders in type 

i E w, we define (x)i E 2w by setting 

We then define ((x»~ · {(x . ) : i E w}. A 
]. 

is a II-strong well-ordering provided 1 
~n --

and both 1 and (1) ~ 

are 

The existence of a strong well-ordering of 2w follows from 

the axiom of constructibility (V = 1) by a theorem of G~del and Addison 

(£!.. Addison [11]) . Silver has shown in [42] that the existence of a 

42 



43 

E~ strong well-ordering follows from the assumption that D is 

a normal ultrafilter :on a 

measurable cardina~ and V = LD. A recent theorem of Friedman and 

Mansfield states that if there exists a (no t necessarily strong) 

well-ordering of then for some 

1 
there exists a ~z-strong well-ordering. 

W 
a " Z and hence, 

If X is any set and E is an equivalence on X then a selector 

for E is a map s: X ~ X such that 

(i) (\( x " X) (s (x) E x) 

(ii) (Yx,y" X) (x E y =';> sex) = s(y». 

Theorem 3.1. Assume that there is a El strong well-ordering on 
~n 

n > Z. Let X be a Suslin space, an equivalence on X. 

Then 

(a) There exists 

(b) Let be 

S € ~l(XZ) which is a selector for E. 
~n 

1 E -names for 
-n 

L,(L) respectively. There is 

a prim(w,$l'~Z) map P such that if p € He is a similarity type 

and are respectively a 1 E -name and a 
-n 

1 IT -name for an equivalenGe 
-n 

E on 

Proof. 

X , 
p 

then is a 1 E -name for a selector for 
~n 

E. 

(a) Let f be a Borel measurable function on ZW onto X. 

Given x € X define sex) = fey), where y is the L-least element of 

-1 f ([xl E)' s is clearly a selector for E and since s has the 

explicit definition: 

s = {(xl,xZ) : (xl ,xZ) € E & (3Yl'YZ) (f(yZ) = Xz & (YZ,Yr ) € (L) 

& /\ ((xl,f( (Yl)m» ¢ E)} 
mew 

it is also clear that s " E
1

(X
2
). -n 

Since s is a function, s € ~1(X2). 
~n 



44 

(b) In view of the preceding argument it suffices to show 

that there is a prim(w) function F such that F(p) is a El 
-1 

name for a function on 2w onto X 
p 

whenever P £ HC is a similarity 

type. We use the notation from §2. Let g: XI>- (F ,V) be a re-
2 2 X X 

cursive bij ection on 2w onto X = 2w x 2w . Given p £ HC let 
Po 

R £ X be the constant zero function. Let f: 2w 
+ X be defined 

op P P P 

by the equation 

f (x) = 
p 

~F 
xx 

if F £ [F (at(p))] 
x 0 

and 

Fx 
(F - ,V , (at(p) ) £ [Val] 

x x 

otherwise. 

It is apparent that each f 
p 

maps 2w onto X. 
p 

Using (9), (ll), 

and (12) of §2, it is straightforward to define a prim(w) function 

F such that for every 

Corollary 3.2. Assume 

(a) X has the 

p, F(p) is a 
1 

11-name for f . 
p 

the hypothesis of 3.1 and m> n. 

E-E1-prewellordering 
-m 

property. 

(b) The collection of E-invariant El subsets of 
~m 

reduction property. 

Proof. 

o 

Then 

X has the 

(b) follows from (a) and 1.1. To prove (a), let A be an invariant 

El set and, (applying Addison's prewellordering theorem, cf. [21D, let 
~m 

(-.::,Q,Q) be an ordinary 1i~-prewellordering on A. Let s be the 
, 

selector for E defined in 3.1. Define (~,q,q) by setting 
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-1 " 
~=s (~= {(x,y): s(x)~s(y)} 

-1 q = s (Q) , 
, l' 

q c s- (Q ). 

, 
It is easily seen that (~,q,q) is an E-invariant El-prewellordering 

-m 

on s-l(A) = A. o 

If X = Y x Z and E is an equivalence on X, then E is 

coherent provided that for all Yo'Y
l 

e Y 

is an equivalence relation "on Y. It is 

easily seen that every product equivalence and every equivalence which is 

induced by a product action is coherent. 

Corollary 3.3. 

Assume that there is a El strong well-ordering on 
~n+l 

Y, 

Z are Suslin space~ and E is a coherent El equivalence relation on 
-n 

Y x Z. Then for every m > n, has the E-uniformization 

property. 

Proof. 

and E is an equivalence relation. 
, 

be a selector for E . 

Applying 3.1, let 

Let A be an E-invariant El subset of Y x Z. Applying Addison's 
~m , 

uniformization theorem, let B be an ordinary set which uni-

formizes A. Let 



B = {(y,z): (]Zo)(y,Z) E (S(y),Zo) 

EI. Clearly B is If (y, z) F; B 
~m , 

., 
& (s(y),z) F; B}, o . 

, , 
and (y, z) E (y ,Z ) l 

, , 
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, 
then y E Y ) 

, 
so s(y) = s(y) . If (y, z) E (s(y) ,zo), then (y ,z ) E (s(y),zo»)so 

I , 
(y ,z ) F; B. Thus, B is E- invariant . 

I 

If (y,z) F; B then 
, +E 

(y, z) F; (B) • (B')+EC A since 
- ) 

B c. A 

and A is E- invariant. Thus, B c. A. 
, 

If (y,z) F; A, then, since E is coherent, (s(y),z) E (y,z) 
, 

for some z. Since A is invariant, (s(y),z) F; A. Since B uni-

formizes A, (s(y),z)F;B 
. 0 

for some z. Again using the coherence 
o 

of E, (y,ZI) E (s(y),zo) 

Dom(B) = Dom(A). 

for some Then so 

, 
Finally, if (y,z), (y,z ) E: B, then for some z, 

o , , 
(y,z) E (s(y) ,z) and (y,z) E (s(y) ,z ). Thus, (y,z) E (y,z) and 

o 0 

B satisfies all the requirements of an E-uniformization. 0 

The reader should have no difficulty in extracting the obvious 

effective content of 3.2 and 3.3, as an application of 3.1(b). 

v. Remarks and counterexamples. 

In Remark III we gave an example of a El 
-1 

product equivalence 

Exl on a Polish space x x Y and an invariant Borel set with no 

E x l-uniformization. 
~ 

The invariant uniformization question was first raised by Vaught 

(cf. [ 44]) for the canonical logic spaces, and the first counterexamples 

1 · . nl 
to a genera lnvarlant ....vI uniformization theorem for these spaces 
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were given by Dale Myers in [36] and [38]. Myers' arguments were 

based on considerations of Baire category for the logic spaces, and it 

appears that measure and category are the key to one type of counter-

example to invariant uniformization. In fact, the classical Vitalli 

construction of a non- measurable set of reals, which is based on a 

selector for the Borel equivalence Eq. = . {(x,x+q): x £ tR, q £ Q}, shows 

that the Eq. x ,!-invariant set EQ. 'S.1R2 has no Lesbegue measurable 

EQ x .!-uniformization, (~ fortiori, no ni E(l x l-uniformization). 

By manipulating this example a bit, we will obtain a general 

method for constructing equivalence relations E on spaces of the form 

y = X x w, such that the set y has no (and assuming projective 

determinacy, no projective) E-uniformization. 

We say that an action J = (X,G,J) is a Vitalli action if X 

is a Baire space, G is a countably infinite group, each J
g : x~ gx 

is continuous, and 

(i) For every x £ X and g £ G, if g # id, the identity 

element of G, then gx # x. 

(ii) For every non-empty open U ~ X, there exists a non-

empty open set V C U and h £ G _ {id} such that hV c. u. 

If J = (X,G,J) is a Vitalli action, let Jv be the product action 

J x T of G on X x G, where T is left translation. 

If X is any non-meager topological group and G is a countab~e 

subgroup which is not discrete, then the action by left translation 

(g,x) ~ gx is a Vitalli action. In particular, the Vitalli example, 
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X = OR,+), G = ~. is a Vitalli action. For an example closer to 

model theor~ let X = Zw, G = S. , 
q the set of finite sequences of 

o's and l's with addition as binary decimals reduced modulo 1, 

J: (s ,x) .... s + x where addition is again as binary decimals reduced 

modulo 1. Then (X,G,J) is a Vitalli action. 

Proposit i on 3.4. (compare Myers [38]). Suppose J = (X,G,J) is a 

Vitalli action. Then the set X x G has no EJ -uniformization which 
V 

is almost open in X x G, G given the discrete topology. 

Proof. 

Let E = EJ and suppose A is an' E-uniformization of X x G. 
V 

If (x,g) E (x,h), then by (i), h = g, so A is a uniformization in 

the usual sense. A is EJ -invarian~ so A = hA for all h £ G. For 
V 

g '" G, define 

all h,g '" G. 

A 
g 

{x: (x,g) '" A}. It is apparent that hA 
g 

for 

Now assume for contradiction that A is almost open. Since G 

is discrete, every A 
g 

is almost open in x. Fix h '" G. 

If ~ is meager, then the same is true of each A = A g gh-~ 
-1 

It follows that X U A is contradiction. gh '\. = meager, a 
g",G g 

If '\ is almost open and not meager, then 
U _ 

'\ is meager 

for some non-empty open set U. Choose a non-empty open set VL:U 

= 

and h' oF id such that h 'V C. U. Then h'V - '\ and V - '\ a re 

subsets of U - '\, so both are meager, as is h'(V - '\) = h'V - '\'h. 

Since h' oF id, h 'h oF h. Since A is a uniformization, '\ (l '\ 'h = ~. 

Then h'V C (h'V - '\) U (hV - '\'h) is a meager open set, a second 

contradiction which proves the proposition. 
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3.4 represents our candidate for the "urtheorem" underlying 

Myers' examples in [38]. Most (possibly all) ~f the examples in 

[38] can be represented as a Vitalli action where X is a subspace 

of a logic space and G is a quotient of the permutation group wI. 

All these examples show that we cannot h9pe to have strong 

positive results about invariant uniformization without strong set 

theoretic hypotheses like those of 3.3. They further show that the 

invariant uniformization theor~m for spaces X x w which we proved 

in Z.Z(c) cannot be extended to arbitrary coherent equivalences or 

even to equivalences induced by a product of a pair of Polish actions 

on ZW and w. 



Chapter II: SPECIAL ACTIONS, SEMICONTINUOUS EQUIVALENCE RELATIONS AND 

THE *-TRANSFORM 

We continue to study the various types of equivalence spaces which 

arise from consideration of the canonical logic actions. The first two 

sections deal primarily with Vaught's transform 

* B ~ B = {x: {g: J(g,x) E B} is comeager} which was introduced in 

* [46]. B is defined whenever G is a topological space, X and X' 

are sets, J is a function on G x X to X', and Be X'. The 

transform appears to be most interesting when G is a non-meager 

topological group with a countable basis, X = X' and j = (G,X,J) 

is an action. When, in addition, X is a topological space and J 

is continuous in each variable separately, we say j is a special 

action. Assuming a special action, Vaught showed 

* 
(1) 

For every B E B(X), B is a Borel Ej-invariantization 

of B. 

In §l we show that the same result holds under the weaker hypothesis, 

"X is a Borel space and J is Borel measurable." This result is 

partly due to Vaught -- see 1.2 below. It yields stronger versions of 

several of the main results in [46]. We also add to the list begun in 

[46] of the classes and properties preserved 'by the transform. We prove 

for example 1. 5: 

Assume j is ~ special action. For every B <;: X, if 

* B is almos t open, then so is B. 

50 
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In §2 we are concerned with invari"ant separation for classes of 

Borel sets. We prove 2 . 3: 

If E is a lower semicontinuous equivalence on ~ completely 

metrizable space x, then the collection of E-invariant 

sets has the first separation property. 

o 
This result is proved by invariantizing the strong version of the ~ 2 

separation theorem which involves the so-called "resolvable" sets. 

Our proof yields a construction principle for 110 
~2 

sets in terms of 

invariant closed sets. Assuming X is Polish and E is induced by 

a special action, we use the *-trans form to extend this invariant 

separation theorem to all the collections ~~(X), a > 1. 

In §3 we leave the transform aside. We apply a theorem of 

Kuratowski and Ryll- Nardzewski to gi ve a sufficient condition for the 

existence of a continuous selector for an equivalence on a Polish space. 

As we will show in chapter III §6, this result is closely related to 

the "Henkin method" of constructing a model from a complete theory. 



* §1. Some Remarks About the Transform B ~ B ={ x: {g: gx E B} is comeager} 

The following definitions and preliminary facts «2)-(7)) are 

taken from Vaught [46]. 1.1 and 1.5 appeared in Burgess-Miller [111. 

Throughout this section we assume that G is a Baire topological 

space, X and X are sets, and J is a function on G x X to X. 

Additional assumptions will be stated when they are required. The 

most important special case for us will be that of a special action. 

As we will see below however, consideration of other cases -- particularly 

the product case: X = G x X, J the identity function -- can aid 

in our study of the special actions. 
, 

For BSX, x E X, and g E G, let B
X 

= . {g E G: J(g,x) E B}, 

B
g 

= {x E X: J(g,x) E B}. If U # 0 is open in G, we define 

B*U = {x: BX n U is comeager in U}, B* = B*G 

B
llU *U · x () -(-B) = {x: B U is not meager in U} 

{x: BX n U is not meager}, Bll = BllG. 

When we wish to emphasize the dependence upon J we write 

*J 
B , etc. 

B*U,J 

The key fact relating the *-transform to action equivalences is 

an immediate consequence of the homogeneity of topological groups, the 

definition of an action, and the fact that G is a Baire space. 

, 
(2) Suppose G is a topological group, X = X, j = (G,X,J) 

is an action, and Be X. Then 

-Ej B* C Bll C B+Ej 
and B C 
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* B and are Ej- invariant 

, 
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It follows from the closure of meager sets under countable unions that 

(3) ( n B ) *U = 
n 

nEW 

and 

(U B )LlU = 
n nEW 

n 
nEW 

u 
nEW 

*U 
B 

n 

A collection H of non-empty open sets is a weak basis for G 

provided every non-empty open set includes a member of H. We hence-

forth assume that "U" and "V" range over members of a fixed weak 

basis H for G. A set Be X' is normal if for every x E X, BX 

is almost open in G. We may regard the normal sets as exactly the 

sets which are well-behaved with res pect to * in view of the following: 
I 

PropOSition 1.1. Be X is normal if and only if for every U, 

BLlU = U{B*V: V S U}, (and B*U = n{B LlV : Vcc= U}) . 

Proof. 

The "only if" part is 1. S of Vaught [46]. It depends on the 

fact that G is a Baire space. 

For the "if" part, suppose that for every U, BLlU = 

U *V . 
{B : V~U}. Fixing x E X, this ~mplies that either BX nU is 

meager or _BX n V . f 1S meager or some V CU. Since H is a weak 

basis it follows that every non-empty open set contains a point where 

either or is meager. This proves that is almost open 

(£!. Kuratowski [26] §ll IV). o 
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The "only if" part of 1.1 can be restated as 

(4) If B is normal then (_B)*U = -U{B*V: vcuL 

Also note that the inclusion 

holds for arbitrary (not necessarily normal) sets B. 

The last algebraic formula we require deals wi th the behavior 

of * and the operation (A). 

(5) Assume G satisfies the countable chain condition (every 

disjoint collection of 

{A : s e: S = U nw} 
s q ne:w 

Then for all U, 

( U n A )*U = 
OJ t;~n t;e: OJ ne:w 

open subsets of G 

is a collection of 

is countable) and that 

normal subsets of X • 

*V 
A n 
(k, . .. ,k) 

o n 

Formally, membership in the right hand side of (5) is defined in terms 

of the existence of a winning strategy for a certain infinite game 

(cf. Burgess [lOP. The important feature is that when H is countable, 

the set indicated can be obtained by the operation (A) from a suitable 

*V {A : s e: S , V e: H}. 
s q 

In [10] Burgess derived analogous indexing of 

formulas for the behavior of * under the more powerful "Kolmogorov 

operations H rC1 , That part of Theorem 1.2 below which deals 
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with operation (A) applies equally well to any of the 

a r: • 

The next fact follows from the extra assumption and the 

hypothesis that G is a Baire space. 

(6) Assume X and X are topological spaces and J is 

continuous in each variable. If B is closed then for 

each U, B*U = n {Bg : g E U}, and * B is closed. 

It follows from (6), (4), and (3) that, 

o ' B E II (X ), 
"'a 

[respectively, Under the hypothesis of (6), if 
. , 

B E EO(X )], then 
"'a 

[Bt> E EO(X)] 
"'a ' 

a > 1. 

In particular, B* and Bt> are Borel if B is. As we will next 

prove, this last statement holds true with weaker assumptions on 
, 

X, X and J. 

A Borel space is a set X with a a-field B(X) of dis-

tinguished or Borel subsets (~. Mackey [29a)). A function 

f: X ... X between Borel spaces is Borel measurable if 
, 

for all B E B(X ). The product Borel structure on 
, , 

X x X is the a-field generated by {X x B: B E B(X)} LJ 

{B x X : B E B(X)}. It is the weakest structure which makes the 

canonical projection maps, (g,x) ~ g and (g,x) ~ x, Borel measurable. 

In analogy with the topological case, we say that Be X is 

analytic if B can be obtained by operation (A) from Borel sets. 

The collection of C-sets (sieve sets) is the smallest collection con-
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taining the Borel sets and closed under complementation and the 

operation (A). ~ topological space is implicitly given the Borel 

structure generated EY the open sets. A Borel space is standard 

if it is isomorphic to the Borel structure of a Polish space. 

Since two Polish spaces are Borel isomorphic if and only if they have 

the same cardinality, there are exactly two infinite standard Borel 

spaces, up to isomorphism. 

Theorem 1.2 in its present form is due to Vaught. The author 

had earlier proved a version with the stronger assumption that X, 

X' were topological spaces (J still Borel). This was based directly 

on the "product case" of [46] . 

Theorem 1.2. Assume H is countable, X, X' are Borel spaces, J 

is Borel measurable on the product Borel space G x X, Be X' • 

If B is respectively Borel, analytic, or C, then the same is true 

of B* and BlI. 

Proof. 

Let I: 

for every x, 

G x X ... 

xJ B = {g: 

G x X be the identity function. Notice that 

J(g,x) e n = {g: (g,x) e J-l(B)} = 

Thus 
*J -1 *1 B = (J (B)) . Since the Borel, analytic and 

C-sets are each c lo sed under inverse Borel images, it suffices to prove 

the theorem in the case X' = G x X, J = I. Since the almost open 

sets are closed under complementation, countable union, and the operation 

(A), and since these operations commute with the passage B ~ BX, 

they all preserve normality. B(G x X) is generated by t he collection 
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. 0 
G = {OxX: 0 € ll(G)} U {G x A: A € B(X)} and each BEG clearly 

has open cross-sections, so every C-set is normal. 

We first prove that 
*u 

B(X) whenever B G and U H. B E E E 

Suppose B = G x A and x E: X; then B
X = G if x € A, and 

B
X = C/J if x ~ A; so B*U = A. Suppose B oxx and x € X; then 

B
X 

0 and 
*u 

A if On -U is r/J otherwise. In = B = meager, any 

*U 
case, B E B(~) as claimed. 

The conclusion of the theorem now follows by (3), (4), and (5) 

just as in [46]. In proving that B6 is analytic when B is, one 

* uses the corresponding fact for B together with 1.1 and the fact 

that analytic sets are closed under countable unions. o 
Remark I. This argument is particularly interesting when j = (G,X,J) 

* is an action (J Borel). In order to see that B is a Borel in-

variantization when B € B(X), we must consider both the "action case" 

* J, (to see that B is invariant), and the corresponding "product case" 

* I, (to see that B is Borel). 

Since we have improved Vaught's original invariantization result, 

we get improved versions of its consequences. We state the most 

interesting one. 

When H is countable, G is a topological group, X = X 

is a Borel space, J: G x X + X is Borel measurable and j = (G,X,J) 

is an action, we say J is a special Borel action. 

Corollary 1.3. Assume j = (G,X,J) is a special Borel action, then 

every Ej- invariant analytic subset of X is a union of invariant 
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Borel sets. If G is Polish and there is a separable metric topology 

which generates the Borel structure on X, then each orbit is Borel. 

-Proof. 

The proofs of 2.5 and 2.6 in [46] suffice once we know that -the 

* Borel sets are closed under the transform B ~ B. That closure was 

proved in 1. 2. o 
Note: The separability assumption on X can be omitted. For 

this remark and for a stronger result on the measurability of orbits, 

see Miller [32]. 

Vaught's reduction theorems (2.7 of [46]) have similar extensions 

to Borel actions using 1.2. Note, however, that in any action J = (G,X,J) 

such that G and X are Polish and J is Borel, the induced equivalence 

is 1 
~l· Thus, the improved reduction theorems in this case can 

still be obtained by the methods of chapter I. 

Our next result is a short proof of an invariant reduction 

theorem for pairs, based on another type of preservation property of * 
Since the equivalence relation in part (b) may not be 1. 4 (b) 

properly overlaps- with theorem 2.7 (a) of chapter I. We have been unable, 

however, to construct an example where 1.4 (b) gives new information. 

For further discussion on this point, see 1.6 below or §4 of Burgess-Miller [Ill. 

The statement and proof of 1.4 (a) corrects an error in 2.2 of [11]. 

For r C P(X) recall that E-inv(r) is the collection of E-

invariant members of r. - When the context permits it, we will write 

inv(r) instead of E-inv(r). 
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Theorem 1.4. Assume ; = (G,X,J) is an action. 

(a) If r c:: P(X) is closed under both B ... B* and B 1+ B6 

and r has the reduction property for pairs, then so has E;-inv(r). 

(b) If G has a countable basis, X is a Suslin space and 

J is Borel measurable, then has the reduction property 

for pairs. 

Proof. 

(a) Suppose (A
l

,A
2

) is a pair of E;-invariant members of 

Let (B
l

,B2) be an arbitrary pair of r-sets which reduces (A
l

,A2). 

We claim that Since B~ and B~ 
are invariant, (a) follows from this claim. Since Bl ~ Al and 

* * B2 ~ A2, Bl ~ Al = Al and A
Z 

- Al c:: B2 , so 

(A
2 

- AI) = (A2 - AI) 6 ~ B~. * * 6 Similarly, Al - A2 ~ Bl , so Bl V B2 = 

* * 6 Bl s: (-B2) = -B2 and Finally, since Bl ~ -B2 , 

* 6 0. Thus, (B
l

,B2) reduces as required, proving (a). 

(b) If G has a countable basis, then it satisfies the countable 

chain condition. The fact that ~i(X) is closed under the transforms 

B ~ B* and B ~ B6 then follows by 1.2. Hence, (b) follows from (a) 

and the classical reduction theorem. o 

Now we turn to another preservation theorem which is particular 

to special actions. 

Theorem 1. 5. Assume (G,X,J) is a special action. 

B6 * (a) If Be x is meager, then so are and B . 
(b) If B ex is almost open, then so B6 * are and B . 
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Proof. 

We may assume that H is a countable basis for G. 

(a) Let Be X be meager. Then B c: U e for some collection 
n nEW 

{e : n E w} of closed nowhere dense sets, and BlI C ( U e ) 1I = U ell = 
n - n n n n 

UU e*U = UU n e
g

• Since each J
g 

is continuous and each e 
nUn n n 

n U gEU 

is nowhere dense, each 
-1 

= g en is nowhere dense. It follows that 

n eg *U is nowhere dense for each and U, = e n 
n n 

and BlI is meager 
gEU 

* C BlI * 
as required. Since B - , B is meager also. 

(b) Now suppose B is almost open . Let B = AU N whe.re 

A E n~ (X) and N is meager. Then BlI = (A U N) 1I = All U NlI • Allis 

Borel by 1.2 and NlI is meager by part (a), so BlI is almost open . 

It follows from the closure of almost open . sets under complementation 

* that B 1I -(-B) is also almost open. 

Remark II. (On 1. 9 of Vaught [46]). 

o 

Assume (G,X,J) is a special action. Let B = LJ
w 

(I B~~n ' 
';E Ul n 

The classical approximations to B are defined by the conditions 

B
O B Bcx+1 Bcx n U cx BA n Bcx . = = B 1"\., 
S s' S S 

iEW S ~ s CX<A 
s' 

B Ct T U {B Bcx+l : S }. = Bil' = s E cx cx S s q 

s~ denotes s U{(n,i)} where n is the domain of s. It is known, 

(see e.g. [26]), that U {B
Ct 

- Tcx: cx < wI} = B = n {Bcx 

X satisfies the countable chain condition and each B i s almost open, 
s 

then for some T is meager. 
cx 

In this case, TlI 
cx 

is meager 



by 1.5, hence (B 
a 

* * II - T) = B - T 
a a a 

is comeager in * B • 
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In 1. 9 

of [46] this conclusion is derived from the more restrictive assumption 

that each B 
s 

is a C-set but without the assumption that J is 

an action. For another application of 1.5 (a), see Miller [3~ Theorem 3. 

In [10] Burgess considered certain Boolean operations called 

Borel game operations. 
o 

For example, the ~2-game operation operates 

on a collection of sets 

A = n 
k 

o 

n w} m,n e: w, S e: to yield a set 

() u k . .• k 1 
A 0 n-

mn 
m n 

The variant of operation (A) found in statment (5) above is just the 

closed-game operation. These operations are quite powerful relative to 

the operation (A) (see [10]). Let . G be one of these operations and 

let G[X] be the smallest collection containing the Borel sets and 

closed under G and complementation. It is known (see [10]) that if 

x is a subspace of (equivalently, X is a zero-dimensional 

Polish space, cf. [26]), then every member of G[X] is "absolutely 

61" (see [10]) and hence, almost open. ...-2 
In [10] Burgess showed that 

when G is a zero-dimensional Polish space, each operation G 

satisfies a condition analogous to (5). (He officially assumed an action 

but made no use of this hypothesis in his proof). It follows that, 

assuming X and X are topological spaces, G is zero-dimensional 

* Polish, and J is continuous in each variable, B is in G[X] when-

• 
ever B is in G[X ] . In view of 1.2 this remains true if we assume 

• 
only that X, X are Borel spaces and J is Borel. 
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Every Polish space G is a union of a zero-dimensional ITo 
"'2 

subspace G and a meager set (see e.g. the proof of 1.6 below). 

Suppose 0 is an non-empty open set in G and S is any subset of 

O. Then S is comeager in 0 if and only if S n G is comeager 

in On G. If we define J = 

for every 
, 

B e: X . 

* 
Since 

it follows that *OJ 
B = 

G is zero-dimensional and 

Polish, we conclude that B e: G[X], when B e: G[X] assuming only that 

G is Polish and J is Borel. 
, 

The next theorem shows that when X and X are standard 

spaces we can drop the assumption that G is Polish. In particular, 

since the operation G preserves normal sets when G is zero-

dimensional Polish (see [10]), it shows that each class G[X] is 

* closed under B ~ B whenever (G,X,J) is a special Borel action 

and X is standard. 
, 

Theorem 1.6. Assume X and X are standard Borel spaces, J is 

Borel measurable and H is a countable basis for G. Then there exists 

a zero-dimensional Polish space G with basis H and a Borel measur-

• • 
able function J: G x X ... X such that for B eX 

In particular; *J *J B - B if B is normal with respect to J. If X 
, 

and X are Polish topological spaces, then J can be assumed measur-

able at the same level as J. 

Proof. 

We may assume that X and X are Polish topological spaces. 



Suppose H;' { U
i

: i E oo}. Let 

where U
i 

is the closure of U
i

. Define 

V 21+1 = -CUi) n G1 · Note 

(i) G
1 

is comeager in G since each 
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is. 

(ii) H' = {Vi: i E oo} is a countable basis for G
1 

and each 

Vi is c10pen in G
1

· 

Let 

E is an equivalence relation; let 

cal space. Let f: 

G = 
2 

where 

G
1

/E be the quotient topo10gi­

f(g)(i) = 1 if and only if 

g E Vi' It is easily seen that G
2 

is Hausdorff and that f induces 

a homeomorphism on G
2 

to a subspace of 2 00, (~. Kuratowski [26] 

§26.IV.2). To simplify notation we identify G
2 

with f(G2)~ 200. 

Let X E X. If then , 

since X' is Hausdorff and J is Borel, there is a Borel set V in 

G x 
1 

X such that (gl ,x) E V and (g2 ,x) f V. It follows 

that (gl' g2) f E. Thus, we can define a function J
1

: G2 
x X ... X· 

by the equation J 1 ([g]E'x) = J 1 (g,x). 

Let G
2 

be the closure of G
2 

in 200. By a theorem of LavrentieV 

and Kuratowski ([26] § 35 VI), there is a Borel set 

and a function which is Borel measurable at the same 

level as J such that 



Then G
2 

c. G 
- 3 
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and 

1- 1 
G

3 
€ ~1(G2) . . Since El sets are almost open, there exists 

and a meager set such that G
3 

= GUN. 

. 
Let H be the canonical basis for G and let J = We 

will show that G, H, J have the required property. 

Since is a subset of G is zero-dimensional 

and Polish. Clearly, J is Borel at the same level as J. Since 

Gz is dense in G2 , is meager in Gz (see [26] §lO IV 2) 

and is comeager in GZ. The first inclusion of the theorem 

is proved by the following computation: 

A 

*J • 
x € B ~ {g E G: J (g, x) € B} is comeager in G 

07 {g E G (l G
Z

: Jl(g,x) E B} is comeager in 

~ {g E G
2

: J
l 

(g,x) E B} is com eager in 

07 {g E G
l

: J(g,x) € B} is comeager in 

9 {g E G: J(g,x) E B} is comeager in G 

*J 
x € B . 

'G 
2 

G
l 

G
Z 

To prove the final inclusion of the theorem, note that f · induces a 

correspondence between elements U of Hand U of ~ The above 
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computation is easily modified to show that 

for each U E H. Then 

and the final inclusion follows. o 

Remark III: (Subactions of Polish actions). 

In Burgess-Miller [11] (4.1) it was proved that if ] is 

obtained by restricting a Polish action J = (G,X;J) to a dense, 

non-meager subgroup G of G, then E] and Ej have the same 

invariant sets. In fact, the connection between ] and ) is 

somewhat stronger than was indicated in [l~ as shown by the following 

theorem. 

Theorem 1.7: Suppose) = (G,X,]) is a Polish action, G is a dense 

A 

non-meager subgroup of G, and Let H be a basis for 

c;- and let H={UOG: 
A 

U E H}. Then for Be X 

A A 

C. n {B"u,J .. U HA} € • 

Hence, *.1 *J B = B if B is normal with respect to J. In particular, 

*] *J 1 B = B if B belongs to ~l (X) or even to G[X] for any of the 

Borel game operations G. 

Proof. 

The theorem is proved by a short sub computation of the computation 

in 1. 5. 
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, 
*J <>-I> {g e: G: x e: B gx e: B} is comeager in G 

~ {g e: G: gx e: B} is comeager in G · 

~ 
*J 

x e: B 

So 

x e: _BilU,J ~ . {g e: U: gx e: B} is meager in U 

=} . {g e: U n G: gx e: B} is meager in U n G 

So and n BilU,J C n BilU,J 

ue:H - Ue:H 
o 

Remark IV. (Bases and weak bases for topological g,oups). 

In Vaught [461, Burgess-Miller [11] and Burgess (10], a number 

of theorems are proved under the assumption, "G is a topological 

group with a countable weak basis." Assume G is such a group with 

a weak basis H = {U
i

: i e: w}. It is easily verified that 

HI = i e: w} is a countable basis for the neighborhood 

system of the identity of G and hence, G is pseudometrizable 

(cf. Bourbaki (9] IX.3.l.l and IX . l.4.2). Since G is separable, it 

follows that G has a countable basis. Thus, 

! topological group has a countable weak basis if and only if 

it has a countable basis. 
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This fact was overlooked in the previous papers cited above. Of 

course it still may be useful to consider the inductive formulas 

for * , (such as (4», with respect to particular weak bases for 

particular groups. 



§2. The Invariant nO Separation ?rinciple. 
~Cl 

Let X be an arbitrary topological space ·in which every open 

set is 0 
Then .;0 subset of X 1.2 • every is a countable union of 

Cl 

disjoint 11
0 

sets, (a > 1). It follows easily that Jo°(X) has tlJe 
~Cl a 

o 
reduction property and (consequently) that IT (X) has the first 

-a 

separation property (cf. Kuratowski [26] §30. VII). 

Given an equivalence E on X, it is natural to ask whether 

the E-invariant EO sets have the reduction property. If there is a 
-a 

continuous selector for E, then X/E is homeomorphic to a closed 

subset of X (viz. the set of fixed points) and the E-invariant re-

duction and separation properties are immediate. This is the only 

positive result about invariant reduction for the Borel classes which 

we know. When E is the canonical equivalence on the logic space 

2wxw it is not too difficult to see that invariant reduction fails 

at the first possible level: 

Proposition 2.1: Let p consist of a single binary relation and let 

I = I be the canonical eqUivalence on X 2UlXW. Let 
p p 

A = {R: (3n) (\1m) (R(n,m) 
0 

= I)}, Al = {R: (3m) (Vn) (R(n,m) = I)}. 

Then there is no pair of I-invariant 0 

..l:2 sets which reduces (Ao,Al ) . 

Proof. 

Choose Ro so that (w,R
o

) isa dense linear order with left 

and right endpoints (i.e. an oider of type 1 + n + 1). Suppose B 

is an invariant nO 
-2 

set which contains R Then B = 
0 

[en for some 

n'o 
~2 . 

sentence e. Since IT'o 
~2 

classes are closed under unions of chains 

(cf. Weinstein [47]), B has members ~ and R2 which define orders 

68 
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of type n + 1 and 1 + n respectively; hence B cannot include 

. either -A n A or 
o 1 

Suppose (Bo,B
l

) reduces (Ao,Al ). Then, for i = 0 or 1, 

R E -B and -A. n Ai . C -B. • By the argument of the preceding 
o i ~ -~ - ~ 

paragraph, B. is not invariant. 
~ 

o 

The failure of invariant reduction does not entail the 

failure of invariant o 
Jh separation. 

Suppose Be X and BIt is any E-invariantization of B. 

Then if B separates a pair of disjoint E-invariant sets, so does 

l. Thus, the invariant nO separation problem is connected to the 
,...2 

invariantization problem: "Given find a 

invariantization for B." Note that even when E is induced by a 

* Polish action, the transform B ~ B does not directly solve the 

invariantization problem if B is 

is but neither is necessarily ~. 

then * B and 

We will solve both the o 
~2 invariantization problem and the 

invariant separation problem for a wide class of equivalence 

spaces by considering a stronger version of the n~ ' separation theorem. 

Assume that X is an arbitrary set. 

Suppose r l ,r
2 

are two subclasses of P(X) such that 

r 2 ~ r 1 and r 2 is closed under complementation. We say that r I 

has ·the strong separation property with respect to r
2 

provided that 
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which separates A . 
o from AI. An equivalent condition is that 

has the first separation property and 

Addison [2] for a discussion of this phenomenon). 

Suppose e = < ell: 8 .s y> is a sequence of subsets of X. 

e is decreasing 

continuous if 

e (y) = {8 E y: 

if e c 
8-

n C 
8d 8 

is even}. 

whenever 8' < 8 :> y • C is 

whenever A .s y is a limit ordinal. 

D (C) = U{C - e : 
S S+l 

8 Ee(y)}. 

Let r c P(X) e is suitable for . V (r) if 
y 

e y+lr E , 

C is decreasing and continuous, e = X and e 
o y 

0. We define 

V (r) = {D(C): e is suitable for V (O}, 
y y 

U {V (r): v < y}, 
v 

= U{V (r): 
v 

Y EON}. is the collection of "countable 

alternated unions over r." 

The important feature of alternated unions is their behavior 

under complementation. If 

easily seen (cL [26]) that 

(8) -D (e) = 

C is suitable for V (P(X» then it is 
y 

e: 8 E e (y) , 8 a successor} . 
S 

v 
It follows that if is a class which includes r \.J r and is closed 

under finite intersections and countable unions, then 



Now suppose X is a topological space. 

classically as the collection of resolvable sets. A result of 

Montgomerey (cf. [26) §30.X) states that V 0 0 
(0))<]1 (X» ~ ~2 (X) when 

X is metrizab1e, (when X is separable this is obvious). The basic 

.!!~ separation theorem (9) is due to Hausdorff, (cf. [26) §34 or recon­

struct the argument by analogy with the proof of 111.3.1 below). 

(9) 
Assume X is completely metrizable. Then ]~(X) has the 

strong separation property with respect to Vo>f]~(X». 

When X is Polish, (9) can be extended to all higher levels 

of the Borel hierarchy. 

separation property with respect to 

nO(x) has the strong 
~a 

~W1}(~P» • 

Assume X is Polish, a > 1 . Then 
(10) 

(10) is usually proved only for successor a (cf. [26)§37 . III). 

For limit a the situation is simpler.-- One easily shows that 

~~(X) - Vw(~(X» and (10) follows from the first separation property 

for 

Now fix an equivalence E on X. In view of (9) we can solve 

the ~~ invariantization problem for X, when X is completely 

metrizable, by solving each V (n
o
1

) 
y-

Given C € Y (P(X», let 

invariantization problem. 

e -E 
C =< C S: S < y>. 



Lemma 2.2. Assume C is suitable for 0 (P(X)). Then CE3 is 
y 

suitable for 0 (inv(P(X))) and D(CE) is an invariantization of 
y 

D (C). 

Proof. 

First note that for each B < Y, 

= c 

It follows that 

D(C~ = c 

= 

= (D(C))+ 

A similar calculation based on (8) shows that 

-D(ci=) -(D(C) ). D(CE) is clearly invariant, 

hence it is an invariantization of D(C). Since the transform 

c ~ C- preserves inclusions and commutes with intersections , 
6 B 

is suitable for 0 (inv(P(X))). 
Y 

G c 

o 

Theorem 2 . 3. Assume X is a topological space and E is a l ower 

semicontinuous equivalence on X. 

(a) For every y £ ON, inv (0 (il
l
o (X) ) 

y ~ 

(b) If X is completely metrizable, then 

= 0 (inv( illo(X))). 
y '" 
o 

inv(~2(X)) has t he 

strong separation property with respect to ~=finv(E~(X))). 
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Proof. 

If B is closed and E is lower semi continuous, then 

Thus, 

(a) follows by 2.2. Now suppose X is completely 

Applying (9), let C be suitable 

for Then 

and o 

Assuming a special action we can replace "_If with "*11 to 

invariantize (10). 

Suppose G, X, X', J satisfy the basic hypothesis of §1 and let 

C e Yp(X'). Define 

Lemma 2.4. Assume 

r!J is suitable for 

Proof. 

y E w
1 

and 

V (P(X)) 
y 

C 

and 

s < Y>. 

is suitable for V (P(X')). 
Y 

* ® t, (D(C)) C D(C ) ~ (D(C)) . 

Then 

Since the intersection of a comeager subset of G with a non-

meager set is non-meager, we have for each S < Y, 

= c 

Since the transform B~ Bt, commutes with countable unions and the 

* transform B ~ B commutes with countable intersections and preserves 

inclusions, we may substitute "*" for "_" "6" for n+" in the 

proof of 2.2 to obtain a proof of 2.4. o 
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Theorem 2.5. Assume that ; = (G,X,J) is a special action, 

(a) If c is suitable for V (rro(X)) then 
Y "Ia) , 

® C is suitable 

for Vy(inv(~~1X») and D(C®) is an invariantization of D (C) • 

(b) E;-inv(Vy(~§X))) V (E;-inv(rro(X») 
y N~) 

(c) If X is Polish then E;-inv(~(X» has the strong separation 

property with respect to ~"\)(E;-inV<.E;lX»). 

Proof. 

(a) follows from 2.4, (2) and (7). (b) follows from (a). (c) 

follows from (a) and (10). o 



§3. On Cuntinuous Cross-Sections. 

Let E be an equivalence relation on a set X. 

s: X/E + X is a cross-section for E if ~ 0 s is the identity 

on X/E, where ~ is the canonical projection. An equivalent con-

v 
dition is that S = S 0 ~ is a selector for E, (as defined in I §3). 

Note also that every selector s induces a cross-section 

" s: [xl
E 

t+ sex). When X is a topological space and X/E has 

the quotient topological structure, it is apparent that s is a continuous 

cross-section if and only if 5 is a continuous selector. 

(11) Suppose s is a continuous selector. If T is the collection 

of fixed points of s, 

with inverse 
A 

S. If P 

then T is closed and ~ fT is a homeomorphism 

is any property which is hereditary with re-

spect to closed subspaces, (e.g. "complete", "Polish"), then X/E 

satisfies P when X does. If B is any set, then 

- -1 + 
B <:=:: s. (B) c B ; so solves the r-invariantization 

problem for any collection r <:=:: P (X) which is closed under the 

operation· of taking inverse continuous images. In particular this is 

true whenever 

Given a sequence 

function s: X + X, let 

where G is any Boolean operation. 

A = < A.: i E I> 
~ 

s-l(A) = <s-l(A.): 
~ 

and a 

i E I>. If A 

and B are sequences such that B reduces A, then s-l(B) reduces 

-1 
s (A). Suppose s is a continuous selector and r is a class which 

has the reduction property and is closed under inverse continuous images. 

Then inver) has the reduction property. To see this let 

75 
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A e: W (inv (r) ) and let reduce A-, then 

-1 w 
s (B) e: (inv(f)) reduces s-l(A) = A. 

If f is a collection of sequences, let inv(r) = 

{A e: f: (Vi e: dom(A)) (A, is invariant)}. 
~ 

A property 
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P(Al.· .. ,A
n

) of sequences is Boolean if P(Al, ... ,An ) implies 

-1 -1 
P(s (Al), ... ,s (An)) for any function s. The argument of the 

preceding paragraph is easily generalized to show: 

(12) Suppose X is a topological space, P (AI' ... , An) is a 

Boolean property. and Q(fl, ... ,fn ) is defined by the 

equation 

Suppose for j = l, ... ,n, 

which is closed under A ~ 

fj is a collection of sequences 

s-l(A) whenever s is continuous. 

If there exists a continuous selector for E. then 

In view of these s trong consequences, it is important to deter-

mine just which equivalence spaces admit continuous cross-sections. 

We will apply the following result (13), due to Kuratowski and 

Ryll-Nardzewski (see [27]) to obtain a sufficient condition for the 

existence of a continuous cross-section for X/E when X is Polish. 

(13) Let X be a Polish space, Y an arbitrary set. and ~ a 

field of subsets of Y. Let ;{;o be the closure of fJ under 



countable unions. Suppose F is a function on Y to the 

collec tion of closed subsets of X such that for every open 

set G ~ X, {y: FCy) n G " ~} E ;to' Then there exists a 

function f: Y -+ X such that 

(i) fey) E F(y) whenever y £ Y; 

(ii) whenever G is open in X. 

Theorem 3.1. Let E be a lower semicontinuous (l.s.c.) equivalence 

on a Polish space X. If X/E is Tl (points are closed) and zero-

dimensional, then there exists a continuous cross-section for Ee 

Proof. 

Let Y = X/E, If = {O CX/E: 0 is clopen}, F = the identity 

map [xl l"+ (xl. X/E is Tl just when each equivalence class is closed 

in X. Since E is lower semicontinuous, F(y) n G " ~} 

is open for every open set G C X. The func tion f given by (13) is 

a continuous cross-section for E. o 

Remarks. 

Assume X is Polish. 

V. If X has a basis H of clopen sets such that is 

clopen for every B E H, then E is l.s.c. and X/E is zero- dimensional. 

This is the case which relates to model theory (see III §6 below). 

VI. If X is zero-dimensional and E is both lower and upper 

semicontinuous, then the hypothesis of remark (V) is fulf illed. In this 
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case the identity function on X/E to the space ZX of closed 

subsets of X (with the exponential topology) is continuous (see 

Kuratowski [26] §19.IV). The continuous section may then be obtained 
, 

from a theorem of Cob an (cf. Engelking, Heath, Michael [15]). 

This may account for the absence of 3.1 from the extensive literature 

on the Kuratowski-Ryll-Nardzewski selector theorem. 

VII. If a a-dimensional Tl space has a countable basis, then 

it is metrizable (.£i. [26] §22.IL1). Thus, assuming the hypothesis 

of 3.1, the conclusion "X/E is Polish" may be derived from a 
~,,~<.t.,~ 

classical theorem of .~ch viz.: If f is ~ continuous open map 

from ~ Polish space to ~ metrizable space, then the image of f is 

Polish (.£i. Sierpinski [41] p. 197). 



Chapter III: SOME APPLICATIONS OF TOPOLOGICAL METHODS TO MODEL THEORY 

In this chapter we will apply some of the theory developed in 

chapter II and in the work of previous authors to the canonical logic 

actions. This will yield results in the model theory of the language 

L and its fragments (including 
wlw 

L ). 
ww 

The first four sections are concerned primarily with the 

separation theorem and its consequences. Sections five and six con-

tain two additional applications of Vaught's transform method.-- In 

§ ·5 we apply the transform to derive a recent "Global Definability 

Theorem" of M. Makkai [30] from a classical theorem of Lusin; in §6 

we characterize "invariant a-Borel measurable functions" between logic 

spaces as the "6,0 -definable functions", thereby extending res. ults . of 
~a 

Craig [IJ] and Lopez-Escobar [28]. In §7 we discuss consequences of the 

selector theorem of II §3 and some related material. 

This is a convenient point to collect some new notations and 

facts which we will use throughout the chapter. 

Some set algebraic definitions, (e.g. of "A reduces B" , 

"K has the first separation property," "<C . 8 . 8 < y> is decreasing"), 

apply without mod~fication to proper classes and will be used in this 

way. All of these definitions can be easily formalized, say, in 

Morse-Kelly set theory (cf. [24] ) or translated into statements about 

predicates of Zermelo-Frankel set theory in the standard fashion. 

Let P be an arbitrary fixed similarity type. 

79 



v 

80 

Except when the contrary is explicitly stated, all equivalence-

theoretic terms refer to the canonical equivalence I when applied 
p 

to subsets of X and all action-theoretic terms refer to the canonical 
p 

logic action. In particular, all uses of Vaught's *-transform refer 

to this action. 

We will make extensive use of the definability results obtained 

in Vaught [46]. For many . applications the basic result --

(1) inv(ll
o

(X» = for all a ~ 1 and all invariant 
~a 

XcX 
p 

will suffice. In some contexts, notably in sections four and five, 

the stronger result (2) from which (1) is derived will be applied. 

n -w is the collection of all one-one functions on n to w. 

For n 
s £. -W, [s] ~ w! is the set of permutations which extend s. 

For n e: UJ, Be X , 
- p 

*n B = {(R,s): 

B6n is defined dually. 

Vaught ([46] 3.1) proved 

For all " ~ 1, n E: W, and all invariant 

(2) B E ITo(X), (respectively EO (X»), then 
~a -a 

to IT' 0 (x(n)) 
~a ' 

(E,o(X(n»)). 
-a 

X,=X, if 
P 

B*n, (B6n ), belongs 



81 

We will at one point have use for the effective version, 

([ 46] 5.1), of (2). 

(3) 

There is a prim(w,p)-function 
*n e .... <e 

if e is a 
o 

IT -p-name, 
-a 

then for every 

is an n-formula and [e]*n = [e*n(n)]. 

nEw> such that 

n, 

Given a similarity type p) let p be the result of replacing 

each constant symbol C E P by a unary predicate R = (l,«p,c),l). 
-c -

" Each P-structure 0( becomes a p structure Lt · by replacing each 

fC1. with {s.''1 }. The map C( 1+ 01 carries V onto the class p 

V = Mod( 1\ <3! v6Rc(~)) c. V'. Note that V is IT'o if C 
p p p ~ P CEC ~ - 2 p 

/I. "1. is countable. p, et are the relationalizations of p and It 

is easily seen that 

(4) There exist prim functions $ ... 
v 

$, 1jJ>+1jJ such that for 

every type p and $ E L (p) , 
wlw 

1jJ E L (p) 
wlw 

/I. v 1\ 
(i) Mod Cp) {t'l : vI. E: Mod (</»}, Mod(op) = {o-( : 0\ E Mod(op)} 

(ii) 
o • 

(Va ~ 1) [1jJ E JJ' (p) 
a 

(resp. 

(iii) (Va" 2)[ (C countable & $ E IT'o) 
p ~a 

A formula $ is in negation normal form if the symbol .., occurs 
I 

only in sub formulas of the form ., a when a is atomic. From the 
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infinitary DeMorgan laws one obtains' 

(5) There is a prim function ~ ~ ~, such that 

cV p)(V~ £ L (p))(Mod(lj» = Mod(~') 
wlw 

negation normal form). 

& ~.., is in 

If p is countable, then so is the set of finite p-structures. 

It follows that every collection of finite p-structures is E'2
0
(V). 

- p 

This fact, together with the LOwenheim-Skolem theorem is aften sufficient 

to extend definability results for X to corresponding results over 
p 

all models. For some purposes -- notably in dealing with or with 

questions of effectiveness -- this ad hoc approach breaks down and we 

need to accommodate finite models in a variant of the usual logic space. 

The (familiar) trick is to treat equality as a non-logical symbol 

so that an infinite set of natural numbers can represent a single element 

of a finite structure. 

Assume p has no operation symbols. Let ~ be a binary relation 

symbol and let 

(S,~) such that 

p = p + ;:::. Let X ex 
p p 

be the collection of all 

is a congruence on w for each relation in Sand 

each congruence class. is infinite. Since each equality axiom is II
, o. 

~ l' 

x 
p 

is in X when 
p 

p is countable. Given (S,-) £ X 
P 

the 

natural quotient structure (S,~)/- is a p-structure and it is apparent 

that every finite or infinite countable p-structure can be obtained as 

such a quotient. 
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Given ~ € L (p) let ~ = ~~) be the result of substituting 
(l)l(l) 

~ for the equality symbol ~ throughout ~. Clearly $ has the same 

position in the Borel' hierarchy on p that ~ has in the hierarchy 

on p. Furthermore, if $ is an n-formula, then 

Here, 

= 

[iJ = [i:J,-..- is the - -orbit of 

[~(n) JJ n x(n) will be denoted 
p 

As usual we drop the 

superscript when n = O. Given any class r of p-formulas, we let 

r ={ $: $ € r}. 

Since each _ is a congruence, any isomo~phism between structures 

(S,-), (S',-') € X induces an isomorphism between the corresponding 
. p 

quotients. It follows that each class 

of X, and we have for each n € (I), 
P 

(6) 
o - en) c inv(lI (X )). 

- "'Va P 

is an I -invariant subset 
p 

Since all congruence classes have . the same cardinality, any iso-

morphism between quotient structures (S,-)/_ and (S',_')/~' can be 

lifted to an isomorphism between the structures (S,-) and (S' ,~'). 

Thus, I is the natural equivalence on X to study for applications 
p p 

to logic. 

With a slight modification of the proof, Vaught's main definability 

results (1)-(3) go over to the new situation. The key remark which allows 

this modification is 



(7) Assume C = ¢. 
p 

If Vi is an m-formu1a of L (p) 
w1w 

84 

such 

that the symbol does not occur in lj! and n s m, , then 

30f (n) IT ( v •.. v 1) (lj!) ] 
-n -m-

= :3 
. (n) 

[I( v' ..• v 1)(lj!) Jr. 
-n --m-

The inclusion from left to right in (7) is trivial. For the 

reverse inclusion let (5,,...) E j{ and suppose (w,S,"",i, .• . ,i) l= lj! . 
p 0 m 

Since each congruence class is infinite, there exist distinct numbers 

i', . . . ,1' such that i. - 1~ for j = n, ... ,m. Since ~ is a 
n m J J 

congruence, (w,S,-,i , .... ,1 1,i', . .. ,i')F Wand 
o n- n m 

(S,....,i , ... ,i l)E apofv .•. v ) (lj! )(n):n as required, establishing (7). 
o n- ~ --n --m. 

ProEosition O.l. Assume C = ¢. 

(a) I. If 
0 then Assume n E w, a ::. B E IT (X ), 

"'Va p 
B*nn j{(n) E IT,o(j{(n)). If B 

p ~ a p 
0 

E E (X ), then Blln n j((n) E E,o(j{(n)). 

(b) There is a prim(w,p) 

such that if 6 

and [el*nn j{(n) 
p 

Proof. 

0-
is a II -p-name, 

-a 
= (e(*)n(n)~. 

-a p p ~a p 

function (*)n 
6 1+ <6 nEW> 

then for every n, 

(a) Vaught's proof of (2) is easily modified using (7) to establish 

(a) • We prove by induction that for each B *n n j{(n) , 

has the form where 

p 

1/1 E L (p) is of the 
w1w 

proper form and does not contain the equality symbol. (a) then follows 

since if ~. does not appear in lj!. 
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Consider the initial step. Let B be a basic clopen set in 

x • Then B = [HQ,··· ,~)] for some basic name lji which does not 
p 

involve the equality symbol. We know (e.g. from [ 46]) that 

6n j~ (n) B =[( v ... v )(lji) J). _ -n -m By (7), 

= 

The remaining steps are similar. At each stage we carry the 

additional hypothesis that the formulas defined previously do not 

contain =; we use the argument from [46] to construct a new formula; 

then we use (7) to eliminate the equality symbol from that new formula. 

(b) Just as in [46]; the proof of (a) is uniform and establishes 

the effective result (b). o 

Corollary 0.2. Assume C = 
P 

0. For all a ~ 1, n £ W, 

inv(no(x(n») = n' 0 (X(n» 
-a p ~a p 

and 

inv(~o (x(n») = ~,o (X(n» 
-a p ~a p 

Proof. 

In each case the inclusion from right to left was noted in (7). 

The reverse inclusions follow immediately from O.l(a). o 

. . 
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§!. The IT'o Separation Theorem 
~ (l 

Consider the 
1 

-El separation theorem in topology and logic. The 

basic theorem -- "disjoint rl 
-1 

subsets of a Polish space can be separated 

by a Borel set" was obtained by Lusin in 1927 (cf. (26). In 1957, 

W C · d 1 f til i "D . . ' i -::1 1 ( ) • ra1g prove an ana ogous ac n og c -- 1SJO nt =11 p classes -
can be separated by an L (p) 

ww 
elementary class." Several years later, 

noting the analogy between these results, D. Scott conjectured that a 

similar result held for L 
wlw 

This was established by E. G. K. Lopez-

Escobar in 1965 ([28). At about the same time, J. Keisler (22) developed 

a theory of finitary approximations to infinitary formulas (which will 

be summarized below) which allows one to dervie Craig's theorem from 

Lopez-Escobar's. Finally, Vaught showed in (46) how to obtain Lopez-

Escobar's theorem from Lusin's classical result. 

Thus, we can derive Craig's theorem from that of Lusin as follows: 

Given mutually inconsistent :ji sentences Sl,S2 of type p (p -
necessarily countable), note that and are disjoint 1 

~l 

subsets of the Polish space X. By Lusin's theorem, there is a Borel 
p 

set B which separates them. 

* 

By Vaught's results, the Borel set * B 

also separates them and B = [$TI for some $EL (p) . By the Lcrwenheim-
wlw 

Skolem theorem, Mod($) separates Mod(Sl) from Mod(S2) over 

infinite models. Since every collection of finite models is definable 

there is a variant $' E L (p) such that Mod($') 
w1w 

separates Mod(Sl) from Mod(S2) over all models. By Keisler's results, 

the same is true of some cr E L (p) which "approximates" $'. 
ww 
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In this section we will see that the Shoenfield \fo separation 
~n 

theorem has an analogous relation to the Hausdorff-Kuratowski nO 
~" 

separation theorem. 

The principle "V 0 (V) (n > 1) has the first separation property" 
~ n p 

was conjectured by Addison (see [2 ]) based on the analogy between logic 

and descriptive set theory. This conjecture was established in a strong 

form by Shoenfie1d, (cf. [2 ]). 

Theorem 1.2 below is the intermediate step in a derivation of 

Shoenfie1ds's theerem from Hausdorff's. 

Remark I. In his dissertation [37], Myers proved a separation theorem 

for multiplicative classes in the L hierarchy based on quantifier 
wlw 

depth (without regard to infinite conjunction and disjunction). Myers' 

result also yields Shoenfield's via the approximation theory, but it is much 

less natural topologically. We do not know a topological theorem about 

logic spaces from which Myers' result can be obtained. 

Let K be a collection of p-structures and suppose ~ = 

<$ : a ~ y> is a sequence of p-sentences. We say ~ is decreasing, a 

(respectively continuous),~ K provided 

is decreasing, (continuous). 

is suitable for vK(n) 
y 

if 
Y+1 

.p E n, .p is 
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decreasing and continuous over K, Mod(q, ) n K = K and 
o 

Mod(q, ) n K 
y 

superscript. 

¢. We ·define vK(n) = {D(~): ~ is suitable for 
y 

tl < y}. When K = V we omit the 
p 

Note that under over convention "n(K) = {Mod(<p) n K: q, € n} " 

(where V (n(K» 
y 

= V (n(K» 
y 

is interpreted with respect to the "universe" K) • 

In view of this identity we could state most of our results without 

defining the syntactical classes VK(n) . 
y 

This would have the effect 

of making some results (e.g. 1.1) appear to have less syntactical 

content. When discussing syntactical notions, such as effectiveness 

and finite approximations, the syntactical classes 

indispensible. 

V (n) 
y 

seem to be 

In chapter II we solved the invariantization problem for each 

class V (no (X» in any Polish action. In the canonical logic actions 
y "'a 

we can combine this with Vaught's characterizat~on (1) of the invariant 

nO sets to obtain an analogous result for the "small Borel classes" 
-" 

Theorem 1.1. Assume p is an arbitary similarity type, y < wl ' and 

1 < " < wl . 



(a) 

(b) 

Assume C = 
P 

(d 

(d) 

Proof. 

If X is any invariant subspace of 

inv(V (~o (X» = r(rr'o)(x). 
y ex) y ~ 0. 

If p is countable, then 

° 
X 

inv(", (X » V p(rr'o) (X ) 
~a P ("'1) ~ 0. P 

f/J. Then 

If 

0-
inv(V (rr (X ») 

y ~la) P 

P is countable, 

0-
inv(", (X » 

~a P 

V (rr'~ (lC ) = 
y -t P 

then 

89 

Xp' then 

(a) By II.2.5(a), inv(J (rro (X») = V (inv(llo (X»). By (1), 
y -raj y ra) 

inv(rrao)(X» = rr'o(x), 
~ ~ (a) 

so 

(b) If p 

follows from (a). 

is countable. then "'o(X) 
~a p 

so (b) 

(c) (c) follows from 0.2, II.2.5(a) and the fact that a sequence 

<~ : 
S 

S :< y> of L (p) 

"'1"' 
sentences is decreasing or continuous over 

V if and 
P 

only if < 4$sD: a .s y> is decreasing or continuous. 



(d) (d) follows from (c) and the invariant separation 

theorem II.2.S(c). Note that when p is countable , X is a 
p 
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o 
,.!l2 subspace of the Polish space X and the restriction of the 

p 

canonical action to X is still Polish. 
p 

o 

Theorem 1.2. Let p be a countable similarity type and let a ~ 2. 

Then the collection IT'o(V) has the strong separation property 
~ a p 

with respect to O( (IT~~)(V). 
"'1) ,. ,a1 p 

Proof. 

First ass ume p contains no operation symbols. Let Mod( 8
l
), 

Mod(6
2

) be disjoint IT ' o classes. 
a 

Then are disjoint 

invariant nO 
""a 

subsets of X. By 11.2.5 there is a set 
p 

D £ 12( )(inVlLoeX )) which separates @61~ from ( 82&. By l.l(c), 
"'1 "tal p 

D n Xp = 4$0 for some $ £ ~",~(~l~{P)). 

Clearly Mod($) separates Mod(6
l

) from Mod(6
2

) over 

countable models and by the Lowenheim-Skolem t h eorem for 

Mod($) separates Mod(6
l

) from Mod(6
2

) over all models. 

Now let p be arbitrary. Given 8
1

,6
2 

as above, pass to the 

relationalizations 6
1

,8
2

. Since a ~ 2, 

$ £ ¥"'l)<E'r~§p)) as in the previous paragraph. Then 

~ £ Y"'v(nr~fP)) is easily seen to have the required property. o 
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Next we will apply Keisler's theory of finite approximations 

to derive Shoenfield's separation theorem from 1.3 (and by the transitivity 

of "derive", from Hausdorff's separation theorem). 

The approximation theory applies to a wide class of languages 

(see [22]). We summarize that part which we will apply. Fixing p, 

the set A(~) of finite approximations to ~ is defined,for every 

formula ~ which is in negation normal form" by the recur-

sive conditions: 

(8) (i) If ~ E L , then A(~ ) = {~} 
ww 

(H) If ~ =!\ 00, then A (~) = {!\ {a , ••• , a }: nEW and for 
;'V rvO n 

some distinct 9
0

, ••• ,9
n 

E 0, for every i ~ n, a
i 

E A(8
i
)}. 

(Hi) If ~ = (Jiv) (W), then = {(Vv)(!\{9 , ... ,9 }): ,.., _ 0 n n £: 00, 

9, •.• ,9 EA(W)}. 
o n 

(iv) If 4> = V 9 or then A(~) is obtained by 
~ 

the dual condition to (ii) or (iii) (replace !\ by \I and V by 
~ ~ ~ 

AC(~r is the closure of A(4)) under finite conjunction and disjunction. 

(9) 

In [22] (Cor . 3.4) Keisler showed 

4> E L (p) , 
wlw 

4> is in negation normal 

form, and Mod (4)) separates Mod(9
l

) from Mod(9
2
). Then there 

is an approximation a E AC
( 4) ) such that Mod(a) also separates 
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B: (p) is the closure of \j 0 (p) V j 0 (p) under finite con-
,.."n ,..,.0 

junctions and disjunctions. Induction on sub formulas shows 

(10) 

It follows immediately from (9) and the definition (7) that 

(ll) If 

Corollary 1.3. Assume p is countable and n ~ 2. 

(a) ~o(X ) n L (X) = 
"Un p ww P 

-=-0 -
B l(X). n- p 

(b) The collection \fo(V) has the strong separation property 
~n p 

with respect to 

Proof. 

o 
B l(V). n- p 

(a) The inclusion in (a) from right to left is trivial. For 

the reverse inc1usio~ suppose B e: ~ 0 (X ) n L (X) , 
-n p ww p 

say B = ~S~ 

for e e: L (p). By l.l(d), B = ($D 
ww for some • e: ~w FJ;'~1 (p)). 

I 

It follows from the Lowenheim-Sko1em theorem that Mod(.) = Mod(S). 

By (9), Mod(8) = Mod(a) for some a e: AC
(.'). By (11), 

-=-0-
~aO e: B (X ). 

n p 

(b) Let 8
1

, 8
2 

be mutually inconsistent members of 

By 1.2, there exists such that Mod(.) 

from By (9), the same is true of some 

Mod(a) e: BO(V ). 
n p 

separates 

a e: 

o 
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Remarks. 

II. After proving 1. 2 we learned from Myers that, (at least 

for successor a and over infinite models), it was an unpublished 

result of G. E. Reyes. He apparently derived the case a = 2 from 

Hausdorff's proof and the fact that the closure of any invariant 

subset of X is closed " and then translated the result to other 
p 

successor a using Skolem predicates (presumably by the argument of 

remark IV, compare also our proof of §3.l below). 

III. The utility of Keisler's approximations for results like 

1.3 was pointed out to the author by W. Wadge • . Wadge had proved the 

identities II 0 (X ) n L (X) 
- n p ww p 

= Vo(X), 
,..,. n p 

n ?; 1. Upon learning of 

Vaught's result (1) he remarked that his result followed from (1) via 

(9) • 

IV. The II' 0 separation theorem for successor a > 2 can be 
N a 

reduced to the case a = 2 by the following method. The method seems 

to be essential for the effective theorem of §2. It shows that the 

*-transform can be avoided in deriving 1.3 for successor a (though 

apparently not for limit a, nor for definability results such as 1.1). 

Let p be countable and suppose Ko,Kl e ]B~l (Vp) are disjoint, 

s ?; 2. For i = 0,1 choose e
i 

= A Vv ... ~_i Y3~i+l ... ""( e
i 

".., -0 ~n """ "1'\ -.:\." m nm n m 

e
i o . 

Mod(e.) . such that each e n '(S)(p) , K. Let L 
nm ~ l. 

(p) which contains each e
i Let fragment of L 

w1w nm 

the similarity type which contains an n-ary predicate 

p 

be the smallest 

II 
= P 

R "n 

IlL be 

for each 



• 

• 

nEW and each n-formula ~ E L. Given It1 E V (n) 
v \ p' 

Mil V(n) 
let V l E II 

p 
be the canonical expansion of Ol. 

Mod ll (n) (tjJ) = {O\II: 0\. E Mod (n) (tjJ)}, 

Let l = {[it II: ot E V}. Note that 
p p 
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tjJ E L Cp), 
w1w 

and let 

(12) Each hence each 

(13) If ~ € E'~CpU), then Mod(~) n VII = ModU(tjJ ) for some 
p 

tjJ E l!';(p), 

By (12) and 

V (lI 'o( II)) 
(WI) - 1 p 

By (13), 

the 

such that 

Mod(~ ) separates Mod(Sl) 

separation theorem for II 
p , there exists 

II 
from Mod (S ). 

o 

for some tjJ € Vw )Q!';CP)). 
1 

Then 

from Mod(S ). 
o 



§2. n'o Separation and the Problem of Effectiveness. 
-a 

The main result of this section, (2. 2), is an "admissible" version 

of the nO{X) separation theorem for P £ HC and a ~ 2. a Successor 
...... 0 p I 

ordinal. Since the construction used in 1.2 is highly effective, we 

will obtain a corresponding n'~ separation theorem for certain 

admissible languages as a corollary. 

The following lemma is an effective version of the classical 

method of generalized homeomorphisms (i.e. the classical method of 

Skolem predicates). It will be used to reduce the general case of the 

nO separation theorem to the case a = 1. 
~a+l 

Given p, (1, 41, let be the set of o n -p-names and 
~a 

recall that at{p) is the set of atomic p-names, sub{~) is the set 

of subnames of ~. o U 0 Let IT (p) = {ITe(p): 
"fa) ~ 

e < a}. 

Lemma 2.1. Let a. <;;;:. HC be prim-closed, w,p £ a., 1 < a < WI' 

Suppose Gl £ a., o 
Gl C IT (p). 

- "(a) 

g: such that 

(i) PI contains only O-ary relation symbols (i.e., 

propositional). 

(it) '!' and g is a (l,a)-generalized 

homeomorphism on X onto p 
['!'] • 

is 

(iii) F : at(Pl) 
0 F

l
: 8 + at(Pl) + ~a (p) , are functions 

0 

such that for lji £ at(Pl)' e £ ~ , [F (lji)] = g-l([lji]), o . and 

[F
l 

(e)] n ['!'] g([e]). 

95 
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Proof. 

Let L = {at(p)} U {sub(8): 8 E sL Let PI be the similarity 

type with a O-ary relation symbol ~ = (1,((L,~),O» for each ~ E L. 

Let 
o 

0/ E A be a IT -P -name 
~2 1 for Bl n B2 where 

= n (( u [~=i)) II n [P -+ ., ~=i]) 
CEC ii' -.:=i iEW -- J --- P 

n [P 
., ~EL -1~ 

++,P 1 -,p n () [p 
yrEL -lr ++ VP 1 

yd' 

Let L: o L -+ L (p) be a prim function such that for every 
~o. 

~ E L, [L( ~) l = [ ~ l. Define 

8 E @}. For REX, set 
P 

if R E [ ~ l, 

o otherwise. It is easily checked that PI' 0/ , g, Fo' FI have the 

required properties. o 

Given a sequence ~ <~ a: a < y> of p-names, let [ ~l = 

Theorem 2.2. Assume a ~ HC is admissible, W E a, I :: \l < WI' 

Suppose that 81 ,8 2 E 0.. are n~+l-p-names for disjoint subsets of X 
p 

and that (l. contains a well-ordering of TC(8
I

,8 2 ,p)· Then there exists 

I) E WI' and a I)-sequence <I> of 
0 

that a., IT - p-names, such <I> E 
-\l 

[~l is suitable for V I) (ITo (X », and 
"'].I p 
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Proof. 

We consider two cases. 

Case 1. ~ = 1 and p is propositio~al. 

Since CZ is prim-closed and contains a well-ordering of 

TC(Sl'SZ'P), there is some y E: a n wI and a sequence 

Z & = <Sae: (a,e) E: Y > E: Cl of Basic p-names such that 

[Sl) = [6{Y{Sae: e E: y}: a E: o(y)}) 

[SZ) = [1\{V{s 0: e E: y}: a E: e(y)}). 
,... ,.., a \J 

o(y) and e(y) are respectively the sets of odd and even members of y. 

We may further assume that for some y' ~ y, there is an enumeration 

p = <P : 
-a 

15: y -> p 

a E: y'> E: a. such that p = {p : 
-a 

by setting P = P 
-a -0 

for a ~ y'. 

Extend P to 

Let d range over ~wfY). Let O,T range over the set T of 

finite functions with -domain, range included in y (Le. "partial 

Skolem functions"). Let s, t range over the collection r of finite 

sets of subbasic p-names (i. e. "partial elements of X"). 
P 

Each Sae is a finite conjunction of subbasic names, say 

Given a E T, let to=U{t ():ae: dom(a )}, ao a 

n [S J. 
d () ao (a) 

a E om a 
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Choose a set ~ ~ONUa. Define Rk: r x T ... On U {~} by the 

conditions: 

Rk(s ,a) ~ a+l if 

[s ~ t & aCT & (~ e: t or., ~ e: t) & 

& Rk(t,T) ~ al 

Rk(s,a) :> A if Rk(s,a) <: 8 for every 8 < A 

Rk(s,a) ={ :he 
smallest a such that Rk(s,a) i a+l if such exis ts , 

otherwise. 

if and only if 

sut ()). aa a 

Thus, the relation on s,a: "Rk(s,a) <: 1" is definable .by a . ~ 
o 

formula in the parameters r, T, y, P e: a. It follows from the form 

of (15) that the relation on s,a,a: "Rk(s,a) ~ a" is primitive 

recursive in parameters r, T, y, P, hence Rk n a3 is ~-definable 
'V 

on 0. We claim 

(18) Rk e: Q. 

Let us postpone verification of (18) and proceed. Let ~(a,8,s,a) 

be the relation: 

( V (t, T) e: r x T)[ (s ~ t & aCT & (~e: t or .,~ e: t) & 

8 e: dom(,» ~ Rk(t,T) < al. 
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Then Rk(s,a) < ,,+l implies (3B E YH~(" ,B,s,a)). 

Let a o = image(Rk) and let <£ be the lexicographic order on 

a x y. 
o 

Let o be the ordinal of and let i: (a x y,< ) + (O,E) 
o £ 

be the unique isomorphism. Define R: r x T + 0 by the equation 

R(s,a) = min{n E 0: (3 (",B) E a o x y) (Rk(s,a) = a & ~(a,B,s,q) 

& n = i(a,8)}. 

Note R is primitive recursive in parameters from C( and dom(R) E tZ, 

so R E CL. 

For S E r, let 
v 
S = b~_: PES} U {!~_ : If. E s}. 

For n:s 0 define Pn = {V(ta u ~): (s,a) E r x T & R(s,a) < n}, 

~ =!\p. 
n - n 

Let ~ = <$: n ~ 0>. ~ 
n 

is primitive recursive in parameters 

from Cl, dom(~) E a, so ~ E Q. The sequence <p : 
n 

n E 0> is 

increasing, so [~] is decreasing. Clearly, [~J is continuous. Po = ¢ 

so [$ 1 = o 

Thus, [~] 

(19) 

[I\¢] = X. Since 
- p 

R(¢,¢) < 0, y.¢ E and 

is suitable for 

To establish (19) suppose , X EX. 
P 

Let nx = min{R(s,a): 

X E [I\s] () [So]} and choose - , s,a such that 

n =R(s,a). 
x 

Suppose n = i(a,8) x and let 

otherwise . 

X E 

Since R(s,a) = i(a,B), ~(s,a,a,B) holds and we have 

and 
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By the minima1ity property of 11x' it follows that 

x ~ U {[ae~]: ~ e: y}. If x e: [a1 J , then S must be even, hence 

11x is even; if x e: [a
2 
], then 11x is odd. Using the minima1ity 

property again, if R(s' ,a') < 11 then 
x' 

a' 
x e: - ([/\ s '] n [a ]) = 

~ 

Thus x e: [$ ] - [~ +1]' (19) follows. 
11x llx 

It remains to prove (18). We first show 

(17) Image (Rk) C ON. 

Since r x T is countable, there exists a < "'1 such that 

(v s,o) [Rk(s,a) ::: a => Rk(s,a) ~ a+1J. 

Let j:", ~ y be a bijection. If Rk(¢,¢) ~ a, then also 

(P e: t 
-1(0) 0 

& i(o) e: dom(T ) & 
o 

Rk(t ,T ) ~ a. 
o 0 

We may proceed inductively to define t ,T 
n n 

for each n e:", such that 

(16) 

Let x be the unique member of 

Tn T 
x ~ [a ], then since -[a n] 

[A t ] _[aTnJ C 
~ m 

T C T 
m - n 

i(n) e: dom(T ) 
n 

[AU{t: n E 
~ n 

& 

& 

w} ]. 

is open, for some m 

C 
Tm _ [a ], 

Rk(t ,T ) :> a]. 
n n 

If 

> n 

& 
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and hence, Rk(t , T ) = O. 
m m 

This contradicts (16) and shows 

X £ () [aj(n)T (j(n))]' This in turn contradicts (14), so 
n n 

Rk(~,~) < a and (17) follows. 

If Rk(~,~) ~ a, then for some s ,0" , R(s,a) = w n Cl 
1 

and 

(a,t) F (V(t,T) £ r xT)[(s etA a So T) ... 
~ 

(.3a) (a £ ON A Rk(t,T) < a)]. 

Applying ,&-ref1ection, we obtain wI n a £ Cl., a contradiction which 

establishes (18) and completes the proof of case 1. 

Case 2. ~ ~ 1, P arbitrary. 

Let be as in 2 . 2 and suppose 

i - 1,2 where each ejk 
0 

£ 1{~)(p) • Let 8 = 

{a jk: (j , k) £ J 1 x K1 U J 2 x K2} and choose PI' '!', Fo,Fl £ a. as 

given by 2 . 1- Let a ~ = '!' 1\ J\ V F1 (a jk), i 1,2. Then 
J jd

i 
k£K

i 
ei,ei,P l satisfy the hypothesis of case 1 of 2.2. Let ~' = 

B ' /I b f nO . b 1 h < u> £ ~ e a sequence 0 NI-Pl-names g~ven y case sue 

that Let 

placing in 4>S each ! £ PI by F (P). 
0-

. 
Fo(~a) be the result of re-

Let 4> = < t ( <I> ') : 
o B S < 0>. 

As in Remark IV, it is easily checked that 4> satisfies the requirements 

of 2.2. The proof of 2.2 is complete . o 

a~' HC satisfies the axiom of choice if for every x £ a, 
a. contains a well-ordering of x. Let v[al <!J~(Xp)) = 

. (D([4>]): (3y) (4) £ & [4>] is suitable for 
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V[~](E'~(Vp)) has the obvious analogous definition. 

Corollary 2.3. Assume a C HC is admissible and satisfies the axiom 

of choice, W,p EO·, 1:> <l < wI. Then 

(a) nO+l[C{](X ) has the strong separation property with re-
N <l P 

spect to V[a](]~(Xp)). 

(b) n'o [a] (V ) 
-a+l p 

has the strong separation property with 

respect to 

Proof. 

It is apparent from the form of II (8) that 

whenever · a C HC is prim-closed. Thus, (a) is immediate from 2.2. 

Using 0.1 (b), our proof of 1. 2 is easily made effective, giving (b) as 

a consequence of (a). 

Remarks . 

V. The rank function used in the proof of 2.2 is based on a 

similar rank function used by D. A. ,Martin in [31] to prove the ordinary 

(boldface) · nO separation theorems for 2w. The classical argument 
~n 

could not be used here because we have no effective ~ay of obtaining 

from a 
o 

a ..iJl-name for the closure of [~]. 

VI. Every admissible set of the form 

of the constructive hierarchy built over x), 

L [x] 
a 

(the ath level 

X E: X , 
p 

p finite, 
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satisfies the axiom of choice. A much stronger hypothesis is that of 

local countability. CL is locally countable if for every x ~ C?, 
GL contains a map of '" onto x. If a. is locally countable and 

prim(",)-closed, then the standard proof of o E -reduction shows that 
-)1 

EO[ctl(X) has the reduction property and hence 
-)1 P 

rro 
[a.l (X) has 

N)1 P 

the weak first separation property ()1 > 1, P E a) . We doubt that 

Eo[al-reduction holds when 0... is not locally countable. 
-)1 

VII. Before we obtained 2.2 Richard Haas considered a variant 

(call it r) of the difference hierarchy on (lightface) and proved 

that rr o2 ("'", ) h h . -. h t t r ~ as t e strong separat10n property W1t respec 0 • 

If his result can be shown to relativize to arbitrary parameters or 

to extend to higher levels of the hyperarithmetical hierarchy it would 

improve the result one obtains from 2.2 in these cases ( where 

Cl - L x[xl, x E 2"') by avoiding the introduction of hyperarithmetic 
"'1-

parameters. 



§3. Hausdorff' and Sierpinski': Proofs Derived from Topology 

In this · section we carry Addison's "method of analogies" and 

Vaught's "topology prime" notation to their natural extreme and con-

struct two proofs by the following recipe: 

"Take a theorem and its proof from classical descriptive set 

theory. Give model theoretic interpretation to all the terms used 

in the proof in such a way that the arguments remain valid. The result 

is a theorem of model theory." 

We will apply the recipe to the Hausdorff proof of the ITo 
",,2 

separation theorem,and to the Sierpinski proof of the theorem 

"Operation (A) preserves the Baire property in separable spaces." The 

results are new proofs of the IT' 0 separation theo.rem, and of the fact 
~ 2 

"The game quantifier preserves the Baire' property for countable p." 

Vaught (see [46]) had earlier applied the recipe to derive this second 
'Sef/II "'''J'II\ - foAr..l"tl-et.oJrJt 

fact (for arhitrary p) from the Ku~owski proof that "Operation (A) 

preserves the Baire property in arbitrary spaces." Sierpinski's 
5-1""'C, 

argument is considerably shorter than Kurafowski's for the cases it 

covers, and our proof is similarly shorter than Vaught's original argument. 

The following definitions are mainly from Vaught [46]. Let 

be arbitrary and K C K(n) C v(n) . Kl 
1 - - p 

is meager' (relative to 

Provided Kl C Mod
K

( V -:Iv . •. v. <1» where each - 2-n ---J.. m m m 
and 

every · l,o(K(~» subclass of Mod(im)(<I» n K(im) is empty. Kl is 
1 m (n) 

almost' open' if the symmetric difference Kl ~ ModK ( <I» is meager' for 

104 
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some The Tarski closure of is the inter-

section of all ·the closed' classes which include ~. Note that 

(20) ~ is meager' (resp. almost' open') in K2 if and only if 

S ·is meager' (almost' open') in c (K
2

) • 

S is dense' in K2 if K2 C C(Kl ). Also note that c(K) e: II'~(Vp) 

for any K. 

Assume for the remainder of §3 that p is countable. 

(21) and (22) list the model theoretic translation of the basic 

topological facts used by Hausdorff and Sierpinski. 

(21) 

Proof. 

Let K c V(n) 
- p • 

n e: w. 

(i) Every disjoint collection of j'~(K) classes is countable. 

(ii) Every s.trictly decreasing collection of ]'~(K) classes 

is countable. 

(iii) If K o 
is non-empty and l}' 2 (V), then K is not meager' 

in itself. 

(i) and (ii) are immediate from the countability of the set of 

basic' p-formulas. (iii) is a variant of the well-known omitting types 

theorem and has a long history (cf. [46]). It is most efficiently 

derived from the Lowenheim-Skolem theorem and the Baire category theorem, 

(see [46] but substitute x. 
p 

for x 
p 

when K contains no infinite models). 

to get an argument which is valid 

o 
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In complete analogy with the topological situation (cf. [26] 

§24) 21(i) and (iii) and (20) imply , 

(22) Let K C. V(n) 
- p , nEW. Every disjoint collection of Baire' , 

non-meager' (relative to K) classes is countable. 

Theorem 3.1. (1.2 revisited) Assume p is countable. The collection 

IT'o(V) has the strong first separation property with respect to 
~ 2 p 

V (IT'o) (V ). 
700

1
) ~ 1 p 

Proof. 

Let Kl ,K2 ~ ~'~(Vp) be disjoint. 

classes C
a

, a ~ wI by the conditions: 

Recursively define 

n <: 

are 

o. 

Co = c(Kl ) 

~ ... = n C 
~ S<). S 

C).+2n+l = c(K2 n C).+2n), 

It follows from 21(ii) that for some 

Then C = 0 dCB n Ki) = c(Co n K2). 

disjoint IT'o 
- 2 

classes, each of which is 

y ~ wI' 

Thus, 

dense' 

that Co is meager' in itself, hence empty . Then 

and the proof is complete. 

C = C y n 

Co () Kl , 

in Co· 

for all 

Co n K2 

It follows 

o 

For finite p it is well-known that c(K) = . {ot: every finite 

substructure of or. can be embedded in a member of K}. We can combine 
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this observation with a variant of the last proof to give an algebraic 

character<zation of the Il'o 1 h· h . 1 f • _ 2 c asses w ~c conta~n on y inite models. 

The use of a substructure chain argument in place of the Baire 

category theorem is not new -- see e . g. Addison [3 J. 

Theorem 3.2. Assume p is finite and K is a collection of finite 

p-structures. The following are equivalent . 

(i) K e: ~ )(Il' 1
0 

(V » ,wl: ..., p 

(ii) K e: 1l,02(V ) 
- p 

(iii) K includes no· infinite substructure chain. 

Proof. 

(i) implies (ii) trivially. Since classes are closed under 

unions of chains, (ii) implies (iii). 

Now assume (iii). Define C for 
(l 

(l e: w
1 

as in the proof of 

3.1 with K = K, K = V - K, and let 0 e: w1 
be such that Co = Co+1' 0 1 p 

Just as in 3.1, it suffices to show Co is empty. 

Suppose it is not. 

Let d{ e: Co' Since Co = c (C 0 n K), there exists tt{o e: Co () K. 

Since 0(0 is finite and Co = c(C
o 

- K), 0( has an extension (necessarily 

a proper extension) cG e: o 

If" be the substructure of '6- 0 

Let b e: I,;G) - ~"Ca I 
generated by {b} U loti . 

and let 

Since 

classes are closed under substructures, ~o £ Co 

Co = c(Co n K), ~o has an extension 0(1 e: Co n K. 

and since 

Kl is a proper 
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extension of 0(0' and the process may be continued to inductively 

define an infinite substructure chain · {O(i: i E w}C conK c. K 

in contradiction to (iii). 0 

Next we give model theoretic interpretation to Sierpinski's 

theory of approximation to the operation (A). 

The following definitions are due to Vaught. Let p be 

arbitrary. Let S be the set of all finite sequences from w of 

even lengt~ and suppose we are given 

(Z3) {K : 
s S E S}, with each Ki . 

1· .. l.Zn 
E V(2n). 

p 

The class G(K) c: V is defined by the condition 
- p 

The set {(o'" T
a
): a EON, s eo S} of approximations for G(K) is defined 

s' s 

recursively by the conditions 

(i) 

(ii) (~,al, •.• ,a2n) eo oa+l 
i l •·· iZn 

(Vm < n)«O(,al,···,aZm) E K. i) 
l.l· .. Zm 
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(iii) 

We set oa = oa and define ,a by the condition o 

It is known (d. Vaught [44]) that 

(24) (\!aEON) 

Theorem 3.4. Assume p is countable and K C V 
P 

is arbitrary. 

Suppose K is a collection as in (23), such that each 

is almost' open' in K(length(s». Then 

(a) For some 
ao 

is meager' in K a < wI' , 
0 

(b) (Vaught) G(K) is almost' open' in K. 

Proof. 

K C K and 
s -

(a) Fix 2n Then 
' a 

wI} is a disjoint collection s E w. {T: a < s 

of almost' open' subclasses of K(2n) . By (22) we can find a (s) < wI 

that for every a ~ a(s), ,~ is meager', 
K(2n) 

Mod ( ~ a(v , ... ,v2 1» is meager',. 
S -0 - n-

such say , a C Ba where 
s - s 

l:'~(K(2n». Let 

a o K· 
a

o 
= U{a(s) ,: s E S}. Then , C Mod (V Y.. ao 

2 
(:::Iv , ••• ,v

2 
l)( ~ » n -1~ - n- s 

SE W""" nEW 

hence is meager' in K. 
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(b) It is easily seen that the collection of almost' open' 

classes is closed under complementation, countable union, cylindrifica-

tion (K 1+ K (n)) and proj ection , (K(n) .... K)" Hence a 
T and 

are almost' open' in K for each a < wI" 

meager' by (a), G(K) is almost' open'" 

Since 
ao a - G(K) is 

o 



§4. Remarks on Orbits 

Let p be a fixed countable similarity type. 

Given nEW and an n-formula ~ = ~(v , •.. ,v 1) E L (p), 
-0 -n- wlw 

define {R E X 
p 

(w,R,O, . •• ,n-l) F~}. Let L be a countable 

fragment of which is closed under quantification and let 

be the topological space formed on the set IX I p 
by taking 

{r~ ': ~ E L} as a basis. 

Given R E XL , identify R with (w,R) and let [R] be the 

orbit of R under the canonical action. Then [R] is Borel, and in 

general, there will be orbits of arbitrarily high Borel rank. In [8] 

M. Benda proved a result relating a model theoretic condition on R 

to the topological complexity of [R] in viz. 

(25) If R is saturated and Th(R) is not w-categorical, then 

[R] is not in 

L · 
Topological questions about orbits in X ww were also considered 

briefly by Suzuki in [43]. 

In this section we will obtain further results of this kind, 

mainly as an application of the invariant ~ separation theorem. In 

particular, both 4.2 and 4.5 will improve (25) . For definitions and 

basic results about elementary types, etc. see [12]. 

Let ItL 
p 

for each formula 

be the similarity type with a Skolem predicate ~ 

~ E L. Then the canonical embedding J: R ~ R#L 

III 
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of Xp#L defines a homeomorphism 

X #L' It follows that XL 
p 

with an invariant 

subset of is Polish. Moreover, 

since the canonical embedding commutes with the canonical actions 

and Vaught's result (1) can be translated into a 

definability result for XL. The definition of the classes 

(read "E'O 
..... a over L", etc.), is obtained from the definition 

,.U,~, by replacing the condition "each 

the definition of E'o by the condition 
- l' 

L_E'o; and then proceeding as before. 
N 1 

We have 

(26) For a ~ 1, invariant 

Proof. 

"each 

M 
n 

is basic'" in 

M € L", to define 
n 

Inclusion from right to left is trivial. To go from left to right 

assume B € inv(Eo(~)); then 
~a 

J(B) £ inv(Eo(J(XL))). By (1) 
-a 

J (B) = [<P D n J (XL) for some e £ E,o(p#L). Let ~ be the result of 
"'a 

replacing each atomic sub formula of B by the corresponding formula 

of L. Then ~ is L_E'o and B = [~]. 
- a 

o 
Our first result provides the second half of the "inverse" to 

Suzuki's observation ([43] Thm. 2) that the orbit of a prime model R 

is a comeager subset of ([43] Thm. 3 is the 

first half. Suzuki worked with L L but his arguments work in the 
ww 

general context considered here.) 
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Proposition 4.1. If [R] e:!~ (Jt-), then COl,R) is L-atomic (every 

finite sequence from ol realizes a principle L-type in (Ol,R». 

Proof. 

If [R] a 
e:..ITz' then 

where each ~nm is an n-formula of L. Let t::. ; 
n 

m e: ol}; then [R] ; . {S: S omits each type 

n e: ol}. If R realized a non-principle type E, we could find S 

which omits · {E} U {t::.: n e: ol}. But then S e: [R] 
n 

and S + R, a 

contradiction. o 

Note that ITA Th(R)] is the closure of - [R] in hence 

(Z7) [R] is closed if and only if Th(R) is w-categorical. 

In view of the intrinsic invariance of the Borel classes (cf. 

Kuratowski [26] §35), for every a, [R] is a EO (or nO) subset 
"""'<l -a 

of XL if and only if [R] is a EO rno) subset of IT /\ Th (R) n. 
-a. ~a "" 

view of this fact, and of (27), we lose no information by studying the 

complexity of orbits relative to 11\ Tll where T is a complete L-
" 

theory which is not Ol-categorical: 

For the remainder of §4 we assume T is a fixed, complete not 

Ol-categorical theory of LOlOl and with the relative 

topology from 

X is exactly the space ~ studied in [8]. 

t::. , 
n 

In 
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Following Benda [8] we say R is full (weakly saturated) 

if every elementary type over T is realized in R. An elementary 

type ~ is powerful if every model of T which realizes ~ is 

rull . 

Theorem 4.2. No orbit is 

Proof. 

Suppose 
o 

[R] E !2(X); then by (26), [R] = IT V "] v • .. v 1 1\ 4> D J-o -0.- nm n . 

for some collection . {4> : 
nm 

n,m E w} such that each ~ is an n-o/nm 

formula of L ww 

such that 

i.e. 

where ~ is the 

If R is 

is omitted by R, 

S E [R] and '5 + 

Since [R] is minimal invariant, there is some 

[R] = [3v ..• v 1 II 4> ] _ -0 -n- I \ n m 
m 0 

[R] = {S: ~ is realized in S} 

n -type {4>n m m E w}. 
0 

0 

not full, let 1: be a complete type over T which 

and let S realize both ~ and "- Then 

R, a contradiction . 

If R is full, then ~ is powerful and, since T is not w-

n 
o 

categorical, there are both saturated and non-saturated models which 

realize ~, again contradicting the fact that [R] i s an orbit. [] 

Lemma 4.3. If R is full and G is an invariant set which 

contains R, then G = X. 
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Proof. 

It suffices to prove the lemma for G=[\!v ... v 1 Vcj> D. 
.... -0 -n- m 

m 

each since every invariant set is an intersection 

of sets of this form. Let I::. =. {l cj>: mEOw}. Then G = 
m 

{S: S omits I::.}. Since R is full. I::. is powerful and every model 

of T omits 1::.. o 

Theorem 4.4. No full model has a · 0 
~3 orbit. 

Proof. 

Suppose R is full and [R] 
0 

EO ~3' Then 

and since [R] is minimal invariant. [R] = G 
1 

ITo 
~z 

sets Gl • GZ' By 4.3 G = X 
1 

and [R] = -GZ 

Gz for some invariant 

contradicting 4.Z. [] 

Corollary 4.5. 

Proof. 

(i) If R is saturated, then 

(ii) If I::. is a powerful n-type and 

prime model of a complete extension of 
v ... v 1 

1::.(-0
0 

-n-
l

) C L (p U{O .... ,n-l}). 
... n- ww 

,E~ (X) - IT~ (X) • 

It is easy (see [ 8]) to see that R. S 

(w.S.i .... ,i 1) o n-

then [S] EO 

o 
belong to 1:

3
, 

respectively. The conclusion then follows by 4.4. o 

We have a partial converse to 4.5(i). 

is a 
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Theorem 4.6. Assume R is full and o 
[RJ € n3• Then R is 

saturated. 

Proof. 

Suppose R is not saturated. 

Since R is full, T has a countable saturated model S. Then 

[RJ and [SJ are disjoint minimal invariant ]~ sets. It follows 

from the invariant separation theorem that there are invariant 

ITO sets 
-2 

G
l

, G2 such that Since R is full, 

it follows from 4.3 that G
l 

= X. Then [SJ ~ G2 ' and since S is 

full, G = X 
2 and [RJ = ¢, a contradiction. o 

The invariant ITo separation principle appears to be a useful 
~a 

tool for attacking general classification problems in descriptive set 

theory. For example, consider the following proof of one of the first 

results in the subject (cf. Addison [4J or Lusin [29J). 

(28) (Baire 1906) The set A = {R e Zwxw: (R defines a function 

& (\in) (f-l{n} 

Z 

is finite)} belongs to 

k~(2w ). 

Proof. 

A is obviously invariant If A were then A would 

be an alternated union of invariant sets. Such sets cannot 

separate structures which satisfy the same ~.~ sentences (i . e . which 

\./0 realize the same types of V 
~l 

can. 

formulas). It is easy to show that A 
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Consider, for example, the functions fo' fl defined as 

follows, 

(i) If 
n 

j = p where p is the ith odd prime, and 

then f 1 (j) = p; otherwise fl (j) = j. 

(ii) If j is odd, then f2(j) = fl (j); if j is even, then 

f2(j) - O. 

Let Ri be the characteristic function of f. , 
1. 

i = 1,2. Then 

~ EO A, R2 ~ A and it is a straightforward exercise to show that 

(W,R
l
), (w,R2) realize the same types of ~~ formulas. o 



§5. On Theorems of Lusin and Makkai 

In this section we will use the transform method to derive 

a recent "Global Definability Theorem" of M. Makkai, (see [30] ~ from 

the following classical theorem of Lusin (cf. [26] §39 VII Cor. 5). 

(29) If f is a continuous function defined on a Lusin space X 

such that the preimage of every point in f(X) is countable , 

then there is a collection B = {B
i

: i e: Ul} of Borel sets 

such that X = U B and each f [B. is one-one . 
~ 

Theorem 5.1. (Makkai) Let p be a countable similarity type. Let 

P be an n-ary relation symbol not in p and let a be a sentence 

of L (p U {P}). For 0{ g. V let Ma(Or..> = {P C I~ F: (ur ,P) 1== a}. 
UlIUl - P 

Then the following are equivalent: 

Proof. 

(i) For every countable or. e: V p' Ma (l?(') is countable. 

(ii) There exists a set ~ = {$. (v .•• v +k ) : 
~-o -n i 

such that 

i e: Ul}C.L (p) 
- Ul Ul 

1 

a != Y 3v ... v k \Iv . • • v l(P(v, • •• ,v 1) ++ $i) ' 
i 

.--n. -n+ . _-0 -n- - -0 -n-
EW l;. 

(ii) ~ (i) is obvious. Now assume (i). 

Since the set of isomorphism types of finite p i.J {~) structures 

is countable and every finite isomorphism type is definable , we may 

assume that all models of a are infinite. 

Let 

projection 

X = ITa] c Xpu{~)' and let 71: [a] + Xp be the canonical 

(R,P) .... (R). By assumption, for each R e: X, 71-
l ( {R}) = M (R) 

p a 
ll8 

i 

i , 
I 
I 
I 
! 
I 

i , 
! 
I , 
i 
I 

I 
• 
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is countable. By (Z9) there exists B = {B
i

: i E w} such that 

[0 n = U B, each Bi E B(Xp 0 {f}), and each w~. is one-one. 
1. 

Since 

u U 
iEw nE"' 

[an is 

*[51 
Bi . 

invariant, [0] = [0]''1 = (UB)6 = UB 6 = 
iEwi 

By Vaught's basic result (Z),there is a set 

'i' = {1/1. (v . .. v 1).: i;m E w} such that for each m,i E w, (R,P)E 
lin -0 -m-

m 
XpU{f}' SEW, 

(W, R, P , s , ... s 1) 1= 1/1 . o m- nu. 
m 

s E -W & 
*[sl (R,P) E B. • 

1. 

It follows that a 
v ••. v 1 

1= V V ] v .•. v +m 11/1 (--0 -m- ) • 
. _--n --n - nm v ..• v +m 1 
~EW mEW -n -n -

We claim that for every i,m E W, 
m 

s £ -w, REX , 
P 

(30) [(w,R,P
l

,S)!=1/I. & 
1.m 

This suffices since (ii) then follows by the infirtitary analogue 

of the Beth definability theorem. 

The following computation verifies (30): 

( P) (R P) B *[sl ~ Bi(R,Pl ) n Bi(R,PZ) n [sl R, l' , Z E i ~ is comeager in [sl 

=> (3g E w!) [(gR,gPl ), (gR,gPZ) E Bil 

= ( 3. g E w!) [gP 1 = gP 21 

~Pl = PZ' o 
Note that the finitary Chang-Makkai theorem (~. Chang-Keisler [lZl 

5.3.6) follows from 5.1 via Keisler's approximations. Thus, 5.1 is the 
, 

intermediate step in a derivation of the Chang-Makkai theorem from (Z9) . 
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Note also that, since each M ((w,R)) 
(J 

n 
2
w , condition (i) of 5.1 is equivalent to 

(i~ For every 

perfect subset. 

Cf. [26] §36.V. 

M ((w,R» 
(J 

119a 

is a subset of 

does not contain a 



§6. On L Definability and Invariant Sets 
wlw 

In this section we collect some further applications of the *_ 

transform in logic. The first result refines and extends a theorem of 

Lopez-Escobar on the explicit definability of invariant Borel functions 

between logic spaces. The remainder of the section is concerned with 

some recent results on definability due to V. Harnik [17] and [18]. 

These results were orginally obtained by a "forci,{g in model theory" 

construction which was derived from Vaught's method. We show that the 

same facts can be obtained directly from the method of [46]. 

Let p be arbitrary and let 1 S a < WI. A function 

F: X + Zwn is invariant if its graph is an invariant subset of 
p 

n 
X x Zw. An equivalent condition is that gF(R) ~ F(gR) for every 

p 

R £ X • 
P 

Given 

n 
F: X +Zw 

p 

vided F ~ FK 

K CX(n) 
- p , we define 

n 
X + ZW by setting 

p 

is said to be elementary, (respectively a-elementary), pro­

for some K e: L (X (n)), (6,0 (X (n)) . It is apparent that 
{JJlw p -- a p 

(31) Every a-elementary function is invariant and a-Borel. 

The I-elementary functions were introduced by Craig in [13] 

where the converse of (31) was proved for a = 1, p finite, relational. 

In [28] Lopez-Escobar applied his infinitary version of Beth definability 

to prove, for countable P, that every invariant Borel function is elementary. 

lZO 
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nEW" 

F: 
",n 

X .... 2 • 
p 

Then F is invariant and a-Borel if and only if F 

is a-elementary. 

Proof. 

The "if" part is (31). For the "only if" part of the theorem 

assume F is a-Borel and invariant. 

of F implies that K is an invariant subset of n 
X x",. Since 

p 
K: 

- U{F-l([(s,O)]) x {s}: n 
s E "'}, : 

n 
s E "'} 

where ['(s,i)J:' {x: n 
x: "' .... 2 & x(s) : i}, K is !; 

0 
• 

-a 

It follows from (2) that there is a L'O formula 
-a 

and a IT'o 
~ a 

formula ~ such that K: [~(n)] : [~(n)]. 6.1 follows immediately 

since F: F
K

• o 

We turn to a discussion of Harnik's definability results . A 

key lemma is an observation regarding the behavior of equivalence 

relations under *: 

(32) Assume the basic hypothesis of chapter II concering (G,X,X' ,J). 

Let 'B C X' and supp<;se E is an equivalence on X such that 

(v x,y) (xEy ~ (~,,) (" is an autohomeomorphism of G & 

Then *J 
B is E-invariant. 

* (32) follows immediately from the definitions of Band 

the fact that meagerness is a topological property. It has the following 
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corollary: 

(33) 

EJ xJ -invariant. 
1 2 

Assume further that 

is a Baire topological space and that each x >+ J
l 

(g,x) 

is continuous. Let I: Xl x X2 + Xl x X2 be the identity 

function. Then 
*1 

B is EJ -invariant. 
2 

Consider the following case of (33): Let P be a countable 

similarity type, a a sentence of L (p) which has an infinite 
wlw 

model, and L a countable fragment which contains a. 

[a] with the relative topology as a subspace of XL. 

Let 

Let 

X ~ 
1 

PI arbitrary, J
l
,J

2 
the canonical actions of w! on X

l
'X2• If 

$ is a sentence of L (P+P
I

) 
wlw 

then [~D satisfies the assumptions 

made on B in (33), hence [~l*I is an invariant Borel subset of 

and 

From (1) we conclude: 

(34) (Harnik) Under the assumptions of the proceeding paragraph, for 

every sentence ~ e: L (P+P
I

) 
wlw 

such that for every (A,S) e: V 
PI 

<VR)«A,R,S)f.al\~) =>CfF ~' 

iX.F ~' 

there exists 

and 

=;> ( :3 R) ( (A, R, S) I=- 4> 1\ ~ , ) 



Remarks. 

VIII. Let r 

L , L f studied in 
(l wI 

be L 
/DIG 
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or any of the stronger languages 

[10]. Using the techniques of [46] and [10] both , 

(34) and (364 below, may be extended to analogous results where ~ € r. 

Also, as Harnik observed, the passage from K to the (L -definable) 
wlw 

orbit of a countably infinite member of K shows that a can be 

replaced by any class K C V which contains a countable model (if K 
- P .... 

contains finite model everything becomes trivial). As Vaught first 

observed, this passage allows one to derive (34) even more directly 

form the results in [46] -- Let REX n K. 
o P 

~ . 
[~D = is: (R , S) E [~ID E B(X ) 

o PI 
and define 

Given ~ , let 
R *1 

= ar~n 0) PI [t/i]' 

It follows from (1), and the invariance of a, ~ under isomorphism, that 

U Jl' = [~'] for some ~' E L (PI) 
wlw 

having the required property. 

This argument gives a slightly stronger result than (34) in that P need 

not be assumed countable. On the other hand, the argument used to prove 

(34) can be carried out over any prim(w)-closed set. 

IX. In [18] Harnik showed that a weak version of (34) is 

valid if a is allowed to be any sentence of such that 

cVs EX) C3R EO X ) «R,S) E [a]) in this case one can find a 
PI P 

suitable ~' in the infinitary game language L G (PI) 
wI 

(though not 

necessarily in This version can be proved like (34) by 

considering a modified *-transform. In the Qodified transform, one 
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considers spaces G,X,X' and a map J as befor~ but, instead of 

assuming G is a Baire spac~ one associates to each x € X a sub-

space, G C G which is a relative Baire space. One then defines, x - , 
o 

for U € .h (G) , 

U nG }. 
x 

& BXU Un G is comeager in 
x 

The inductive clauses (II (2)-(4») go over with slight 

modification allowing one to show: 

(35) If every Borel set B is normal, . (BXn G
x 

is almost open in 

Gx for all x), and H is a countable weak basis for G, 

* then B belongs to the a-algebra generated by 

. *U 0 
{C : C € ~l(X'), U € H} whenever B is Borel in X'. 

In the applications to the results in [18j,one easily shows 

that the normality condition holds, that each *U 
C is and that 

the inductive proof of (35) yields a definability result analogous to 

(2) . For example, in the case at hand, we would let L be a countable 

fragment of L (p+p
1

) 
"'1'" 

which contained e, and for each 

define G = the cross section at 
S 

S 

the disjoint union of the spaces GS' 

R € GS' otherwise J(R) arbitrary. 

of the space 
L 

[e]<;"X; G = 

S € X , J(R) = (R,S) 
PI 

if 

Now suppose P = {Pi:· i € w} is a disjoint collection of purely 

relational similarity types. A p-sentence is a sentence $ 

such that, for each atomic sub formula !(~i " " '~) of $, if 
1 n 

! 
~ 
II 

~ I, 
1 ., 

~ 
,i 
: 

l 
l 
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REP then each 
- m' 

is a power of" the mth prime. Let 

p'=Up,p" an arbitrary relational type. 

are said to be p-isomorphic if 

(36) (Harnik) With the definitions of the preceding paragraph 

d 1 « ,h ~ II' 0 (p , -'-' ") an _ a wI' ~ ~ ' ~ , 
~a 

there is a p-sentence 

and 

(30'U (0( p ct & or. 1= lji), 

Proof. 

Let Xl = X2 = Xp '+P'" 

i E: w>,S). 

G , w X 
= w . x "' p 

As a basis for G we may take the sets of the form 

[s , •.. ,s 1] x [lji], where n E: W, o n-
n 

s , •• "s 1 E: -w, lji is a basic 
o n-

pIT-name and [s , ••. ,5 1] ={~gi: o n- i E: w> E: 

For B ex, n E: W, lji 
- p 

a basic prJ-name, let 

II 
iE:w 

W
I. . , 

*nlji B = {(R, s ,.,.,5 1) : 
o n-

R E: B*[sO'''' ,Sn-l]} C x(~2) 
- p 

AJJ. argument 

analogous to 

MOd(n2)(~) () 
0'-

B E: II (X ). 
-a p 

the proof of 

-(n2 ) 

O.l(a) establishes the fact that *n B 

X for some p-formula 
p 

o 
oj> E: II' (p') 

~CL 
whenever 

(36) then follows by the Lowenheim-Skolem theorem. 

is 

o 

I 
j 



§7. A Selector for Elementary Equivalence 

Let L be a countable fragment of L (p) which is closed 
Ull Ul 

under quantification, and let S(L) be the set of sentences 
7 
of L. 

Assume for convenience that C =~. A p-sentence e is propositional 
p 

(e E P (L)) if every subformula of. . e which begins with a , 
quantifier belongs to L. 

Let t be the relation of L-elementary equivalence between p-

structure~ and let be 

Given an n-formula .p e: L, let (,p) = {(S,-) EX: 
p 

(S,O, •• • ,n-l) 1_ rH, 

::i. and let X be the topological space formed over the set X by 
p 

taking { (.p) : .p E L} is a basis. Observe that if .p e: L is an 

n-formula, then 

(37) c. 

so = 43v , • • . ,v 14>D _ --0 -n-

and 

also. Thus, 

( )+Ip 
4> = (3v • •• v l 4> ~ , 

-0 -n-

is clop en in xL 

for every 4> E L; and the set ' {qell~: e E S(L)} forms a basis for 

::Lx I~. For S -- (R, -) ~ ::Lx, 1 t ThL(S-) b th L th f S RI J:. - ~ e e e - eory 0 =_. 

Now 

if 
L -

eETh(S). 

and for if and only 

It follows that xL/~ is just the usual Stone space 

126 
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S(L) associat.ed with L. Since we have verified the hypothesis of 

II.3.~we may conclude 

Theorem 7.1. Assume L is a countable fragment of L which is 
wlw 

closed under quantification. Then there exists a continuous selector 

for ~, s: 

From 7.1 we conclude that all of the remarks of paragraphs 

~ and (12) of II §3 apply with E =~. X = xL. For example. 

(38) 

(39) 

(40) 

S (L) is Polish. 

_ 0 -L 
~-inv~a(X» has the reduction property for each a < w

l
• 

O 0::L 
~ -inv( (!l (X » 

In (40) we have implicitly used the fact (immediate from (37) 

and the continuity of s) that 

(41) for some sentence whenever B is open 

Let r be 
o 

E • a 
nO or any of the Kolmogorov classes 

a 
B(r ) 

a 
or Borel 

game classes B(Gro) studied in [10 1. and let r' be the corresponding 

collection of formulas 

induction based on (.41) shows 

L • 
a 

L f). A straightforward 
w

l 
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(42) If 
-1 

then s (B) = ~$. for some <f> E peL) () r-. 

Corollary 7.2. Let r' be as in (42). For every <f> E r' there 

exists * <f> E peL) n r' 

Proof. 

such that for every ()(E 

and 

v , 
p 

,. 

Given <f> let =L 
B = {(R,:) EX: * Let <f> E peL) n r' 

be such that ($*) = s-l(B). Then,since s-l(B) is an 

tion of B and the L8wenheim-Skolem theorem holds for 

the required property. 

Remarks. 

l1.-invariantiza­

* r, $ has · 

o 

X. 7.2 extends 4.1 of Harnik [17]. The list of languages in 

7.2 is not exhaustive. For example, the method of ~.2 applies to each 
\ . 

level of the hierarchies on L, L implicit in 'their constructions 
Cl "'If 

by iterations of operations. It appears to be rather difficult to ~ke 

an exhaustive list. 

XI. For 4 = L , (38) is well-known. It was first proved for 

"'''' 
the larger fragments studied here by M. Morley in i33] using an infinitary 

Henkin construction. In fact, the Henkin .method is essentially similar 

to the argument establishing the Kuratowski-Ryll-Nardzewski selector 

theorem. The proof in [27] of the selector theorem (couched in terms 

of our special case) proceeds by considering a countable dense subset 

R = (r1,r
Z

" .. ). of r, defining a convergent sequence of functions 
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f
i

: Yh~ ~R and then setting s = lim<f
i

: iE ' w>. The' argument 

is changed in no essential way if instead of considering R, we look 

at a basis C for yf consisting of clopen sets C
ij

, i,j e: w such 

that under some complete metric on yf we have 

& & 

The construction then proceeds by specifying for each T e: yf/~ and 

each n, a set C(n,T) E C in such a way that for each S, the 

, , 

sequence <C(n,T): n e: w> is decreasing,and ('In, S)(diam(C (n, T)) < l - n) 

and C(n, T) n 1T -l( {T}) 1< 0; then defining s (T) = the unique member 

' of (iC(n,T) 
n 

I 
(cf. Bourbaki [9] IX §6.8 where a nearly identical argu-

ment is given along these lines). 

Let <~: i e: w> be an enumeration of the atomic p-names. 

Then the canonical metric on X is such that the clopen sets of 
p 

diameter 2-n 
have the form [I\~] where ~ is a finite set of - \ ('I i -subbasic names and < n) (~ e: ~ or lfi e: ~) . Let {B . : i e: w} 

1. 

be the Skolem conditions such that xL = [I\B.]. The canonical metric _ 1. 

on X = [~Bi] is such that clop en sets of diameter less than 2-
n 

have the form [0~] n X where ~ is a collection of basic names such 

that [~~] is a clopen set in X 
p 

-n 
with diameter less than 2 and 

[/\~] is disjoint from [V lBi ]. Since' each Bi has one of the forms 
i<n 

or the construction 

of the last paragraph may be recongnized as the familiar Henkin construc-

tion. Clearly 7.1 is also closely related to the known fact: "Every , 

;'" "!~~-;t.,,; 

" 

.. -

, 
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recursive complete theory has a recursively presented model" (cf. 

(19)) • 

v ~ •.• ,v 1 
Note also that. the collection . {4> (-0 -n- ): 4> is an 

Q, .•• , n-l 

n-formula of L} generates a fragment L(n) such that S(L(n» 

is exactly the space Sn(L) of n-types for L. Thus, the fact that 

S(L) is Polish for each fragment L, implies that S(n)(L) is 

Polish for each L and every n ~ w. 
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