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INVARIANT DESCRIFTIVE SET THEORY AND
THE TOPOLOGICAL APPROACH TO MODEL THEORY
by

Douglas Edward Miller
Abstract

We study various types of topological spaces with equivalence
relations ("topological equivalence spaces'’) which arise in connection
with model theory and we apply topological resultsrand methods to the
study of languages and structures.

Most of our model theoretic épplications dérive from considera-
tion of the natural topelogical space formed by the set of countable
structures of any fixed countable similarity type. Given a similarity
type P, for illustration consisting of a single binary relation, we
identify the structure (w,R) with the characteristiec function of R
and form the usual topological product space % =,2mxw. il

Logic deals primarily with sets B g;Xb which are cleosed under
isomorphism, i.e. invariant under the equivalence relation 1 =
{(®R,8): (@w,R) = (w,8)}. While the study of the topological equivalence
space (XD’I) in connection with model theory dates from the thirties,
the subject has received increased attention since the intensive study
of the language Lmlw was commenced in the early sixties. One indica-
tion of the close connection between the topological equivalence space
(XE,I) and infinitary logic is given by Lopez-Escobar's result:

B CIX? is an I-invariant Borel set if and only if B = bej Mod (o) for

ome sentence ¢ € L 7
s S mm(P)



Salient features of the space (XD’I) include .the following:
(1) (Xp,I) is a Polish (separable, completely metrizable) topological

: 2 2
space and I 1is a Zl (analytic) subset of Xp =X X Xp; (Fi) » 1

<1 0
is induced by a "Polish action'", i.e., a continuous action on the
Polish space Xp by a Polish topological group, viz. w!, the group
of permutations of the natural numbers given the relative topology from
the Baire space w”

In the first two chapters of this work we study in turan the
spaces which satisfy each of these hypotheses. In chapter IIT we aﬁply
some of the matérial from chapter II together with some additional
regsults proved just for the logic spaces to obtain new facts in model
theory.

In chapter I we study spaces (X,E) such that X is a Polish
space and the equivalence relation E is a Ei (analytic) subset of
XZ. We introduce an invariant version of the prewellordering property
and apply it to prove- that the collections-of E-invariant ‘E; (PCA)
(CA) sets have the reduction property. Assuming projective

1
1

1
determinacy, these results are extended to %, 4o and [, ., for

and ﬂ

all n e w, An invariant uniformization principle is also considered
and shown to follow for Ei , n >2 from the axiom of constructibility.
With suitable restrictions on X) effective versions of all the results
arelobtained. These effective results are proved in a "set theoretically
primitive recursive' context which has a wider applicability than the
traditional "lightface descriptive set theory."

The invariant Ei prewellordering and reduction theorem is due

to Solovay based on a conjecture of the author, The results on reductiecn



extend theorems of Vaught and Moschovachis, who proved invariant 4
reduction for the spaces (Xp,I), cf. Vaught [44]; Vaught, who proved
invariant ﬂi

and Burgess, who proved invariant reduction for pairs of Hi sets

and E; reduction for Polish actions, see Vaught [46]

under the hypotheses of ¢hapter I, see Burgess-Miller [11]. The
result on uniformization was obtained jointly with Burgess and appeared
in [11] as did much of the material of chapter I. It extends unpublished
work of Kuratowski.

Chapter II aeals with Polish actions and, more generally, with
gspaces (X,G,J) such that G dis a nonmeager topological group with a
countable basis, X is a topological space, and J: G x X » X 1is a
Borel map which defines an action of G on X. The main tool and sub-
ject of interest in this chapter is the #*-transform, B~ B* =
{x: {g: J{(g,=%x) ¢ B} is comeager]}, which was introduced in Vaﬁght [45].
We conttibute both to the basic theory of the transform and to the list
of applications of the transform to the theory of group actions. Perhaps
the most important result from this chapter is the invariant versiom of
the well-known strong 22 separation theorem of Hausderff and Kuratowski
{cf. Kuratowski [26] or Addison [ 3]). ES(X) is the ath multiplicative
level of the Borel hierarchy on X (so E; = GG’ Eg- = F@S’ etc.). We

prove IT.4.3: If J is continuous in each variable, X is Polish,

EJ is the equivalence relation {(x,y): (ﬂg)(J(g,x) = y)} and

l <a <w , then disjoint E -invariant HZ+1

sets can Eg_separatedlgi

; : . 0o il
a countable alternated union QE_EJ—lnvarlant II sets, a fortiori by

~

an invariant A;+1 set. For g = 1 the result is proved for the much
wider class of equivalence spaces (X,E) such that E 1is lower semi-

continuous {open).



In chapter III we apply topological results and methods to model
theory, obtaining sevefal new results and giving new proofs of several
‘known theorems. In the latter-case, the topological proofs are generally
shorter than previously known arguments. Moreover, they make explicit
a causal connection between classical topological theorems and their

model theoretic analeogues.

Topics discussed in this chapter include a E'z separation
theorem, a recent global definability theorem of M. Makkai, a generali-
zation of a result on the definability of invariant Borel fﬁnctions due to
Lopez-Escobar and a result on continuous selectors. for eleﬁen;ary'equiva—

t
0 ; .
lence. Dur treatment of the I separation theorem illustrates most

~

1
of the types of results proved in the chapter. I Z denotes the gth
level of the natural hierarchy on formulas of L in which, for ex-

W, W
1
L 0 Vvv v [*] o
ample, 1 ” classes have the form Mod(<}ﬂ‘x Hliyenm(%y)) with each
L]
enm finitary, quantifier-free, cf. Vaught [46]. The basic I 4 separa-
tion theorem is an unpublished result of Reyes. We give two new proofs

t

o
i : Disiod
of the basic theorem isjoint 1T atl glasges (1 < @) can be separated

1
. o) .
by a countable alternated union of II - classes. One proof is based on

I1.4.3; the second is a model theoretic translatioﬁ of the classical
topological proof. We use some ideas of D. A. Martin torobtain an ad-
missible version of the theorem and we apply an approximation theorem of
J. Keisler to obtain the well~known finitary version (Shoenfield's Eﬂ;
interpolation theorem). We also apply the result to study the complexity
-of Lm u definitions of isomorphism types. We prove several theorems.

1

The following is typical:



I1.4.2: 1f a complete me theory T has a countable model o

- such that the isomorphism type of () 1is E'g-over—meﬁ then T

1O

is w-categorical. This extends a theorem of M. Benda. AE' 9 Over—me

classes have the form Mod (VY Jx A V?Gnm(,}%,;)), each
n ” o~

B e L .
nm W
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CHAPTER O: INTRCDUCTION

A brief summary of this work may be found in the preceding
Abstract.

Descriptive set theory deals with Borel and projecfive sets
in metrizable spaces and especially in the spaces mw, 2“  and other
"Polish" (separable, completely metrizable) spaces. This "classical"
work goes back to Lebesgue, Lusin, Suslin, Sierpinski and others. The
best known reference is Kuratowski [26] ., The first application of
descriptive set theory to logic was male by Kuratowski in 1933 in [25]
where he defined the infinitary language Lwlw and showed that the
collection of well~orderings is not an Lmlm—elementary class. Since
that time and especially during the last fifteen years, the connections
between classical descriptive set theory and model theory have been
studied by many authors. See, for example, Addison [2-4], Scott [k
Lopez-Escobar [28], Grzegorczyk, et. al., [16], Morley [33] and vVaught[aé4-46].

Some authors, notaﬁly Addison and his students, have expounded
the analogies which exist between the classical theory of Polish spaces
and the model thecory of the finitary predicate calculus, me. Other
authors, such as Lopez-Escobar in [28] and Vaught in [44] have found

similar aznalogies with the model theory of lb o In fact, topological

1
considerations were an important factor leading Scott and Ryll-Nardzewski
to propose Lwlm‘ as the '"matural" infinitary first-order language imn
the early sixties (cf. Scott [38]).
Most recently, Vaught in [45] and [46] introduced a powerful
method to show that many infinitary results can be derived from their

classical counterparts. As we shall remark in TIIT §2 below, the

1



corresponding finitary theorems often follow by an approximation
theorem of J. Keisler. Horeover; the theorems in logic are obtained
as special cases of theorems about Polish actions or certain other
kinds, of actiom spéces.

This is the type of result with which we will be primarily
concerned. It accomplishes several things. First, it gives a 'causal"
explanation for the analogies found by previous authors. Second, by
showing thaf certain results in model theory are special cases of
general results on equivalence spaces or éction spaces, it enables us
to compare the restrictiveness of the hypotheses under which the geﬁeral
results are obtained. On the basis of this comparison, we can then
classify some results as more '"'model theoretic'" than others. Finally,
it leads us to new theorems about actions or equivalence spaces as
generalizations of results in model theory and to new theorems in
model theory as invariant versions of classical theorems of descriptive
set theory.

For a summary of the topics to be considered in this work we
refer the reader to the abstract and to the table of contents. In the
:emainder of the intraductory chapter we will establish some notational

conventions and review some of the basic definitions which we will require.

Sets and Topological Spaces

ON is the collection of ordinals, each ordinal being the set of
preceding ordinals. Cardinals are initial ordinals, w and wy are the
first two infinite cardinals. «, 8, y will always be ordinals, 2 will

always be a limit ordinal, & will always be a cardinal. B is the




cardinality of B. P(A) =‘{B:_B§E A} and P(K)(A) =
.fB e P(A): §:< k}, (a,b) = {{a},{a,b}} and < Ba b =
'{(i,Bi): ig I}. BA is the set of functioms on B to A.

A topological space X = ()Xl,T) is a pair such that IXI is

a set and T E;P(|Xl) containé @ and lXi and is closed under
finite intersections and arbitrary unions. 7T dis the collection of
open subsets of X. B(X), the collection of Borel subsets of X
is the smallest collection which includes T and is closed under
complementation and céuntable unions. The Borel hierarchy om X

is defined reéursivély by the conditions

o]
El(x) T

1%x) ={ A: Ac £° (xX)}
~O ~Qa

o i a0 .
g{asx) = UL g®: 8 < a}
o - . 0.
I ={Ue: ¢e Pcml) (L, )}
E; Eg , etc. were classically known as Gg» F g ete. QZCX) =
o o}
I N (X).

A function f on X to a topological space Y is Borel
measurable, (respectively a-—Borel% if f_l(A) £ B(X% (EZ(X))) when-—

({(x,8 )-generalized homeo-—

ever A g E;(Y). f is a Borel isomorphism,

morphism% if f d4is 1-1, onto, and both £ and le are Borel;(f is

a—Borel, f-'1 is B-Borel).

rf

Note. Qur l+a-Borel maps are '"measurable at level @ " in the terminology

of Kuratowski. That is because Ei is the Oth additive level of his

hierarchy.



) )
w and 2 are the topological spaces formed on the sets
oo
w, 2 by taking the product topology over the discrete spaces ®w and 2,
I :
If I is any index set and G is a function on "P(X) to FP(X),

-1
we say G is an I-Boolean operation provided s (G(qai: ie I =

G(<S-1(Ai):i £ I») whenever s 1is a function on X to X. Given a
Boolean operation G and T < P(X) we define G(T) = {G(a): A e ITl
Clearly;each class G(gi(x)) is closed under inverse continuous images.
Working with W. Wadge's theory of reducibility by continuous functiens,
R. Steele and R. Van Wesep‘haverrecently showed that in a certain natural
sense, for "almost all™ T S;B(iw) such that T closed under inverse
continuous images, I has the form T = G(gi(x)) where G is a w-
Boolean operation.

A< X is nowhere dense i1f the closure of A includés no non-empty

open subset. A is meager (of first category) if A is a countable union

of nowhere dense sets. A is almost open (has the Baire property) if there

exists an open set O such that the symmetric difference O A A 1s meager.
X 1s a Baire sgacé if no non-empty open subset of X is meager. X is

separable if X dncludes a countable dense subset.

X is a Polish space if X 1s separable and admits a complete

metrization. X is a Suslin (analytic)} space if X is a metrizable

continuous image of some Polish space. X 1is a Lusin (absolutely Borel)

space 1f X 1is a metrizable, continuous one—one image of some Polish
space.

Given a product space X X Y 1lét wl: X xY +X be the pro-—
jection mapping {x,y) » x. TFor any X, the projective hierarchy on X

is defined by setting



Ei(X) ='{nl(A): A g B(X xY) for some Polish Y}

] — 1

I () = {(“A: A g (D)

Ei+l(x) ='{wl(A): A e Ei(X x ¥) for some Polish Y}

8200 = .00 N (0.

1 1
I, Iy and z; subsets of Polish spaces were classically known as

analytic, coanalytic, and PCA sets respectively.
There are many useful normal form results for Polish, Lusin
and Suslin spaces. The following is a partial list {(cf. Kuratowski

[ 26D: Every Lusin space is a continuous one-one image of a closed

Aol By Eredh

subset of wm and of a Eg subset of Zw. Evefy unccuntable;Poiish
space 1s a union of a countable set and a set homeomorphic to dn.

All uncountable Lusin spaées are Borel isomorphic and every metrizable
space which is Borel isomorphic to a Lusin space is Lusin; Every

E; subspace of a Polish space is Polish. If a subspace of a Polish
space is Polish then it is ﬂg' Every Borel subspace of a Lusin space
is Lusin. If a subspace of a Lusin space is Lusin, then it is Borel.
Every Ei subset of a Suslin space is Suslin. If a subspace of a
Suslin space is Suslin, 1t is Ei. A subset A of a Polish space X
is Suslin if and omly if it can be obtained by the operation (A)
applied to Borel sets;‘that is, A = L% (AB PP for some collection

w
e w

"{B_: s € Sq} < B(X). Sq = L)fnw: e w} is the set of finite sequences

3

of natural numbers. One important effect of these normal forms is to
reduce questions about Polish, Lusin, and Suslin spaces to questions

w fuh
about Borel and projective subsets of or 2 .

Actions and Equivalence Relations

A topological group G = (|G|,T,Q) is a triple suth that



(‘GI,T) is a topological space, (IGl,o) is a group, and the function
(g,h) » g o h—l is a continucus map on the product space G x G to G.
"G 1s a Polish group, lusin group, ete. if the space (|G|,T) is
Polish, Lusin, ete. | |

L] T

Givem J: G x X + X, we define J°: X +» X for g £ G and

1

X
bl T for x € X by the condition Jg(x) =J (g) = J(g,x). If
G 1is a group and the map g H-Jg is a homomorphism on G to the
group of permutations of X, then J = (X,G,J) is an action. If X

is a Polish space, G 1is a Polish group, and J is continuous, then

J 1s a Polish action. When no confusion will arise, we write gh for

g oh and gx for J(g,x). Given an action of G on X, we obtain
an action of G on P(X) by setting gA = {gx: x e A}.

Every action J = (X,G,J) induces an equivalence relation "
EJ='{(x,y): (Jg e G)(gx = y)}. If X and G are Suslin and J is
Borel (e fortiori, if J 4is a Polish action), then EJ is easily seen
to be a Ei subset of X x X.

Given an equivalence relation E on a set X, we say that
AC X 1is E-invariant if x ¢ A and yEx dimplies y ¢ A. For arbitrary

A CX, ATE = {y: (Hx e A)(yEx)} and A-“E = {y: (Vx)(xEy 2 x e A}.

+ - + -
When no confusion will result we write A and A for A e and A E.

+ - . . : > :
A and A  are respectively the smallest invariant set inecluding A
5 +
and the largest invariant set included in A. For x ¢ X, [X]E = {x1
' #
is the E-equivalence class or orbit of =x. If B is an invariant set

# i

#* :
<& B we say B is an E-invariantization of B.

such that BHE B

X/E is the set of E-equivalence classes and np is the pro-

jection map =x + [x]E. When X 1is a topological space, X/E is



topologized by giving it the strongest topology such that ﬂE is

continuous. E 1is lower semicontinuous (respectively upper semi-

'continuoué) if A+ is open (closed) whenever A 1is open (closed).
An equivalent condltion is that TR be an open (cloéed) mapping.
Bourbaki [9] refers to lower {upper) semicontinuous equivalences as
open (closed) equivalences. We have chosen our terminology, which
agrees with that in Kuratowski [26] when equivalence classes are closed,
to avoid confusion with equivalences whose graphs are open or closed.
When X is Suslin, we say E is a [ equivalence on X pro-
vided E is an equivalence on X and E 1is a Ei subset of X x X.
_If Eq and E, are equivalences on X and Y respectively,
then Eq x Ep = {((x1,y7),(x9,¥2)): x9E1xy & yiEgyy} is the product
equivalence on X x Y. 1 will always be the identity equivalence. If

J; and J, are actions of G on X and Y respectively, then the

product action Jl x Jo of G on X x Y is defined by setting g(x,y) =

(gx,gy). Note that Ejy XJZ is not generally the same as Ej x EJZ.
1 1

Logic

If negw and R is any set then R = (1,IR,n)) is an n-ary
relation symbol and n = n(R) is the‘arity ef . R. For amy set e,
¢ = (1,{c,0)) is a constant symbol.

A simllarity type is a set of relation symbols and constant sym-—

bols. If p 1is a similarity type, then Rp is the set of relatiom

symbols of p and Cp is the set of constant symbols of .



For any set A # 9, IXp AI is the set

y

n(R)

l‘ A-—-2 N CpA
R

REP

and Xp i is the corresponding topological product space formed over

the discrete topologies on 2 and A. If S e Xp A then (A,S) is
>

a p-structure with universe A, Vh is the class of all p-structures

and Xp, the canonical logic space of type p, is Xp -
. 2

Since we will be interested in questions of effectiveness for

k we adopt a standard set theoretic "arithmetization" of the language

2

U.}lU.}

as follows:

The set of symbols Lm Lu(p) contains each symbol in p, plus

, 1
variables v .= {(3,(n,0)) for each n ¢ w, and logical connectives
= = (0,(8,2)), "1=4, \,{= 5, ’ﬂ' =6, {J\: 7, m\/: B

Atomic formulas are Ty =T,

))) where each Ty is a wvariable or censtant

(9)(35 (Tl""’Tn(E
symbol and R 1is a relation symbol. =3¢ 1s (4,¢), Xfﬁ is  1(5,2),

Ao is (7,8, . Jve is (6,(v,6)), Yve is "(8,(v,9)).

If ¢ 1s an atomic formula, then ¢, T aré gubbasic' formulas.
A basic ' formula is a conjunction 43@ ‘where @ 1Is a finite set of
subbasic' formulas. An open' QE';) formula is an arbitrary (possibly~
uncountable) disjunction }é@ where each 0 £ & 1is of the form

:Hv ,...,fﬂv M where v,,...,Vv are variables and M is basic’.
= 1 = 'n 1 n

» (9:&,(1-1:'72))) and B_(le---,Tn(_R-)

)



8a

Here and below, disjunctions and conjunctions can only be formed

which have finitely many free variables. The set Lm m(p) of infinitary
1
(first order) formulas of type p 1s the smallest set which includes




.the set of open' formulas and contains 7¢, VO, /\e"a.v¢,' 1§y¢
~ L A~ '
when it includes © U {¢}, v is a variable, and © is countéble.
These definitions correspond to those in Vaught [46]. They

differ from the usual definitions of Lm & in allowing some uncountable
L

disjunctions when p 1is uncountable, They have the virtue of being more
natural from the topological standpoint. We obtain a hierarchy en

Lw LIJ(p) which is analogous to the Borel hierarchy by defining the

1
1
] z formulas as above}and then recursively defining
’O A ’0
£, @) = {(7¢: 022, (o)}
'o T i O
() = U, (p):8 <ol
) =
z z(p) = {{V@8: 8 is countable and each, 6 ¢ @ is of the form

L]
: . L 0
ivl...avkw where k e w, each v, is a variable,and ¢ e E(a)(p)}

A subset L of Lwlm(pl_ is a fragment if L contains every atomic

formula and L is closed under subformulas, finite conjunctions and dis-

junctions, and negatioms.
The finitary predicate calculus me(p) is the fragment of

A w(p) obtained by restricting all disjunctions to be finite. The
1

usual prefix hierarchy on _wa is defined by setting

) o
\jn(p) 1 _(Nr, 6

and

(8]
in(p)

An n—-formula is a formula with free variables among . MRt G

226 ML, o).

A O-formula is a sentence. A propositional formula is one with no vari-

ables at all. ¢(§) is the result of replacing a by b 1im ¢.




10

We will use standard abbreviatiomns (¢ A v for Af{s,yv},
-¢ >y for =3(d A TY), ete.) to simplify formal expressions.
| A
1 1 =
(:j.zi)(rb) abbreviates (gzi)(cb /\-(Yzj.)w(v_) % 3 gj.))
=4
where j 1s the smallest such that 35 does not occur in ¢.

(a#vl,...,vn)(q;) abbreviates (gvl,...,vn)(q;/\ 0 viivj).

i<jzn

—~

Given similarity types p and p1> P + f1 is the result of

adding the symbols of tc p. It is defined by setting

Py

pg = {({,((p,a),n): (i,(a,m)) € pi}

and then defining p+pl =p U pg-'

A E'i (2nd order) formula of type p 1is an expression of the

form

deiVe,dege - (F or Yo 0

where P1r--»p, are countable similarity types and

i +po.Fo..to ).
¢eLmlm(p Py on)

v 4![ Zl 1 t
In aught [ ] z and were denoted as 3 and V

—~— b

' i
respectively. We will use the expressions }gi, E]n to denote the

-~

corresponding classes of finitary 2nd-order formulas obtained by re-

stricting ¢ to belong to wa(p+pl+...+pn) in the definition of

1 1,
L] ¥
o), z' ().
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(n) c

F R :
or ngp, K —vpu{g_,...,n—l}

is defined by the equation

‘K(n) - G- |

='{(A,s,ao,...,anul): . L g aE B fame K}. 1If 3 is

an n~formula, (4,3) is a structure and a ,-..s8 o are elements of
A which satisfy ¢ in (A,S) (in the obvious sense), we say

(A,S,ao,...,a ) dis a model of ¢ and write

n-1
(A,S,ao,...,an_i) £ Mpd(n)(qb) or (A,S,ao,...,an_l)[: ¢. Whem n =0

K
we drop the superscript. Mod (¢) = Mod(¢) () K. If T is a collection

of p-formulas and ngp , We define I‘(K(n)) =

‘ {Mod(n) () N K(n): ¢ is an n-forfmula in T}. We say K is ,2:.'2’
E'l, ete., if K e 'O ), Z'I(V S T

~ n ~ p ~ T o] .

J) = (Xp,m!,Jp), the canonical logic action of type p, is
5 or type

defined as follows:

w! dis the group of permutations of w given the relative

topology as a subspace of w®.

For g e w!, S ¢ Xp, gs = Jp(g,S) is the usual isomorph of S

under g. Thus, for each R ¢ R and each ¢ ¢ Cp

(@) g Giyseesi gy) = SR(g—l(il),---,g—l(in(R)))
(gS)c = g(SC)-

It is easily seen that Jp is a Polish action whenever o is countable.

Ip = EJ is the usual isomorphism relation on Xp.
p
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oy ='{E; n ¢ w}. if p 1s disjoint from Py? then Borel

and projective subsets of Xp are naturally described by propositional

formulas of type p U by @s follows. An atomic name +4is an expression

_EQ;I,---,in(E)) or ¢ =1 where B’Eie p and EJE_,...,EH(E)) e py-

¢ 1s a p-name if ¢ 1is propositional and every atomic subformula of

X . o) il ;
¢ is an atomic name. If ¢ ¢ Lmlm(p L)pN), Ela(p L)pN), I n(p \)DN),

o] I ]
etc., we say ¢ 1is a Borel p-name, Za—p—name, zn-puname, etc. .
: o — L Il o

¢ names the set [¢] = {8: (0,8,0,1,...) [F¢}. Clearly, ngp is

Borel, L, 'Ei, ete. 1f and omly if B has a Borel-name, _Ez—name,

1
I —name, etc,

~T

is disjoint from

We assume throughout the dissertation that Py

all other similarity types which are mentioned.

Subsets of Xp are also defined by arbitrary sentences of type
p. Thus, if & is a (first or second order) n-formula of type p, we

identify S e Xp with V(m,S) and set [e(n)ﬂ = MOd(n)ke) r)xén). It

- ' n . g :
is apparent that ﬁe( )ﬂ is invariant under the canonical equivalence

on X(n) =X x mn. It is also apparent that ﬂe(n)ﬂ is ‘EZ, Borel,

p P
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1 \ 1
'En’ etc. when 8 1is ', 1, , Ejn’ ete. (A _E:—name
ete. for He(n)ﬂ may be obtained by inductively replacing subformulas
of the form Eﬂv¢ by disjunctions \/{¢(z): ie w}). Thus, B is

et

5 . 1 h 0
I -invariant T, $~, etc. whenever B 1is B 3 TR atc.
~0 ~ n

~1] ~

For each of the Borel and projective classes the converse of the

above holds and we have the 1dentities Tu'i(xp) = invariant '§i(Xp),"
"y, (X ) = invariant 8(X )," "E'O(X ) = invariant EO(X O %
wyw P P ~ap ~ ‘p

g 1s a Zl—p-name, then the equation

~n

1617 = [(Jo) G a(Y ) (Viy, =it ieada AfL# 1 1<3<wbl

o T + . 1 . + b i )
indicates that [8] is Z'n. Since B =B when B is invariant,
~

the first identity follows. The second, for countable p, follows from

the first and the Lopez~Escobar interpolation theorem:

i(vp)(\ E' (V) =1 m(Vp). The third identity is a recent result

! !

~ l p
due to Vaught ([46]). It refines the second and extends it to arbitrary
p. In chapter III we will add to the list of identities by proving

. o 4
"countable alternated union of H'a sets = invariant countable alter-
~

. 8] . . o - a
nated union of lh sets." These sets coincide with the invariant
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£§+1 sets when p 1is countable.

Effectiveness

In chapter I and chapter 11T we will prove "effective" versions
of topologilcal and model theoretic results. For us it will be most

convenient to formalize the concept of "effectiveness" in terms of



13

hereditarily countable sets, admissible sets and primitive recursive
set functions.

The canonical reference for primitive recursive set functions
is Jenson-Karp [20]. We.recall the basic definitions: A set fumction

is primitive recursive (prim) if it can be obtained from the initial

functions by substitution and recursion as fellows:

Initial functions:

(i) P (x

n,i 1

(ii) F(x,y) = x U {y}

seresX ) = X,3 Ts@axa, Lsi<m
n 1 == = -

(iii) C(x,y,u,v) =x if u e v, ¥y otherwise

Substitutdion:

(@) F,9) = 6L,EWM L) ¥ = tvl,...,vm), ¥ W)

i

(b) F(V,w) = GH®E),W)

Recursion:

F(w,g) = G({Fu,v): ue whw,?

If x X are sets, a function F is prim(xl,...,xk) if

1
there exists a prim function G such that for all Vyseees Voo
F(vl,...,vm) = G(vl,...,vm,xl,...,xk). y 1is prlm(xl,...,xk) 3 the’
constant function F(v) =y is prim(xl,...,xk). It is apparent that
y is prim(xl,...,xk) if and only if y = G(xl,...,xk)' for some prim

function G. The set of all such y 1is the prim-closure of (xl,...,xk).

A set "A is transitive if y € x € A dimplies y € A, Given a

set x, the tramsitive closure , Tec(x), of x 1is the smallest transi-

tive set A such that =x e A. x 1is hereditarily countable (x e HC)

if Te(x) <w.
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As an examplé, note that the definition TC(y) =
yu U{TC(2): z € y} shows that the function F(y) = Tc(y) 4is primi-
' .tive recursive.

If p 1s hereditarily countable then Xp < HC and all of the
first and second order formulas of type p are hereditarily countable.
Moreover, all of the syntactical notions ("8 is a formula,”" "¢ is a
subformula of ¥," etc.) we will use are easily seen to be set
theoretically primitive recursive (cf. Cutland [14] or Barwise [7]).
In particulax; the function 6t GN which maps p-formulas te p-names
by replacing variables by special constants is prim(p) £for p € HC.
~- Consider, for illustration the case p = {e} where ¢ 1is binary.

Then 8§ & GN is defined by the recursive conditions:

(s(uy oy = £(L,D)

(-:¢)N = '1(¢N), (}{ﬁ)N = A\;/{GN: 8 ¢ 8}, dually for 4_\
(Je, 0"
(Jo 00"

il

V{¢N(l-%-): j e w}, dually for lo!

Il

E’plcf:N, dually for ’\5’

The language of set theory is me({g}) where e 1is binary.
€ Lm({g}) is Ao if every quantification in ¢ is restricted;
that is, of the form (yv) (vew + ...) or of the form (Jv)(vew A ...).
The set of I-formulas is the smallest which includes the AO
formulas and is clesed under finite conjunctions and disjunctions, re-
stricted universal quanification and arbitrary existential quantification.
A set A is admissible if A 1is transitive, prim—-clos_ed and

satisfies the I-reflection principle:
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If & 1s I, a'l,...,an e A and (A,e,al,...,an)#: 8, then

for some transitive b e A, aps-eesd e b and (b,e,al,...,an) h 8.

A subset X of A is f-definable on A (X S‘E(A)) if for some
L
new, some be An, and some ntl-formula ¢ € £, X =
. v -
{a: (A,e,b,a) [Fé}. X is p-definable (X € A(A)) if both X and

7 A ~ X are E—definable.

All the facts we require about admissible sets may be found in

[ 6] or [23].

For 4 <HC, p e a, "= “};;", "’Qi", etc., we define
P[d](Xb) = {[¢]: ¢ € and ¢ is a T'-p-name}.

.In I §2, we will require some standard results about the con-
ventional "lightface" classes Ei, Hi as found e.g. in [39]. It
is known that if p 1s finite, x ¢ Xp, and - Ax’ the smallest
admissible set containing x, then our classes EE[A](XQ),
,Ei[AJ(Xp) coincide with the lightface classes Eg(Hyp x), Zi(x). Thus,
the approach via prim—clqsad and- admissible sets, subsumes and refines
the lightface approach for our purposes.

The only results comnecting 'lightface™ with "prim-closed" which
are required for our arguments are the following obvious facts:

(i) ni(z“’x‘”) gﬁ[c{w](z‘”"“’) where (I is the prim-closure of
{wd.

(@ W L iy,

Nurbered Items

Certain statements in the body of the dissertation will be num-
bered. To assist the reader we have assigned these numbers in logical

order rather than in the order of appearance in the text.



CHAPTER I: PROJECTIVE EQUIVALENCE RELATIONS AND INVARIANT

PREWELLORDERINGS

Moschovakis [35] and Vaught [44] established invariant ‘Ei

and l%i Teduction theorems (and, implicitly, corresponding invariant

prewellordering theorems) for canonical logic actions. In [46]
Vaught did the same for arbitrary Polish actions. The main subject of
this chapter (§1 and §2) is a proof that these results hold for arbitrary

1 o . : :
El equivalence relations on arbitrary Suslin spaces. For suitable

spaces X the results are obtained in a very effective "primitive
recursive" version, (Theorem 2.1) -- as were the effective theorems
of [44). Assuming projective determinacy, (PD), the same arguments  (which

are based on the ordinary Hl prewellordering theorem) extend without

1

. . ; i
alteration to yield invariant reduction theorems for '52n+l and

1

£2n+2’ all n € w.

The present chapter is the latest version of work begun jointly
with John Burgess in 11 }J. That paper contained proofs of the invariant

‘5% prewélldrdering and reduction theorems (due to the author) and of

the invariant ]| reduction theorem for pairs (due to Burgess). At

1
that time we conjectured the full invariant Ei prewellordering theorem,
but could prove only a very special case of the theorem for EZn+l

(n > 1) assuming ¥PD ([11l} 4.2). The conjecture (and, hence, full
invariant gi reduction) was established by R. Solovay based on an

idea of the author (see our remark III, p.40 for more details). This
argument forms a central part of the proof of 2.1 below. Solovay's

proof is-éufficient to establish a corresponding "lightface" theorem --
as is a second argument {(for invariant .Ei prewellordering) due to

Burgess [10]. The additional argument of §2 which establishes the stronger

16
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"primitive recursive' part of 2.1 is new.

Tt is closely related to
the methods of Vaught [44]

§ 3 contains a discussion of the invariant uniformization
principle. Assuming V

1
b3

L we show that the principle holds feor
I (n > 2).

We prove a general result on counterexémplés which is
related to previous work of Dale Myers.



INVARTANT DESCRIPTIVE SET THEORY AND
THE TOPOLOGICAL APPROACH TO MODEL THEORY
by

Douglas Edward Miller
Abstract

We study various types of topological spaces with equivalence
relations ("topological equivalence spaces') which arise in connection
with model theory and we apply topological results and methods to the
study of languages and structures.

Most of our model theoretic applications derive from considera-
tion of the natural topological space formed by the set of countable
structures of any fixed countable similarity type. Given a similarity
type 9, for illustration consisting of a single binary relation, we
identify the structure (w,R) with the characteristic function of R
and form the usual topolegical product space %, = Em*m.

Logic deals primarily with sets B E;Hp which are closed under
isomorphism, i.e. invariant under the squivalence relation I =
{(R,8): (w,R) = (w,S)}. While the study of the topological equivalence
space {Ip,I} in connection with model theory dates from the thirties,
the subject has received increased attention since the intensive study
of the language Ih;ﬂ was commenced in the early sixties. One indica-
tion of the close connection between the topological equivalence space

ﬁ%,i} and infinitary logie is given by Lopez-Escobar’s resulc:

B gxﬂ is an I-invariant Borel set if and only if B = Kp (1 Mod(g) for

some sentence O € I..LrJI m’«"}'
1



Salient features of the space (Hﬂ,l} include the following:
(1) (Hb'I} is a Polish (separable, completely metrizable) topological

2
{(analytic) subset of Xb = Zp x Kp; 44) X

space and I dis a E:_'::
is induced by a "Polish action", i.e., a continuous action on the
Polish space Kp by a Polish topological group, viz. wu!, the group
of permutations of the natural numbers given the relative topology from
the Baire space w’.

In the first twe chapters of this work we study im turn the
spaces which satisfy each of these hypotheses. In chapter IIT we apply
some of the material from chapter II together with some additional
results proved just for the logie spaces to obtain new facts in model
theory.

In chaptar I we study spaces (X,E) such that X is a Polish
space and the equivalence relation E is a _,Ei (analytic) subset of
32. We introduce an invariant version of the prewellordering property
and apply it to prove that the collections of E-invariant ‘E; (PCA)

1
and -El (CA) sets have the reduction property. Assuming projective

determinacy, these results are extended to E;n_-kz and ﬂ;n-l'l for

all n & w. An invariant uniformization principle is also considered

and shown to follow for ,E:; , n *>2 from the axiom of constructibiliry.
With suitable restrictions on H, effective versions of all the results
are obtained. These effective results are proved in a "set theoretically
primitive recursive" context which has a wider spplicability than the
traditional "lightface descriprive set theory."

1
The invariant *El prewellordering and reduction theorem 1s due

to Solovay based on a conjecture of the zuthor., The results on reduction



extend theorems of Vaught and Moschovachis, who proved invariant Hi
reduction for the spaces {XD’IJ' cf. Vaught [44]; Vaught, who proved

invariant El' and L; reduction for Polish actions, see Vaught [46]

1
and Burgess, who proved invariant reduction for pairs of Bi sets
under the hypotheses of chapter I, see Burgess-Miller [11]. The
result on wniformization was obtained jointly with Burgess and appearad
in [11] as did much of the material of chapter I. It extends unpublished
work of Kuratowski,

Chapter II deals with Folish actions and, more generally, with
spaces (X,G,J) such that G is a nonmeager topological group with a
countable basis, X is a topological space, and J: G x X + X 45 &
Borel map which defines an action ¢f € on X. The main tool and sub-
ject of interest in this chapter is the *-transform, B B* =
{x: {g: J(g,x) ¢ B} is comeager}, which was introduced in Vaught [453].
We contribute both to the basic theory of the transform and te the list
of applications of the transform to the theory of group actiomns, Ferhaps
the most important result from this chapter is the invariant wversion of
the well-known strong 22 separation theorem of Hausdorff and Kuratowski
(ef. Kuratowski [26] or Addisom [3]). ﬂ:{ﬁ} is the ath multiplicative
level of the Borel hierarchy en X (so ﬁg = Gz Hg = B etc.). We

prove II.4.3: If J is continuous in each wvariable, X is Polish,

E, is the equivalence relation {(x,y): ({g)(J(g,x) = y)} and

l <o <w , then disjoint E —invariant E:+l sets can be separated by

a countable alternated union EE_EJ~invariant E: sets, a fortiori by

set. For g =1 the result is proved for the much

an invariant é:+l

wider class of equivalence spaces (X,E) such that E 1is lover semi-

continucus (open).



In chapter III we apply topological results and methods to model
theory, obtaining several new results and giving new proofs of several
known theorems. In the latter case, the topological proofs are generally
shorter than previously known arguments. Moreover, they make explicit
a causal connection between classical topological theorems and their
model theoretic analogues.

T
Topics discussed in this chapter include a T g separation

~
theorem, a recent global definability theorem of M. Makkai, a generali-
zation of a result on the definability of invariant Borel funetions due to
Lopez-Escobar and a result on continuous selectors for elementary equiva-
lence. Our treatment of the E;n separation theorem illustrates most
of the types of results proved in the chapter. ﬂ'z denctes the ath
level of the natural hierarchy on formulas of Lﬁlm in which, for ex-
ample, EJ; classes have the form Hod(a":hfi Xifﬁm(ﬁ” with each
O finitary, quantifier-free, cf. Vaught [46]. The basic E'z separa-

tion theorem is an unpublished result of Reyes. We give two new proofs

T
3 ]
of the basic theorem: Disjoint I ol classes (1l < @) can be separated

L
by a countable alternated union of I z classes. One proof is based on

I1.4.3; the second is a model theoretic translation of the classical
topological proof. We use some ideas of D. A. Martin to obtain an ad-
missible version of the theorem and we apply an approximation theorem of
J. Keisler to obtain the well-known finitary version (Shoenfield's "i:
interpolacion theorem). We also apply the result to study the complexity
‘of L definitions of iscmorphism types. We prove severzl theorems.

Nlm
The following 1is cypical:



1T1.4.2: If a complete Lhw theory T has a countable model (1

: 10 =
such that the isomorphism type of ¢y is I o OVer I‘umi then T
is w-categorical. This extends a theorem of M. Benda. E'g-uver—me

classes have the form Mod( VY Ix A ‘q’fﬂmfﬁ,?}), each
a™ @

an £ Lw.
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CHAPTER O: TINTRODUCTION

A brief summary of this work may be found in the preceding
Abstract.

Descriptive set theory deals with Borel and projective sets
in metrizable spaces and especially in the spaces m“, 2" and other
"Polish" (separable, completely metrizable) spaces. This "classical
work goes back to Lebesgue, Lusin, Suslin, Sierpinski and others. The
best known reference is Kuratowski [26]. The first application of
descriptive set theory to logic was made by Kuratowski inm 1933 in [25]
where he defined the infinitary language Ib " and showed that the

1
epllection of well-orderings is not an Lh m-elementary class. Since

that time and especially during the last %ifte&n years, the connections
between classical descriptive set theory and model theory have been
studied by many authors. See, for example, Addison [2-4], Score [38] |
Lopez-Escobar [28), Grzegoreczyk, et. al., [16]1, Morley [33] and Vaught[44-46].
Some authors, notably Addison and his students, have expounded
the analogies which exist between the classical theory of Polish spaces
and the model theory of the finitary predicate calculus, Lhm* Other
authors, such as Lopez-Escobar in [28] and Vaught in [44] have found
similar analogies with the model theory of Lblw' In fact, topological
considerations were an important factor leading Scott and Ryll-Nardzewski
to propose Lmlu as the "natural" infinitary first-order language in
the early sixties (cf. Scott [38]).
Most recently, Vaught in [45] and [45] introduced a powerful
method to shew that many infinitary results can be derived from their

classical counterparts. As we shall remark in IIT §2 below, the

1



corresponding finitary theorems often follow by an approximation
theorem of J. Keisler. Moreover, the theorems in logic are obtained
as special cases of theorems about Polish actions or certain other
kinds, of action spaces.

This is the type of result with which we will be primarily
concerned. It accomplishes several things. First, it gives a "causal"
explanation for the analogies found by previous authors. Second, by
showing that certain results in model theory are special cases of
general results on equivalence spaces or action spaces, it enables us
to compare the restrictiveness of the hypotheses under which the general
results are obtained. On the basis of this comparison, we can then
classify some results as more "model theoretic" than others. Finally,
it leads us to new theorems about actions or equivalence spaces as
generalizations of results in model theory and to new theorems in
model theory as invariant versions of classical theorems of descriptive
set theory.

For a summary of the topics to be considered in this work we
refer the reader to the abstract and to the table of contents. In the
remainder of the introductory chapter we will establish some notationzl

conventions and review some of the basic definitions which we will require.

Sets and Topological Spaces

ON is the ceollection of ordinals, each ordinal being the set of
preceding ordinals. Cardinals are initial ordinals, w and w, are the
first two infinite cardinals. a, B, y will always be ordimals, A will

always be a limit ordinal, x will always be a cardinal. B is the



cardinality of B. P(A) = {B: BC A} and P(g) (A) =
{Be P(A): B <k}, (a,b) = {{a},{a,b}} and <B: i€ P =

B

{{;L,Ei}: ie I}. A is the set of functions on B to A.

A topological space X = {ixl,T} is a pair such that 11{1 is

aset and T C P(]IIJ contains @ and [K' and 1is closed under
finite intersections and arbitrary unions. T is the collection of
open subsets of X. B(X), the collection of Borel subsets of X
is the smallest collection which includes T and is closed under
complementation and countable unions. The Borel hierarchy on X

i5 defined recursively by the conditions

Iy =7
12®) =F A: Ac £ ()}
% = U@m: 8 <al
o
I ={Ue: oe Ry g G}

=
HoO Ny O

E; s etc. were classically known as G,, F , etc. Ez{x) =

)
X) N r(x).

=]

A function £ on X to a topological space Y is Borel
measurable, (respectively u-Earel}’ if f"1(A] £ B{:{}, {E{: {1{}]1 when=—

ever A g E;(Y}. f is a Borel isomorphism, ((x,8)-generalized homeo-

)
murphism), if f 4s 1-1, onto, and both £ and fqi are Borel (£ 1is

-1 is g-Horel).

a—-Borel, £
Note. Our liu-Borel maps are "measurable at level ¢ " in the terminology
of Kuratowski. That is because };_,z is the Oth additive level of his

hierarchy.



w W
w and 2 are the topological spaces formed on the sets

W W
w, 2 by taking the product topology over the discrete spaces © and 2.
If 1 is any index set and G is a function on IP(K} te P(X),

we say G 1is an I-Boolean operation provided s*lﬂ3(ﬂﬁﬁ ie I») =

G{{s-l(&i}::l € I>) whenever s is a function omn X to X. Given a
Boolean operation G and T € P(X) we define G(r) = {G(a): A e II‘]:
Clearly, each class G{E;(X}) is closed under inverse continuous images.
Working with W. Wadge's theory of reducibility by continuous functions,
R. Steele and R. Van Wesep have recently showed that in a certain natural
sense, for "almost all" T Eﬁfi‘m) such that T closed under inverse
continuous images, ' has the form T = G(gz(x}) where G 4is a w-
Boolean operation.

A< X is nowhere dense if the closure of A includés no non-empty

open subget. A is meager (of first category) if A 1is a countable umion

of nowhere dense sets. A 1s almost open (has the Baire property) if there

exists an open set 0O such that the symmetric difference 04 A is meager.
X is a Baire space if no non-empty open subset of X is meager. X is
separable if X includes a countable dense subset.

X is a Polish space if X 1s separable and admits a complete

metrization. X ds a Suslin (analytic) space if X 1s a metrizable

continuous image of some Polish space. X is a Lusin (absolutely Borel)

space 1f X 1is s metrizable, continuous one-one image of some Polish
space.

Given a product space X X Y let Ty X*x¥Y+X be the pro-
jection mapping (x,y) » x. For amy X K the projective hierarchy on X

is defined by setting



Ei(ﬁ} = IHI{A}: A g B(X xY) for some Polish Y}

1 X
LX) = {-A: A e (%))

;4}+1(K} = {wl{ﬁ): A g L[ifx % ¥) for some Polish Y}

A = 5 ()N L.

Lot and ;é subsets of Polish spaces were ciassically known as

oo I
analytic, coanalytic, and PCA sets respectively,

There are many useful normal form results for Polish, Lusin
and Suslin spaces. The following is a partial list (cf. Ruratowski
[26]): Every Lusin space is a continuous one-one image of a cljsed j
subset of u_lw and of a 113 subset of Zm. Every uncuuntabl::PI:;;.I;.;t;-:'l
space is a union of a countable set and a set homecmorphic to hr-
All uncountable Lusin spaces are Borel isomorphic and every metrizable
space which is Borel isomorphic to a Lusin space is Lusin. Every
Ez subspace of a Polish space is Polish. 1If a subspace of a Polish
space is Polish then it is E;. Every Borel subspace of a Lusin space
is Lusin. If a subspace of a Lusin space is Lusin, then it is Borel.
Every 51 subset of a Suslin space is Suslin. If a subspace of a
Suslin space is Suslin, it is _é A subset A of a Polish space X "
is Suslin if and only if it can be obtained by the operation (A)

applied to Borel sets; that is, A = U QE r for some collection
¥ Efn

{B . :

s S € Sq} < B(X). Sq - U{ﬂm: ng w} is the set of finite sequences

of natural numbers. One important effect of these normal forms is to
reduce gquestions about Polish, Lusin, and Suslin spaces to questions

about Borel and projective subsets of ﬁ” or fﬂ.

Actions and Equivalence Relations

A topological group G = (IG],T,E} is a triple suth that



¢|e|,T) 4is a topological space, ([G|,e) is a group, and the function
(g,h) » g o h-l is a continuous map on the product space G x G to G.
G is a Polish group, Lusin group, etc, if the space (|G|,T) is

Polish, Lusin, etec.

Given J: G x x-:-x',} we define J°: I{-r-I. for g e G and
It G ¥ x' for x £ ¥ by the conditiom .Ig{x} = .Ix{g} = J(g,x). If
G is a group and the map g+ ..'.lE is a homomorphism on G to the
group of permutations of X, then J= (X,6,3) is an action. If X
is a Polish space, G 1is a Polish group, and J 4is continuous, then

J is a Polish action. When no confusion will arise, we write gh for

geh and gx for J(g,x). Given an action of G on X, we obtain
an action of G on P(X) by setting gA = {gx: x ¢ A].

Every action J = (X,G,J) induces an equivalence relation
Ey= {(x,5): (JgeCG)(gx=y)}. If X and G are Suslin and J is
Borel (e fortiori, if J 4is a Polish action), then L‘-Z_:f is easily seen
to be a E_i subset of X x X.

Given an equivalence relation E on a set X, we say that
AC X 1s E-invariant if x e A and yEx implies y ¢ A. For arbitrary
ACX, A™=(y: (Jx e HED) and A7 = {y: (Vx)(xEy 3 x e 4}
When no confusion will result we write A+ and A for A+E and ﬁ'E.
AT and A" divé respectively the smallest invariant set including A

"
and the largest invariant set included in A. For x ¢ X, [xl;= {x}

#
is the E-equivalence class or orbit of =%. Tf B i1is an invariant set

STV #
such that B € B ©B we say B 1is an E-invariantization of B.

X/E 1is the set of E-equivalence classes and rg is the pro-

jection map =x & [x]E When X 1is a topological space, X/E is



topologized by giving 4t the strongest topology such that ﬂE is

continuous. E is lower semicontinuous (respectively upper semi-

continuous) if A+ is open (closed) whenever A 1is open (closed).
An equivalent condition is that =, be an open (closed) mapping.
Bourbaki [9] refers to lower (upper) semicontinuous equivalences as
open (closed) equivalences. We have chosen our terminology, which
agrees with that in Kuratowski [26] when equivalence classes are closed,
to avoid confusion with eguivalences whose graphs are open or closed.
When X 1is Suslin, we say E iz a Ei equivalence on X pro-
vided E 1is an equivalence on X and E 1is a Ei subset of X x X.
If E; and Ey are equivalences on X and Y respectively,
then Eq x Ep = {((xl,yl),(xz,yzj}: x1E1%5 & ylﬁzyz} is the product
equivalence on X x Y. 1 will always be the identity equivalence. If
Jy and Jo are acrions of G on X and Y respectively, then the

product action Jl x J, of G on X x Y is defined by setting g(x,y) =

(gx,gy). UNote that EJliZ is not generally the same as EJlx Ejz.

Logic
If negw and R is any set themn R = (1,TR,n)) dis an n—-ary

relation symbol and n = n(R) is the arity of R. For any set ¢,
c=(1,(c,0)) is a constant symbol.

A similarity type is a set of relation symbols and constant sym-

bols. If p 4is a similarity type, then Rp is the set of relatiom

symbols of p and Ep is the set of constant symbols of p.



For any set A # 0, be AI is the set
»
I , a(R)
A Cou
R
EE 1)
and X is the corresponding topological product space formed over

A
the discrete topologies on 2 and A. If S ¢ xb A then (A,S) is

a p-structure with universe A. ?b is the class of all p-structures

and Kp, the canonical logic space p_f' type p, is Ip o

Since we will be interested in questions of effectiveness for

L
I.I.llm

as follows:

, we adopt a standard set theoretic "arithmetization" of the language

The set of symbols Lmlm(p} contains each symbol in p, plus

variables pL - (3,(n,0)) for each n ¢ w, and logical connectives

==(0,(¢,2)), =4, V=5 J=6 A=7, Y-=8.
A = A~
Atomic formulas are yET, T (9,{5,{71.12})} and E{tl....,fn{g])

i
symbol and R 1is a relation symbol. =3¢ 1is (4,4), :{ﬂ is (5,0),

Ae is (7,0, Tvé is (6,(v,8)), Yvé is ‘(8,(v,9).

= (9, (R, {Tl""’rn(R}” where each 1, is a variable or constant

If 4 4is an atomic formula them ¢, 7¢ are subbasic' formulas.
A basic ' formula is a conjunetion {}a where ® is a finite set of
subbasic' formulas. An open' [E';} formula is an arbitrary (possibly™
uncountable) disjunction }i:ﬂ' where each 8 £ 8 1is of the form

31;1, csey qv. M where v, ,...,v_ are variazbles and M is basic'.
o -~ n 1 n



da

Here and below, disjunctions and conjunctions can only be formed

which have finitely many free variables. The set Lw m(ﬂ) of infinitary
1
(first order) formulas of type p 1is the smallest set which includes



-the set of open' formulas and contains ¢, E’B, ﬁei 3 v, _'_'fyg.
when it includes © U {¢}, v is a variable, and © is countable.

These definitions correspond to those in Vaught [46]. They

differ from the usual definitions of I‘m " in allowing some uncountable

1

disjunctions when p is uncountable. They have the virtue of being more

natural from the topological standpoint. We obtain a hierarchy on

Lu m{p} which is analogous to the Borel hierarchy by defining the

x

0

formulas as abuve, and then recursively defining

'o 'o
I,6) =1{7¢: e ()}
%) = UL, %(): B <a )
= i <a
_I&:} p L (e
L :(p} - {\__.J:E: P is countable and each. ® € 8 is of the form
L]
o
3?1...3_\?‘:1{! where %k & w, each v, is a variable and ¥ e ﬁ_{u‘(p}}
A subset L of L m(p]_ is a fragment if L contains every atomic

1
formula and L is closed under subformulas, finite conjunctions and dis-

junctions, and negations.
The finitary predicate calculus Lm (p) is the fragment of

L, m{p} obtained by restricting all disjunctions to be finite. The
1

uwsual prefix hierarchy on me is defined by setting

o _ o
Vo) =1 () NL, (o)
and

o) =2 )N, @),

=

An n-formula is a formula with free variables among ¥ ,...3V -
s ~D =n-l

A O-formula is a sentence. A propositional formula is one with no wari-

ables at all. ¢(§} is the result of replacing a by b in 4.
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We will use standard abbreviations (4 A ¢ for Aflé,ul,

¢ +y9 for =(dA ¢), etc.) to simplify formal expressions.

v
(Jty,)(#) abbreviates (Jv)(6 A czgjmg,:) + v 2 7))

where j 1is the smallest such that v, does not occur in 4.

_j

(_3_“"1’""“::} () abbreviates (Jvy,e--pv ) (o ni{z;\m v, £ v

Given similarity types p and pyr P + Py is the result of

adding the symbols of Py to p. It is defined by setting
8y = {1, ((pya)ym):  (1,(a,m)) & py}
and then defining ptp; = p U p;.

i
A L - (2nd order) formula of type p is an expression of the

form

inlgpzipz---ti or V/ )p ¢

where p,yessah are countable similarity types and
L n

$ el

mlml:p-i- pl+. . .+pn} .

i1

1 1 al
In Vaught [44] £ and 'Eln were denoted as Hn and V

— -~ 0
1 1
respectively. We will use the expressions \fn, 'atl to denote the
e —
corresponding classes of finitary 2nd-order formulas obtained by re-
strieting & to belong to me{p+p1+...+pn) in the definition of

B! &
'), F ().
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For KCV, g o is defined by the equation

=Y 010,...,0-1)

(n)

K - {{Ajs!anjtttlﬂn_]-J: a{}"."a E -& & (&'S} E K}. If ¢ 15

n-1
an n-formula, (A,S) is a structure, and a ;...,a are elements of
a n-1
A which satisfy ¢ d4in (A,S) (in the obvious sense), we say
{ﬂ,S,an....,an_l} is a model of ¢ and write
(n)
{a.S,an,...,an_l} e Mod (4) or (&,S.an,...,an_l)#= ¢. Whem n =0
we drop the superscript. HadK(¢) =Mod(¢) N K. If I 1is a collection
{“}) s
0

{Hnd(u}(¢}fﬁ K(n}: ¢ is an n-formula in T}. We say K is % a’

of p-formulas and Kg?pj we define r(K

1 s} 1
] L] ]
z - ete., if Keg X u{?ﬁ}, L nf?p). ete. .,

Jﬂ = {Iﬂ,w!,Jp}. the canonical logic action of type p, is

defined as follows:

w! 4is the group of permutations of @ given the relative

topology as a subspace of w’.

For gew!, SE XE, gs = prg,S} is the usual isomorph of S

under g. Thus, for each R € R and each c ¢ Cp

=1 =1
{ES)E{il’T.h'iﬂ@) s SE(E {il)l"'!g (in(g:}}}

{ESI'E = E(SEJ-

It is easily seen that J; is a Polish action whenever p 1s countable.

Ip = FJ is the usual isomorphism relation on Kp.
[+
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Lat Py = {n: newl If p 1is disjoint from Py then Borel

and projective subsets of Kﬂ are naturally described by propositional

formulas of type p U Py 28 follows. An atomic name is an expression

E{_il! 5w ,%(E}} er & = !__ where E"E Ep and ‘j_"il o aw ,i‘n{E:l) e pﬂ_

¢ is a p-pame if ¢4 i1s propositional and every atomic subformula of

) .
¢ is an atomic name. If ¢ L_ (o Upy)s ia(pUpH}, En(nUﬂH},

ll'.l.'l

o 1
ete., we say 4 1is a Borel p-name, Ea-p-name, En-p-name, BEC. .

¢ names the set [4] = {S§: (w,S5,0,1,...) E¢}. Clearly, BEKD is

Borel, I, ", etc. if and only if B has a Borel-name, E:-name,

14
I ~name, etc.

We assume throughout the dissertation that oy is disjoint from

all other similarity types which are mentioned.

Subsets of Kp are also defined by arbitrary sentences ﬂf.t}rpe
p. Thus, if @ dis a (first or second order) n-formula of type p, we
ldentify S e X with (w,5) =and set ][er“}]] = Mod @ (p) r}x:“}. It
is apparelmt that [[E(n)ﬂ is invariant under the canonical equivalence

;‘ﬂ - :{p x . It is also apparent that [[B{n]];[ is EZ. Borel,

on X
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El, etc., when 6 is E'u, ) AN E'l, etec. (A I -name
~n ~a wyw ~ n ~

ete. for [[® {u}]] may be obtained by inductively replacing subformulas

of the form vé by disjunctions {Mv}: iew}). Thus, B is
= i

o 1 o 1
Ip-j‘_nvariant jﬂ, --E-'n' etc. whenever B is -Eiu.' E'n, ate.

For each of the Borel and projective classes the converse of the

1 l 1}
(X ) = invariant jn(Ip},

above holds and we have the identities ':g'n s

Tr = " LEE- 0 | 0 - o 1
Lwlm (Xp} invariant B {xp )5 z u {Xp} invariant Ea (Xp) B v 2

g8 is a Ei-p-name, then the equation

(]

(61T = [T alYr )Yz, =1 LtewbAa ALF4: 1<5<wl]

+

indicates that [8] is -—Ein' Since B

B+ when B is invariant,

[

the first identity follows. The second, for countable p, follows from
the first and the Lopez-Escobar interpolation theorem:

E’l{? YN ]1'1(1? Y=L (V). The third identicy is a recent result

~ 1% p ~ 1% p" | Wyw P

due to Vaught ([46]). It refines the second and extends it to arbitrary
p. In chapter IIT we will add to the list of identities by proving

"ecountable altermated union of ’E': sets = invariant countable alter-

nataed union of _l"{: sets." These sets coincide with the invariant



12b

set h .
B ets when p 1is countable

Effectiveness

In chapter I and chapter III we will prove "effective" versions
of topological and model theoretic results. For us it will be most

convenient to formalize the concept of "effectiveness" in terms of
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hereditarily countable sets, admissible sets and primitive recursive
set functioms.

The canonical reference for primitive recursive set functions
is Jenson-Karp [20]. We recall the basic definitions: A set function

is primitive recursive (prim} if it can be obtained from the initial

functions by substitution and recursion as fellows:

Initial functions:
(i) Pn,i(xl"”’xn} = xi; l<n<w, 1<1i<n
(ii) F(x,y) = x U {y}

(iii) cC(x,v,u,v) =x if u e v, ¥y otherwise

Substitution:
(a) FE,%) = CHEW,W; ¥ = (vy...0v), w = CREPR N

(b) F(¥,w) = GHE),H

Recursion:

F(w,v) = (UF@u,: v e whw,¥)

if XyseeeaX, are sets, a function F dis prim(xl,...,xk} if

there exists a prim function G such that for all w ceea Voo

1°

F(vl,,..,vm} = G(vl,...,vm,zl,...,xkﬁ. y is prim(xl,...,xk) % the

constant function F(v) =y is prim{xl,-..,xk}. It is apparent that

y is prim(xl,...,xk) if and only if y = G(x ,...,xk} for some prim

function G. The set of all such y 1is the prim-closure of (xl,...,g‘}.
A set A is transitive if vy € x € A implies y e A. Given a

set x, the transitive closure , Te(x), of =x 1is the smallest transi-

tive set A such that x € A. x 1is hereditarily countable (x £ HC)

if Te(x) <w.
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As an examplé, note that the definition TC(y) =
yv UITC(z): z € y} shows that the function F(y) = TC(y) 4is primi-
tive recursive.

If p is hereditarily countable then Xp € HC and all of the
first and second order formulas of type p are hereditarily countable.
Morsover, all of the syntactical notions ("8 4is a formula," "¢ is a
subformula of ¢," ete.) we will use are easily seen to be set
theoretically primitive recursive (cf. Cutland [14] or Barwise [ 7]).
In particulaxi the function 6H EH which maps p-formulas to p-names
by replacing variables by special constants is prim(p) for p e HC.
-~ Consider, for illustration the case p = {g} where g is binary.

Then 8 = BH is defined by the recursive conditions:

(e, J}H =e(i,j)

N N W el
(2é)" = (), (V8" = H{B : 8 ¢ 8}, dually for {_f}
(311¢}H I Wﬁ%}: jeu), dually for Y

(Fo )" = Joys", avally for Y

The language of set theory is Lum{{i‘] where & 1is binary.
$ e Lw({E}) is A, if every quantification in ¢ is restricted;
that is, of the form {Hv} (vew = ...) or of the form (av}{vgw F AT T
The set of I-formulas is the smallest which includes the ﬁn
formulas and is closed under finite conjunctions and disjunctions, re-
stricted universal quanification and arbitrary existential quantification.

A set A 1is admissible if A dis transitive, prim-closed and

satisfies the _E__—ref lection principle:
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If 6 is I, Byyenesd €A and (ﬁ.,s,al,...,an}k 8, then

for some transitive b e A, d1yeeesd € b and {b,e_,al,...,an,‘p I:B.

A subset X of A is I-definable on A (X e £(A)) if for some

nE W, Some ‘1; £ An, and some nt+l-formula ¢ eI, X =
[a: (A,:,‘;:,a} f=¢}. X is Jp-definable (X ¢ A(A)) if both X and
A - X are E-dafina'bla.

All the facts we require about admissible sets may be found in

[ 6] or [23].

For  <HC, p e d, "r" = "g:", "Ei", etc. we define

r[ﬂ(xp) = {[¢]: ¢ e@d and ¢ is a F-p-name}.

In I §2, we will require some standard results about the con-
1 1

ventional "lightface" classes En, ﬂn as found e.g. in [39]. It
is known that if p dis finite, x & Ip. and A = ﬁx’ the smallest
admissible set containing x, then our classes ;:[A] {Xﬂ),
E_i[a] (xp} coineide with the lightface classes E:(H}rp x) . Ii(x). Thus,
the approach via prim-closed and admissible sets, subsumes and refines
the lightface approach for our purposes.

The only results connecting "lightface" with "prim-closed" which
are required for our arguments are the following obvious facts:

(1) ni(z“‘““:u c_:gi[am](z““”} where (I 1is the prim-closure of
{w} .

(1) Y 1) ¢ m2”).

Numbered Items

Certain statements in the body of the dissertation will be num-

bered. To assist the reader we have assigned these numbers in logical

order rather than in the order of appearance in the text.



CHAFPTER I: PROJECTIVE EQUIVALENCE RELATIONS AWD INVARIANT

PREWELLORDERINGS

Moschovakis [35] and Vaught [44] established invariant __E_li

and feduction theorems (and, implicitly, corresponding invariant

ki
prewellordering theorems) for canonical logic actions. In [46]

Vaught did the same for arbitrary Polish actions. The main subject of
this chapter (51 and §2) is a proof that these results hold for arbitrary
E‘i equivalence relations on arbitrary Suslin spaces. For suitable
spaces X the results are obtained in a very effective "primitive
recursive" version, {Theorem 2.1) —— as were the effective theorems

of [44]. Assuming projective determinacy, (PD), the same arguments (which

are based on the ordinary I{i prewellordering theorem), extend without

alteration to yield invariant reduction theorems for 'Eén+1 and

El

Zonsar all n e w.

The present chapter is the latest version of work begun jointly
with John Burgess in [11 ]. That paper contained proofs of the invariant
Eji prewellordering and reduction theorems (due to the author) and of
the invariaﬁt .gi‘ reduction theorem for pairs (due to Burgess). At
that time we conjectured the full invariant "]]“i prewellordering theorem,
but could prove only a very special case of the theorem for E;‘n 41
{(n > 1) assuming PD ([11] 4.2). The conjecture {and, hence, full
invariant ‘]]i reduction) was established by R. Solovay based on an
idea of the author (see our remark III, p.40 for more details). This
argument forms a central part of the proof of 2.1 below. Solovay's
proof is suffident to establish a corresponding "lightface" theorem --
as is a second argument (for invariant E]J: prewellordering) due to
Burgess [10]. The additional argument of §2 which establishes the stronger

16
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"primitive recursive' part of 2.1 is new. It is closely related to
the methods of Vaught [44].

§ 3 contains a discussion of the invariant uniformization
principle. Assuming V = L we show that the principle holds for

1
I, (n>2). We prove a general result on counterexamplés which is

related to previous work of Dale Myers.



§1l. Invariant Prewellorderings and the Invariant Reduction Principle

We begin by recalling some of the basic definitioms. If B =
< Bi= 1 g I> and A= < Ai: i e I> are sequences of subsets of X,

we say that B reduces A provided that

(1) B;C4A; foreach 1ieI
(11) (J{B;: 1 e I} = U{a;: 1 ¢ I}

(iidi) Biﬂ Bj = @ whenever 1i,j e I and 1 # j

I € P(X) has the reduction property if for every 4 ¢ “r there exists

&
Be I such that B reduces A. The reduction property for pairs is

obtained from the reduction property by replacing w with 2.

If T has the reduction property for pairs,then T =

{-A: A g '} has the (weak) first separation property:

If A ,A; are disjoint elements of ?, then there exists

i
BeTNTr such that ﬁog B C -A.]J(B separates Aﬂ from &1}.

To prove this consider B such that (B,~B) reduces {-Al,-ﬁn}.
A relacted concept is that of a uniformization. If B and 4

are subsets of a product space X x Y, B is said to uniformize A

provided

(i) BCA

(1i) If (x,¥) ¢ A, then (dy )((x,y ) € B). (domain (B) =
domain (A)).

(1i1) If (x,y), (x,%) e B, then y =y. (B is a function).

18
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FCXxY has the uniformization property if every member of [' can

be uniformized by a member-of TI. For B,A € NF(K} it is easy to
see that B reduces A “if and only if B = {(x,1): x & By} uni-
formizes 1 = {{x,1): x ¢ .ﬁ.i]. Thus, the reduction property for, say,
E;‘(K} is equivalent to the uniformization property for E_-:::{X x W) .

A relatively difficult theorem of descriptive set theory states
that for arbitrary Polish: spaces X, Y, the collections g}{x x ¥
and E%fx x Y) have the uniformization property. Assuming PD, the
same is true for Eiﬂ_ﬂ, E;n‘i-z
[21]) . On the other hand, if we assume the axiom of constructibility
(V= L), then Ei{x x Y) has the uniformization property whenever
X, Y are Polisk and n » 2, (Addison [1] ). We will show that this
last result has an invariant version while the other uniformization
theorems do not.

Now suppose E 1is an equivalence relation on X and
I €P(X). Let E-inv(r) be the collection of E-invariant members of
r. We ar; interested in E-invariant versions of the reduction and

uniformization properties. The E-invariant p-reduction property is

easy to formulate, wiz. E-inv(r) has the reduction property. The

E-invariant uniformization property is a bit more complicated. If

X¥=YxZ and AC X is E-invariant, we say that B is an E-uni-

formization of A provided

(i) B 4is E-invariant
(11) BCA
(ii1) If (y,z) e A, then (J2)((y,2) ¢ B) .

(iv) If (v,2y), (¥,23) ¢ B, then (y.z;) E (v,25).

for each n ¢ w, cf. Kechris-Moschovakis
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Condition (iv) says that B is as close to being a function as is

consistent with E-invariance. T has the E-uniformization property

if every E-invariant A g I' has an E-uniformization which is a mem-

ber of T.

Note that if E = Elﬁi, where 1 1s the identity relation
on Z, then an E-uniformization is just a uniformization which is
E-invariant.

This definition of the E-uniformization property is essentially

due to Vaught, see [44). He formulated it for the special case

=X %X ,, E= Ej 1 and asked whether nltxJ has the E-uniformi-

zation property in this case. D. Myers answered that question in the
negative in [36] and [38].

To see the relation between the invariant reduction and uniformi-
zation properties let 4 ¢ WP{R} be a sequence of E-invariant sets and
let B =<38;: ig 0 > be a sequence which reduces A. It is apparent that

each B, fs E-invarfant just in case {(x,1): x ¢ B,} is an Ex1-

uniformization of {(x,1i): x ¢ Ai}' Thus, for "I = "El“ or "Hl".
- — W O A

E-inv(r(X)) has the reduction property if and only if

(1)
(¥ * w) has the E *l1-uniformization property.

An important tool for our treatment of the Ei and gé re-

duction theorems is the notion of a prewellordering ([2 ]. Given a

set A, a prewellordering on A 1s a transitive, relexive, connected,
well-founded relation on A. If A 1is a prewellordering om A, the
associated norm 4¢,: A + ON is obtained by defining ¢.(a) to be the

{-rank of a. Conversely, every map ¢: A + ON induces a prewellordering

-
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i’, on A by setting a-'£¢ a' 1if and only if ¢(a) s 4(a').

Given ACX and rg_P{xz). we define a T-prewellordering on A

to be a triple (,Q,Q') such that < 1is a prewellordering on A,

Ll
Qel, Q' el and forevery a e A and x e X

(xed & x=<a) =(x,a) e Q =(x,a) Q" .

IfF "T" = ':{:i", "IT];", eté. and A X, then a IM-prewellordering on

A is a r{j{z)—prawellnrdering on A. If X = xp and p £{ < EC,

then a T[(L]-prewellordering i{s a T-prewellordering (£,Q,Q') such
L

that Qe r[A], Q' e r[al.

Now suppose 'T'" = "'E:" or "Hl“

B S The utility of prewell-

orderings in proving reduction thecrems stems from the fact:

(2) If AeT(Xxw) and (£,0,Q') is a I'-prewellordering on

A, then the set

B= {(x,p): (x,p)eA and p is the smallest natural number which

minimizes ¢.(x,p)}

= {(x,p): (x,p)EA & /\[t{x,m}.(x,p}} eQ'= ((x,p),(x,m)) Q]
mew

& /\[(Gx,n), x,p) ¢ Q'1}

n<p
is a member of T(Xxw) which uniformizes A.

Thus, if every A ¢ M'(Xxw) has a I'({X‘Km}z}-preweﬂurdering,

then T(Xxw) has the uniformization property.

When X = xﬂ, p e HC, the definition of B in (2) is

uniform and effective. That is
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(3) There is a prim(w) function P such that i€ ¢ is a
I'-name for a subset of Ipxm and q,q' are I'-names such
that f[ﬂzn [qa], [q], [74']) is a I-prewellordering on

[¢], them P(4,q,q9') 1s a I-name for a set which unifor-

mizes [¢].

Suppose E dis an equivalence relation on X, and that A,
£,9,Q') =2nd B are as in (2). Assume further that A is

Ex I-invariant. It is elear from the definition of B that:

If Ex] is a congruence for < (L.e. if (x,m) < (x',m)

(4)
whenever xEx'), them B is E x }:—invariam:,

In a slightly more general context, suppose we are given a

Suslin space X, an equivalence E on X, and a E-invariant set

A< X. Then an E-invariant I-prewellordering on A 4is a I'-prewell-

ordering (<,Q,Q') on A such that < is an ExE-invariant subset

of xz.

If every E-invariant A e I'(X), (respectively, TIﬁlJ(Xp}h has
an E-invariant T-prewellordering, (T[{l]-prewellordering), we say that

X, (X;), has the E-T-prewellordering property, (E-r[(L]-prewellordering

1
property).

Theorem 1.1. Let "I be "31" or tﬂl"-
et v 1 n

Asgume that X 4is a Suslin
space with an equivalence E such that Xxw has the (Ex]1)-T-
prewellordering property. Let E1 be an arbitrary equivalence on w.
Then
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(a) TI(X%w) has the [E*Elj—mifnmizatinn property.

(b) Suppose X = Kp, p £ HC. Then there is a prim(w)
function Pu such that if ¢ is a T-name for an EME1 invariant
subset of X*w, ¢ is a Iname for El' and gq,q' are respectively
F.F—names which witness an (Ex1)-invariant I-prewellordering on

[¢], then Pﬂw,q.q',ﬂr} is a -name for an (E131}~unifnrmizatian

of [#¢].

Proof.

First suppose El = 1. Then the conclusions (a) and (b) are

immediate from (4) and (2) and (3) respectively. The general case is

easily reduced to this case as follows.

Let AC Xxw be Ex El—invari:mt and suppose B e T(Xxw)

+(Ex
is an Exl-uniformization of A. Let B' =3 (ExEy) _

{x,p): V ((x,m) e B & mE, p)}. B' is obviously E x E,~invariant.
mew

Since A 1is Ex El—in'variant and BC A, B'CA. dom(B') = dom(B)
1 -

so dom(B3') = dom(A). Finally, if {Yrml}.{}',mz} £ B, then m'l.ElmZ

50 (Y,IHl)E“El{y,ml). Thus, B' 4is an EKEl—unifﬂrmizatiun of A.

It is apparent from our definition of B' that when X = Xp, a

I-name for B' can be obtained primitive recursively from « and

names for B and El. {(b) then follows by (3). J



i and El Prewellordering Theorems.

§2. The Invariant E I

The main result of this section is

Theorem 2.1. There exist prim(w) functions E':,‘_,E"2 with the
following property. Assume p ¢ HC 15 a similarity type and
is a gi'ﬂname for an equivalence on Kp. Then

(a) If ¢1 is a AI__Ii—name for a [¢]-invariant set, then

Pl{p,¢,¢lj is an ordered pair of names which witnesses the existence

1—
1

®) If ¢, isa 5%

PI{p,\b,-bz} is an ordered pair of names which witnesses the existence

of a [¢]-invariant [ -prewellordering onm [1:1].

-name for a [¢]-invariant set, then

of a [¢]-invariant ‘g;—prewellordering on [thz]-
2.1 yields

Corollary 2.2.

(a) If X 4is Suslin, E is a __gl equivalence on X, and

1

o ,nniu e lr‘.;zu‘ then Xxw has the (Ex}l)-I-prewellordering

property.
(b) with X, E as in (a), both E—inv(ﬂi(ﬁl}} and E—inv@%fﬂ”

have the reduction property.

{c) The ll_i[ﬂ], (respectively E;[al}, subsets of Xp L
have the EXE_f-unifnrmizatian property whenaver a CHC 1is prim-
closed, w,p € ﬂ, E is a Ei[ﬂ] equivalence omn }tn‘ and E1 is a

I i[(ll. {E;‘[Q_J), equivalence on w.

Proof of Corollary.

{c) is immediate from 2.1 and 1.1.

24
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(b) is immediate from (a) and 1.1.

Since all uncountable Polish spaces are Borel isomorphic,

(a) is immediate from 2.1 when X 1is Polish. For the general case,

let X, E be as in (a) and let A £ T(X) be invariant ("I'" = "NHi“

or "E;‘"}. Let f be a Borel measurable function on 2° onto X.

Defining E' by the
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equation BLE'RE = f(El} E ffﬂz), we see that E' 45 a Ei

equivalence and f+1(ﬁ3 e E'-inv(r(2)). By 2.1 there is an E'-p-

prewellordering (£,Q,Q') on £T(A). Serting Q =

{((x,7): (YR,RI((E(Ry) =x & £(R)) =y) = (R,R,) eQl,

@ = (Gay): (FRLEDE®RD) =x & E®) =y & ®,5) eQl

£a=0N f, it is easily seen that (—_(A,qi,q;} is an E-T-prewell-
o

ordering on A.

The Ei and g; cases of 2.1 will be treated separately. The
argument for the Ei case is substantially longer than that for L -
It is the only part of this dissertation which makes essential use of
"lightface" notions and involves two separate parts (the first is due
to Solovay — see Remark ILI, p.40 ). 1In part one we prove the lightface

version of the theorem --

If p 1is finite E ¢ 3}(3&) is an equivalence on EL,
{8) and A e ni(ﬂh} ig E-invariant, then A has an E-invariant

1
Hl'prEWEllﬂtdETing.

In part two we consider a particular "very universal" :i set and
I% equivalence and derive the general case of 2.1 by a process of taking
"pseudo cross-sections'.
The argument for the ;é case is more direct — we derive the
invariant primitive recursive ;; prewellordering theorem (2.1) from
the non—-invariant primitive recursive ﬁt prewvellordering theorem.
Bagg.cur arguments are logically based on the ordinary Hi

(lightface) prewellordering theorem so we have the following (see Remark I,

p.38 for details):
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Corollary 2.3. (to the proof'of 2.1) Assume n > 1 and every Hi

subset of 2? has a Hi prewellordering. Then 2.1 and 2.2 hold

with ﬁgi", "Ei", and "Ei" respectively replaced by 'ﬁm?',
"zu“ and "Ei+1" throughout. In particular, the conclusion holds

whenever n 1is odd and all '_gi_l games are determined.

Proof of 2.1(a), part 1.
Let X = e X, = w. For 1,§ ¢ {0,1} 1let

<> .1 X.xK, +X be a recursive bijection with recursive inverse

5 I S i-3
13 13
Bij: W {wﬂ ,wl P We will use i,...,n with subscripts to denote

members of w and wu,...,z with subscripts to denote members of g

We will drop the subscripts on our pairing functions whenever possible.

Let W e Hiﬂm!m} be a universal J‘li‘ set., For each 1 g w

let Wi = {x g 2% (x,1) ¢ H}, (so ui(z“’} = {‘Ii-l'i: i e w}). We further

assume that W is "canonical” in that

(i) There eiist recursive functions fi= W = iy B Py TS

such that for 211 n,nm

wfl{“:' = {x: (Yw)(<aw,x>¢ Wn}}.
wfz(n) = {x: (dm)(<m,x> ¢ Wn]}
wf3(<n,m>3 = wu U .

W

wfﬁ{cn,mj = *a
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(i1) For every recursive h: 2¥ , 2% there exists recursive
*®
h: g+ gy such that for every n, wh*(n} = [x: hix) = wn}.

(1ii) Hs = {<x.n>: (x,n) g W}.
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Given ¥ e 2”, new let I-i = {x:<y,x> ¢ Wn}. The fol-
lowing well-known "uniform boundedness lemma" is the key to our
proof of (8). It is originally due to Moschovakis. The reader should
have no difficulty in transferring the proof of Lemma 9 in [34]

to our context.

L]
Assume (<,Q,Q ) 1is a l‘li-prewellardaring on FTD + There

is a recursive function b: 2° =+ 2° such that for every

(5)

A 2“, ne w, if -bi:; wn then b(<y,n>) e Hn and

"gg 'EZ: b(( n,?b}.i z ]'.

The next lemma is the central part of the argument establishing
(B).

Suppose E = {(x,y):< x,v> f Hk } is a Ei equivalence such
o
(7) that WD is E-{iovariant. Then there exists an E-invariant

Hi prewellordering on ﬂu'

Proof of (7).

Let (<,2,Q") be an ordinary ﬁi prewellordering on HL
and suppose Q! = {(x,¥): <y> ¢ ﬂkl}. It follows from our uniformicy
assumptions (i-1ii) on W that there is a recursive function h: & -+ w

such that

"%fn] = [ex,y>: f:—]z){zﬂy & (z,x) ¢ Ql)}
' = (<x,y>: (J2)(<z,y> ¢ . & wz,x> ¢ ‘ﬂf_l}
o

and for all i e w
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Wogaqy = I (JzwEy & (wx) e Q' 8 ;\‘/i{z.b{ h(i),w )) € Q"))

= U fex,y>: {321:}{-:2,3: *Hkﬂ & <w,x> W,

j=i 1

& <z,b(<h(j),w>)> ¢ W,_ }.

i

Define £: (muz“’} 3 20 by the recursive conditions:
f(0,x) = x, f(i+l,x) = b(<h(i),£(i,x)>).
Define

< ={ty): (Jie w)lx < £(1,7)))
Q={(x,y): (31 e w)((x,£(1.¥)) e Q}
Q' = {(x,¥): (i e o) ((x,£(1,¥)) € Q")}-

Since f 1is recursive, @ and Q' are respectively H; and Ii.

We claim that (X,2,2') is an E-invariant Ei’-prewellcrdering:

Using the defining property of b, one easily verifies by in-

duction that

(1) (View(Vwe2DweWw =bhE),w eW).
A second 1nductin.n using (i) shows

(1) (View(VWxe2(xeW = £(i,x) cW).

Thus if =x ¢ W and (y,x) e @ or (y,x) eQ', then ye Wﬁ.

and it follows that < = Qﬂ“ﬁ = Q'nui. Also, if x ¢ W, and
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yEx them ¥y € -H:{m, hence y < f(1,x) and y—< x. Thus
< is E-invariant. x <y dimplies x<y so < is well-founded

and connacted.
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It remains only to show that < 1is transitive. The transi-
tivity of < will follow from

Suppose i <j <w, X,ye W and £(i,x) < £(j,y).
(6) ?

Then £(i+l,x) < f(j+l,y).
Proof of (6).

We must show £(i+l,x) < £(j+l,y) = b(<h(j),£(i,y)>»). It
suffices to show that £(i+l,x) ¢ -wfhgiﬂ » 1.e. that there exist

k < i, 2, w such that
z E f(i+l,x) and (w,£(j,y)) ¢ Q' and (z,b(<a(k),w>)) e Q .

This condition is satisfied if we choose z = f(i+l,x), w = £(i,x),

k=1. (6) follows.

Now to verify that < dis transitive, suppose x <y and
y<z e Wo; say x < f(i,y) and y < £(j,z). Since y < £(1,y) we
may assumeé 3j > 0. By repeated application of (6) we obtain
£(1,y) < £(j+i,z). Then x < £(j+i,z) so =x<£ z. This completes the
proof of (7).

Proof of (8).

2
o
A g Hi(xp} is E-invariant. Let £: Zm - Xp be a recursive surjectiom.

1

Suppose p dis finite, ES X~ is a o equivalence, and

Then f_l{ﬁ} £ Ei{ﬂm}, say f-l{ﬂ} = Wn. Hu is invariant under the

I
equivalence E = {(x,y): x =y or (Jz,w)(x = <z,m> & y = <w,m>

L
& f(z) E £(w)}. Applying (7), let (=Q,3 ) bte an E -invariant I[i—
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prewellordering on H;. Define

Q= {(R,S) & x:: Wx,y e 2" ((EG) =R & £(y) =8S) = (x,¥) ¢ Q}

Q= (RS e X (Tmy e 2@ =R & £6) =5 & @y eI

It is easily checked that {ﬂjﬁiaz.Q,Q]] is a Hi prewellordering on

A. This completes part 1 of 2.1(a).

Proof of 2.1(a), part 2.
Let F, V be the binary relation symbols (1,(0,2)) and
(1,(1,2)) respectively and let g {F,V}. We will be concerned with

members (F,V) of Kp such that for some p € HC, F "codes" a
L]

pair of p-names and V '"codes" a member of xﬂ via F. The material
o

of this section is closely related to Vaught's '"W-logic" as found in
[44], The present situation is simpler than that of [44] in that

we need only consider satisfaction for applied propositional logic
(i.e. names). It is more complicated than that of [44] in that wve

must define not only a universal ‘El set but a universal _3} equivalence.

1
We first collect some helpful observations. Whem p dis a
similarity type and ¢ dis a Borel p-name, at(p) and sub($) re-
spectively denote the set of atomic p-names and the set of subnames
(subformulas) of §. Given R e Kp let vR: at{p) = {0,1} be the
characteristic funetion of R with respect to at{p). V 41is a p-
valuation if {E}E E Kp}(? = ?R}. Note that V 1is a p-valuation if

and only if V is a function on at(p) to 2 and for every c e Ep

there is a unique i £ w such that (c=i, 1) € V. Thus, it is apparent that
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There is a 1-formula Val ¢ me{nn} such that for any
(6 similarity type p, if (1 1is a transitive set which
9
contains at(p) and v.gcf then (Qe V,at(p))f val

if and only if V 4is a p-valuation.

If V is a p-valuation let R, be the unique R ¢ X such
P

that V = vR‘ Let B = (1,(0,1)). By considering the natural inductive

definition of "R e [4]" it is apparent that

There is & 2-formula Sat g me (pu U {B}) such that for any

similarity type p and Borel-p-name ¢, if @ is a transitive
(10) set which contains both at(p) and sub(s), V< (% is a p-

valuation, and B< (L, then (Q,e,V,B,at(p),sub($)) | Sat if

and only if B = {§ £ sub(¢): Ry € (gl 3.

Given a g HC, suppose F g zmxm is such that (u,F) =

{(TC({a}),e). Then we say that F 1is a represeanting relation and that

F represents a. We further specify that TC({a}) = 1(F). Let
iz: (w,F) = (i(F),e) be the unique isomorphism. For b e 1(F),

(F) *UB & € )

F .
cC i(F) we specify b = :i.FI'{b}, c
It is not generally possible to affectively associzate to each
a g HC a specific structure which represents a. We do however have

the following approximation:

There is a prim(w) function Fn such that for amy a g HC,

(11)
Fn (a) is = Borel name for {F e X{F}: T represents al.
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Proof.
'
Consider the prim functions a s ar E; defined by
ﬁhe conditions:
ﬂ Ev)' -"\fa ?}{F{?“}A B {VIJ)A {‘Yv Y(E(w Yo ) B VB (v 1)

bea ™~ bﬁa

- {3 !Eﬂ){fxlﬁ[(figlgﬂ) vy, zxliae (v)I.

Then for any set a, Hoﬂ(e;} = {K: O = (IC{{a}),e)}. Let Fﬂ{a}
be (ﬁ;}“ where 8 & B.M is the prim(w) function which replaces
variables by numeriecal constants which was defined in the introduction.
Clearly Fc has the required property. =

Given b ¢ HC, let 6 (n) denote (E;(EGJ}H{%). Note that if
F is a representing relation and b e 1(F), then F_-E [Bh{n_J]
if and only if n = hF.

Now suppose F i3 a representing structure, at(p) e 1i(F),
ReX.. Define Vpp = {{¢F,1F]: (¢51) e Vz}. 1In this case we say
V=Vop 1is a p-F-valuation and specify R = Ryp. Ry is the unique
R e Ip satisfying the condition

Aleanles V (Fels@as,@mlare b))

n,mew ¢Eatfp)

v (Fe [%(g} AB @1ARelq4])].
From this expression and (9) it is apparent that

There is a prim(w) function Fl such that if F is a

(12) representing structure, p ¢ HC and at(p) e i(F) then

wxe
Fl(n) is a Borel p, + p-name such that for V g 2



33

RelX, (F,V,R) ¢ [fliplf if and only if V is a

p—F—valuation and R = BF?'
Also note

L L]
If (w,F,V) = (w,F ,V ), F 1is a representing structure
L]
(13) and V is a p-F-valuation then the same is true of F

and v: and Ry = Ryepr.

One final remark is needed for our construction of the universal
equivalence. If .hq;_xsn is an arbitrary relatiuu,then ﬁa, the
smallest equivalence relation which includes A may be obtained by
setting

'

A=A U{Gx):xeX }U {(xy): (v,x) e A}
o

and then defining

By = {(xy): (dn e ) (Jxpseennxg)(x; = x
& x =3 & (VYo cn}[(xm,xm_l_lj e A)).

It is apparent that

1 1 :
A h X 3
(14) If Aerp(X ) them E er/(X )

o Q

Now we are in a position to define the universal equivalence.

Given p let 3 =p% (sop+p=pu P); given § =

L=

(i(a,n)) € p, let g = (i,((p,a),n)) be the-corresponding symbol in
Let Efvl....,vaj e L ,({E}) be such that Mod(g) =

{(&,F,al,...,as}: (A,F) is transitive and extensional and has a
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maximal element m such that (A,F)F m = (ag,...,3g)}.

Let ext(W,V) be (‘i’ vov1) (V(vg,vy) + Wlv,,v;3)). Let

A = T BIK Jvy,-eravg) (8 A (Y90 (E(v,9) <+ Flv,u))
Avﬂ@_,ijvlj A ?al(ﬁ,i,vjjl - [?al(f_,_ﬁ_{,vﬁ_} A ext(W,V)

Aext(h,V) A Sat(F,W,B,v,,vg) A Blve) L.
Then:

If F represents (at(p},at(p+p1},at{3},at{{puﬁ}ﬂ},¢,¢,

sub($), sub(p)) where ¢ 4s a Borel (pUpR)+Pyname, V is
(15)
a ﬁ-F—valual:iun and V' is a g-I-'-valuation:then (F.V,F,V') £ A

if and only if (RypReyY) e [fan?i‘]-

Clearly A g zl{:{ ). Let E_ be the smallest equivalence
1 pa-l-pu 1

which includes A, and let E be the smallest equivalence which con-

V L] 1 L
tatns B, U {(F,V,F ,V )i (o,F,V) = (@,F ,V)). By (14), Ee Ei{x%*%

L] 1]
Suppose F, ¢, V, V are as in (15) and moreover that {{apz}wl is

L]
an equivalence. Then (F,V,F,V ) ¢ E, if and only if

1
(RF'I.I"RF‘I.F') e [(Jp 2J1\|.-]- Using this observation together with (13) we

obtain

Assume the hypothesis of (15) and additionally that
r
(16) EF- I{Hp ZHJ] is an equivalence. Then (F,V,F,V ) ¢ E

if and only if (RF‘D"RF'J"} £ EF‘

Next we define the very universal set Uf—_}[p «» Let
o

u r =[[{1{H.EJ{§V preaV g b A Va1 (F,V.vy) A ((Val(E,W,v,) A ext(W,V)

A Sat(F_,H,E,vﬂ,v?}}ur E{vf']]ﬂ. Tet- U= (U }'E‘ It is apparent that
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L}
U and hence U also, is Hi{xp}'

Assume the hypothesis of (16) and additionally that ¢ is
(17) a Borel p-l-pl pame and I(Vﬂl}‘” - J"LF is EF-inVHIianI:, Then

(F,v) e U if and only if R, € Ap.

Proof .

By (9), (10) and the definition of U‘, (F,V) e U' if and only
if RW E "F' The conclusion of (17) follows by (16) and the assumption
that AF is EF invariant. T
Now we can prove our main result on ﬂ%—uames. For the reader's

convenience we restate it:

There is a prim{w) function Pl such that 4f p e HC is a

gimilarity type, ¥ is a 5}7p+p-name for an equivalence on Kp

and § is a _I[]'-name for a [¥] - invariant set, then H{p,‘!’,-ﬁ}
a8) A

is an ordered pair of names which witness a [¥]-invariant

Ei-prewellordering on [¢].

Proof.
L]
Applying (8) suppose (<,Q,Q ) is an E-invariant ﬂi
prewellordering on U.

Let F2 be the prim(w) map

For (s (Tp)0s (Y 0,)8)) » (at(p),at(pte,),at(p) ato v bin,),
¢1¢15uh(¢),5LIb(¢)).

Given p, ¥ = (391}1;;, b= {E"plm we (uniformly)} define
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Qo w0y = TRR) e X 2 (VF e [F (Fy(0,¥,0) 1) ((F,Vpp), (F,Vg. ) & Q}

Q (.9.0) " {(R,E'} € }[p_]_p:(ElF e [F (F,(p,¥,9))]) ((F, Vo), (Fy Vo)) e q'}

It is straightforward using (12) to define prim(w) maps Pll, Plz

such that for all s = (p,¥,8) as in (18), Pllts) is a gi-na.me for
% Pf(s) is a Fi-name for 0_'5,
Fix s = (p,¥,%) as in (18). Let 0 = 2, Q' = Qta, < =
01N [*P]z. We claim that {-_'{_,Q,Q,'} is a Ei—prewellnrdering on [®].
From the corresponding properties of (j.Q,Ql], it is immediately
apparent that an Hr]2 is connected and reflexive, 0N [dh]2 is well
founded and transitive, and Q) }pr [¢] < @ r‘,nxp x [¢]. Also, if
R' e [¢] and {R,Rt} £ Q_1 as witnessed by F, then {F,?R.F) R

L]
({F.?H),{F,? 1) e Q, hence (F,‘FRF] el and R e [2]. It remains

R'F

L]
only to show that @ N [@]21‘5 Qn[@]z. Suppose R 'R.2 e [¢] and

l'l
' '
{Rl.Rz] e Q@ as witriessed by F. If F is any member of

[F,(Fy(0,¥,8))] then (@,F) = (0,F), hence (4,7, g ® {“*F""’air"'

i=1,2. Since < is E-invariant,

¥ ]
(F Vg po) 2 (F,V o) < cF,vREFJ 2 (F 0 po)

) B 2

RIFI}!{F 'vﬂ.zfij} £ Q . Th'l.'l-s. (Rlsnzj E Q as rEquiIEd.
Finally, suppose (R,R,) e [¥]() (8], and F e [F, (F,(n,¥,9))].

hence ((F l s

Then by (16), ((F,V Y)e E and, since < is E-invariant,

'IF'lv
F.lF REF
T L]

F),(F,‘UREF}} eQ so {RL'REJ e Q. Thus, < dis [¥]-invariant
and the prim function PI = (Pll,Plz) satisfies the requirements of (18).
=

The proof of 2.1(a) is complete.

((F,V
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In contrast to the above proof, the argument which establishes

the ‘5% case of 2.1 is quite direct. We simply "invariantize" the

classical derivation of j; prewellordering from _lIi' prewellordering.
This proof appeared in [11].
Proof of 2.1 (b).

Suppose E E‘Qi{xp ) 1is an equivalence relation, B E_E]l‘(xp_l_p )s

+p
1
and A = {R: (Js = F;p )((R,5) € B))} is E-invariant. Given a
L
L]
Ill prewellordering (<4q,9 ) on B with associated norm £: B + ON,

~1
we define an E-dinvariant _Eé prewellordering on A as follows:

< = {(R;,R,): min{E(R,S): RER; & (R,S) ¢ B} <

min{E(R,8): RE R, & (R,S) = B}}

Q = {(R},R,): (3r,8)[R E R, & (R,S)eB &
r 1 L] L) v L] I L]
(VR,s )(R ER, & ((R,S),(R,5)) q)) + ((R,S)HR ,5))
e 91}

o' = (®RY: (VRSHI® ER, & ®,S) eB)
(JR,$)RER;, & ((R,8),®R,5))eq)]}.

it is_appare:tt that Q 1is E;‘, Q is ~I1i and that appropriate names
for Q@ and Q1 can be (unifurmly). primicive recursively obtained from
names for E, B, q, and q'_ Any Eé name for A directly yields a
}li‘-mme for a suitable B, so the conclusion of 2.1 will follow from

(18), (or 4.8 of Vaught [44]), once we show that (£,Q,Q") is an E-invariant

'E;-prewel_'l.n rdering.
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Suppose R'l E Rz, RZ e A, Then for every R,S,

(RER, & (R,S) ¢B) = (RER, & (R,5) & B)

hence R, 4 R, , so < 1is E-invariant.

29

Transitivity, connectedness, and well-foundedness for < are
immediate from the definition and the fact that image(g) = ON.
Finally, suppose R, £ A and (RI,RZ) € @ as witnessed by R, S.
Then R e ﬁ, hence Rl e A, and if Ru’sn are such that

§(R,S,) = min{¢(®,8): RER, & (R,S) € B}, then

r
{Efﬁnsﬁa} < E(R,8) = {{RO.SQL{R,S}} Eq).
It follows by the definition of @ that
(E{RG,SQJ} <E(R,8) = E(R,S5) < E(Rn'lsu}-

& & .
Thus, (R, & A (R,R,) € Q) » ®, A R < 112)
Similar calculations complete the proof that < =Q nxp XA =
v L]
QN Kp ¥ A. Thus, (£,Q,0) is a ’Ei-prewellordering on A and the

proof of 2.1 is complete. O

Remarks
I.0n 2.3

Our proof of the Iﬂl case of 2.1 (including (5)) depended on

1
i prewellordering theorem, (ii) the existence of

the "canonical" complete Hi set Hﬂ and (iii) the construction of

(i) The ordinary T

§ and E ecarried out in Part 2. It is well-krown that similar

canonical complete Hi‘ sets exist for all n € w. The construction
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(ii1) is easily modified to yield agvary universal” Hi set and

Ei equivalence for each n — one merely adds suitable alternating
quantifications over valuations in the definitions. — For example,

in the case =n = 2, one would consider F's which represent sets of
the form (at(p),at(ete,) ,atwlﬂzi.atta) ,at(nu?ﬂpa),at(p U’3+a3+ph},
$,0,5ub($),sub(y)) to discuss names of the form _‘g’plﬂpzqa,

Epjfpﬁﬁl. Since our proof of the E; case of 2.1 depended only on
the ,gi

larger n

case, we can carry out the complete argument (for 2.1) for

. provided only that a suitable analog of (i) holds.

ITI. 1In [10] Burgess gave a second proef of 2.2(a). This argument
also yields the "lightface" result (B). The two distinct arguments

for (8) fall maturally into the pattern established by previous proofs
of related results. Thus, Burgess' proof of (8) — like Vaught's proof
of invariant separation and reduction theorems in [44] and our proof
above of invariant E; prewellordering and reduction -— proceeds by
invariantizing a proof of the analogous classical theorem. Solovay's
proof of (8) — 1ike the Ryll-Nardzewskl proof [46] of invariant
(strong) lst separation, and both proofs in [11] of _,\_[Ii reduction for
pairs — derives the invariant theorem directly from the classif:al re-
sult (as usual by an w-sequence argument)., Burgess' argument appears
to be somewhat shorter. Our argument gives a single proof for both the
Hl case and for the results on PD. TFurthermore, assuming the possibility

~1

of, say, J_IJB' reduction without _g; determinacy, our argument gives a

slightly stronger result (Cor. 2.3).
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III. It follows immediately from 2.2(a) that

2

If X is a Suslin space, EC X is a AE‘;'. equivalence

(19) on X, and A is a E-invariant ﬂi

a union of wy invariant Borel sets.

set, then A 1is

This fact has a simple proof from the ordinary boundedness theorenm
(cf. Kuratowski [26] 39 VIII) as follows:
L ]
Let A, X, E be as in (19). Let (<.Q,Q) be a ﬂi—

prewellordering on A with associated norm E. The constituents

B, =euw, of A are defined by secting B, = {x: E(x) <a}. Each
Ba is Borel and A = LJ B . It suffices to show that
a<,
1
oz Bu is invariant} dis cofinal in w, - Let a, € w;. Since E

is El B+ is Ei and by the boundedness theorem, E: = Eu for

L. %5 o 1

+
i e w such that B < B .
%17 %

Let a = U ai. Then Br.r. = U E+ is invarianc and a4 >a.. Since
few iew %4 @
@, Wwas arbitrary, (19) is proved.

some oy E wy. Inductively chose o

L i’

This proof contains the essential w-chain construction which
is central to the proof of (8). After proving (19) the author learned
of the effective boundedness theorem and conjectured that it could be
used to prove invariant ‘giﬁprewﬂ_lnrdexing. He discovered an argument
for deriving 2.2(a) from a proposed "improvement" of the effective
boundedness theorem. Solovay then showed that this "improvemeant" was
untenable and gave a correct proof corresponding to our (7) and (8)

above., A short time later, Burgess discovered the argument of [10] for the

same resulk.
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IV. In the classical theory one uses the ordinary analogue of (19)
and the _LI;_‘ uniformization theorem to show that every E% set 1s

a union of ml Borel sets. Although it is true for Polish actions
(see Vaught [46]), the corresponding strengthening of (19) does not
hold in general. To see this, let X be Polish, A zji(!&) ‘,ﬂi(K}.
and define E = {(x,y): x = y or %,y ¢ A}. Clearly, A is E-
invariant 5; but A is a single equivalence class and cannot be

a union of invariant Borel sets. This example also shows that the
invariant uniformization principle does not hold in general: If

1
E x l-uniformizes B. (If there were, we could apply (19) to write

'
B as a union of E x l-invariant Borel sets and hence, to write A

]
A= ﬂl(B} for some BC X *x Y then there is no L[l set B which

2s a union of E-invariant Borel sets, which is impossible).



§ 3. Strong Well-orderings and the Invariant Uniformization Principle

1 1
In the preceding section we showed that invariant 'El and -EZ

uniformization pripciples hold for certain product equivalences on

Suslin spaces of the form X % w. It is natural to ask whether these
results can be extended to spaces of the form X x 2¥ in analogy with

the non-invariant theory, or to a larger class of equivalences on spaces

X x @ (such as the collection of equivalences induced by product actions).

As we will remark below, such extensions are impossible for *Ei
or for any projective class [ such that every T'-subset of Y is
almost open. If we assume the axiom of constructibility, however, we can
obtain positive results for T' = Ei’, n > 2 in full analogy with the well-
known theorem of Addisen [Ll].

The main results of this section (3.12,3.2,3.3) were obtained
jointly with John Burgess and appeared in Burgess-Miller [I11]. An
unpublished result very close to 3.1 was presented at a Berkeley
colloquium in 1972 by K. Kuratowski. He showed that the existence of
a El (not necessarily strong) well-ordering of i implies the exis-

~k

tence of a Et selector for any 51

every equivalence class is countable.

equivalence relation such that

For = g 2% and 1 e w, we define (x}i £ i by setting

(xi} (m) = xtzi(zmﬂn. We then define ((x)) = {{xi}: iecwl A

binary relation L omn 2% is a Eifstrung well-ordering provided L
well orders 2% in type wy and both L and (L) =
(G ,x): () = fx: xLx}) ave 32((295).

The existence of a strong E% well-ordering of 2¥ follows from
the axiom of constructibility (V¥ = L) by a theorem of Gidel and Addison
(cf. Addison [11]). Silver has shown in [42] that the existence of a

42
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Eg strong well-ordering follows from the assumption that D 1s

a normal ultrafilter on a

measurable cardina5 and V = Ln. A recent theorem of Friedman and
Mansfield states that if there exists a E% (not necessarily strong)
well-ordering of ¥ then ZNQ;L[&] for some a & 2 and hence,
there exists a ‘E%-strung well-ordering.

If X 4is any set and E 1is an equivalence omn X then a selector
for E 4is amap s: X+ X such that

(1) (Vxe DV(sx) E x)

(i1) (Yx,ye )= Ey = s(x) = s(y)).
Theorem 3.1. Assume that there is a Ei strong well-ordering on 27,
n>2. Let X be a Suslin space, E & gi{xzj an equivalence on X.
Then

(a) There exists s E_gi(le which is a selector for E.

(b) Let ¢1,¢2 be _;i—names for L,(L) respectively. Therse is
a Friﬂ{ﬂ,¢l-¢2} map F such that if p e HC dis a similarity type
and tl,ﬁz are respectively a _§ijname and a Jgijname for an equivalence

E on xh, then F{p,ﬁl,wz} is a Ei;name for a selector for E.

Proof.

(a) Let f be a Borel measurable function om 2“ onto X.
Given x ¢ X define =(x) = f(y), where ¥y is the L-least element of
f_l([x]E}. s 1s clearly a selector for E and since s has the

explieit definition:

s = {{xl,xzh {xl,xz.'.' eE & (Eyl*yz)(f@z} = %, 5 (Yz’?l) e (L)
& N\ (L)) £ BN

mew

2
it is also clear that s E‘Ei{xz}. Since s iz a funmetion, s € ‘Ei{]{ Ya
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(b) In view of the preceding argument it suffices to show

that there is a prim(w) function F such that F(p) is a fgi

name for a function on 2° onto X; whenever p ¢ HC is a similarity

type. We use the notation frem §2. Let g: xw {Fx,vx) be a re-
2

2
cursive bijection on 2" outo Xp =2 x 2Y . Given p £ HC let
o

Rbp E xh be the constant zero function. Let fp: s Eb be defined

by the equation

E?xe if Fx £ [Fn(at(p})] and

F
fp(x} = (F;:!vxl (atp) x} e [Valll

R otherwise.
ap

It is apparent that each fﬁ maps 2% onto Kp. Using (9), (11),
and (12) of 52, it is straightforward to define a prim{y) function

F such that for every p, F(p) is a J‘E*i"—name for t'#. o

Corollary 3.2. Assume the hypothesis of 3.1 and m > n. Then

(a) X has the Ejgi-prewellardering property.
(t) The collection of E-invariant gi_ subsets of X has the
reduction property.

Proof.

(b) follows from (a) and 1.1. To prove (a), let A be an invariant
'E; set and, (applying Addison's prewellordering theorem, cf. [21]2 let

: .
{<,2,Q } be an ordinary 'gifprewellnrdering on A. Let = be the

]
selactor for E defined in 3.1. Define (X,q,q ) by setting
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4=57 = {ny): s@) 2 s(x)

g =8"2Q), q =s1@Q).

¥
It is easily seen that (£,q,q ) is an E-invariant Ei—prewellurdaring

o

on sdlfﬁ] = 4,

If X=Yx Z and E 4is an equivalence cn X, then E is

coherent provided that for all Y0¥y € ¥
(32,520 ((7,22,) E (37,2)) = (V2 ) (T2 (v 2 ) E (v1,2))).

Note that if E 1is coherent, then Ey ={(}fﬂ.}f1}: {32‘:,21){fyc.zn)E(yl.zl})}
ig an equivalence relation on Y. It is

easily seen that every product equivalence and every equivalence which is
induced by a product action is coherent.

Corollary 3.3.

Assume that there is a "Eiﬂ. strong well-ordering on 2“, ¥,
Z are Suslin spaces, and E 1is a eoherent 'Ei equivalence relation on
Y x 2. Then for every = > n, Ei(‘ft x Z) has the E-uniformization
PTOpPErty.
Proof.

Let E = {(y,y,): (J2,,2)((y,,2) E (¥,,2))}. Then

lI 1
E & Ei{‘fzj and E is an equivalence relation. Applying 3.1, let

1
s E-§n+l
Let A be an E-inwvariant ,Ei subset of Y x Z. Applying Addison's

(YE} be a selector for E .

"
uniformization theorem, let B be an ordinary *Ei set which uni-

formizes A. Let
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B={(,2): (J2)((y,2) E (s(),2)) & (s(3),2)) € B},

| 1] { ] ]
Clearly B is _Ei If (y,z) e B and (y,2) E (y ,z ), then y E y,

so s(y) =s(y). If (y,2) E (s(y),2 ), then (v ,2) E (s(y'},zoi, s0

(y ,z'} € B. Thus, B is E-invariant.

If (y,2) e B then (y,2) ¢ (Br)+E- {B')HEA, since Elga
and A is E-invariant. Thus, B < A.

If (y,z) € A, then, since E 1is coherent, (s(y) .zl) E (¥,2)
for some z'. Since A is invariant, (s(ﬂ,zt} £ A. Since E1r uni-
formizes A, {E{ﬂ’zu] £ E' for some z - Again using the coherance
of E, {}r,zl] E (s{y},za} for some 2y Then (y,zl] e B, so
Dom(B) = Dom(A).

Finally, if (y,z), {y.z') € B, then for some z,

(.2) E (s(),z,) and (y,2) E (s(¥),z). Thus, (y,2) E (y,2z) and

B satisfies all the requirements of an E-uniformizacion. a

The reader should have no difficulty in extracting the obvious

effective content of 3.2 and 3.3, as an application of 3.1(b).

V. Remarks and counterexamples.

In Remark IIT we gave an example of a Ei product equivalence
Ex 1l on a Polish space X x ¥ and an invariant Borel set with no L{i
E x l-uniformization.

The invariant uniformization question was first raised by Vaught
(ef. [44]) for the canonical logic spaces, and the first counterexamples

to a general invariant I} uniformization theorem for these spaces

i £
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were given by Dale Myers in [36] and [38]. Myers' arguments were
based on considerations of Baire category for the logic spaces, and it
appears that measure and category are the key to one type of counter-
example to invariant uniformization. Im fact, the classical Vitalli
construction of & non-measurable set of reals, which is based on a
selector for the Borel equivalence EQ = {(x,xMq): xeR, qe @, shows

2

that the E, x l-invariant set E, € R" has no Lesbegue measurable

] Q

E. # l-uniformization (a fortiori, no Hl E. % l-uniformization).
q* s y (B SOEERES T 1 T A

By manipulating this example a bit, we will obtain a general
method for constructing equivalence relations E on spaces of the form
Y =X % w, such that the set Y has no Hi {(and assuming projective

determinacy, no projective) E-uniformization.

We say that an action J = (X,G,J) is a Vitalli action if X

is a Baire space, G 1is a countably infinite group, each JB: xm g%

is continvous, and

(i) For every x e X and ge G, if g # id, the identity
element of G, then gx # x.
(ii) For every non-empty open U & X, there exists a non-

empty open set VC U and h e & -{id} such that hV<U.

1f J = (X,6,J) 4s a Vitalli action, let J? be the product action
JxT of G on X x G, where T is left translation.

If X 4is any non-meager topological group and G 3is a countable
subgroup which is not discrete, then the action by left tramslation

(g.,x)w gx 1is a Vitalli action. In partieular, the Vitalli example,
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X= R,¥), G =0Q, is a Vitalli action. For an example closer to
model theory, let X = 2%, G- Sq. the set of finite sequences of
0's and 1's with addition as binary decimals reduced modulo 1,
J: (s,x) » s + x where addition is again as binary decimals reduced
module 1. Them (X,G,J) 4is a Vitalldi actiom.

Proposition 3.4. (compare Myers [38]). Suppose J = (X,6,J) is a

Vitalli action. Then the set X * G has no EJ -umiformization which
v

is almost open in X x G, G given the discrete topology.

Proof.

Let E = EJ and suppose A is an E-uniformization of X x G.
v

If (x,g) E (x,h), thenby (1), h =g, so A 1is a uniformization in

the usual sense. A is EJ ~invariant,so A = hA for all h e G. For
v

g & G, define ‘ﬂ"g = {x: (x,g) e A}. It is apparent that A'b,g = hAg for
all h,g e G.

Now assume for contradiction that A is almost open. Since G
is diserete, every &E is almost open in X. Fix h e G.

1f A, 1is meager, then the same is true of each AE = Agh_lh -

gh-lﬂ.h. It follows that X = U &g is meager, a contradiction.
get .

If ﬁh is almost open and not meager, them U - hh is meager
for some non~empty open set U. Choose a non-empty open set ?;;TI
and h' # id such that h'VES U. Then h'V ~A and V - A are
- | L]
subsets of U -~ A'h’ so both are meager, as is h (V - A.h) hv - Ah'h'
Since h' #4d, h'h # h. Since A is a uniformization, %hfj Ay = #.
' 1 N L
Then h'VC (h'V Ahf.l U (nv Ah"u) is a meager open set, a second

contradiction which proves the proposition. 0
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3.4 represents our candidate for the "urtheorem" underlying
Myers' examples in [38]. Most (possibly all) of the examples in
[38] can bg represented as a Vitalli action where X is a subspace
of a logic space and G 1is a quotient of the permutation group wl.

All these examples show that we cannot hope to have strong
positive results about invariant uniformization without strong set
theoretic hypotheses like those of 3.3. They further show that the
invariant uniformization theorem for spaces X X w which we proved
in 2.2(e¢) cannot be extended to arbitrary coherent equivalences or
even to egquivalences induced by a product of a pair of Polish actions

i}

on 2 and w.



Chapter II: SPECTIAL ACTIONS, SEMICONTINUOUS EQUIVALENCE RELATIONS AND

THE #*-TRANSFORM

We continue to study the various types of equivalence spaces which
arise from consideration of the canonical logic actions. The first two
sections deal primarily with Vaught's transform
BB = {x: {g: J(g,x) € B} is comeager} which was introduced in
[46]. B* is defined whenever G 1is a topological space, X and X'
are sets, J 1is a functionon G x X to X', and BCX'. The
transform appears to be most interesting when G 1is a non-meager
topological group with a countable basis, X =X' and J = (G,X,J)
is an action. When, in addition, X 415 a topological space and J
is continuous in each variable separately, we say J 1is a special
action. Assuming a special action, Vaught showed

*
For every B e B(X), B is a Borel Ejﬁinvariantizatinn

(1)
of B.

In §]1 we show that the same result holds under the weaker hypothesis,

"X 4s a Borel space and J 1is Borel measurable." This result is
partly due to Vaught -- see 1.2 below. It yields stronger versions of
several of the main results in [46]. We also add to the list begun in
[46] of the classes and properties preserved by the transform. We prove

for exsmple 1.5:

Assume J is a special action. For every BCX, Aif

*
B is almost open, then so is B .

50
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In 52 we are concernmed with invariant separation for classes of

Borel sets. We prove 2.3:

If E 1is a lower semicontinuous equivalence on & completely

metrizable space X, then the collection of E-invariant E;

sets has the first separation property.

This result is proved by invariantizing the strong version of the [ ;
separation theorem which inveolves the so-called "resolvable" sets.
Our proof yields a construction principle for ,gg sats in terms of
invariant closed sets. Assuming X is Polish and E 1s induced by
a special action, we use the *-transform to extend this invariant
separation theorem to all the colleections 'E:{I), a > 1,

In 53 we leave the transform aside. We apply a theorem of
Furatowski and Ryll-Nardzewski to give a sufficient condition for the
existence of a continuous selector for anm equivalence on a Polish space.
As we will show in chapter III 56, this result is cleosely related to

the "Henkin method" of constructing a model from a complete theory.



X
§1. Some Remarks About the Transform Br B ={ x: {g: gx € B} is comeager}

The following definitions and preliminary facts ((2)-(7)) are
taken from Vaught [46] . 1.1 and 1.5 appeared in Burgess-Miller [11],
Throughout this section we assume that G 4is a Baite topological
space, X and K. are sets, and J is a functionon G x X to K’.
Additional assumptions will be stated when they are required. The
most important special case for us will be that of a special action.
As we will see below however, consideration of other cases —— particularly

1
the product case: X =G x X, J the identity function -- can aid

in our study of the special actions.
L] 0
For BC X, xe¥% and ge G, let B* = {g £ Gz J(g,x) £ B},

B8 = [{x £ X: J(g.x) e B}. If U# @ is open in G, we define

*
E*U = {x: B°/) U is comeager in U}, B = B*G

*
EM'T = ~(-B) U {%3 Bxf} U is not meager in U}
= {x: B°/1U is not meager}, BﬂI = BﬂG.

*U,J

xJ' B :

When we wish to emphasize the dependence upon J we write B

x
B J. etc.

The key fact relating the *-transform to action equivalences is
an immediate consequence of the homogeneity of topological groups, the

definition of an action, and the fact that G 1is a Baire space.

]
(2) Suppose G 1is a topological group, X=X, J = (G,X,J)

*
is an action,and BC X. Then B and 8% are E;-invariant
and B LB CB B .

52
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It follows from rhe closure of meager sets under countable unions that

55 e an*u = i) E:E

new neo

and

(U Bn)all _ U Eﬂau_

new new

A collection H of non—empty open sets is a weak basis for G
provided every non-empty open set includes a member of H. We hence-

forth assume that "U" and "V" range over members of a fixed weak

basis H for G. A set Bﬂ_:x' is normal if for every x e X, B

is almost open in G. We may regard the normal sets as exactly the
sets which are well-behaved with respect to * in view of the following:

L]
Proposition 1.1. BC X 1is normal if and only if for every U,

88 . ™ v U}, (and 30 = NietY: veuy.

The "only if" part is 1.5 of Vaught [46]). It depends on the
fact that G 1is a Baire space.

For the "if" part, suppose that for every U, B"ﬁI =
U{Bw: V& U). Fixing x € X, this implies that either 8 Nu is
meager or -erl V is meager for some V< U, Since H is a weak
basis it follows that every non-empty open set contains a point where

either B® or -B° 1is meager. This proves that B® is almost open

(cf. Kurarowski [26] §11 IV). ) ]
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The "only if" part of 1.1 can be restated as
(4) If B is normal then (-B) © = -U¢z™": Ve u).

Also note that the inclusion
U B*? c EMI
veu
holds for arbitrary (not necessarily normal) sets B.
The last algebraic formula we require deals with the behavior

of * and the operation (A).

(5) Assume G satisfies the countable chain conditiom (every

disjoint collection of open subsets of G is countable) and that
L]

{A:5¢8 = U "9} 4s a collection of normal subsets of X .

3 T new
Then for all U,

*y
¢ U0 a2
E:mm new sra
I i S P (§ SO N o
; ans A .
UgU™¥V el ~k ew UCV ~¥VCU MK, eu e ek )

Formally, membership in the right hand side of (5) is defined in terms
of the existence of a winning strategy for a certain infinite game

(Ei. Burgess [10]). The important feature is that when H 4is countable,
the set indicated can be obtained by the operation (A) from a suitable
indexing of {A:v: s € Sq, V £ H}. In [10] Burgess derived analogous
formulas for the behavior of * under the more powerful "Kolmogorov

operations" T%, a e - That part of Theorem 1.2 below which deals
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with operation (A) applies equally well to any of the

re.

The next fact follows from the extra assumption and the
hypothesis that G 1is a Baire space.

(6) Assume X and X are topological spaces and J is
continuous in each variable. If B is closed then for

- =
each U, B0 =(){8%: geU), and B 1is closed.
It follows from (6), (4), and (3) that,

L]
Under the hypothesis of (8), if B € LI:{I )» [respectively,

(7 A

a..t * o o
Be o) then B e 120 8% ¢ 2201, & > 1.

In particular, B* and Bﬂ are Borel if B is. As we will next
prove, this last statement holds true with weaker assumptions on
> 24 x' and J.
A Borel space is a set X with a o-field B(X) of dis-
tinguished or Borel subsets (cf. Mackey [29a]), A funetionm
E: X3 J{r between Borel spaces is Borel measurable if
f-l(B} € B(X) for all B e E(Xi}. The product Borel structure on
X x K' is thé g-Field generated by {X x B: B ¢ E(X’)} w)
{B x Xf: B g B(X)}. 1t is the weakest structure which makes the
cancnical projection maps, (g,x) » g and (g,x) r x, Borel measurable.
In analogy with the topological case,we say that BC X is
analytic if B can be obtained by operation (A) from Borel sets.

The collection of C-sets (sieve sets) is the smallest collection con-



36

taining the Borel sets and cleosed under complementation and the

operation (A). A topological space is implicitly given the Borel

structure generated by the open sets. A Borel space is standaxd

if it is isomorphic to the Borel structure of a2 Polish space.
Since two Polish spaces are Borel isomorphic if and only if they have

the same cardinality, there are exactly two infinite standard Borel

spaces, up to Isomorphism.

Theorem 1.2 in its present form is due to Vaught. The author
had earlier proved a version with the stronger assumption that X,

X' were topological spaces (J still Borel). This was based directly

on the "product case" of [46].

Theorem 1.2. Assume H 1s countable, X, X' are Borel spaces, J
is Borel measurable on the product Borel space G x X, BCX'.
If B is respectively Borel, analytic, or (, then the same is true

* A
of B and B .

Proof.

Let I: Gx X + G x X be the identity function. Notice that
*=J -1
for every x, B = {g: J(g,x) € B}, = {g: (g,x) e J (B)} =
- % - *

(J I(EJ}xI. Thus B ¥ (J 1{3}} 1. Since the Borel, analytic and
C-sets are each closed under inverse Borel images, it suffices to prove
the theorem in the case X' =G x X, J = I. Since the almost open
sets are clesed under complementation, countable union, and the operaticno
(A), and since these operations commute with the passage 3B~ Bx,

they all preserve normality. B(G x X) 1is generated by the collection
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G={0xX: 0 ¢ EEEGJ} U{c x A: A £ B(X)} and each B e G clearly
has open cross-sections, so every C-set is normal.

We first prove that B*H g B(X) whenever B e G and U e H.
Suppose B =G x A and x g X; then B =6 1if x ¢ A, and
B =0 1f x é A: so B*U = A, Suppose B =0 and =x ¢ X;j then
w0 and 39 =A £f 0[f)<U is meager, ‘¢ otherwise. In any
case, B*ﬂ e B(X) as claimed.

The conclusion of the theorem now follows by (3), (&), and (5)
just as in [46]. In proving that Bﬂ is analytiec when B 1is, one

*
uses the corresponding fact for B  together with 1.1 and the fact

that analytic sets are closed under countable unions. W,

Remark I. This argument is particularly interesting when J = (G,X,J)
is an action (J Borel). In order to see that B* is a Borel in-
variantization when B ¢ B(X), we must consider both the "action case"
J, {to see that B* is invariant), and the corresponding "product case”

I, (to see that B* is Borel).

Since we have improved Vaught's original invariantization result,
we get improved versions of its consequences. We stare the most
interesting one.

When H 4is countable, G is a topological group, X = K’
is a Borel space, J: G x X + X dis Borel measurable and J = (G,X,J)

is an action, we say J 1is a special Borel action.

Corollary 1.3. Assume J = (G,X,J) is a special Borel actiom, then

every Ejﬂiuvariant analytie subset of X 1is a union of Wy invariant
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Borel sets. If G 4is Polish and there is a separable metric topology
which generates the Borel structure on X, then each orbit is Borel.

Proof.

The proofs of 2.5 and 2.6 in [46] suffice once we know that the

*
Borel sets are closed under the transform B+~ B . That closure was

O

Note: The separability assumption on X can be omitted. For

proved in 1.2.

this remark and for a stronger result on the measurability of orbits,

see Miller [32].

Vaught's reduction theorems (2.7 of [46]) have similar extensions
to Borel actions using 1.2. Note, however, that in any action J = (G,X,J)
such that G and X are Polish and J is Borel, the induced equivalence
Ej is ‘éi- Thus, the improved reduction theorems in this case can
still be obtained by the methods of chapter I.

Our next result is a short proof of an invariant fgi reduction
theorem for pairs, based on another type of preservation property of *.
Since the equivalence relatiom EJ in part (b) may not be ,Ei, 1.4 (b)
properly overlaps with theorem 2.7 (a) of chapter I. We have been unable,

however, to construct an example where 1.4 (b) gives new informationm.

For further discussion on this point, see 1.6 below or §4 of Burgess-Miller [11].
The statement and proof of 1.4 (a) corrects an error inm 2.2 of [11].

For T C P(X) recall that E-inv(T) 1is the collection of E-
invariant members of T. When the context permits it, we will write

inv(l') dinstead of E-inv(l).
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Theorem 1.4. Assume J = (G,X,J) 1is an action.
(a) If T € P(X) 1is closed under both B =+ E* and B w B2
and I has the reduction property for pairs, then so has EJ.*—inv(I‘).
(b) If G has a countable basis, X is a Suslin space and
J 41is Borel measurable, then Ej-invgyg:(ﬂ}) has the reduction property
for pairs.

Proof.

(a) Suppose {.&1,32) is a pair of Ej—invar‘iant members of .

Let {Bl,llz] be an arbitrary pair of T-sets which reduces (AI,A.E}.

* *
We claim that (BI,B;) also reduces {al,az}. Since Bl and Eg
are invariant, (a) follows from this claim. Since Bli_‘-!ﬁ and
* x A A
= = o - ‘:: 4
B,CA,, B,CA =A and B,CA, =4A,. A)-ACHE,s0

A
9
AlU A,. Finally, since B

* *
Similarly, LL - "‘2 <_:31. so By v ag -
* A
1 1 2

* %*
slﬂ Bg = @. Thus, (Bl,ﬁg} reduces fAl,Az) as required, proving (a).

A
{&2 L Al] {Az - Al] B
*
C_.'..»Bz, B E("Bz) = -B, and
(b) If G has a countable basis, then it satisfies the countable
chain condition. The fact that in{x) iz closed under the transforms

A

B~ E* and B~ B then follows by 1.2. Hence, (b) follows from (a)

and the classical ~Hi reduction theorem. [

Now we turn to another preservation theorem which is pa;:ticular
to special actions.
Theorem 1.5. Assume (G,X,J) 1s a special action.

(a) If BC X is meager, then so are Eﬁ and B*,

*
(b) If BCX is almost open, then so are g% and B .



Proof.
We may assume that H 1is a countable basis for G.

() Let BE X be meager. Then BC Uﬂn for some collection
new

[Cn: n e w}l of elosed nowhere dense sets, and Bﬁg fUCn)ﬁ = U E: =
n n

yu e Uy rj ¢, since each J® 1is continuous and each C
ny °® n U geU & W

is nowhere dense, each ES = g-lcn is nowhere dense. It follows that

fj ¢t = C*U 15 nowhere dense for each n and U, and Bﬁ is meager
gell ® n

* A =
as required. Since B C B, B 1is meager also.

(b) Now suppose B 1s almost open. Let B =AU N where

A zﬂ;(xj and N is meager. Then B - (AU H]ﬁ =44V Hﬁ. A8

is
Borel by 1.2 and NIls is meager by part (a), so Bﬁ is almost open.
It follows from the elosure of almost open. sets under complementation

*
that B = -(-B)ﬂ' is also almost open. D

Remark ITI. (On 1.9 of Vaught [46]).

Assume (G,X,J) 1is a special action. Let B = U r\lﬂ -
£ n EMn

The classical approximations to B are defined by the conditions

o _ ) S a A a,
B =B, . B 52 U Bln, B N B33
iew a<h

at+l -

a
Bﬂ 3&: Tﬂ. U{BE - BS 8 E 5 ]'-

q

s"i denotes s U{(n,1)} where n 1is the domain of s. It is knoowm,
(see e.g. [26]), that [}{Bﬂ - Tu: a < ml} =38 = f?{Bﬂ: a < ml}. If
X satisfies the countable chain condition and each BE is almost open,

then for some a < w Tu is meager. In this case, Ti is meager

1"
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by 1.5, hence (BG - Tu)* = B: - T: is comeager in B*. In 1.9
of [46] this conclusion is derived from the more restrictive assumption
that each Bs is a C-set but without the assumption that J {s
an action. For another application of 1.5 (a), see Miller [ 32] Theorem 3.

In [10] Burgess considered certain Boolean operations called
Borel game operations. For example, the EE*game operation operates
on a collection of sets {Azn: Ml € Wy 5 E nu} to yield a set

A=N U N U ..n U ae e
k kl kz k3 m o

The variant of operation (A) found in statment (5) above is just the
closed-game operation. These operations are quite powerful relative to
the operation (A) (see [10]). Let G be one of these operations and

let G[X] be the smallest collection containing the Borel sets and

closed under G and complementation. It is known (see [10]) that if

o

2
Polish space, ¢f. [26]), then every member of G[X] 4is "absolutely

A2

when 6 1is a zero-dimensional Polish space, each operation G

X is a I subspace of Wa (equivalently, X 1s a zero-dimensional

(see [10]) and hence, almost open. In [10] Burgess showed that

satisfies a condition analogous to (5). (He officially assumed an action
but made no use of this hypothesis in his proof). It follows that,
assuming X and x' are topological spaces, G is zero-dimensional
Polish, and J is continuous in each variable, B* is 4n G[X] when-

] :
ever B is im G[X ]. In wiew of 1.2 this remains true if we assume

L
only that X, X are Borel spaces and J is Borel.
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Every Polish space G 15 a union of a zero-dimensional .ﬂ;

subspace G and a meager set (see e.g. the proof of 1.6 below).
Suppose O 1is an non-empty open set in G and S 1s any subset of

0. Then § is comeager in © 4if and only if SN G is comeager

%
if Eollows that B °F a

-

N -3z
in 011G, If we define J JPGIK'

* -~ - ' -
B ©Nne)s for every B e X . Since G is zero-dimensional and

*
Polish, we conclude that B & G[X)» when B & G[X] assuming only that

G is Polish and J is Borel.
L
The next theorem shows that whemn X and X are standard

spaces we can drop the assumption that G 1s Polish. In particular,
since the operation G preserves normal sets when G is zero-
dimensional Polish (see [10]), it shows that each class G[X] is

*
closed under B + B whenever (G,X,J) 1is a special Borel action

and X 41is standard.

L]
Theorem 1.6. Assume X and X are standard Borel spaces, J 1is

Borel measurable and H 1is a countable basis for G. Then there exists

a zero-dimensional Polish space G with basis H and a Borel measur-

-

- L] L]
able function J: G x X = X  such that for BCX ,

-~
-~ -

IB*JE B*Jgn{BmJ: U e H) C_:ﬂ{BwJ: U e H].

-

# * ”
In particular, B ¥ B . if B is normal with respect to J. If X

3 “
and X are Polish topological spaces, them J can be assumed measur-
able at the same level as J.

Proof.

L
We may assume that X and X  are Polish topelogical spaces.
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Suppose H -{I:li: ie wlh Let Gl =M T.liU -{Ui}: i e w}

where Ui is the closure of Ui. Defing ?21 = Uin Gl'

Vaiag ™ -(Ui}f1 G,. Note

(1) G, 1s comeager in G since each Ui IJ *{ﬁi} is,

1

(11) H' = {‘Ji= i e w} 1s a countable basis for Gl and each

?i is clopen in G

-

1

2
1

E 1s an equivalence relationm; let Gz = Glfﬁ be the gquotient topologi-

Let E = {(g;,8,) €G ": (V1 e W(g, eV, & g, eV,)

cal space. Let £: »‘;'2 »2% wvhere f(g)(1) = 1 if and only if

g EV It is easily seen that GZ is Hausdorff and that £ induces

.
a homeomorphism on G, to a subspace of 2% (cf£. Kuratowski [26 ]

§26.1IV.2). To simplify notation we identify G2 with f(GZJ‘E - i

Let 8178y € G;s s eX If J{gl,x} # J{gz,x]. then,
since X' 4is Hausdorff and J d1is Borel, there is a Borel set V in
G * X such that (g,sx) €V and (85,%) ¢ V. It follows
that (gl,gz} t E. Thus, we can define a function 31: i!:2 *X + X'

by the equation Jl([EIE,ﬂ = Jlfg,x};

Ler EZ be the closure of Gz in 2”. By a theorem of Lavrentiev

and Kuratowski ([26] § 35 VI), there is a Borel set HEEE x X

and a funetion JZ: H=+ X' which is Borel measurable at the same

J,. Let G, =

level as J such that Jz I,szx = 1 3
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{g e Ez: (Vx e ) ((g,x) € H)}. Then G,<G and

G! E Ei’(ﬂz}. Since ,...Hi sets are almost open, there exists

-

G -‘E; (Ez} and a meager set N< EZ such that Gy =G U w.

-

Let H be the canonical basis for l:.-} and let J= Jrﬁx?&' We

will show that G, H, 3 have the required property.

-~

Since & 1is a ﬂ; subset of 2m, G 1is zero-dimensional
J

and Polish. Clearly, is Borel at the same level as J. Since

Gz is dense in Gz,

and G ncz is comeager in Gz. The first inclusion of the theorem

NN GZ is meager in Gz (see [26] 510 IV 2)

is proved by the following computation:

P

* - - -
xeB9 & {g € 6: J(g,x) € B} is comeager in G
= {g¢e ﬁﬁﬂz: .Ilfg,:-:} e B} 4is comeager in G,
= f{ge G, Jlig.x) € B} is comeager in G,

2> {geGC J(g,x) = B} 4is comeager in Gl

1:
2 {geG: J(g,x) £ B} is comeager in G

*
= xEBJ.

To prove the final inclusion of the theorem, note that £ dInduces a

correspondence between elements U of H and U of H The above
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computation is easily modified to show that
*A -
(-B}*UJE- (-B) o3 for each U g H. Then Bw‘lt B'w'}

and the final inclusion follows. O

Remark III: (Subactions of Polish actiomns).

In Burgess-Miller [11] (4.1) it was proved that if J dis
obtained by restricting a Polish action j = f&,x;j} to a dense,
non—meager subgroup G of ﬁ, then EJ and Ej have the same
invariant ﬂi sets. In fact, the connection between J and 1 is
somewhat stronger than was indicated in [11] as shown by the following

theorem.

Theorem 1.7: Suppose = (E,x,&} is a Polish action, G 1is a dense

-~ ~

non-meager subgroup of G, and J = JFGKE . Let H be a basis for

G and let H=4{00G: U e f}. Then for BCSX

37 < 37 < Nt ivemy <« Nt v

Hence, B*j = B*J if B d1s normal with respect to 3. In particular,

B o= 3* if B belongs to #Ei{K) or even to G[¥X] for any of the

Borel game operations G.

Proof.

The theorem is proved by a short subcomputation of the computation

in 1.5.
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X E B*J & {ge G: gx € B} 1is comeager in G
= {g e G: gxe B} is comeager in G
= xe¢ H*J.
*7 *T

X e sl <> {gel: gxe B} is meager in U

= {ggﬁﬁﬂ: gx ¢ B} 1is meager in U NG

& x e AU NG 5
= EﬁﬁﬂG,JE Baﬁ.J - N 03 N BnH.J. O
UeH UeH

Remark IV. (Bases and weak bases for topological groups).

In Vaught [46)], Burgess-Miller [11] and Burgess [10], a number
of theorems are proved under the assumption, '"G is a topological
group with a countable weak basis." Assume G 41is such a group with
a weak basis H = {Ui: i e wl. It is easily verified that
H' = {Uiﬂi-l: ie w) is a countable basis for the neighborhood
system of the identity of 6 and hence, G 1is pseudometrizable

(cf. Bourbaki [9 ] IX.3.1.1 and IX.1.4.2). Since G 1s separable, it

follows that G has a countable basis. Thus,

A topological group has a countable weak basis if and only if

it has a countable basis.
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This fact was overlooked in the previous papers cited above. Of
course it still may be useful to consider the inductive formulas
for *, (such as (4)), with respect to particular weak bases for

particular groups.



§2. The Invariant E: Separation Principle.

Let X be an arbitrary topological space in which every open
set is 5;' Then every _5: subset of X 4s a countable union of
disjoint _a;;: sets, (a >1). It follows easily that ;‘:(x) has the
reduction property and (consequently) that ﬂg‘;(x} has the first

separation property (cf. Kuratowski [26] §30. VII).

Given an equivalence E on X, 1t is natural to ask whether
the E-invariant E: sats have the reduction property. If there is a
continuous selector for E, then X/E is homeomorphic to a closed
subset of X (3;5. the set of fixed points) and the E-invariant re-
duction and separation properties are immediate, This is the only
positive result about invariant reduction for the Borel classes which
we know. When E is the canonical equivalence on the logic space
2" it is not too difficult to see that invariant reductionm fails

at the first possible lavel:

Proposition 2.1: Let p consist of a single binary relation and let

I=1 ©be the canonical equivalence on Ip - 28 per
5]

A = 1R (In)(Vm)R@m) = 1)}, 4 = (R (Fo)(Va) R@,n) = 1)}.

Then there is ne pair of I-invariant .ﬁ; sets which reduces {Aﬂ,ﬁl}.-

Proof.
Choose Ru so that fm,Ru} iz a dense linear order with left

and right endpoints (i.e. an ofder of type 1 + n + 1). Suppose B

is an invariant ﬂ; set which contains Rﬂ. Then B =¢8] for some

Eéo sentence #A. Since _[_'iiﬂ classes are closed under unions of chains

(c£. Weinstein [47]), B has members Rl and R2 which define orders
68
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of type n+ 1 and 1 + n respectively; hence B cannot include
either -Agnﬁl or *Alnraa.

Suppose (B.;’Bl} reduces (ﬁo,Al}. Then, for i =0 or 1,

R E.B, and -Ain 51-1‘5 =B, . By the argument of the preceding

[+] i i

paragraph, Ei is not invariant. ()

The failure of invariant _'.E; reduction does not entail the
failure of invariant E; separation.

Suppose BC X and E# is any E-invariantization of B.
Then if B separates a palr of disjoint E-invariant sets, so does
B#. Thus, the invariant Hn
~2

invariantization problem: "Given B g _@; (X} find a &3

separation problem is connected to the

(=]
2

invariantization for B." |Note that even when E is induced by a

*
Polish action, the transform B + B does not directly solve the

.
invariantization problem —— if B is .g.'g, then B is _'LI; and
]Elxal is ;f', but neither is necessarily A;.

We will solve both the E‘; invariantization problem and the
invariant E; separation problem for a wide class of aquivalence

spaces by considering a stronger version of the _L[_; separation theorem.

Assume that X is an arbitrary set.

Suppose ]_"l,,l‘2 are two subclasses of P(X) such that

Ty [ ry and I‘2 is closed under complementation. We say that I'l

has the strong separation property with respect to 1"2 provided that




for A,A ey, if Aur) A, =9, then there exists B e T,
which separates AG from al. An equivalent condition is that I'l
has the first separatiom property and I‘l N 51 = PE' (cf.

Addison [2] for a discussion of this phenomenon).

Suppose C= <C_: B £ y> is a sequence of subsets of X.

B
C is decreasing if CBE CE' whenever B' < B < vy . C is
continuous if CJ. = n CB whenever A < y 1is a limit ordinal.
B
e(y) = {Beyt B is even]. D(C) = U{EB - CE"']-: g eely)l

Let FCP(X) . C is suitable for PT(I‘) if Ce Tﬂ"[',.

¢ 1is decreasing and continuous, CD =X and CT = @. We define

D = H = : <
Tm {D(C): C is suitable for nTcm, Mr) U{Dv{r) v < v},

0 (r) = LJ{ﬂ (r): + e ON}. U (r) 1is the collection of "countable
(L) it {m]}

alternated unions over T."

The important feature of alternated unions is their behavior
under complementation., If (C is suitable for ﬂyfF{X}} then it is

easily seen (c£. [26]) that

(8) -D(c) = LJ{GE_l - CE: g eely), B a successor].

It follows that if T, is a class which includes T \UT and is closed .

under finite intersections and countzble unions, then

?uf{r} crnfr.
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Now suppose X 1is a topological space. ?m§ﬂ (X)) was known

o]
1
classically as the collection of resolvabla sets., A result of
Montgomerey (cf. [26] §30.X) states that ) m}{ﬂg (X)) E; (X) when
X 4isg metrizable, (when X 1is separable this is obvious). The basic

Q
I,

struct the argument by analogy with the proof of I1II.3.1 below).

separation theorem (9) is due to Hausdorff, (cf. [26] §34 or recon-

Agssume X 1is completely metrizable. Then _I!_;(K} hasg the

(9)
strong separation property with respect to ?"(ﬂit}{]).

When X is Polish, (9) can be extended to all higher levels

of the Borel hierarchy.

Assume X dis Polish, a > 1. Then _E;(EJ has the strong
(10)
separation property with respect to ?"’ }{ "}{x}}.
1

(10) is usually proved only for successor o (cf. [26]§37.III).
For limit a the situation is simpler.—— One easily shows that
E:(X} - ﬂm{;g‘)(x)} and (10) follows from the first separation property

Q
for (gl.

Now fix an equivalence E on X. In view of (9) we can solve

o
2

metrizable, by solving each I?T(E;} invariantization problem.

the A invariantization problem for X, when X 18 completely

Given Cge '(P(X)), let 69=<c;E; B < y>.
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Llemma 2.2, Assume C is suitable for ﬂY{F{K}}' Then Gﬁa is

suitable for FT{Inv(P{K})] and D(653 is an invariantization of

D(C).
Proof.
First note that for each 8 <7,
- - - + +
Ca ™ Copa = Cq ﬁ{'cﬂ-i-l} < (cﬁ Cﬁ+1)

It follows that
= E - -~ . e =
n{ce> U{ca Copy? Bed&M} <

Utce = C)™s Beem) =  (UIC - Cpu: BeemDt

= e’

A similar calculation based on (8) shows that

2 < oent - -oE). BEET) fa clRariy fireartakit,
hence it is an invariantization of D(C). Since the transform

C. & ﬂ; preserves inclusions and commutes with intersections, &E;

B
is suitable for ﬂ*{inv(P(K)}). =

Theorem 2.3. Assume X dis a topnlégical space and E dis a lower
semicontinuous equivalence on ¥X.
(a) For every vy & ON, inv(FT(ET{X}} = PT{invﬂgifX}J}.
(b) If X is completely metrizable, then inv{E;{x)} has the

strong separation property with respect to %h¥inv{H;(X]}}.
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Proof.
If B 1is closed and E is lower semicontinuous, then

B e inv{E;(X)}. Thus, CEBE T+1a1ny5;(xy}} when

C e ¥+1

{E;(x)}. (a) follows by 2.2. Now suppose X 1is completely

metrizable, A ,A; ¢ invEH;{X}). Applying (9), let C be suitable

)
and A C (R < -4 O

’ o o]
for (700N, A, €D C A Then (S « ARCCHER

Assuming a special action we can replace "-" with "#*" to

invariantize (10).

Suppose G, X, X', J satisfy the basic hypothesis of 51 and let

-
Ce TP(X'). Define C@- < CE: B < y>,

lemma 2.4. Assume y e w, and C is suitable for FT{P{K'}). Then

1
*
L® is suitable for FT(P(X}) and (D(C)) ED(ﬂg C (D{C]}a.
Proof.
Since the intersection of a comeager subset of G with a non-

meager set is non-meager, we have for each g < vy,

)%,

*
¢ - ¢ = ¢ Nee, )t € (¢

A+l g+l

Since the transform B+ gd commutes with countable unions and the

#*
transform B+~ B commutes with countable intersections and preserves
inclusions, we may substitute "#" for "-", "A" for "+" 1in the

proof of 2.2 to obtain a proof of 2.4. 1
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Theorem 2.5. Assume that J = (G,X,J) 1is a special action,

l<ac<uw Y €,

1 1
(a) If C 1is suitable for ﬂT(E;](X})i then C® is suitable

for ﬂT(inv{l'{,z,‘{H}} and D(C@) is an invariantization of D(C).
o L - o
(b) Ej—inv{ﬂT(&u)(KJ}J ﬂ*r(EJ invqlm(x:})) .
(¢) If X 4is Polish then EJ-inv{lI:{X}) has the strong separation
B o
property with respect to ?wl}(EJ—inng)(I})}.

Proof.

(a) follows from 2.4, (2) and (7). (b) follows from (a). (c)

follows from (a) and (10). ]



§3. On Continuous Cross-Sections.

Let E be an equivalence relation on a set X.

s: X/E+X 4s a cross-settion for E 4if w o s is the identity

on X/E, where 7w 1is the canonical projection. An equivalent con-
dition is that & = s o v is a selector for E, (as defined in I §3).
Note also that every selector s induces a cross—-section

3: Ix]E # s(x). When X 1is a topological space and X/E has

the quotient topological structure, it is apparent that s dis a continuous

cross—-section if and only if s 1is a continuous selector.

(11) Suppose s 1is a continuous selector. If T is the collection
of fixed points of s, them T 1is closed and “PT is a homeomorphism
with inverse s. If P 1is any property which is hereditary with re-
spect to closed subspaces, (e.g. "complete", "Polish"), then X/E
satisfies P when X does. If B 4is any set, then

B et s_I{B) c B+; so Bws (B) solves the IM-invariantization
problem for any collection T < P(X) which is closed under the
operation of tsking inverse contlnuous images. In particular this dis

true whenever T = G{En). where G is any Boolean operatiom.
o |

Given a sequence A = <4 ieD « IP{x} and a
function s: X = X, let s_l(a} = <s-1(ai}: i I-. If A
and B are sequences such that B reduces A, then 5_1{3) reduces
s_l (A). Suppose s is a continuous selector and T is a class which
has the reduction property and is closed under inverse continuous images.

Then inv(l') has the reduction property. To see this let

75
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Ae u(inv{r)} and let B g mr reduce A; then

5*1{3) E m(inv[ri} reduces 5_1{A) = A,

If T is a collection of sequences, let inv(r) =
T ] (ﬁfi E dam(ﬁ)}(&i is invariant)}. A property

P(A ,...,ﬁh} of sequences is Boolean if P{Al,...,hn} implies

1
P(s-l(ﬁll,...,a-l(ah)} for any function s. The argument of the

preceding paragraph is easily generalized to show:

(12) Suppose X 1is a topological space, ?{Al,...,ﬁhl is a
Boolean property, and Q(Tl,.,-.rn} is defined by the

equation
. v
Qeryyeeanr)) = (VA e T))(FA) e 1) (VA e To)ee o (()A, & T (B(A .04 ).

Suppose for j = 1,...,0, rj is a collection of sequences
which 1is closed under A ﬁ-s-l(A] whenever s is continuous.
If there exists a continuous selector for E, then

aQ(r ,..-.rn) implies Q(invfrl}....,inv{rn}}.

In view of these strong consequences, it is Important to deter-

mine just which equivalence spaces admit continuous creoss-sections.

We will apply the following result (13), due to RKuratowski and
Ryll-Nardzewski (see [27]) to obtain a sufficient condition for the

existence of a continuous cross-section for X/E when X 1is Polish.

(13) Let X be a Polish space, Y an arbitrary set, and & a

field of subsets of Y. let J. be the closure of Xr under
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countable unions. Suppose F 1is a function on Y to the
collection of closed subsets of X such that for every open
set G X, {y: 1’({{) NG # a} E.&. Then there exists a

funetion f: Y+ X such that

(1) £(y) e F(y) whenever y e Y;

(ii) f_l(G} £ ;Z% whenever G is open in X.

Theorem 3.1. Let E be a lower semicontinuous (l.s.c.) equivalence

on a Polish space X. If X/E is Tl (points are closed) and zero-

dimensional, then there exists a continuous cross-section for E.

Lat Y = X/E, ,ﬁ-f = {0 CX/E: 0 is clopen], F = the identity
map [x] =~ [x]. X/E is Tl just when each equivalence class is closed
in X. Since E is lower semicontinuous, H{G+j = {y: F(y) e # 8)
is open feor every open set G C X. The function £ given by (13) is

a continuous cross—-section for E. D

Remarks.

Assume X 1is Polish.
+E
V. If X has a basis H of clopen sets such that B is
clopen for every B e H, them E is l.s.¢. and X/E is zero-dimensiomal.

This is the case which relates to model theory (see IIT §6 below).

VI. If X is zero-dimensional and E 1is both lower and upper

semicontinuous, then the hypothesis of remark (V) is fulfilled. In this
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case the identity function on X/E to the space Zx of closed
subsets of X (with the exponential topology) is continuous (see
Kuratowski [26] §19.IV). The continuous section may then be obtained
from a theorem of Coban (cf. Engelking, Heath, Michael [15]).

This may account for the absence of 3.1 from the extensive literature

on the Kuratowski~Ryll-Nardzewski selector theorem.

VII. If a O-dimensiomal T, space has a countable basis, then

1
it is metrizable (cf. [26] §22.II.1). Thus, assuming the hypothesis

of 3.1, the conclusion "X/E 4s Polish" may be derived from a

H:Af:lf:rﬁ
classical theorem of Bamdch viz.: If £ is a continuous open map

from a Polish space to a metrizable space, then the image of f is

Polish (cf. Sierpinski [41]p. 197).



Chapter IIT: SOME APFLICATIONS OF TOPOLOGICAL METHODS TO MODEL THEORY

In this chapter we will apply some of the theory developed in
chapter II and in the work of previous authors to the canonical logie
actions. This will yield results in the model thecry of the language
Lulm and its fragments (including me}.

The first four sections are concerned primarily with the ‘E;Q
separation theorem and its consequences. Sections five and six con-
tain two additional applications of Vaught's transform method.— In
§ 5 we apply the transform to derive a recent "Global Definability
Theorem" of M. Makkai [30] from a classical theorem of Lusin; in §6
we characterize "invariant a-Borel measurable functions" between logic
spaces as the 2§;n—definahla functions'", thereby extending results of

Craig [13] and Lopez-Escobar [28]. In §7 we discuss consequences of the

selector theorem of II §3 and some related material.

This is a convenient point to collect some new notations and

facts which we will use throughout the chapter.

Some set algebraic definitions, (e.g. of "A reduces B",
"K has the first separation property,"” "<CB: B < y> 1is decreasing"),
apply without modification to proper classes and will be used in this
way. All of these definitions can be easily formalized, say, in
Morse-Kelly set theory (EE.IEﬁI ) or translated into statements about

predicates of Zermelo-Frankel set theory in the standard fashien.

Let ¢ be an arbitrary fixed similarity type.

79
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Except when the contrary is explicitly stated, all equivalence-
theoretic terms refer to the canonical equivalence Ip when applied
to subsets of Kﬂ and all action-theoretic terms refer to the canonical
logic action. In particular, all uses of Vaught's *-transform refer

toe this action.

We will make extensive use of the definability results obtained

in Vaught [46]. For many applications the basic result ——
(1) 1nv{£§(x}} = E;“{x} for all a > 1 and all invariant x:_:xp -

will suffice., In some contexts, notably in sections four and five,
the stronger result (2) from which (1) is derived will be applied.

Em- is the collection of all one-one functions em n to w.

For s g Em, [s] € w! dis the set of permutatioms which extend s.

For n € w, ngp-

B*n = {{R,8): s ¢ Em &5 R e B*IS]}-

4 4s defined dually.

Vaught ([46] 3.1) proved
For all e 21, n g w, and all invariant X< Kp, if

®
(2) B e _g:{x}, (respectively _52{1{)), then B T, {Bﬂn ): belongs

o 1°G™),  @a™)).
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We will at one point have use for the effective version,

([46] 5.1), of (2).

%
There is a prim(w,p)-function 8 ~ <8 % m € w> such that

*n

(3) if 8 1is a J_'_[:*p-name, then for every n, 8 ¢ n;n{p}

is an n-formula and [B}*Il = [[E*n(n}].

Given a similarity type p, let 5 be the result of replaeing

each constant symbol ¢ € p by a unary predicate R = (1,(Cp.e);1).
= A -

Each p-structure ({ becomes a p structure ({ by replacing each

E‘H with {Eﬁ }. The map ¢ v (1 carries ‘ID onto the class

¥ = Mod ! vR (v )) © V.. Note that ¥ is 1'° if C
: o {cfé("}' V;_:(ﬂ:} e Vs ote that V  is x 3
- P

~ A
is countable. p, (1 are the relationalizations of p and 5"(. It

is easily seen that
(4) There exist prim functions ¢ » u;, v """I'I: such that for

every type p and ¢ € Lmlm(p}’ Ve Lmlmpr

(1) Mod() = {F: e Mod($)). Mod(3) = (A{: [ = Mod($))
(i) (Va2 D[y e p°@) (resp. £'°G) =
ber®e) @ eN)
tegﬂ P 2o +]

(iii) (Ve = 2}[(Cp countable & ¢ ¢ E;G} #a £ ‘1;[&.':]

L

A formula g is in negation normal form if the symbol < occurs

only in subformulas of the form & when @ 1is atomic. From the



82
infinitary DeMorgan laws one obtains

(5) There 1s a prim function ¢+ ¢' such that
(Vo)(Woel (0))(Mod(s) = Mod(s") & ¢
1

negation normal form).

is in

If p 1is counteble, then so is the set of finite p-structures.
It follows that every collection of finite p-structures is E';{vp).
This fact, together with the Lowenheim-Skolem theorem is aften sufficient

to extend definability results for X to corresponding results over
p

all models. For some purposes -— notably in dealing with E'g or with
questions of effectiveness —— this ad hoc approach breaks down and we

need to accommodate finite models in a variant of the usual logic space.

The (familiar) trick is to treat equality as a non-logical symbol
so that an infinite set of natural numbers can represent a single element

of a finite structure.

Assume p has no operation symbols. Let 2 be a binary relation

symbol and let p =p + =~. Let 'fp € X _ be the collection of all
p
(S,~) such that ™~ is a congruence orn ® for each relation in § and

Hlo.

-

each congruence class is iInfinite. Since each equality axiom is

Ll

=g 0
L
Rp is' I 2

natural quotient structure (5,~)/~ 4is a p-structure and it is apparent

in X when p 1is countable. Given (5,~) ¢ ﬁ;, the
P

that every finite or infinite countable p-structure can be obtained as

such a queotient.
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Given 4 e Lm ml:p:l let ;- ‘p(fgj be the result of substituting
1

~ for the equality symbol =z throughout ¢. Clearly ¢ has the same

position in the Borel' hierarchy on p that ¢ has in the hierarchy

on p. Furthermore, if ¢ 1is an n-formula, then

—(n) <(n) : N e A
1 ]]nxp“ = {(Smipneend ) (S~ 04, ] 0 1 D Es)

1

Here, [i] = [i]~ is the ~-orbit of 1.
[[E{n}]] ﬂi_:n} will be denoted {4:{“)94 As usual we drop the

superscript when n = 0. Given any class I of p-formulas, we let
T={¢: ¢eTh

Since each ~ 1s a congruence, any isomorphism between structures
(S,~), (8',~") ¢ i; induces an isomorphism between the corresponding
quotients. It follows that each class (¢) dis an Ip-invariant subset
of X

o and we have for each n ¢ @,

(6) 1°&™) ¢ v &™)y).
~a P o P

Since all congruence classes have the same cardinality, any iso-
morphism between quotient structures (5,~)/~ and (8',~')/~' can be
lifted to an isomorphism between the structures (S,~) and (5',~').
Thus, Iﬂ is the natural equivalence on fﬂ to study for appliecatiens

to logic.

With a slight modification of the proof, Vaught's main definability
results (1)-(3) go over to the new situation. The key remark which allows

this modification is
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(7) Assume Ep =0@. If Yy dis an m-formula of I..lll m(;} such
1

that the symbol = does not occur in v, and n £ m, then

(ERTRRCIRIONS - 0 Twev, O™

The inclusion from left to right in (7) is trivial. For the
reverse inclusion let (S,~) € ]{p and suppose (m,ﬁ,u,iﬂ,”.,im},é .
Since each congruence class is infinite, there exist distinet numbers

1;,...,1]; such that 1j-.-1j' for j =n,...,m. Since . is a

congruence, {m,S,",io,...,i 1.1 ,...,i'}k: ¥ and

n—
{S,.-f,in, viTa in—l} e (I [3*1_;‘“. 1 .y_m) (v) (n) I as required, establishing (7).

Proposition 0.1. Assume C = @.

(a) Assume mew, a=21l. If B ei::{x__}, then
890 @ | p@®y. 15 3 e %), then " pten g | Cog@
o ~a p ~a' g P ~a p
(b) There is a prim(w,p) Ffunction & » <8 (*)n new>
o ¢ 1'%

=

such that if @8 4is a HQQE;name then for every n,
= n 1,:{11} ]n{n)b

Proof.

(a) Vaught's proof of (2) is easily modified using (7) to establish

(a). We prove by induction that for B ¢ E(K“}, each B ufj X{n)
D

anf1 iﬁnJ has the form ﬂ¢{n}ﬂ r]iﬁn) where U e Lm N(E) is uf the
1

proper form and does not contain the equality symbol. (a) then follows

since Mf) = p(%) [:) = ¥ if = does not appear in .
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s Consider the initial step. Let B be a basic eclopen set in
X. Then B = [y(0,...,m)] for some basic name ¢ which does not
p
involve the equality symbol. We know (e.g. from [46]) that

a1 Jy ) Py 0,
[Ty @INED = 1y @1nE

The remaining steps are similar. At each stage we carry the
additional hypothesis that the formulas defined previously do not
contain =; we use the argument from [46] to comstruct a new formula:

then we use (7) to eliminate the equality symbol from that new formula.

(b) Just as in [46], the proof of (a) is uniform and establishes

the effective result (b). [}

Corollary 0.2. Assume E'p =@ Forall a3>1, n E w,

0 ~=(n) . mos(n)
inv(_l}u(xp )) ' (X27)

~a p
and
0 7(n) - p1o5@
1nv§§3(xp 1) 3 u{xﬂ )
rPrunf.

In each case the inclusion from right to left was noted in (7).

The reverse inclusions follow immediately from 0.1(a). O




e

o
§2. The Il:c: Separation Theorem

Consider the Jéi

basic theorem — "disjoint Ei

by a Borel set" —— was obtained by Lusin in 1927 (cf. [26]). 1In 1957,

separation theorem in topology and logic. The

subsets of a Polish space can be separated

W. Craig proved an analogous fact in logiec —- "Disjoint :—]i(rﬂ classes
can be separated by an Lum{p) elementary class.”" Several years later,
noting the analogy between these results, D. Scott conjectured that a

similar result held for L o This was established by E. G. K. Lopez-

Escobar in 1965 ([28]). At about the same time, J, Keisler [22] developed
a theory of finitary approximations to infinitary formulas (which will

be summarized below) which allows one to dervie Craig's theorem from
Lopez-Escobar's. Finally, Vaught showed in [46] how to obtain Lopez—

Escobar's theorem from Lusin's classical result.

Thus, we can derive Craig's theorem from that of Lusin as follows:
Given mutually imconsistent ;3; santences 51,52 of type p (p
necessarily countable), note that [Iglﬂ and ﬂ52H are disjoint -éi
subsers of the Polish space xh. By Lusin's theorem, there is a Borel

-
set B which separates them. By Vaught's results, the Borel set B

*
also separates them and B = [[¢]] for some ¢ ¢ I.lu m(p]. By the Lowenheim-
1

Skaleﬁ theorem, Mod(4) separates Hcd{elj from Hud{az} over
infinite models. Since every collection of finite models is definable

in L (p), there is a variant ¢' ¢ L  (p) such that Mod(4")
wyw Wy

separates Hbd(al} from Hod{az} over all models. By EKeisler's results,
the same is true of some o ¢ me(p) which "approximates" &'.

86
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In this section we will see that the Shoenfield VE separation

theorem has an analogous relation to the Hausdorff-Kuratowski T
-~

separation theorem.

1] a i

The principle '}g’n{?n) (n > 1) has the first separation property'
was conjectured by Addison (see [2 ]) based on the analogy between logic
and descriptive set theory. This conjecture was established in a strong

form by Shoenfield, (cf. [2 ]).

Theorem 1.2 below is the intermediate step in a derivarion of

Shoenfields's theorem from Hausdorff's.

Remark I. In his dissertation [37], Myers proved a separation theorem
for multiplicative classes in the I.m - hierarchy based on quantifier
1
depth (without regard to infinite conjunction and disjunction). Myers'
result also yields Shoenfield's via the approximation theory, but it is much

less natural topologically. We do not know a topological theorem about

logic spaces from which Myers' result can be obtained.

Let K be a collection of p-structures and suppose ¢ =
-:¢.E: B £ y> is a sequence of p-sentences. We say ¢ 1is decreasing,

(respectively continuous), over K provided <Meod {¢E}n KE: B < vy>

is decreasing (continuous). D(§) = VHB A "i¢ﬁ+l: g e ely)}.

Let QC Lm mEp)' & 1is suitable for Uﬁ[ﬂ) if ¢ EY+1ﬁ, ¢ 1is

1
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decreasing and continuous over K, th{¢n}rj K=K and

Hbdf¢T}f1 KE=@8. We define ﬂf{ﬂ) = {D(#): & 4is suitable for
= ﬂK . £ =

p:.:n}}, tgf}fn} Ug@: 8 <y}, When K=V  we omit the

superscript.

Note that under over comvention "R(K) = {Mod(¢) 1 K: 6 & Q} "
vi{n) ® = 2_(aK)

(where ﬂTfﬂ(K}] is interpreted with respect to the "universe" K).
In view of this identity we could state most of our results without
defining the syntactical classes ﬂi{ﬂ). This would have the effect
of making some results (e.g. l.1) appear to have less syntactical
content., When discussing syntactical notions, such as effectiveness
and finite approximations, the syntactical classes PT{E} seem to be

indispensible.

In chapter II we solved the invariantization problem for each
class ﬂng:{x}} in any Polish action. In the canonical logic actions
we can combine this with Vaught's characterization (1) of the invariant

ﬂﬁ sets to obtain an analogous result for the "small Borel classes"
D (n°(x.)).

[
Theorem 1.1. Assume p 1s an arbitary similarity type, + < g and

1 <qg< wys

1
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(a) If X 4is any invariant subspace of Xn. then
v (@ () = T (' X,
(b) I1f p 4is countable, then
1w (2% )) = TP X ) .
~d p (W)~ a " p

Assume Cp = @. Then
o= Za 1° -t

(c) Lav(P (I (X ))) T?Tiﬂm) x) -

(d) I1If p 4is countable, then

=y '
in?{éuixp}) - [H ?{K ).
Proof.
o 0
(a) By 1I.2.5(a), inuﬂquu{X}H = ﬂT{inv(qhﬁxj)}. By (1),

) o = . " )
fav(P(0) = 100, so D Uav(e) = D (I1000) = T (o) (0.

[+ ] o
(b) If p 4is countable,then éu{xp} = ?mﬁﬁﬂﬁ;fxp}}. so (b)

follows from (a).

(e} (e) follows from 0.2, IT.2.5(a) and the fact that a sequence

<¢ﬂ: B = y> of Lm mfp} sentences is decreasing or continuous over
1

?ﬁ if and only if 4{¢EP: B £ y> is decreasing or continuous.
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(d) (d) follows from (c) and the invariant separation
theorem IT.2.5(c). Note that when p 1is countable, i; is a

ﬂ; subspace of the Polish space X_ and the restriction of the
i

canonical action to i; is still Polish. E]

Theorem 1.2. Let p be a countable similarity type and let a = 2.
Then the collection E'i(?p} has the strong separation property

1'ﬂ
with respect to ?miﬁﬂlﬁ?(vﬂl'

Proof.

First assume p contains no operation symbols. Let Hud(ﬁlj,
Hﬂd{ﬂz} be disjoint H'g classes. Then lEll, [Elzl' are disjoint

invariant 'g: subsets of X . By II.2.5 there is a set
e

De ?wﬂ(invj"{;’[}%}:l which separates iEl} from {azb. By 1.1(e).

—_ o 'a
DN xp {6) for some & e ?m]}([[_m]{p]}.

Clearly Meod(4$) separates Hnd(ﬂl] from Hnd{ﬂz} over

countable models and by the Lowenheim-Skolem theorem for Lm W(p}.

1
Mod(¢) separates Hnd{ﬂl} from Hbd{az) over all models.

Now let p be arbitrary. Given 8, ,8, as above, pass to the

# ljgant !
- - - -~ '.D -~
relationalizations Bl,ﬂz. Since a a 2, 51,52 e ﬂ(ﬂ}. Choose

19,
six ?"‘1"{'& [u](p}} as in the previous paragraph. Then

‘; £ i{?u.‘fﬂ}:{p” is easily seen to have the required property. D
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Next we will apply Keisler's theory of finite approximations
to derive Shoenfield's separation theorem from 1.3 (and by the transitivity

of "derive", from Hausdorff's separation theorem).

The approximation theory applies to a wide class of languages
(see [22]). We summarize that part which we will apply. Fixing p,
the set A(¢) of finite approximations to ¢ is defined, for every

formula ¢ of L.m w{p} which is in negation normal form, by the recur-
1

sive conditions:
(8) (1) If ¢ e me, then A(¢) = {4}

(i) If ¢ =/\®, then A(p) = {Q{an....,o‘n}: new and for

some distinct Byrafy £ @, for every i < no, a; € A(Bij}.

(111) If ¢ = (YWI(), then A($) = ((YV(ALE ..., D: neu,
&G----sﬂn E A{!’J]}-

(iv) 1If ¢=EE or (3Jv)(¥) then A(¢) 4is obtained by

the dual condition to (ii) or (iii) (replace j\ by \/ and \f by -3).

Ead

Ac(¢}' is the closure of A($) under finite conjunction and disjunction.

In [22] (Cor. 3.4) Keisler showed

(9) Suppose &1'52 £ me{u}, b E Lmlm{p}, ¢ is in negation normal

form, and Mod($) separates HbdeI) from Hnd{ﬁz}. Then there
is an approximation ¢ e #c(¢} such that Mod(c) also separates

Mod(ﬂl} from Had(ﬂz).
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0 o Q.
Bn(pJ is the closure of \jn(p} v, a“n{p) under finite con-

Lol

junctions and disjunctions. Induction on subformulas shows

(10) 1f ¢e1‘[':, (resp. £'%), and ¢ & AS(¢") then
_~ "V"u

Mod(y) € y:wp}, @:wpn.

It follows immediately from (9) and the definition (7) that

(11) If ée quqyg} and Y e AS(W"), then Mod(y) & B (V ).

Corollary 1.3. Assume p 1is countable and =n > 2,

@ A E)NL &)= = B &)

{(b) The collection E:Wn} has the strong separation property
with respect to B:_l{?ﬂ}.
Proof.

(a) The inclusion in (a) from right to left is trivial. For
the reverse inclusion, suppose B ¢ égﬁi;}{ﬁ i;mfi;}, say B = {8)

for 0 el (p). By 1.1(d), B = (4) for some 4 e Eémllf,r;;fl(p}}.

It follows from the Lowenheim-Skolem theorem that Mod(4) = Mod(g).
By (9), Mod(8) = Mod(s) for some o & AS(47). By (11),
——
fol ¢ Bn(}tﬂ}.
(b) Let Bl,az be mutually Inconsistent members of Efzfp}.

By 1.2, there exists ¢ ¢ %u ]{Eéflfp]} such that Mod(é) separates
i

Hodfal} from Hu&(ﬂz}. By (9), the same is true of some o & Ac({;‘}.

By (11), Mod(c) e B:{?p). 0
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Remarks.

II. After proving 1.2 we learned from Myers that, (at least
for successor o and over infinite models), it was an unpublished
result of G. E. Reyes. He apparently derived the case o= 2 from
Hausdorff's proof and the fact that the closure of any invariant
subset of Ep is closed', and then translated the result to other
successor o using Skolem predicates (presumably by the argument of

remark IV , compare also our proef of 3.1 below).

III. The utility of Keisler's approximations for results like

1.3 was pointed out to the author by W. Wadge. Wadge had proved the
o o

identities En(xp} N Lw(xﬂ) En(xp}, n 2 1. Upon learning of

Vaught's result (1) he remarked that his result followed from (1) via

(9).

IV. The I ': separation theorem for successor o> 2 can be
reduced to the case a = 2 by the following method. The method seems
to be essential for the effective theorem of §2. It shows that the
*-transform can be avoided in deriving 1.3 for successor a (though

apparently not for limit a, nor for definability results such as 1.1).

Let p be countable and suppose K K = HEI:IW} are disjoint,

i
B>2. For 1i=0,1 choose Bin f’\'\?"v "—k' vi—-kn+l”'“k‘

guch that each a e Tl::.;}(p) K, = Hudfﬂi}. Let L he the smallest
¢ L

fragment of L (p) which contains each Ei . Let p = p be
wy @ nm

the similarity type which contaias an n-ary predicate E¢ = for each
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w_w

%

let 31# £ 1?(;] be the canonical expansion of ﬂ'{ s, and let

o
wod’ @ gy = 017 O e m0a™ )1

new and each n-formula ¢ € L. Given {j‘[a vénJ, velL (p),

Let ‘F: = {ﬁ'{#: 0'(& 1‘.l'l,:'}. Note that

= i
(12) Each Hud“"“"‘ﬂ}ca:m} £ E';{vgfkm"'nh

hence each
# I
Mod {Hi) EE'E(?F}.
o, # # #

(13) If 1 1(p ), then Mod($) ?p = Mod" (¢) for some

Ve E‘gfa).

By (12) and the E'; separation theorem for n#. there exists
el (H'n{p#}} such that Mod($) separates Hnd#(B ) from Hnd#(ﬁ : {F

[m1}~ I 1 a
By (13), Mod(d) N 1’# = Hud#{¢) for scme Y € ? (H'n(P)]. Then
p m]}*\- B

Mod($) separates Hﬂd{ﬁl} from Hud{ﬂﬂ};



§2. IL‘: Separation and the Froblem of Effectiveness.

The main result of this section, (2.2) is an "admissible" version
of the _ngxp} separation theorem for p £ HC and a > 21 a SUCCESS0T
ordinal. Since the construction used in 1.2 is highly effective, we
will obtain a corresponding g': separation theorem for certain

admissible languages as a corollary.

The following lemma is an effective version of the classical
method of generalized homeomorphisms (i.e. the classical method of
Skolem predicates). It will be used to reduce the general case of the

o
-Eu-t-l

separation theorem to the case o = 1.
Given p, a, ¢, Ilet Ezfp) be the set of ﬁ:—p—nmes and
recall that at(p) 4is the set of atomic p-names, sub(¢) is the set

of subnames of ¢. Let nlj{:}(p]l = U{ﬂ;fp}: B < al.

Lemma 2.1. Let (] € HC be prim-closed, w,p e L, 1l <a < wy -
o
Suppose 8 et (1, ® ng(p}. Then there exist pl,?,Fa,F e &4,

g: X +X such that
P Fl

(1) oy contains only O-ary relation symbols (i.e., Py is

propositional).

ﬂ—.
2 P1

homeomorphism on Xp onto [¥].

(i1} ¢ 45 a I -name and g is a (1,a)-generalized

(ii1) Fﬂ: atfﬂll - _E_:L'n}, Fi# @+ atlp,) are functions
suchthat for Y ¢ a:{pl}, Bew®, [Fu(ﬁ'}] = E-li[“ﬁ']}' and

[F,(6)] N1¥] = g(e]).

85
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Proof.

Let L = fat(p)} U {sub(8): 8 e 9}. Let p, be the similarity

1
type with a O-ary relation symbol gt. = (1,((L;$),0)) for each ¢ & L.

Q

Let e A bea -!-12 p,~name for Bln Bz where

B, = N «Uer_»Dn NE_, +12_.D
L EECP few S 14 L =i
B, = () [P, =P, 1 N N [B,.+ VE]
- =1¢eL % ¢ WTel i) TET_T

n ()« NE]

ATel. ~ yel'

Iex L: 1 +£:{p} be a prim function such that for every

$el, [L®)]=[¢]. Define F = {(2,L(#): ¢ L},

$
Fl = {fE.PB): 8 e9}. For Reg }Ep, set g(R}{_%) =1 4f R e [4],
0 otherwise. It is easily checked that Pys ¥ 8 FG, Fl have the
required properties. B
Given a sequence § = {q;s: 8 < yv> of p-names, let [¢] =

<[¢E]: B < v>.

Theorem 2.2. Assume (] € HC is admissible, we (I, 15y <u.
Suppose that Hl,ﬂz £ ﬁ, are ﬂ:-:-l“p"mmes for disjoint subsets of fip
and that OL contdins a well-ordering of TC(EIl,BZ,p). Then there exists

8 e w,, and a f-sequence & of jg—n—names, such thatr ¢ ¢ a,

19
o
[¢] 1= suitable for F‘E(‘l}m{xp]}, and

[e,] € p(le)) < -[8,].
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Proof.

We consider two cases.

Case 1. p=1 and p is prupnsitim;al.

Since d is prim-closed and contains a well-ordering of
TC{ﬁl,BE,p), there is some ¥y € an wy and a sequence

8= {Bu : (a,B) e 12> £ 51 of Basic p-names such that

gt
Iall - [;:\{\f{auﬂ: Bevy}l: ae oy}l

[e,] = [{_\{'}_f{au5= Bevyl: aee(y)l.

o(y) and e(y) are respectively the sets of odd and even members of ¥.
We may further assume that for some y' £ ¥y, there is an enumeration

- . ' = e ' P
¥ ‘Eu' aey'>e ﬁl such that p {Eﬁ. a e y'}. Extend to

7 ¥ > p by setting fﬂ-gﬂ for a 2 y'.

Since [31] N [32] = d, -[31] U -{BZ] = Xp and we have

(14) (Vx ¢ Kn}('u"f £ T‘r}(;ﬂ}fx ¢ [euf(“}])'

Let d range over 1&}?21*). Let o,T range over the set T of
finite functions with'domain, range included in ¥ (i.e. "partial
Skolem functions"). Let s, t range over the collection T of finite

sets of subbasic p-names (i.e. "partial elements of Kp"}.

Each Eﬂ ig a fipite conjunction of subbasic names, say

B
[}

Buﬂzﬁtaﬁ' Given o0 e T, let ¢t =U{r’uq(a}|= a & dom{g)]},

87=Ae% %= [ (e

T
ucd-:m{a) ao(z)
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Choose a set ﬂ{: ONU(Q.Define Rk: TI'xT + 0On U {=} by the

conditions:

(15) Rk(s,0) =1 4f [As] N [6°] # ¢

v

Rk(s,0) 2 otl 4if (VB ey)(J(t,1) e I'xT)

IsCE€ & @t & {gﬁet crr'lgaet) &

B8 £ dom(x) & Rk(t,t) 2 al
Rk(s,g) =2 41f BRk(s,g) 2 8 for every B8 < 1

Rk(s,c) = ( the smallest a such that Bk(s,o0) ia+1 if such exists

= ptherwise.
Note [Asl [8°] = ¢ 4f and only if

( 38 e)(Ja & dom(a)) (B;,0B € syt ).

—: ao (a)

Thus, the relation om s,0: "Rk(s,o) 2 1" 4is definable by a A
formula in the parameters T, T, ¥, P ed. 1t follows from the form
of (15) cthat the relation en s,o0,ax: "Rk(s,o) = a" is primitive
recursive in parameters [, T, 7, F, hence Rk ﬂ'aj is _&-definable

on ﬁ. We claim

(18) Rk ¢ (.

Let us postpone verification of (18) and proceed. Let £(a,B,s,0)

be the relation:

(V(t,t) e rxT(sct & esct & {gset or -ugsen;] &

8 £ dom(t)) = Rk(t,7) < al.
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Then Rk(s,o0) < e+l dimplies (58 e y)(E(a,B,s,0)).

Let o, = image(Rk) and let < ¢ De the lexicographic order on
a, * Y- Let & be the ordinal of < and let {i: (unx T’{L) + (§,€)
be the unique isomorphism. Define R: TI'xT + & by the equation
R(s,o) = min{n e 6: (3 (c,B) ¢ e *v)(Rk(s,0) =a & &(a,B,s,0)

& = i{ulﬂ}}‘

Note R 1s primitive recursive in parameters from ﬂl and dom(R) e fz,

so Re CL.

For s eT, let ;ﬁ{ﬂg: Bre-sY ) {8 TR e 8):
For n < & define P, = {E{"E“u §): (s,a) € I'xT & R(s,0) < nl,
¢n = ﬂpﬂ. Let ¢ = <¢n= n<é©&. ¢ 1is primitive recursive in parameters
from (1, dom(2) ¢ A, so ¢ ¢ (1. The sequence -<pn: nesd is
increasing, so [#] 1is decreasing. C(learly, [#] is continuous. po =@
so [¢,] = [A@] =X . Since R(4,0) <6, Yde p; and [§,] =0.

Thus, [®] 41is suitable for FG{ET(XP}}. We claim
(19) [e;1 < olle]) < -[8,].

To establish (19), suppose x ¢ xp. Let n, = min{R(s,0):
x £ [As] N [6°]}, and choose s,0 such that x e [/As] (1 [e°] and

n, = R(s,o)}. Suppose n, = i(a,B) and let

g' -{5 U{E_ﬁ} if x ¢ [EB]

s U{‘IE_E} otherwise .

Since R(s,o) = i(a,B), £(s,o,a,B) holds and we have
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(Yt 20)(8 & dom(r) = Rk(s',T) < a).

By the minimality property of Ny it foliows that

;1: U{IBB;]: eyl If x¢ [Bll, then B must be even, hence
n. is even; 1f x ¢ [&Zj, then n_ is odd. Using the minimality
property again, if R(s',0') < n_, then =x ¢ -([;ﬁs'] 0 [Hqil =

[yf‘s" u‘é"t)]. Thus x ¢ [q:“ 1 - 1[% ]. (19) follows.

+
x nxl

It remains to prove (18). We first show
(17) Image(Rk) C ON.
Since T % T 1is countable, there exists a < Wy such that
(VY s,0)[Rk(s,0) > a = Rk(s,g) 2 at+l].

let j: w+y be a bijection. If Rk(#,P) = a, then also
Rk(@,8) = at+l and for some e T,

{Ei{n} ety or By et) & i(o) edoml(r) & Rk(t,T)) 2 a.

We may proceed inductively to define tn‘fn for each n € w such that
P P
(16) Yo e wl(Vm < n}{l:mgtn 8 rpeT, & Li(n)e € OF IRy € t) &

i(n) ¢ dam{rn] & RIr.{tn,'l:n) 2 al.

Let x be the unique member of [ﬂ U{tn: newpl]. If

T T
x ¢ [8 I:"];. then since -[8 "] is open, for some m > n
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and hence, Rk{tm,'tm) = 0. This contradicts (16) and shows

x e ﬁz [Bj(n)TB(j(n})]' This in turn contradicts (14), so
Rk(#,0) < @ and (17) follows.

1f Rk(d,8) 4: a, then for some 5,0, R(s,g) = mlﬂa and
ey FYe,) erxDisSt Avgs ) + (Ja)(a e ON A Rk(E,1) < a)].

Applying I-reflection, we obtain mlflfl e (1, a contradiction which

establishes (18) and completes the proof of case 1.

Case 2. u 21, p arbitrary.

Let B8.,8

1 be as in 2.2 and suppose Ei = A V Ejk'

2
jEJi keKi

0
i=1,2 where each Ejk E-ﬂpfp}' Let @ =

{Bjk: (3,k) € Jlaeﬂl U sttﬁz} and choose Pyr¥s Fa’Fl e d as

given by 2.1. Let 8!= ¥v4/\ \/ F.(6.,.), i=1,2. Then

J 1Y 3k
jEJi szi

Bi,ai,pl satisfy the hypothesis of case 1 of 2.2. Let ¢' =

¢¢é: B<é>e (L bea sequence of ﬁ;*ﬂl-names given by case 1 such

that [Bi} < o([¢']D) < -[8;]. Let Ea{qbﬁ'} be the result of re-

placing in ¢, each Pep, by F(B). Let o= <F;{¢é}: B < &>.

As in Remark IV, it is easily checked that ¢ satisfies the requirements

of 2.2. The proof of 2.2 is complete. O

df:‘ HC satisfies the axiom of choice if for every x e a,

5& contains a wellwnrderiﬁg of x. Let ﬂ[a]{g:{xb)} =
oele): Apee AN TE:{p] & [#] 4is suitable for ﬂ?g{t:{xp}}l}-
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(II'GWDJJ has the obvious analogous definition.

ﬂ[c{]'vu

Corollary 2.3. Assume (] € HC is admissible and satisfies the axiom

of choice, wy,p ¢ (I, 1l<a < Wy - Then

(@) 1° [a](xp] has the strong separation property with re-

~atl
spect to F[m{gzixp}).

(b) l‘[éf_l[ﬂ.] (V ) has the strong separation property with

respect to ﬂ[m(ﬂ v,)-

Proof.

It is apparent from the form of II (8) that

[al%{x )) € 1 Ea](x)n Z, [flI{K}

whenever {f C HC is prim-closed. Thus, (a) is immediate from 2.2.

Using 0.1(b), our proof of 1.2 is easily made effective, giving (b) as

a consequence of (a).

Remarks .

V. The rank function used in the proof of 2.2 is based om a
similar rank function used by D. A. Martin in [31] to prove the ordinary
(boldface) AI: separation theorems for 2¥.  The classical argument
could not be used here because we have no effective way of obtaining

from a ﬂ;—nm $, 2 )};—nm for the closure of [4].

VI. Every admissible set of the form Lu[x] (the ath level

of the constructive hierarchy built over x), x ¢ Kn, p finite |
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satisfies the axiom of choice. A much stronger hypothesis is that of
local countability. 61 is locally countable if for every x e 52,
6L contains a map of w onto x. If a is locally countable and
prim(w)-closed, then the standard proof of ‘gz-reductiun shows that

o o
_Eu[ﬂlJCKp} has the reduction property and hence ,yuiﬁl](xp} has

the weak first separation property (u > 1, p € ). We doubt that

_;a:[a ]-reduction holds when (I is not locally countable.

VII. Before we obtained 2.2 Richard Haas considered a variant
(call it T) of the difference hierarchy om E; (l1ightface) and proved
that H;{mm} has the strong separation property with respect to T.
If his result can be shown to relativize to arbitrary parameters or
to extend to higher levels of the hyperarithmetical hierarchy it would

improve the result one obtains from 2.2 in these cases ( where

a = L, «[x], x ¢ 2”) by avoiding the introduction of hyperarithmetic
1
parameters.



§3. Hausdorff' and Sierpinski': Proofs Derived from Topology

In this section we carry Addison's "method of analogies” and
Vaught's "topology prime" notation to their natural extreme and con—

struct two proofs by the following recipe:

"Take a theorem and its proof from classical descriptive set
theory. Give model theoretic interpretation to all the terms used
in the proof in such a way that the arguments remain valid. The result

is a theorem of model theory."

We will apply the recipe to the Hausdorff proof of the H;
separation theorem, and to the Sierpinski proof of the theorem

"Operation (A) preserves the Baire property in separable spaces.” The

results are new proofs of the ,E'; separation theorem,6and of the fact

"The game quantifier preserves the Baire' property for countable p."

Vaught (see [46]) had earlier applied the recipe to derive this second
Cow il s oa = Mo Tarh
i|-|‘¥ Pl & Gk 1]
fact (for arbitrary p) from the Kurastowski proof that "Operation (A)

preserves the Baire property inm arbitrary spaces." Sierpinski's
o

argument is considerably shorter than Eurdtowski's for the cases it

covers, and our proof is similarly shorter tham Vaught's original argument.

The follewing definitions are mainly from Vaught [46]. Let
p be arbitrary and K, C k™ ¢ ?:“). K, 1s meager' (relative to

(n) K O
k') provided K, Mod (\:: ign...g_imq,m) vhere each ¢ ¢ JI'] and

every -;‘GIK(im}) subclass of Hnd(im}(¢ y N K{im) is empty. K is
1 o (n)
K

almost' open' if the symmetric difference Kl A Mod (4) is meager' for

104
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[
some § € E'l{p). The Tarski closure chlj of Ki is the inter-

section of all the closed' classes which inelude Kl. Note that

(20) K1 is meager' (resp. almost' open') in K, 1if and only if

K, is meager' (almost' open') in e(K,).

R, is dense' in K, if K, Sc(X). Also note that c(K) e I'(V,)

for any K.

Assume for the remainder of §3 that p 1s countable.

(21) and (22) list the model theoretic translation of the basic

topological facts used by Hausdorff and Sierpinski.

(21) Let KE—‘F‘EE}, nE W,

(i) Every disjoint collection of _E‘T{K} classes is countable.
(ii) Every strictly decreasing collection of 'E';(KJ classes
is countable.

(ii1) If X is non-empty and ﬂ‘;{? ), then K is not meager'

in itself.

Proof.

(1) and (ii) are immediate from the countability of the set of
basic' p-formulas. (iii) is a wvariant of the well-known omitting types
theorem and has a long history (cf. [46]). It is most efficiently
derived from the Lowenheim-Skolem theorem and the Baire category theorem,
(see [46] but substitute % for Ip to get an argument which is valid

when ¥ contains no infinite models). O
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In complete analogy with the topological situation (c£. [28]

§24), 21(1) and (1ii) and (20) imply

(22) Let K(;.?:n}, n € w. Every disjoint collection of Bairae',

non-meager' (relative to K) classes is countable.

Theorem 3.1. (1.2 revisited) Assume p is countable. The collection
,E';f?n} has the strong first separation property with respect to

0
PV,

Proof.

=]

Let KI‘KZ € 5‘;C?g} be disjoint. Recursively define _ﬂ'l

classes CG. a £ w, by the conditions:

1

T C(Kl}

Ca= ) C
"sﬂ-ﬂ

= c(Kz ne

Cyt2n+1 200 Crizne2 = & n cJ.+2n-|::)'

It follows from 21(1i) that for some v & GT = ﬂn for all

1’
n26. Then C, =c(C, NK)) =e(C;NK,)). Thus, Cs NEy, G Nk,

are disjoint ﬂ‘; classes, each of which is dense' in CE' It follows
that GE is meager' in itself, hence empty. Then
KI < U{ﬂﬂ-ﬂu_l_l: aeealy))] < K,
[

and the proof is complete.

For finite p it is well-known that e(¥) = {Ol: every finite

substructure of ([ can be embedded in a member of K}. We can combine
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this observation with a variant of the last proof to give an algebraic

characterization of the ‘E['; classes which contain only finite models.

The use of a substructure chain argument in place of the Baire

category theorem is not new -— see e.g. Addisom [13].

Theorem 3.2. Assume p 1is finite and K 1is a ceollection of finite

p-structures. The following are equivalent.

12
@ e g @70,
O
(1) KeR'30)

(i1i) ¥ inecludes no infinite substructure chain.

Proof.

(i) implies (ii) trivially. Since ﬂ‘; classes are closed under

unions of chains, (ii) implies (iii).

Now assume (iii). Define Gu for a e w, as in the froof of

1
Just as in 3.1 it suffices to show cﬁ is empty.

3.1 with Kn =K, E = "i’p - K, and let &6 = Wy be such that Cﬁ = c.5+1'

Suppose it is not.

Let e Cse Since Cp = c(cﬁﬁ K), there exists J(u e C, M K.

Since ﬁru is finite and C, = C(CE - K), !':’T has an extension (necessarily

é
a proper extension) ‘S‘a e Cﬁ - K. Let be ]éﬂl = ]a'(ﬂl and let

gn be the substructure of JS-G generated by {b} U l{"(_[ Since

1'® classes are closed under substructures, é e C. and since
~ 1 o &

ca = c(CG 1 ), {u has an extension ﬂtl E Ga N K. ﬂ'[l is a proper



108

extension of 5{“, and the process may be continued to inductively
define an infinite substructure chain {O{i: ie w} £ Cﬁﬁ K K

in contradiction to (iiil). 0

Next we give model theoretic interpretation to Sierpindki's

theory of approximation to the operation (A).

The following definitions are due to Vaught. Let p be
arbitrary. Lat S be the set of all finite sequences from w of

even length and suppose we are given

(2n)
% E‘Fﬂn.

(23) K={K : s e S8}, with each K
-4 ? -
1 2n

i

The class G(K) C "?a is defined by the condition
K= B.R) e 6(K) = (Y1, € w(Va, e A)(T1, e )(Ta, e )

{‘u’iz ew)(Va, e A)... A(ff(,al,....ah} e Ky

new 1'"1

2n
The set {{Gg,r:}: a g ON, s € S} of approximations for G(K) is defined

recursively by the conditioms

{i} fﬂ,aljﬁn.,ﬂzn] ._E- 5:1..'12n = (.‘dm _E n){(oftali"'lazm} E Kil"'izm}

atl
(ii} t gilygessgd } E & R
ﬂ 1 zn 11" - lizn

{Vin_l_l £ u)(\l’a}wl £ A}f31n+2 £ n.t}ll'igaam_2 £ &]E{f‘{f,al,....aznﬂi £

63

11--1 ]
o

2n+2
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Lol . (Ya < lH(é’f,al,.,.,ah} e

f{ A
(ii1) ( 331!'--932:1} E 51 4,
i |

1

6ﬂ
Ieeeiyy)

- TR atl
(v) =z, =6, ~ 35, =

We set §° = 5; and define +° by the condition

e = (n)(Fs e znm)(ﬂ'& e MR LD ).
It is known (cf. Vaught [44]) that

(26) (Y a e ON) £t Z B e gt

Theorem 3.4. Assume p 1s countable and KE:_‘IFp is arbitrary.

Suppose K is a collection as in (23), such that each KEC_: K and

is almost' open' in K(length(s}}. Then

[+
(a) For scme o, < Wys T ? is meager' in K

(b) (Vaught) G(K) is almost' open' in K.

Proof.

(a) Fix s g 2nm_ Then {-r:: a < wl} is a disjoint collection

(2n)

of almost' open' subclasses of K By (22) we can find als)< Wy

such that for every a 2z als), -r: is meager', say T:E B: where

(2n)
K (Zn]}_ F ok

(s § = o 1 O
a E- 1+
a, = U{a(s): s & S}. Them = ng Mod (Y “'ul"'zn (31{#,...,12“_1}(%0)}
New Sg w ™

s 4
hence T _ 1is meager' in K.
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(b) It is easily seen that the collection of almost' open'

classes is closed under complementation, countable union, cylindrifica-

(n)

a

tieon (K= K % and projection {K(n}'+ K). Hence Tu and ]

a
are almost' open' in K for each a < W, - Sinca: § ° - G(K) 4is

meager' by (a), G(K) dis almost' open'. []



§4. Remarks on Orbits

Let p be a fixed countable similarity type.

Given n ¢ w and an n-formula ¢ = ¢{3ﬂ,....3“_1) € Lmlﬁ{p}’
define "3 ' = {R ¢ Kﬂ: (w,R,0,...,0~-1) [=4}. Let L be a countable

fragment of LLIJI w[p} which is closed under quantification and let XL
1

be the topological space formed on the set |Ip| by taking

{"47: 4 e L} as a basis.

Given R ¢ KL, identify R with (w,R) and let [R] be the
orbit of R wunder the canonical action. Then [R] 4is Borel and in
general, there will be orbits of arbitrarily high Borel rank. In [8]
M. Benda proved a result relating a model theoretic condition on R

L
to the topological complexity of [R] in X ““; viz.
(25) 1If R 1is saturated and Th(R) 41s not w-categorical, then
L
o ww
[R] 4is not "EE in- X .

L
Topological questions about orbits in X Y9 Gere also considered

briefly by Suzuki in [43].

In this section we will obrain further results of this kind,
mainly as an application of the invariantc ']‘]: separation theorem . In
particular, both 4,2 and 4.5 will improve (25). For definitions and

basic results about elementary types, etc. see [12].

Let p#L be the similarity type with a Skolem predicate £¢

fL
for each formula ¢ e L. Then the canonical embedding J: Rwm» R

111
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oF KL into xp#L defines a homeomorphism of IF with an invariant
E; subset of xﬂgL. It follows that KL is Polish. Moreover,
gince the canonical embedding commutes with the canonical actions

on X, and xh#L' Vaught's result (1) can be translated into a
definability result for XL. The definition of the classes Lﬁg'z,
L-I'7, (read ",E': over L", etc.), is obtained from the definition
of ’E':, JET:, by replacing the condition "each Hh is basic'" 4in

the definition of I'7, by the condition "each M_ ¢ L", to define

ot l ¥
L—E'i; and then proceeding as before.
We have

(26) For a > 1, invariant EzEEL} = L—E'zixﬂ}.

Proof.

Inclusion from right to left is trivial. To go from left to right
assume B & invt;é:fxz'}]; then J(B) ¢ imrfE:{J(IL}J}- By (1)

#L). Let ¢ be the resulr of

J(8) = [¢] NI(X") for some 8 & '
replacing each atomic subformula of B8 by the corresponding formula

of L. Then ¢ is L-E's and B = [¥]. ]

Our first result provides the second half of the "inverse" to
Suzuki's observation ([43] Thm. 2) that the orbit of a prime model R
is a comeager g; subset of ﬁi}Th{R]D = EF‘ {[43] Thm. 3 is the
first half. Suzuki wn;ked with L = me but his arguments work in the

general context considered here.)
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Proposition 4.1. If [R] F-JI;(IL), then (w,R) 1is L-atomic (every

finite seﬁuence from w realizes a principle L-type in (w,R)).

Proof.

If [Rlel,, then (Rl =T AVy ...y, .V Iy, ..y, 6 1
~2 5 v _inlm'“_ia “imlm:u

where each ¢ is an n-formula of L. Let A =
nm n
{-;gg_i sea¥, g% ¢ mew}; then [R] =(S: S omits each type B
n om
newl. If R realized a non-principle type £, we could find 5
which omits {f} {ﬁn: n e w}. But then S g [R] and S$R, a
(=

contradiction.

Note that ﬂ{}ThI:R}D is the closure of [R] in XL, hence
(27) [R] is closed if and only if Th(R) is w-categorical.

In view of the intrinsic invariance of the Borel classes (cf.
Kuratowski [26] 535), for every o, [R] 1is a E: {or MII:) subset
of KL if and only if [R] is a __gz {I_l:] subset of [IQ‘I‘I':{R) 0. In
view of this fact, and of (27), we lose no information by studying the
complexity of orbits relative to [ i\T]] where T 1s & complete L-

theory which is not w-categorical.

For the remainder of 54 we assume T is a fixed, complete not

w-categorical theory of Luu.u and X = XL =II£\_T]] with the relative

L
topology from X o = = =

X 1is exactly the space 5 studied in [8].
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Following Benda [8] we say R 1is full (weakly saturated)
if every elementary type over T 1is realized im R. An elementary

type A 1is powerful if every model of T which realizes A is

full.
Theorem 4.2. No orbit is z;.

Proof.
suppose [R] & Z5(X); then by (26), [R] = \;f Jv vy A D

for some collection {¢nm: n,m £ w} such that each ¢nm is an n-

formula of LMm' Since [R] 4is minimal invariant, thers is some o

such that

[R] = {S: A is realized in S}

where A 1= the no-type {¢nﬂm: me wh.

If R is not full let [ be a complete type over T which
is omitted by R, and let 5 realize both A and E. Then

Se [R] and S % R, a contradictiom.

If R is full then A is powerful and, since T is not w-
categorical, there are both saturated and non-saturated models which

realize A, again contradicting the fact that [R] 1is an orbit. []

Lemma 4.3. If R dis full and G is an invariant E; set which

contains R, then G = XK.



Proof.

It suffices to prove the lemma for G = H‘f’yﬂ-..lru_l \;f¢m]],

0
each *u € me, since every invariant £2 set is an intersection

of sets of this form. Let 4 = f1¢m= mewls Then G =

{s: S omits A}. Since R is full, A is powerful and every model

of T omits A. []

Theorem 4.4. No full model has a _gg orbic.

Proof.

Suppose R is full and [R] € A2. Then [R] ¢ 0, (inv(n°(X)))

and since [R] is minimal invariant, [R] = Gy - Gz for some invariant

G,. By 4.3 G, =X and [R] = -G, contradicting 4.2. []

o
E? sats G 1

b Sl 53

Corollary 4.5.

(1) If R 4is saturated, them [R] E_ﬂg(XJ - Eg{x}.

(ii) If A is a powerful n-type and {m,S,iﬂ,...,in_lj is a

prime model of a complete extension of

V «aaV
-0 -1
“0 u-1) = Lw(" vi{g,...,n=11), then [8] =

o o
3® - 1.

Proof.

It is easy (see [ B]) to see that R, S belong to E;, ﬂg

respectively. The conclusion then follows by 4.4. ]

We have a partial converse to 4.5(i).
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Theorem 4.6. Assume R 1is full and [R] € E;. Then R 1is

saturated.
Proof.
Suppose R 1is not saturated.

Since R 1s full, T has a countable saturated model S. Then

o

[R] and [S] are disjoint minimal invariant aEE sets. It follows
from the invariant Eg separation theorem that there are invariant
_r_[; sets G, G, such that [R]C G, -G, < -[S]. Since R is full,
it follows from 4.3 that Gl = X. Then [S]C G.’»‘: ;and since § is
full, G, =X and [R] = @, a contradiction. U

2
The invariant ﬂz separation prineiple appears to be a useful
tool for attacking general classification problems in descriptive set
theory. TFor example, consider the following proof of one of the first

results in the subject (cf. Addison [4] or Lusin [29]).

(28)  (Baire 1906) The set A = {R & 2°®: (R defines a function

f: w+rw) & f\fn}(f-l{u} is finite)} belongs to

2 2
13@%) < g3,

Proof.
A 1is obviously invariant Eg. If A were E; then A would

be an alternated union of invariant 4&; sats, Such sets cannot

separate structures which satisfy the same _E'; sentences (i.e. which

realize the same types of Ef; formulas). It is easy to show that A

Can.
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Consider, for example, the functions fﬂ, fl defined as

follows

(1) If j=p" where p is the ith odd prime and 1su <1,

Y e b

tMnfﬁﬂ-p; ﬂummefﬁﬂnj.

(i1) If Jj 4is odd, then fzfj} = fltjj; if 4 is even, then

-

fz(jj = 0.

Let Ri be the characteristic function of fi’ 1 =1,2. Then

Rz é A and it is a straightforward exercise to show that

(w,R.), {M,Rz) realize the same types of Ef; formulas. []



§5. On Theorems of Lusin and Makkai

In this section we will use the transform method to derive
a recent "Global Definability Theorem" of M. Makkai (see [301) from

the following classical theorem of Lusin (ef. [26] §39 VII Cor. 5).

(29) 1If £ 1is a continuous function defined on a Lusin space X
such that the preimage of every point in £(X) is countable,
then there is a collection B = {Ei: i ¢ w} of Borel sets

such that X = U B and each frﬁ iz one-one.
i

Theorem 5.1. (Makkai) Let p be a countahle similarity type. Let

P be an n-ary relation symbol not in p and let ¢ be a sentence

of Lmlm{p U {E})- For ﬂ'g ‘Up lat Hﬂ(ﬁ(} = {pg |ﬁr iﬂ: {Q’P)IL; ).
Then the following are equivalent:

(i) For every countable a’f{ E ?p, Ha(c{’ ) is countable.

(i1) There exists a set § = {¢i{3u'”3n+k J: 1 e w} E'Lm m(p}

a 1
such that
ok V LA A 4 ST AL L AT MO gt R
1ew i
Proof.

{(ii) = (i) dis obvious. Now assume (i).
Since the set of isomorphism types of finite p U {P} structures
is ecountable and every finite isomorphism type is definable, we may

assume that all models of ¢ are infinite.

Let X ={[o] < 'Xp and let w: [aol = Xp be the canoniecal

vi{P}’
projection (R,P) » (R). By assumption, for each R ¢ Ep, ﬂ-l({R}} = HU{R}
118
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is countable. By (29) there exists B = {ni: ie w} such that

foll = UB, each B & B{xp U {P}), and each ), 1s one-ome.

i
Since [o]l is invariant, [o] = [[‘;;]rA = (Un}ﬁ = Uniﬁ a
= iew
U U Lg Bi [EI. By Vaught's basic result (2),there is a set

lew new se™w

P = {¢,m{zﬂ._.3m_1}.: i,m € w} such that for each m,i £ w, (R,P)e
b4 5 £ mm
’DU[}'_]“ k]

m *[s]

(w,R,B,5 5.8 JDFEV, <> se-uw & RPec B, .

v '.lv
——-1
It follows that o« EV \/ Iv_...¥ v.. I
fey men™ © © 1 nm R e
n
We claim that for every i,m e w, 8 ¢ Eu, R:e Kﬂ, Pl,.?z %

{3ﬂ) [(NIRIP]-IS}# wi‘ﬂl & fmik.PE,S}F t[lim] = Pl = Pz‘

This suffices since (ii) then follows by the infinitary analogue
of the Beth definability theorem.

The following computation werifies (30):

(R,Fl},(R,Pz) E Bi*[SJ = Ei{R'Pljn Etm"EZJ ) [s] is comeager in [s]

= (35 = o) [(aR,g?,), (eR,gP,) € B,]
= (Js ¢ u!)[gP = gB,]

=By = By ]

Note that the finitary Chang-Makkai theorem (cf. Chang-Keisler [12]}

5.3.6) follows from 5.1 via Keisler's approximatioms. Thus, 5.1 is the

intermediate step in a derivation of the Chang-Makkai theorem from (29).
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Note also that, since each Hﬂf{m,l)) ig a 5} subset of

n
2¥ a condition (i) of 5.1 is equivalent to

(i) For every R e Kn, Hﬂ({m,R}} does not contain a

perfect subset.

CE. [26] §36.7.



§6. On Lm " Definability and Invariant Sets
1

In this section we collect some further applications of the *-
transform in logic. The first result refines and extends a theorem of
Lopez-Escobar on the explicit definability of invariant Borel functions
between logic spaces. The remainder of the section is concerned with
some recent results on definability due to V. Harnik [17] and [18].
These results were orginally obtained by a "forcing in model theory"
construction which was derived from Vaught's method. We show that the

same facts can be obtained directly from the method of [46].

ILec p be arbitrary and let 1 £ a < wg - A function
F: Kb * Zmn is invariant if its graph is an invariant subset of
n
Xn“ 2¥ . An equivalent condition is that gF(R) = F(gR) for every
ReX.
p
(n) i

Given K'E"-Zp ’ we define FK: Xp +2¥ by setting

FK{R){ill"'lin:’ = 1- —_— (wlg:lil’""liu] E K"

n
F: Ip—-?m is said to be elementary, (respectively a—elementary), pro-

vided F = F_, for some K ¢ Lm (J{:u})s (Q':(X;“})- It is apparent that

.4 1@

(31) Every a—elementary function is invariant and o-Borel.

The l-elementary functions were introduced by Craig in [13]
where the converse of (31) was proved for a =1, p finite, relational.
.In [28] Lopez-Escobar applied his infinitary version of Beth definabilicy

to prove, for countable p, that every invariant Borel function is elementary.

120



121

Theorem 6.1. Let p be arbitrary and let 1 £ a < ws DE W,
F: xp - 2”“_ Then F 1is invariant and a-Borel if and only if F

is a-elementary.

Proof.

The "if" part is (31). For the "only if" part of the theorem

assume F 1is a-Borel and invariant.

Lat K= {(R,1 in}: F(R) (il....,in} = 1}. The invariance

11*'*1
of F dimplies that K 41is an invariant subset of Kn xw . Since K =
U{F-]'{[{E,l)n x{s]l: s ¢ "wlh = - U{F-lf[(s,ﬂﬂj x {s}: s e ")
where [(31)] = {x: =x: Bs+2 & x(s) =1}, K 1z A .
It follows from (2) that there is a E': formula ¢ and a E':

(n)

fornula ¢ such that K = [[¢{n}} ={p""]. 6.1 follows immediately

since F = Fp. B

We turn to a discussion of Harnik's definability results. A

key lemma is an observation regarding the behavior of equivalence

relations under *:

(32) Assume the basic hypothesis of chapter II concering (G,¥X,X',J).
Let BCX'" and suppose E 1is an equivalence on X such that
(¥ x,y) (xEy = {311'} (v is an autohomeomorphism of G & 1B = B‘?}-

*3 =
Then B is E-invariant.

]
(32) follows immediately from the definitions of B and

the fact that meagerness is a topological property. It has the following
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corollary:

(33) Suppose that Jl = Ecixl:l'rlj'l Jz - [G,EE,JZJ are actions,

and BC 11 !Kz is I!'.Jr o -invariant. Assume further that
B

xl is a Baire topological space and that each Jlg: X - 31(5131

is continuvous. Let I: Xlxxz + xlxxz be the identity

*®
Function. Then B E is EJ =invariant.
2

Consider the following case of (33): Let p be a countable

similarity type, 8 a sentence of I"m m(n} which has an infinite
1
model, and L a countable fragment which contains 8. Let J{l =

[e]] with the relative topology as a subspace of XL Let X2 = }[p .
1

p, arbitrary, Jl‘JE the cancnical actions of w! on XI,IZ. If

1

% 1is a sentence of I.m m(n'HJl) then [v] satisfies the assumptions
1

made on B in (33), hence [1#]*1 is an invariant Borel subset of Kp
1

and
*T
-, (-lene) € M~ < 7, @8 AdD.

From (1) we conclude:

(34) (Harnik) Under the assumpticns of the proceeding paragraph, for
!
every sentence W € Lmlm{P-H-'ﬂl} there exists ' e Lml{Snl}
such that for every (A,S) e "lil'p
1

(VR ((A,R,8) 8 AY) =F ¢ and
oF ¥ = (JRI(A,R,S) E $a")
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Remarks.

VIII. Let T be Lmlg or any of the stronger languages
Lﬂ, Lm £ studied in [10]. Using the techniques of [46] and [10], both
1

(34) and (36) below may be extended to analogous results where § e I.

Also, as Harnik observed, the passage from K to the (Lulm—definable}

orbit of a countably infinite member of K shows that 6 can be
replaced by any class K f_:?p which contains a countable medel, (1f K
contains finite model everything becomes trivial). As Vaught first
observed, thils passage allows one to derive (34) even more directly
form the results in [46] — Let Ro £ xp N K. Given ¢, let

R, *I

LoD = (s: (R,,5) & [¥I} € B(X ) and define ([y]' = Q1 ") o
1

It follows from (1), and the invariance of 8,y under isomorphism, that

[yl' = [v'D for some ¥' € Lm m(pl} having the required property.
g F

This argument gives a slightly stronger result than (34) in that p need
not be assumed countable. On the other hand, the argument used to prove

(34) can be carried out over any prim(w)-closed set.

IX. In [18] Harnik showed that a weak version of (34) is

valid if 8 4is allowed to be any sentence of Lm m(n+ﬁ1} such that
1

(Vs ¢ Kp Y(3R ¢ Zn}{(R,E) e [8]) — din this case one can find a
1
suitable ' in the infinitary game language Lm Gipl) (though not
L

necessarily in Lm u(pl)}. This version can be proved like (34) by
1

considering a modified *-transform. In the modified transform, one
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considers spaces G,X,X' and a map J as before but, instead of

assuming G 4is a Baire space, one associates to each x ¢ X a sub-

space, Gx C G, which is a relative Baire space. One then defines,
i

for Uef(®), B ={x: UNG #0 & B*UUNG  1s comeager in

unsx}-

The inductive clauses (II (2)-(4)) go over with slight

modification allowing one to show:

(35) If every Borel set B is narmal,(ﬂxriﬂx is almost open in
Gx for all x), and H 4s a countable weak basis for G,

*
then B belongs to the g-algebra generated by

* O picy .
fB"r b 5_11_1{:{ ), U g H} whenever B is Borel in X'.

In the applications to the results in [18], one easily shows

U

*
that the normality condition holds, that each C is _Ei, and that

the inductive proof of (35) yields a definability result analogous to
(2). For example, in the case at hand, we would let L be a countable

fragment of L (p+p,) which contained 8, and for each S ¢ X
g0 i Py

define GS = the cross section at S of the space [s8] t‘.’_:.'IL, G =

the disjoint union of the spaces G., S ¢ Xp 1 JRY = (R,;S) 2f

&
B 1

ReG otherwise J(R) arbitrary.

sr
Now suppose g = {pi: i g w} is a disjoint collection of purely

relational similarity types. A p-sentence is a sentence ¢ of Lm N{Ljpl
%

such that, for each atomic subformula R(w reses ¥y ) of g, if
1 n
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Re Py then each 11""'111 is a power of the mth prime. Let
p' = U p, p" an arbitrary relational type. ﬁ', u?_;.; ?n"l‘p"

are said to be p-isomorphic ({{ ;:6‘-} 1f (V1 e w) . = .z-:?rp ).
L i

(36) (Harmik) With the definitions of the preceding paragraph
and 1l < a < ©y5 P £ E':(p‘*ﬁp"), there is a p-sentence

' € I'2(p") such that

{fo)(!“(g,ﬂ & E ’1‘)’*.6:!:1" and
EEV = (FOWX z& s o k.

Proof.

- =— - w - -
Let Xl xz xp,_m.., G = yi ::Ip.,. J: ({{gi. iEu::r,S),{R,Sl]}

" {ﬂgtki: i e w>,S5).
As a basis for G we may take the sets of the form
[sn’“'*sn—ll x I'i!], where 0 e w, SyrteeeS 1 € nin, ¢ 1is a basic

p'"-name and [s s--mas 4] = {48;F Lew e T wl: (V1 < n) (g;e (s, DD}

iey
For B EEFI’ neEw, ¢ abasic p"-name, let
+ I
B*n" = {(R.so,....sn_li: Re B [sﬂ"“’s“'ll} c x:T.l ). An argument
=
analogous to the proof of 0.1(a) establishes the fact that B T ois

O —fnl
Mod ® )(¢] N }Lp{n ) for some p—-formula ¢ € _,I‘[_':(ﬂ':' whenever

B e _E:(pr). (36) then follows by the Lowenheim—Skolem theorem. O



§7. A Selector for Elementary Equivalence
Let L be a countable fragment of I.m].m(p) which is closed

under quantification, and let 5(L) be the set of sentences g L

Assume for convenience that Cp = @. A p-sentence § 1is propositional

over L, (B e P{L)}; if every subformula of @ which begins with a

quantifier belongs to L.

Let E be the relation of L-elementary equivalence between p—

structures, and let ELE f: ba {{{Sl....-l),(sz,,.rz}}: Slf,-l i Szf--z .

Given an n—-formula 4§ ¢ L, let "¢" = {(5,~) ¢ '::: (S,0,...,0-1) /= F$},

and let ?" be the topological space formed over the set X by
p

taking {p': ¢ e L} 45 a basis. Observe that if 4 ¢ L 15 an

n-formula, then

(37) f‘?\'ﬂ:ﬂ - {¢}+EI; and f¢~)+1¢ = | 31_;“, . 'En—lﬂl'

so VFH = 03w >eees¥ ;40 also. Thus, 7L 1s clopen in T

B

for every ¢ e L; and the set {HQHEL: 8 ¢ S(L)} forms a basis for
2 =L Lz -
;'1‘1_.. For S = (R,~) ¢ X°, let Th (S) be the L-theory of § = R/~

Wow [5]. = IﬁTthéﬂl' and for @ g S(L), [S}EL e l!aleL if and only

EL

if p e ThL(E}. It follows that fI'IEL is just the usual Stone space

126
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S(L) associated with L. Since we have verified the hypothesis of

I1.3.1 we may conclude

Theorem 7.1. Assume L 1is a countable fragment of I.m 2 which is
1
closed under quantification. Then there exists a continuous selactor

for EL, B EL-FEL

From 7.1 we conclude that all of the remarks of paragraphs

@D and (12) of IT §3 apply with E=E, X = X°, Tor example,

(38) S(L) is Polish.

(39) EL-ihv(E:{}-[L)} has the reduction property for each a < y -

(40) EL—inv (0 (E: {EL}:I = 0(L-p' ?_F‘X:L?} ] .f.or EVF._']_'Y Boolean operation (.

—

In (40) we have implicitly used the fact (immediate from (37)

and the continulcy of s) that

(41) 5_1(3) = (¢) for some L—E'i sentence ¢ whenever B is open
in T

-

Let T be F‘.:, i'[; or any of the Kolmogorov classes B(I‘u] or Borel
game classes B(GI'G] studied in [10], and let T' be the corresponding

collection of formulas {1.—5'“, T..-ﬂ‘n, L, L .). A straightforward
a a a mlf

induction based on (41) shows
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(42) If B esT(®) then s (B) = (40 for some ¢ € P(L)N T.

Corollary 7.2. Let ' be as in (42). For every ¢5-1" there

*
exists ¢ e P(L) () T'" such that for every CJ( € ‘Iil’ﬂ ;

VG 8+ ZE9) = &F"  ana
®ES - ca.&{agrs_atas&h:.

Given 4 let B ={(R,=) € X*: R/= k4}. Let & e B(L)/)r'

Proof.

* a =
be such that (¢ ) = s 1(3]. Then, since s 1{3} iz an EL—invariautiza—
ja *
tion of B and the Lowenheim-Skolem theorem holds for I'y ¢ has

the required property. |

Remarks.
X. 7.2 extends 4.1 of Harnik [17]. The list of languages in
7.2 is not exhaustive. For example, the method of 7.2 applies to each

level of the hierarchies on Lu . Lu ¢ implicit in their constructions
1

by iterations of operations. It appears to be rather difficult to make

an exhaustive list.

XI. For L = me, (38) is well-known. It was first Fruved for
the larger fragments studied here by M. Morley in {33] using an infinicary
Henkin comstruction. Im fact, the Henkin method is essentially similar
to the argument establishing the Kuratowski-Ryll-Nardzewski selector
theorem. The proof in [27] of the selector theorem (couched in terms
of our special case) proceeds by considering a countable dense subset

R=(r ) of EL, defining a convergent sequence of functions

l.fz,.r.
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fi: iL!EL + R and then setting s = limtfi: 1 £ w>. The argument
is changed in no essential way if instead of considering R, we loock
at a basis C for EL consisting of clopen sets G:I‘.j' 1, e w such

that under some complete metric on fi' we have
™
{Vi,j,k}(xi €Cyy & diameter{ﬂij} <29 & (<% » cikgcij)}_

The construction then proceeds by specifying for each T ¢ EL!BL and

each n, a set C(a,T) ¢ C in such a way that for each S, the

sequence <C(n,T): n £ w> 1is decreasing and (¥n,s) (diam(C(n,T)) < , e )‘
and C(a,T) N v S¢{T)) # 0; then defining s(T) = the unique member

of n C(n,T) (cf. Bourbaki [9] IX 56.8 where a nearly identical argu-
n

ment is given along these lines).

Let -:gi: i € w> be an enumeration of the atomic ;—-names.
Then the canonical metric on X is such that the clopen sets of
diameter 2 have the form ?__ $] where ¢ 1s a finite set of
subbasic names and (V1 < n)(_?_i e ® Gr.“lgi £ §). Let {Bi: ie wl}
be the Skolem conditions such that EL - [éBi]. The canonical merric
on X = I{_\Bil is such that clopen sets of diameter less than - S
have the form [Q#] r] X wvhere & is a collection of basic names such
that [/A\¢] 1is a clopen set in X_ with diameter less than 2 =  and

a
[."‘\@] is disjoint from [V'IBi]. Since each Bi has one of the forms
~ i<n

HF‘} or F *F}'”f' the construction

$ ¢’ #
of the last paragraph may be recongnized as the familiar Henkin construc—

By ™ y{%: $ € ¥}, 1P

tion. Clearly 7.1 is also closely related to the known fact: "Every
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recursive complete theory has a recursively presented model" (cf.

[191).
Tyrerada -
Note also that the collection {ﬁ{u n—1}= ¢ 1is an
bf oAl ol A )
n-formula of L} generates a fragment L(“} such that S{L(n})

is exactly the space Sn{L} of n~types féor L. Thus, the faet that

S(L) 1is Polish for each fragment L, implies that S{u}fL) is

Polish for each L and every n e w.
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