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Remarks on invariant descriptive set theory *
by

John Burgess and Douglas Miller ** (Madison, Wisc.)

Abstract. Let X be a separable, completely metrizable space and E an analytic
equivalence relation on X. 4 C X is E-invariant if y ¢ 4 whenever w e 4 and E (%, y).
We prove that the classes of E-invariant coanalytic sets and of B-invariant PCA sets
each- satisfy the Reduction Principle, and give E-invariant versions of other classical
theorems. Qur results generalize work of Vaught and others.

Let X be a Polish (separable, completely metrizable) space with
ECXxX an equivalence relation on X. B C X is snvariant (with respect
to E) provided y ¢ B whenever w ¢ B and z H y.

It is known (ef. [1]) that it B is a countably sepavated X% (analytic)
equivalence, then X/F is Borel isomorphic to an analytic space (a metriz-
able continuous image of w®) and, hence, that most theorems of descriptive
set theory hold in invariant form.

Invariant version of several classical theorems have been proved
under much weaker assumptions that countable separatedness. It has
long been known (ef. our remarks after 1.2 below) that the invariant
first separation principle, Disjoint invariant Z¥ sets can be separated by
an invariant Borel set, could be derived quite simply from the classical
(non-invariant) theorem assuming only that E be 2},

As 1.1 and 1.3 below we prove the invariant reduction prineiples:

If B is a X} equivalence then both the classes of invariant ITF (coanalytic)
subsets of X and of invariant X3 (POA) subsets of X have the reduction
property.

These vesults extend recent work of Y. N. Moschovakis ([18] and
[19]) and R. L. Vaught ([23] and [24]). Vaught had proved the invariant
reduction prineiples on the assumption that B be a “Polish action” equiva-

* Theorems 1.1, 1.7, 2.5 and all the new results in § 3 are due to Burgess. 1.3, 1.4,
4.2, the proliminary version of 1.6 and all of § 2 except 2.5 are due to Miller. ALl other
resultys wore proved jointly. i
** The first author was an NSF Trainee during the time when this paper was
written. Preparation of the manuseript was supported by NSF grant GP-24352.
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lence. This case arises when a Polish topological group & acts on X ac-
cording to a continuous map J: (g, ) - go, inducing an equivalence
B=H,={(x,gr): v<X,geq}. Equivalence classes are called orbits.
Notice that, on the weaker assumption that ¢ is an analytic space and J
is Borel measurable, By is 2 so our theorems give new information even
when restricted to the action case.

Moreover, our arguments are strikingly simple. In contrast to previous
proofs, which involved rather special group-theoretic or model-theoretie
methods, our argument for II} is an adaption of the well-known proof
of the invariant first separation theorem. Our argument for X} is a variant
of the classical proof of X} reduction. As a consequence of thig simplicity,
we are able to derive corresponding results about the analytical (lightface)
hierarchy and under suitable set-theoretic assumptions, to extend our
theorems to higher levels of the two hierarchies. -

Vaught’s proof of the reduction theorem for the invariant IT} sets
(but not for X}, cf. our remarks in § 4) applies in a context which properly
includes the Polish action case. That is, when ¢ is assumed only to he
a non-meager topological group with countable basis. His argument relies
on an analysis of the transform B — B* = {#: {9: ¢ B} is comeager in G}.
He defines B4 = ~(~B)*.

As 2.1 we prove:

If By, B, reduce Ay, A, then BY, Bf reduce AY, A2,

This says, roughly, that * preserves reduction and it yields Vaught’s
invariant ] reduction theorem as a corollary. We also prove that * pre-
serves several other interesting properties. Thus:

(a) B* is comeager if B is;

(b) B* has the Baire property if B does;

() * preserves levels “in various hierarchies of A% sets obtained from
generalizations of the operation (#).

A particularly important class of Polish actions avises as follows.
A logic space is a countable product of spaces of the form 2", &, or w™
An element of such a space is a countable sequence of relations, functions,
and constants on the set w. Let & be the group w! of permutations of o
with the relative topology from w®, or any closed subgroup. Then there
is a standard action J of & on any logic space X which is of speecial im-
portance in the model theory of infinitary logic. Typically, if (x, ¥, i) e X
= 2% X w®X w, then J(g,(x,y,4)) = (9=, gy, g (i)), where gu is defined
by go(m,n) = @(g(m), g(n), and gy by gy(n)=g~(y(g(n)). If & is the
full group w!; then B, § ¢ X are B,- equivalent Ji and only if the structures
(w0, R) and (w, S) are isomorphic. These standard actions of elosed sub-
group? of w! on logic spaces will be called logic actions. The case & =
X = "2 is the canonical logic action.

icm

Remarks on invariant descriplive set theory 55

Many theorems of model theory may be interpreted as theorems
about the canonical logic action. For example, a theorem of Morley ([177])
tells us:

In the canonical logic action, any invariant X, set contains <Ny or
280 orbits.

It has been known that Morley’s theorem could be derived from
a result of Mansfield in the theory of definability over the hereditarily
countable (HO) sets. A formula y in the language of set theory is said
to he X, provided that only the bounded quantifiers 3 s «t, Vs et occur
inp. A set BCHOC is X,(HO) if there is a ¥, formula v and a parameter
w e FLO such tha

B == {# e HC: (HO,¢) F 39V, . @VYY9 (2, Y1y vovy Y,y 20)} .

Mansfield’s theorem asserts:

Any Z(HO) set has cardinality < x, or 2%,

Using well-known coding devices we remark that conversely, Mans-
field’s theorem is derivable from Morley’s. As a further application of
the same devices we prove, for example, 3.1:

For any nz1, the I,(HC) sets have the reduction property if and
only if, in the canonical logic action, the invariant XL, sets have the re-
duction property.

We conclude the paper with a survey of known results of invariant
deseriptive set theory with an eye to the hypotheses needed for their
proofs. For example, we construct subgroups of w! to illustrate that the
weakest hypothesis for Vaught’s invariant II*-reduction theorem (“G is
non-meager”) properly overlaps with the hypothesis of our 1.1 (%6 is
analytic”).

‘We are grateful to R. L. Vaught for suggesting several improvements-

in the exposition and for his constant encouragement and advice, We
wish also to thank 8. G. Simpson for several observations which we use
in § 3 and G. Bergman for suggesting an example in § 4.

1. 2! equivalence relations (). Let X be a Polish space, B CXxX
a X} cquivalence relation on X, For BC X define

BY w= {y: () (v e BAx B y)}
and
= {y: (Va)(w By—xeB)}.

*) In obur original version of this section, we considered equivalence induced by
the (Borel) action of an analylic topological group. Professor Vaught pointed out that
our proofs apply in the more goneral case considered here,
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Then B~ C BC B, Bt and B~ ave invariant, and if B iz X% (I}) so is B+

(resp. B7).

. Recall that 4;, B. C X are said to reduce A, BC X it 4, C 4, B, C B,
Ay B = A B, and A, ~n B, =@. A clags & of sets has the reduction

property provided that for any 4., BeR there exist 4., B, e X which

reduce A, B. A classical theorem states that the clags of I} subsets of

X has the reduction property.

TurorEM 1.1. The class of invariant I subsets of X has the reduction
property.

Proof. Let 4, B be invariant II} subsets of X. By the elassical
theorem there are II; sets 4,, B, (not necessarily invariant) reducing 4., B,
Since A—BC A4, is invariant, A—BC Ay and Ay wB= A v B. For
n>0 let A,.,,B,, be I sets reducing A, B. Then A’ = (7|4,

n

=4, and B'=|JBy= (4w B)—A' arc I} and invariant and -

reduce 4,B. @

CoroLLARY 1.2. Two disjoint invariant X} subsets of X can be separated
by am imvariant Borel set. :

- Proof. Let 4,, 4, be disjoint invariant X! sets. By the well-known
classical argument, 1.1 implies that 4,, 4, can be separated by an in-
variant set B which is A]. By Suslin's theorem, such a B is in fact
Borel. m

Our proof of 1.1 is an adaptation of a direct proof of 1.2 which was
known long ago to Ryll-Nardzewski (cf. [23]) and hag been used by Malk-
kai [14] and Garland [4] among others.

Let & be one of the projective classes X1 or IT% and let & be the op-
posite class (so & = II it & = 5} and wvice versa). If B CX, amapeofB
into some ordinal ¢ is called a norm on B. It is a K-norm if there exist
relations <% and <% defining respectively & and L subsets of X' x X
such that

(¥) for any y ¢ B and any o € X

lweBrplo) <oly) it a<By iff w<gy.
§ has the Prewellordering (PWO) property if every Bef has o &-norm.
The classical proof of the II} Reduction Principle (using constituents)
establishes, when properly regarded, that the clags of I} subsets of any
Polish space has the PWO property (cf. the exposition in [7])

TerorEM 1.3. The class of invariant ZL subsels of X has the reduction
property. i

Proof. Tet 4, B be invariant ¥ subsets of X. Then ¢ = A x {0} v
w Bx {1} is a X; subset of X' x {0, 1}. Say ¢ = {(z, i): Fy e X)(y, w,4) e D}
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where D C X % X% {0, 1} is II}. Let ¢: D—g be a I' norm on D, and.
let <f1, <% be 11} zm.dlzi relations respectively, satistying (+). Define:
p: O—p by p(z, i) = int{p(y, «', i): « Ba' Ay, ', i) « D}. Let

Ay = {o v e dAp(e, 0) <Iyp(x, 1)}, By = {z: 2 e BAy(z,1) <p(z,0)}.
Clearly A,, By reduce A, B. Moreover since 4, B are invariant and since-
p(x,4) depends only on 4 and the E-equivalence class of z, 4,, B, are
invariant. Now o e 4, if and only if ¢ 4 and

Ay, ') (e 2ia' Aly, @y 0) e DAYz, &Y~ B ey (y, ', 0) iz, 2, 1)) .

= n} n} nj

Also @ e By if and only if @ ¢ B and

By, »") (x o' ANy,a',1)eD A (Vz, a") (NmEm” v

Mt s =
at nt i
oz, 0) < (9, 7', 1)) -

m
These expressions show A4,, B, are X} sets. m

Our proof of 1.3 is essentially the classical proof of the ! reduction.
prineiple with some extra clauses inserted to guarantee the invariance
of 4, and By.

Let B C X, A norm ¢: B—p is good it p(x) = ¢(y) whenever 2,y ¢ B’
and x B y. A class & has the qood PWO property it every invariant Bef
has a good K-norm. The following is implicit in the proof of 1.3.

CoroLLARY 1.4 (to the proof of 1.3). (a) If & has the good PWO property
then the class of invariant & sets has the reduction property.

(b) The class of 23 subsels of X has the good PWO property.

The most comprehensive refercnee for the Axiom of Projective
Determinateness (PD) and its congequence is [7].

Corortary 1.5 (to the proofs of 1.1 and 1.3). Assume PD. Then
Sfor any n =0

() The dass of devariant I, subsets of X has the reduction property..

(b)Y The class of £, . subsels of X has the good WO property.

(©) A'he class of invariant Li,,.q subsels of X has the reduction property.

Proof. Ouwr proofs of 1.1 and 1.3 cstablish that, if the class of I,
sets hay the WO property (and, hence, the reduction property), then
(&), (b), and (¢) are true, DI implies that this hypothesis is fulfilled. @

Note that for results about, say, IT; and 2} sets wo do not fully need.

" the hypothesis that & is X! (5} would suffice). Similar remarks apply

to 1.6 and 4.2 below.
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We would expect to get the good PWO property for the class of
1T, subsets of X (n3=1) from PD, but we have heen able to prove
this only in rather special circumstances as discussed in § 4.

For # ¢« 0 and i € w lot (2): ¢ »® be defined by (@)i(m) = m(zi(Zm—l-l))
and let [#] = {(#):: i € }. A binary relation R on: w® is a strong X3, well-
ordering provided B well-orders «® in type o, and @, 9): 2Ry} and
{(,2): [#]={y': ¥’ Ry}} are E. subsets of w®X w®

The existence of a strong X} well-ordering of ©® follows from the
Axiom of Constructibility (V = L) by a theorem of Godel and Addison.
Silver has shown that if there is a meagurable cardinal » and a normal
ultrafilber D on » such that V= LP, then there is a strong 2} well-
ordering of w®. For proofs of those theorems, with applications to de-
seriptive set theory, see [3] and [22]. The applications in. [3] and [22]
are stated for o © but apply to any Polish space X by a standard argument
{similar to that used in 1.6 (a) below). We now consider some applications
of strong well-orderings in invariant descriptive set theory.

Let X = X, x X, be a product of Polish spaces, and B an equiva-
lence relation on X. If AC X is E-invariant, we say B J-invariantly
uniformizes A if BC A, B is H-invariant, domain B = domain 4. (i.c.
(Vo eXo,y e Xy)((@,9) c A>Ty ¢ X,) (2, y') ¢ B)) and

(Yo e Xo)(Vy,y' e Xo)((@, ) « BA(%,y') « B—(w, 9) B(z, v

A class & of subsets of X satisfies the B- Invariant Uniformization Princi-
ple (E-IUP) if for every A e & there is a B ¢« 8 E-invariantly uniformiz-
ing A. .

It X¥=X,xX; as above, and H,, B, are equivalence relations on

X,, X; respectively, then K,x B, denotes the equivalence relation
{((wo, Yo, (2, yl)):

@ By o \yy By} on X. ‘

THEOREM 1.6. Assume there emists a strong X}, well-ordering of w®. Then

(a) There is a function s: X—X whose graph is a X} subset of T such
that @ By if and only if s(x) = s(y).

Moreover, for any n >k

(b) The class of invariant I, subsets of X has the reduction property.

(¢) The class of X% subsets of X has the good PWO property.

(d) If By, B, are I* equivalence relations on Polish spaces X,, X,,
and X =Xy x X,, B= B,x B, then the class of I}, subsets of X satisfies
the B-TUP.

A result very close to 1.6 (a) wag obtained by K. Kuratowski some
time before we considered the problem. He showed the existence of any
Z;, well-ordering (not necessarily strong) implies the exigtence of 2 z
selector (set of equivalence class representatives) for any X! equivalence
relation B such that every I -equivalence class is countable.
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Proof. We first assume X is a closed subspace of w®, so & is a I} sub-
set of w” X w®. Liet I be a strong X well ordering of w®. Set s(x) = the
R-least y such that @ I y. Then '

Graph s = {(#,9): @ DyAFe) (2] = {y': Y RBYINVi € o)~ B (2)y)}).
N

] X o}

Since k= 2 this shows that CGraph ¢ is Z}. Clearly this s satisfies the
conditions of (a). )

Fo verify (w) in the general case, let ¢ be a closed subset of w® and bi
a 1-1, continuous map of ¢ onto X. Then B' = f~Y(B) is a I} equivalence
on (. et 8" C 1" he tho function obtained above. Then s defined by s(z)
= f&'" () satistios the conditions of (a). .

Now for » z & the reduetion property, the ordinary PWO, and the
ordinary uniformization. principle for the class of Xl subsets of X all
follow from the existence of a strong X} well-ordering of »®. Combining
these with (a) wo ean derive (b)-(d). We prove (d) to indicate the method.

With the notation as in (d), leb ACX be an E-invariant XL set.
Let 4 De a X} sot (not.necessarily invariant) uniformizing A in the
ordinary sense. Apply (a) to X, By to obtain the function s,. Then
B = {(m,): @)y, B, :t//\(so(:v), yl) ¢ A"} E-invariantly uniformizes A.
For élezwly, B iy X, and B-invariant. Moreover, if (z,y) ¢ B, then for
some 4y, (So(2), yl) e A and is H-equivalent to (2,¥), so (z,y)e A and
BCA. If @edomain A, then by E-invariance syx)e domain 4 = do-
main A’y g0 @ e domain B. Winally, if (x,9) e B, (z,y’) eB,I then tl}ere
exist ¥y, 9y sueh that y, By, y; By y', and (sy(a), vy, (s,(2), ¥1) € A'. Since
A’ uniformizes 4 in the ordinary sense, 1, = y; s0y By v’ and (=, 9) B (=, y")
as required, completing the proof. m

Note that if we ave given only a X}, well-ordering (not necessarily
strong) the graph of s as defined above can still be shown to be 1, and
hence X}, so (b)-(d) still hold for »n> k. . .

Let Jy,Jy be Borel action of an anzhlyme. group G on Polish spaces
X,, X, rospectively, and let H,, B, be the induced eqt}lvalences. The
equivalones M, x W, on A = X, X X, iy the same as that induced by the
action. Jyx g of Fx G on X given by

(Tox J) (g, ), () = (Tolg, @), Ta(h, 9) -

But in. this group action situation there is a.no.ther natural equlv.znlenog
on X to be considered, viz. the cquivalence B induced by the zucm(_)n- J

of ¢ on X given by J¥(g, (@, %)) = (Jo(g, @), Ju(g, ). In fact ‘phe original
version of invariant uniformization introduced bAy Vaught n [2_8} and
studied by Myers in [15] and [16] was _EV—lnvaI:Jant 111.11for1mz:nﬁ;on for
Jy, Jy the standard actions of w! (as discussed in the introduction) on
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two logic spaces X,, X;. To clarify the relationship between this carlier
version of invariant uniformization and our “product” version, we state
the following

ProrosITION 1.7. In the notation above we hawe, for any n:

(8) The EP-TUP for the class of I subsels of X implies the (I x 1)~
ITP for the same class.

(b) The (Byx B")-IUP for the class of Zb subsels of Xyx X émplies
the BY-ITUP for the class of IL subsets of X.

(e) If for some k << n there exists o strong X3, well-ordering of o, then
the class of X} subsets of X satisfies the T7-TUP.

Proof. To see (a), let A CX be an (H, x B,)-invariant % set. 4 iy
H paust

K
a fortiori BY-invariant. If"B is a X set B-invariantly uniformizing A,
then ¢ = {(z,y): @y < &)z, Iy, @) eB) s still XL and (B, % B,)-in-
variantly uniformizes 4.
To see (b), let A C X be an E"-invariant X} set. Then

A= {{w, (y,2): e ByAy,2) e A} CX,x X

is an (B, x E”)-invariant X} set. If B’ is a XL set (H,x I7)-invariantly
uniformizing A', then B= {(x,2): (z, (x,2)) ¢ B’} is a X% set and can
be shown to EV-invariantly uniformize 4. To show domain B == do-
main 4, for example, suppose (z,z)e 4, 80 (x, (w,z))eA’. Sinee . do-
main B’ = domain 4/, there is some (2, (2, z’)) e B'. Then @ K, ', so there
is g ¢ @ with Jy(g, #') = x. By the (H,x E¥)-invariance of B’,

los(z, Julg, @) By and (v, dy(g, ) e B.
Now (e) is immediate from (b) and 1.6(d). It could also be proved
directly from 1.6(a). ®& )

Myers has recently (see [16]) settled an old question, of Vaught by
showing that there are logic spaces X,, X, in which, setting X == P
G = w!, Jy,J; the standard actions of & on X,, X;, H,, H, the induced
equivalences, and E” as above, it happens that the B”-IUP fails for the
class of IT; subsets of X. Moreover he shows it is consistent with the usual
axioms (ZFO) of set theory that in this example the HV-TUD faily for
every projective elass R. His arguments also show that for certain logie
spaces Xy, Xy, with other notation as above, the (H,x H,)-TUL fails for
the class of II} subsets of X, and that it is consistent with ZFO that the
(Byx E,)-TUP fails for every projective class K in this example. Thus
no version known of the TUP can be proved in ZEFC alone, even il we
congider only logic actions. We know of no hypothesis weaker than the
existence of a strong X} well-ordering which would imply the TUP in any
version for Xj.
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For the remainder of § 1 let uvs assume that X is a finite product
of spaces of the form w®", 2°%, or " For such spaces the “lightface” or
analytical hicrarchy 2%, ITf, X1, cte. hag been defined and extensively
studied (see ¢.g. [2]). Lot us assumo 7 is a X7 equivalence relation on X.
We shall show that 1.1-1.6 hold in lightface versions.

ToroREM 1.8, The class of invariant I} subseis of X has the reduction
property.

Proof. 'Wo use the veduction property for the class of II} subsets
of X und argue much ag in the proof of 1.1, However, a countable inter-
section. or union of 11} sets iy not necessarily I7} so the argument of 1.1
does not apply direetly.

Tor simplicity we assume X = o® Leb {p: <o} be a recursive
enmmneration of the [I! formulay of second order arvithmetic with one free
function variable. Lot W == {(¢, #): p(x) is true}. Then W is a JI* subset
of w ¢ 0. There is a recursive function w such that for any i, {v: (¢, 1) e W}~
= @z (w(i), ¥) e W}. Let

U= {(i,f,0): (,0)e W}, V={{i,j,a): (j,o)eW).

Leti U', V' be II} subgets of wx wX w® veducing U, V. Let u, » be re-
cursive functions such that

{w: (u(iy §), ) e W)= {w: (i,5,2)e U},
(s (0(2,0), @) e W)= {m: (4,,@)eV"}.

Now let A, B he invariant I7] subsets of X. BExpress 4 = {@: (4, ) ¢ W},
B = {w: (§, ) e W} Define recursive functions a, b by a(0) =4, b(0)=j

A== o (Ynew)(a(n),w) e W), B ={e: @Anew)bn),s) e W}

are invariant I} sets voducing 4, B. B

In contrast to the above, the proofs of the lightface versions of
1.2<1.6 may be simply obtained by systematically replacing boldface
notation with lightface notation. We leave this to the reader.

The ronder familine with admissible sets may wonder whether our
Gheorowy also hold i “uabitrary admissible set” form. The lightface
theory is essendially the theory of the fivst admissible set containing o,
io. of L, where a-:the least non-recursive ordinal = the least admis-
sible ordinal = . Vaught has shown that the methods of [23] reduce
questions of son -invariant deseriptive set theory for an arbitrary admis-
sible set to questions of dnvariant doseriptive set theory for the particular
admissiblo set I,, and that our methods can be used to derive theorems
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of the invariant theory for an arbitrary admissible set from the non-in-
variant theory for that admissible set. Thus by a rather indirect route
we do get the full invariant theory for an arbitrary admissible set.

2, Vaught’s transform. Let X De a topological space, ¢ a topological
group, J: Gx X—X an action of @ on X which ig continuous in cach
variable separately, B the induced equivalence relation. We assume
that @ is a Baire space (equivalently, cf. [8], & 18 non-meager) and has
a countable weak basis J&. Such an J& consists of non-empty open sets
and every non-empty open set includes a member of G

We first recall some of the principle definitions and voesulls of
Vaught [24]. Tt will be convenient to assume ¢ ¢ J& and to take U, V
with subscripts as variables ranging over the members of JC. Xor B C X
and 2e¢X, B*={geG: greBl For gel, B= {wecX: gueB} B
= {z ¢ X: B® A U is comeager in U}, B* = B*¥, B4V = ~(~B"V) = {we X:
B® ~ U is non-meager in U}, B4 == B4¢,

B is normal if for every x ¢ X, B® has the Baire property. In 2.1 we
will characterize the normal sets as those which behave well with respect
to * Since the operations of complementation and countable union and
intersection, and the operation (s) preserve the property of Baire, and.
sinece these operations commute with the transform B — B%, they all
preserve normality. Since the transform B — B® takes closed sets to
closed sets, all the subsets of X obtained from eclosed sets by iterating
the above operations are normal. Vaught refers to these sets as the s6-sebs;
classically they have been known as C-sets (ensembles criblés).

Let sg be the set of all finite sequences of natural nmmbers. 'We let
k,1 with subscripts range over elements of sg. Liet &, 5 with subseripts
range over elements of w®. For n e m wo write £n to denote

(6(0), £(1), o, E(n—1)) € 50
Thus, the set obtained by operation (#£) from the indexed family
{dr: b esq} is ng Q Ay
Formulas 1.3, 1.4, 1.5, and 1.6 of Vaught [24] tell us:
(0) It B is closed, BV = "\ B". If B is open, BV x| | B

“

. ) €U vell
(L) (N B =BT, (I B = | | BV
n n k12 n
(2) I B is normal (~B)'Y = ~ | | B¥, hence BV = | | B¥. Also,
veu veu
(~B)Y*W = ~ () BY and B*V = | BY, i
vcu veu

(3) If each Ay is normal then

(LEJ Q A =N U U N U U e MV AGE ey -

ToCU VoCUo ko ULCVo VaCUy Ty n

©
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Tormally, membership in the right hand side of (8) is defined in
terms of the existence of a winning strategy for a certain infinite game
Vaught derives from (0)-(2) the important consequence that if B is Borel
g0 are B*U and B4V, i

The following observations are at least implicit in [24]: Assume X is
Polish; then. if A is 2] we can express 4 as | N Ay, with the A, Borel
n .

n

. , £
Then (3) expresses A7 ay the result of o “game? operation applied to the
opar T C T, Sinee those sobs are Poro] ;
_;1@ Iu; 7 C I,{.. Sn.m, 1.;)1(‘,.5(1 sebs are Borel, and, :if; i3 well-known, the
" 3 s tio URETET E o ¢ s A . .
ff.g;(muig “I)1(M1“m1m really ‘Jllhtl & variang % (<€), A U*IS obtained by (s)
£ ey v ] T 3 Jit o 4
from Borel sety, hence it is 2. Since 4 :—VUUA V and a countable
‘ ¢
union. of 2 sets is 21, A% is also 21, Pinally, it A is I}, 4™ — ~(~4 )3T
and AN o TV \
and A" = eo( <AV are IE. These are most of the facts we shall need
from [24].
We begin our own remarks on the Vaught transform with a con-
verse to (2).
Provogmion 2.0, BCX i normal if and only if for ever :
to1 SIMON 2.0 B CAX ds normal if end only if for every U, B
= | | B".
Ve
Proof. The “only if” part is the content of (2). For the “if? part,
suppose that for every U BW = | | B, Pixing # ¢ X this implies that
Ve
cither B® ~ T is meager or there is o V C U7 such that ~B®~ T is meager.
Sinee 1€ iy a weak basis it follows that every non-empty open set containg
a point where cither B® or ~B* is meager. This shows that B* has the
Baire property (ef. [10]). m
Note that the proposition is true without the assumption that J is
countable, or that ¢ is & group (ef. [24] § 1 for & more general treatment).
Provosrrion 2.2. If Ay, B, reduce A, B {then A, B reduce A*, B2
Proof. Cleaxly Ay C A%, B{C B From the definitions, A*— B4
= (A B) CAY and B A= (B—A)'CBY, so AFuBi= A" B
Pinally, since d, = (A w BBy, 4f = (A W B)*—~Biso A¥ Bl =0. m
Theormy 2.3 (Vaught). [f X i Polish then the class of invariant I+ sub-
sets of X has the veduction property.
Proof. Let A, B De invaviant I} sots. Let A4, B, be arbitrary (not
neeessarily invarinnt) I sets reducing A, B. Since 4, B are invariant,
#* ry Y oy p ~
A A, Bl By and wo by 2.2 AY, B reduce A, B. Wo have remarked
that AY, I ave wbill 718, w
Our 2.3 overlaps with 1.1 and coincides with Vaught’s invariant
version of the I Reduetion Prineiple. Our proof is shorter than Vaught’s,
but his proof, properly regarded, establivhes a stronger result, viz, that
the elass of I} subsets of XX has the good PWO property.
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Now we add to'the lish of propertics preserved by * and 4.
TIIEORDM 2.4. (a) If B is meager, so are B* and B".
b) If B has th,e prope”y of Baire so do B* and B*.
Pro of. Let B be meager. Then there are closed nowhere dense sets
such that BC{J Cn. Then
n

BCU )= Oh= U L ¥ =L
n n n U {/cl)’
Hach set 07 being a translate of the olosed nowhere densoe set Oy, is closed
mnowhere dense. The inelusion B4C | J{ J ( 0y thus shows that B is
v

meager. Since B* C B4, B* is algo mowgm“ (c'omp.urv [24] 2.4).

Now let B have the property of Baire. 'Write B == 4w N whero 4. iy
a @, and N is meager, Then B?== 44w N4 where 44 is Borel and by
what we have just shown N4 is meager. So B4 hag the Baire property.
Since B* = ~(~B)* and the class of sels with the Baire property is
closed under complementation, B* has the Baire property. @

Remarks (on 1.9 of [24]). Let W= U{ | Ay Thoe classical ap-
‘proximations to T are defined by 4% = Ah., fL,ﬂ Pl Af N L JAgng, Al
= [ A4 for 2 a limit ordinal, B, == A%, T, = | ) (4% L“”) It X has

a<i T I -

the countable chain condition, i.e. if every disjoint collection ol open
subsets is countable, and if the Ay all have the property of Baire, then
for some o T, is meager. In this case, our 2.4 at once shows that T¢ is
meager, and hence (B,— T,)" = B¥— T4 comeager in HY. In 1.9 of [24)
this conclusion is derived from the more restrictive hypothesis that the Ag
are all #-sebs, but the proof in [24] applies outside the “action o 1He”
‘we are considering here. "

In classical deseriptive set theory there ocours a sequence of oper-
ations I™ (v << ;) on countable indexed famnilies of sets in which I iy
countable union, I™ iy a variant of operation (#4), and, roughly speaking,
for » = 1L I"*4is to I as I™ is to 1™ The works of Lapunov ([11] and [127)
contain the whole theory of these operations. Non-readers of Rusgsian
will find most of the facts we shall need in [5].

Associated with any operation [™ on families of sets we have a hier
archy B(I") of subsets of X defined by

B0, I ={4CX: 4 open}, B(a, ") = {X—A: A e Bla, 1),
B(a, I') = the closure under I' of L BB, 1), and BT - L,_J B(a, ).

aslmy

Thus if I"= countable union, B (]‘) = Borel hicrarchy and c.g. B(L, )
= F,. It I'= operation (#) (or its variant 1Yy or the “game” operation
f (3)) then B(I') = the hierarchy of #-sets, and (for Polish X) B (1, 1)

©

cm
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Ezl‘i B(L, %) property includes B, just as I property includes
Doxyel,

Tasorist 25, Ll vy o 0. If BeB(a, I™); e B'(a, I”) then B*
e Ba, I") and 0" B'a, I"). If v is a suecessor ordinal, B* ¢ B(a, )
and 04 ¢ B'(a, I") as well.

Proof. The case »== 0 is L&(D) of [24]. The case v =118 implicit -
in [24]; we have diseussed preservation of I and ! by * and 4 above.
‘We sketeh tho prool for 9 - 2, This mi[mumtly 111ust1mtcs the general
case, while wvoiding some 1101,¢1‘114)n‘11 complexities.

Tt will he conveniont to work not with, 1 as defined in [5], but with
a variant which we eall Gho b operation (). Liet 8Q be the set of all finite
sequences of even lenglh of clements of sq. We let I with subseripts range

over elements of 8Q. (A) is an operation on families indexed by SQ.
Applied to {dr: K« BQ} it yields

(4) L) |1 ) IHARVE rWAEo\mMn\m -&almp,nplnp ¢

S Mo mw mo €1 Hu mom

~
o

fp—)

Formally, membership in (4) is defined in terms of the existence of a win-
ning strategy for a cortain infinite game, Readers familiar with [5] should
recognize that (') is a vaviant of 1™ wo that B(a, (#') = B(a, I?) for
every -2 wg; other veaders can simply follow the proof for (4') and
forget aboul 1™,

Sinee (ab") preserves the property of Baire (see below) and commutes
with B B¢, n‘l’l '(‘Iw wm i'n ‘B( () are 1)01111@1 Let A be 'the 1esult of ( )
applied to {4

K

Gy A= Uy e

(‘h)og‘lf VooCT 700 oo UorlV oo VDIEUM Teoy

SRy AN AT RS

mo ool g XooCH¥o0 Too WoaGX¥oo XaaCl¥o1 lon

O T O L 0 A 1 TN W/ B e

i (o Nong V1000 o UGl VuCla kn

ae )L AN AT ARV S

i Ve oy, XSG 10 ho WG XnGhn e w

o f ] Ag (/»nn,lu(m- s liomgds oo, oty vsumgreoss Utggo s ovs o lpgolpgs o Ty e

(Hero W, A" with subseripls range over J6.) Formally, membership in (3)
is defined in Germy of the oxistence of a winning strategy for a certain
game of longth w2, The argument that the game operation (3) is a variant
of (48) shows that the oporation in (B) is a variant of (#'). Thus, our claim
AV = (B) inplios thad A*Y ean he obtained by (%) from the A3, V C T.

5 —Fundamenta Mathemalleae X!
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From this fact our desired conelusion, that every B(a, () and B'(a, (4))
is closed nnder * and A, follows cagily (cf. our discussion of X} and I}
above). S0 it only remains to show A*Y = (5).

To this end we introduce approximations to 4 and to (5). The ap-
proximations to A are obtained from the representation (4). Liet .A‘,’_\ == A’i ,
At = A% ~ U NN Arsimoan s Ak = “Q Afe for 2 a limit ordinal,
A:: Az, T, :EUWEA%:—T ALY, Lapunov’s th(:ol‘y of Kolmogorov’s R-oper-

k= =

ation, or Moschovakis’ theory of generalized induetive definitions will
tell us A= [ 4d,= | (4d,~T,), and the reader familiar with ap-
1

a<wy a<w

proximations to sets obtained by the operation (#£) will have no difficulty
in supplying his own proof. These approximations can also be used to
show (') preserves the property of Baire, imitating one of the classical
proofs for (+).

For any z e X we get a representation of 4% in terms of the ,Aj_,ﬁ:
from (4) simply by superscripting with @. The approximations to 4*
obtained from this representation are precisely the 4Z. Since the Ay are
normal, so that the 4% have the property Baire, standard arguments
show that for some o< o, T? iy meager. This gives us
(6) ATV = (A,

' a< oy,
The inclusion from left to right is obvious. To go from right to lefh, let
zeX and let a << w; be such that I7 is meager. Sinee AJ— 1% C A®C A7,
A” ~ U is comeager in U if and only if A%~ U is, 50 if @ ¢ 4%V, g e A™Y,

We leave 4*U agide for the moment and diseuss approximations
to (5). Liet s¢’ be the set of all finite sequences of the form

(Uos Vos ko ey Uny Vs bm)  where  TyDV2 .. U D Vi,

and let SQ’ be the set of all finite sequences of even. length of elements
of s¢’. Let s,1 with subseripts range over sq’, and § over 8Q'. If ¢

B =8mylo; oy Spy oy 866 K (8) = k(8o), k(t), es k(8p), k(tn), and V(S)
= v(sp). With this notation we can define approximations BY to (5) for
8e8SQ by By=Agl®, By =) Bg for 1 a limit ordinal, and

- a<ld

(M) Bf"= N Jun U Y.

UCP(8) PoCUs ko UsCPo VaCU: K

AU U nN..

m WoCVm XoCWo lo WiCXo X1CW1 Iy

el
Q Bé'"(Wn, V0, K05 wvss Ut Ve Tom) "W o, X0, Lo, 0oy Wity Xy Un) ®
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‘Define.also B,= Bj. For these approximations too, we have (5)
= (| B,. Comparing with (6) we see it will suffice to show AXW = R

o<y
O P * =% 43 O 0 :
to prove our claim A*Y = (5). In faet it is easily shown by induction,
using (3) at the successor step, that BE = (A%) S, This concludes
our sketch of the proof of 2.5. m o

a

We could, if we wished, introduce for » < w; a language L% so that

L0 = Ly Lt == L, (a8 in [24]), and, generalizing 3.8 of [24], Invariant
BI") == L.

3. Definability theory over H(\. In this section we show that certain
facts about logic actions are systematically equivalent to facts in the
theory of definability over HC. We must agsume that the reader has
some acquaintance with this theory. We will deal with Lévy’s hierarchy
(&, IIy) of formulas in the language of set theory which was defined
in [11] and recalled in our introduction. We will use, for instance, the
fact that a subset of a logic space is X}, if and only if it is Z,(HC).

We begin with some folklove. A theorem of Mansfield states

(1) Bach X\ (HO) set contains < &, or exactly 2% elements.

A theorem of Morley (slightly reformulated) states

{2) In every logic action, cach invariant X} set contains <, or
exactly 2% orbits.

Some logicians at Stanford who knew (1) noticed when they learned
of (2) that (2) could be derived from (1). Their argument was roughly
as follows.

Let X be a logie space, ¢ a closed subgroup of o!, J the standard
action at ¢ on X, Hy the induced equivalence relation (we write “G-in-
variant” for “Fg-invariant”). We begin with observation (cf. [20]) that
there are relations T% on o such that for any R, 8 eX, R B, 8 it and
only if (v, B, Tplyew = (0, 8, Tnew, viz

T = {(ky wor Toyy): (g € @) (Vi< n)g (i) = F) .

Now for It e & let Scg(R) be the Scott sentence of (w, B, T\)p.o, a8 de-
fined in [9], Lecture 1. Then R He S if and only if Sea(R) = See(l).
Moreover it iy immediate from the induective construction of the Scott
sentence that {(B, Seo(R)): R e X} is 2(HO).

To derive (2) from (1), let 4 CX be @-invariant Xi, hence Xj(HO).
Then A’ = {Seq(R): I e A} is 2 (), and the number of &-orbits in A
equals the number of elements in A’. This derivation of (2) from (1) con-
stitutios a stmplification of the original proof of (2).

It will be instructive to observe that, conversely, (1) follows just
from (2) for the canonical logic action. We write T («) for the transitive
dosure {w} va vl Jaevw JUJ ey ... of {&). Thus HC = {z: T(») is coun-
i '
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table). If R ¢ 29%¢ we say B codes @ if (o, R) o (1 (@), c) Let (Jo‘bu the

functjion {(R, 2): R e2°%°, ueHC, B codes #}. The domain of Co, dom Co
o 5 1 and a model of +

is the set of B < 29%® such thab (@, R) i well-founded and a model of the

L sentence

wyw "
Vg, @ (Yy (y Bagesy Bvy)—ay = m1) A B
AdaVyly=mv yEBa v ey Rz A 2 Raw) v
v azozl(?/-ﬁ% A ﬁui‘?%. A g dea) ) .

Tt follows that domCo is an invariant I} set, in particular it is /,(110),
Co itself is X (HC) sinee Co(R)==a if and only if (Ein)(m (e, I2)
= (T (@), e)) (So, in fact, like any X (1IC) k‘flll).(‘,ﬁi(b'lyl with a f".llb(il ll("}) do-
main, Co is 4,(¥FLC).) Finally for &, § ¢ domCo, Co(R) = Uo(N) il and only
i o S).
' (’C;IBRlle;ifzcgy (1)) from (2), Tt ACHO be I(II0). Then A’
{Re2°%%: Co(R)ed} is Zy(HC), hence Zj, and w!-irrvznrmu(;z and
the number of elements in 4 equals the number of w!-orbits in A’
Note that in the above argument we have shown that (2) for the cano-
nical logic action implies the full (2). This same remark will apply to 3.1
and 3.2 below.
The same method gives several other results.

THEOREM 3.1. For any n = 1 the following are equivalent:

(a) The dlass of Zn(HO) sets has the reduction property.

(L) In.cvery logic action, the class of tnoariant Z, , sets has the reduction
property.

Proof. To derive (a) from (b) let A,, 4, C HC be 2,(HC). Foré =0, L
et Bi= {R edomCo: Uo(R)e A} C 2°%®, Then the B; are 2, (110), hgnca
X .., and w!-invariant. As a consequence of (b) there exist ¢,, ¢, vedue-
ing By, B, which are w!-invariant :md s h.(sncq Zn (O, If
Dy = {Co(R): & e Cs then Dy, D; are Z,(HC) and are easily scen to ve-
duee 4,, A, (the invariance of ¢y and C, is used to show Dy ~ Dy = @),

To derive (b) from (a), let X be a logie space, ¢+ w closed subgroup
of !, and let By, B, C X be G-invarviant and XL, heneo ,(I10). Lot
Ai= {Sea(R): B e By}, 4= 0,1 Then the A; are Xp(TIC) and assuming ()
there exist 2, (1L0) sets Dy, Dy reducing Ay, A,. Lot O = {R: Sea(R) ¢ Dy}
Then 0y, € are G-invariant and X,(HO) henee ZL,,, and avo casily seen
to reduce By, B;. ®

Before we knew 3.1, 8. Simpson showed us a forcing argumnent to
prove (a) for # = 1. Onee we have 3.1, however, this iy immediate trom onr
1.3 which proves (b) for # = 1 (An earlicr, move difficult, proof of (h) for
n =1 appears in [23].)
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Next we will apply the method to the uniformization, principle.
Let X,, X, bo logic spaces, ¢ a closed subgroup of !, J,,J; the standard
actions of G on X, X,, and By, I, the induced equivalence relations. The
product equivalence H,xX, on XoX X; was defined in Section 1. The
equivalence ¥ defined in Section 1 is in this case just the equivalence
induced by the standard action J% of @ on Xox X,

THEOREM 3.2. For any n > 1 the Jollowing are equivalent:

(a) The class of Z,(HO) sets satisfies the wniformization principle.

(b) For every pair of logic spaces X,, X, y and every G, etc., as above,
the class of X, subsets of Xox Xy satisfies the (Byx E,)-IUP.

(e) Tor every pair of logic spaces X, Xy, and every G, ete., as above,
the cluss of X5, subsets of X, X, satisfies the B -TUP,

Proof. The equivalence of (a) and (b) is proved much as in 3.1. The
equivalence of (b) and (c) follows from 1.7.

A subset 4 of HCis PR (HO) if there is a function f which is primitive
recursive in the sense of [6] and a parameter weHC such that
A= {weHC: fw, )= 0} A subset of a logic space is PR (HO) if and
only if it is Borel. (Though apparently known to Jensen, this result does
not appear in [6).) Vaught's theorem (proved in [23], generalized
in [24]) (3) In a logic action, any invariant I} set s a union of N, invariant
Borel sets suggests

Provosetion 8., dny Z(HC) set i a union of % PR(HC) sets.

Proof. The methods of this section do not enable us to derive 3.4
from (3). For if B C dom Co is Borel, we cannot assert that {Co(R): R ¢ B}
is PR(H). So we proceed as follows. .

Let 4 be Xy(HC), s0 A" = {R ¢ dlomCo: Co(R) e A} is Z(HC), hence 2.
By the classical apalogue of (3) we can decompose A’ as | J B, with

a<wy
the B’ Borel. For a < w,, (' = {B e domCo: Co(R) has rank < «} is Borel.
(CL. the fact that being a well-founded relation of rank < o is expressible
in Ly, Letting D' == 0~ By, we obtain a mew decomposition
f<a
A= ) D) i which the D’ are still Borel, hence PR (HO). Now, readers
CEcATTY
familiar with [6] will see that there is a prinitive recursive function f of
two variables sueh that for Re ¢, Co(R) = f(a, B). Thus, the sets
D= {Co(R): I e 1} wre PROHO), and 4 = U D, affords a decompo-

a<wy

ition of A as requived by 3.4. m

4. Examples. Let X Do a Poligh space, H a Polish topological group,
Ao bicontinuous action of M on Y, and F the induced equivalence relation.
Then for X, I, I{, and # we have

(A) The equivalence relation is Xt
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(B) The group is a Baire space and has & countable weak basis.
These are precisely the hypotheses of our Section 1 and our Section 2
{and much of [24]) respectively, so all the results of both seetions (and many
results of [24]) apply in this situation which includes the logic actions.
Now let @ be a subgroup of H. Since the closure of ¢ in H is itself
a Polish group, we may assume, without logs of generality, that ¢ s dense
in H. Let J be the restriction of K to G x X and let ¥ be the equivalence
relation induced by J. We wish to consider which theorems hold for X, &,
J, B. The following hypotheses on H will give us (A) and (IB) respectively,

for X, @&, J, Il and, hence, will yicld the theorems which follow from them. -

(A @ is a 2! subgroup of H.

(B} G is a noun-meager subgroup of I.

Note that, since @ is dense in H, @ iy non-meager in itsell with the
relative topology if and only if it is a non-meager gubset of H. So there is
no real ambiguity in our statement (B').

No proper dense subgroup of H satisfies both (A’) and (1B'), for a theorem
of Banach, Kuratowski, and Pettis (cf. [8]) tells us that if a dense sab-
group G of H is non-meager and has the Baire property (a consequence
of (A"), then it it closed in H and, hence, simply cquals H:

A theorem proved on hypothesis (A) or (B) will have bearing, of cowrse,
outside the situation (“subaction of a Polish action”) we are considering
here, but we fecl that many interesting examples are to be soaght and
many interesting distinctiong ave to be drawn in thig situation.

We begin by presenting examples where (A') is satistied hut not (B”)
and vice verse. I H = o!, then &= {Gec ol (Eim)(‘v"n)(g(f&’”(fzw}»fl.))
= 2"‘(2%—{—1))} is clearly dense, X7 (in fact F)) and meager. We can improve
this example to get a & which is X} but not Borel ag follows.

Let f: sg—w be a bijection. For &ew® lot T'(&) == {f(&n): neaw}
Then if & # 9, T(&) ~ T (n) is finite. This is the clagsical construetion
of 2% qlmost disjoint sets. For £ e ® let e o—T(&) enumerate T'(£) in
inereasing order. Let g, ¢ w! be defined by ga(e(2n-1-1)) = e(2n), ge(e (2n))
= ¢(2n-+1) and g(m)= m for m ¢ T(£). Let

G={geal: Am)(Vu>m)gn) = a}.

For W C w® let Gw be the subgroup of w! generated by ¢y w {gs: & e Wh
Gw is always dense since @, is, ’

Tt is easily seen that Gw is a X! subgroup of o! whenever W is a 23 sub-
set of w®. We claim that if W is not Borel then neither is Gy, It will suftice
to show that W ean be recovered from Gy by the equation W == {&: g, € Gw}.
Clearly W C {£: ¢, « Gw} 50 suppose that g, e Gw but & ¢ W. Since g € Gw,
Je = Yods --- gr Where each g, is either an clement of @, or g, Lor somo 7 € w.
By choosing m so large that each element of &, among gy, ..., gx fixes
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eg(m) and that efm) is greater than every element of T (§) n T(n) for
each n with g, among gy, ..., g we obtain e(m) = geles(m)) = gugy ... gu(eg(m))
== ¢m), & contradiction which proves the claim. This also shows that
GW g_ (l)! .

Examples satistying (B') but not (A’) are well known for H — (R, +),
the additive group of reals (cf. [8]). For H the non-Abelian group ! the
problem is a bit more difficult. Let 1 be a non-principle ultrafilter on .
For geo! lot S(g) == {n: g(n)=n} and define ¢ = {ge o!: S(g) e U3,
@ is obviously o proper subgroup and sinee I is non-principle, &,C @
and ¢ is dense. G. Bergman suggested that @ might prove to be non-
meager. ' We will verify that this iy true and, hence, that @ is not XI.

‘We show that the assumption G C |J € with each €, closed nowhere
dense leads to a contradiction. Let o, 7 with subscripts range over the set
of finite permutations and set U, = {g ¢ w!: g extends o}. Then {T,: o a finite
permutation} is a countable weak basis for w!. We define induectively per-
mutations o, and s, n € o such that for each n, domain ¢, = domain Ty
0, COppyy T C Ty and Uy "0, =T, . ~ (0, =0.

Suppose o;, v; have been defined for i< 2n. Since ¢, is assumed
nowhere dense there exists oy, J 0y,_, such that U, A C,=0. Define 7,, to
have the sane domain as oy, to extend t,,_, and to be the identity on domain
Oy, — domain oy, ;. Liet 74,15 D 7, be such that T, ~ €, = @ and define
Uan41 b0 havve the same domain as 7,,,,, to extend o,,, and to be the identity

on domain vy, ., —domain 1,,. Clearly g= { J o, and h = |_ 7, are elements of
. . new . .ﬂ €w
wl—1{ ) ¢y . By construction §(g) v 8 (h) = w, so since U is an ultrafilter, one of

antl

new
S(g), 8(h) belongs to U, say the former. But then g e G—{_J Cu,a contradiction.

The ultrafilter 1L on o can be congtructed from ;anell-ordering of 2%,
If we have a strong X}, well-ordering, then the construction can be per-
formed to provide that & above is a X} subgroup of o!.

These examples already show us that the hypotheses of several theorems
cannot be weakened. Consider the theorem that orbits are Borel. This is
proved in [21] for actions by Polish groups, and in [24] assuming that
both (A) and (B) hold. Any Polish group H acts on itself by translation.
It ¢ is a subgroup of H, the orbit of id ¢ H in the induced action of G on H
iy simply ¢ itself. Thus, neither (A’) nor (B') alone suffices to guarantee
that this orbit is Borel, by our examples in which @ satisties (A') or (B')
alone but is not Borel. We do not know whether orbits must be Borel in
an arbitrary subaction of a Polish action where G is a Borel subgroup of H.

Again, consider the question of when. an invariant set B can he written
a8 a union of ¥, invariant Borel sets. In [24] it is shown that this is possible
provided B ix IF and (B) holds. Our second example above shows that (A”)
i8 not sufficient for this result. The result can be extended to Zj on the
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assumption that (A) holds in addition to (B). Our third example shows
that (B') alone is not sufficient for the extension, since if V = I the non-
meager subgroup of w! can be taken to be Xj.

Any XL set A can Dbe represented in the form 4 == A J M 4y, where

€Wy NeEW

each A, is Borel. One might hope that agsuming (B), 4" could be repre-
sented as (3) of § 2, with % ranging over w, rather than o. It would then
follow, however, that 4, if invariant, would be o union of ¥, invariant Borel

sets. We have just remarked that (B) is not sufficient. In fact wo are able |

to prove this representation theorem (and henee, also the decomposition
theorem) if we assume (B) - (Any union of 8, meagoer sets is meagor.).

Now consider the invariant I} reduetion theoreim. We have jroved
it from (A) alone as 1.1 and from (B) alone as 2.8. Iowever, it iy intoresting
to note that in the case we have considered in this scetion (“subaction of
Polish action”) if (B’) holds then the passage from H-invariance to
G -invariance introduces no new invariant II; sets in view of the following.

ProrosItioN 4.1. Let G be a dense non-meager subgroup of H. Then
any G-imwariant I or I} subset B of X s H -invariant,

Proof. By 1.7 of [24], B is a union of &, @-invariant Borel sebs, 8o it
suffices to prove the proposition asswming that B iy Borel. Let
F={geH: (Yo)(# e BeogreB). This is the largest subgroup with
respect to which B is invariant. Since ¢ C &, ¢ is dense in JI and it is
non-meager. Since B ig Borel, ¢' is ITF and, hence, has the Baire property.
By the Banach-Kuratowski-Pettis Theorem, O = H. (A more direct
argument based on (0) and (3) of §2 is also posgible.) m

Assuming PD, which implies that every projective set has the Baire
property, 4.1 extends to the case where B is any projective set. Flowever,
if V=1L our third example shows that 4.1 can fail for 2} sots.

The invariant Zj reduction theorem. was proved from (A) as our 1.3.
We do not know whether it follows from. (B) or even (B') alone.

The situation with respeet to the good PWO property is rather cuvious.
As remarked just atter 2.3 it follows from. (B) for IT}. According to our 1.4 it
follows from. (A) for 23. Does it hold for IT} assmming (A) or for L asswn-
ing (B)Y Assuming PD we get good PWO for X%, (ny-1) from (A)
(our 1.5(b)). We conjocture that it follows also for I, ., but we have been
able to prove only the following partial resulf.

TEEOREM 4.2. Assume PD. Let X be a Polish space, ¢ a XL subyroup
of w! acting on X according to a Bovel measurable map. Then for n L
the class of I, ., subsels of X has the good PWO property.

Proof. Roughly speaking, the proof of 4.2 stands in the same rela-
tion to the proof of the non-invariant version that the proof of 1.4 did to
its non-invariant analog.

icm°
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Let ¢ be an invariant I, ., subset of X, say ¢ = {g-

t Lvaria + set 288y 0= {&: (Vwe 0®)(x,a) ¢ D
where DC X< 0 i8 Zj,. Let g: D—sp be a %3, norm. Fix a b,ije)etion}
it X o—o. We say that y < 0” codes g e ! (and write g = ¢) provided
(Yn, 71?').(!1(?1,‘) = m iff (31’)(7 (p) = 'é(n.m>))‘ Let ’

@-codes = {y: (Age @) y codes g} .
Let ' C X% @ % o he the 2, set {(#, y, a): v ¢ G-codes V (g2, a) < D}
Note that, sinee ¢ is invariant, 0 = {o: (Vy, a)(z, y, ) e 1, The reader
may check that, defining

0 it

y ¢ G-codes,
(g, a) if

y € G- codes,
¢ s a Xi, novm on D'

Now wo are in a position to play the usual game for defining & prewel-
lordering, and hence a norm, on €. Let #,y < X. Consider the infinite
game G(w, y) indicated by the following diagram.

T: (ar(0), y2(0)) (az(1), 71(1) o,

T1: (@x(0), yu(0)) (ozr(1), yu(1)) ... azr, yar
s plays deline (ur, y1) € 0® X 0¥ 1D plays define (arr, yzr). II wins if
and only if

¥y yar, o) ¢ D'
or )
[y vy am) € DY A (@ yry an) € D' A @' (@, 1, ar) < ¢'(y, yar, om)] -

We detine @ -y provided II has a winning strategy in G(z, y).

Standard arguments (c¢f. [7] 2¢-1) show that <, induces a IIj,,,
norm y on ¢ such that p(w) = (y) if and only if # <, y. To verify that v is
a good norm it suffices to show that for every ¢e@ and every z e C,
® <3, gor. We exhibit & winning strategy for IT in G(z, gz). Suppose at
move k, Lplays ar(k) == a, yr(k) == b = i, ,,». Then II should play az(k) = a,
yur(k) = gy gy - With this strategy it is apparent that yir ¢ G-codes if and
only if yr e ¢F-codes, and that it yr codes b then yrr codes hg~*. Thus,
@'y vy ar) oo @' (g iy an) and the proof is complete. @

Movloy*s theorem, eited as (2) in § 3, oceupies an exceptional position
in thati it i known only for logie actions, Tn [24] Vaught agked whether
the following generalization iy true.

(1) TE X s o Polish wpaee, ¢ o Polish: group, J a bicontinuous action.
of & on X, then the number of orbits in any invariant X} of X is < %, or
exactly 3%,

We conjectino the following stronger statement.

(2) T X7 i o Dolish spaco, o 5 equivalence relation on X, then the
number of H-cquivalence clagsos in any invariant 23 set is < &, or exactly LLLR
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Friedman’s 74th problem is to setile the status of the following special
case of (2).

(8) It X = w®, B a X} cquivalence on X, then the number of H-equi-
valence clasges in X is <8, or 28, ,

In fact, (3) is equivalent to (2). For lot & be o Lolish gpace, which by
the trick used in 1.6 we may suppose to be . Let B C X* be a 2} relation,
let ACX be a L set, and suppose J/ ~ A* is an equivalence relation
with < s, equivalence classes. Write A == | J B, with cach B3, Borel. De-

aswy
fine ¥ equivalence relations X, on all of X by solting
= {(w,y): (¢ By Ay ¢B) ANally).

The number of E-cquivalence classes in 4 is the sum of the number
of B, -equivalence classes in X for a << w,. If (3) holds this sum is &, or 2%,
The strongest conjecture along these lines is that of Martin:
(4) (3) holds with I} replacing Z}.

We do know that the conclusion of Morley’s theorem docs not follow
in ZFCQ from (B), or even (B'), alone. For agsume that 2% 2= &, and that
Martin’s Axiom (MA) holds. Let H == (R, --), W a Ilamel basis (i. c. & bagis
for R as & vector space over Q), W, C W a subset of power 8,. Tiet ¢ he
the subspace of R gencrated over.Q by W--W,, regarded as o subgroup
~of H. Then ¥, translates of G cover H, and since by MA any unjon of < 2%
meager sets is meager, ¢ must be non-meager. When. ¢ acts on J by trans-
lation, the whole space, H, containg exactly , orbits.

Some questions raised above have recently Deen answered. The fivst
author has shown, using a theorem of Silver, that an analytic equivalence
relation has <<y or 2% equivalence classes, so that (2) of § 4 holds. Details
of these and other developments will appear in his doctoral dissertation,
“Infinitary Languages and Descriptive Set Theory”, University of Cali-
fornia at Berkeley, 1974.
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