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Optimized chirped mirrors may perform suboptimally, or completely fail to satisfy specifications, when
manufacturing errors are encountered. We present a robust optimization method for designing these
dispersion-compensating mirror systems that are used in ultrashort pulse lasers. Possible implementa-
tion errors in layer thickness are taken into account within an uncertainty set. The algorithm identifies
worst-case scenarios with respect to reflectivity as well as group delay. An iterative update improves the
robustness and warrants a high manufacturing yield, even when the encountered errors are larger than
anticipated. © 2008 Optical Society of America

OCIS codes: 310.4165, 310.6860, 320.0320.

1. Introduction

The dispersion-compensating mirror, first proposed
in 1994 [1], has become an enabling technology for
modern ultrafast lasers. Solid-state mode-locked
lasers can only operate at or below few-cycle pulse
widths when the total cavity dispersion is reduced
to nearly zero, with only a small amount (on the
order of a few fs2) of residual second-order dispersion.
While prisms can be used to compensate for second-
and third-order cavity dispersion, their relatively
high loss and inability to compensate for arbitrary
dispersion limits their use; pulse durations below
10 fsec were not possible directly from oscillators
until the development of high performance double-
chirped mirror pairs [2–4].
As bandwidths increase, so do the number of

layers required to produce a mirror with the high re-
flectivity needed for an intracavity mirror. For band-
widths exceeding an octave, mirror pairs with over
200 total layers are generally required. The sensi-

tivity of a dielectric stack to manufacturing errors
increases with the number of layers, and dispersion-
compensating mirrors push the limits of manufac-
turing tolerances, requiring layer precisions on the
order of a nanometer. Currently, this challenges even
the best manufacturers.

While the nominal optimization of layer thick-
ness has lead to successful design of dispersion-
compensating dielectric mirrors allowing dispersion
and reflectivity control over nearly an octave of band-
width, in practice the performance for such com-
plicated mirrors is limited by the manufacturing
tolerances of the mirrors. Small perturbations in
layer thickness not only result in suboptimal designs,
but due to the nonlinear nature of mode-locking,
such perturbation may completely destroy the
phenomenon.

Despite the fact that manufacturing errors often
limit the performance of thin-film devices [5], there
has been little work on optimizing thin-film designs
to mitigate the effects of errors. Some previous work
in designing fault-tolerant mirrors has focused on
optimizing first-order tolerances, a method readily
available in commercial thin-film design codes [6].

Our approach to robust optimization probes the
exact merit function in a bounded space of potential
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thickness errors. While this results in a much more
computationally involved optimization, the result is
arguably more robust to significant perturbation as
the full structure of the merit function is considered
in a neighborhood around a nominal solution. Fur-
thermore, the robustness is guaranteed to be equal
or better than that obtained with nominal optimiza-
tion, and in the case where it is equal, no sacrifice in
nominal optimality will be made.
Other prior work was done by Yakovlev and

Tempea [7], who employed stochastic global optimi-
zation to achieve robustness of the final solution by
virtue of the fact that they optimized a Monte Carlo
computed integral over a neighborhood around a
nominal design. Their method does not suffer the
limitations of first-order tolerances, and was able
to produce mirrors with significant improvement
over nominally optimized designs, demonstrating
conclusively that robustness can be greatly improved
at the design level by proper optimization.
Ben-Tal and Nemirovski provided a first robust

optimization approach based on an application in
antenna design [8]. Recent works have been devoted
to problems with convex objectives and constraints
(e.g., linear) [9–11]. These works have shown that a
convex optimization problem with parameter uncer-
tainty can be transformed to another convex optimi-
zation problem. Despite significant advancements,
all these results are limited to convex problems.
But modern engineering design often involves pro-
blems with objectives and constraints that are not
explicitly given and highly nonconvex. Thus, no in-
ternal structure can be exploited.
We present a new deterministic robust optimiza-

tion method that provides for designs which are in-
trinsically protected against potentially significant
layer-thickness perturbations occurring during man-
ufacturing. The presented method is generic and
can be applied to many problems that are solved
through numerical simulations [12]. Here, we intro-
duce the algorithm specifically for double-chirped
mirrors and tailor the parameters to this particular
problem. First, we discuss the optical properties of
these mirrors and define a cost function based on re-
flectivity and group delay. We continue with the in-
troduction of the concept of the uncertainty set as
well as a novel method to identify worst-case designs
within this set. Once these configurations are found,
we show how an update direction can be found which
eliminates these worst cases. Furthermore, we de-
monstrate the performance of the nominal and
robust solutions for a large range of perturbation
and propose a technique to increase the manufactur-
ing yield.

2. Computation of Cost Function

The cost function for a chirped mirror is typically
composed of two terms, one representing the per-
formance of the reflectivity (which is ideally one)
and another which quantifies the deviation of the

dispersion from ideal. We employ a cost or merit
function than is given as

f ðxÞ ¼
X
k

wrðλkÞ½Rðλk; xÞ − 1�4

þ
X
k

wdðλkÞ½τgðλk; xÞ − τ̂gðλkÞ þ τ0ðxÞ�2; ð1Þ

whereRðλ; xÞ is the wavelength domain reflectivity of
the total mirror pair described by layer thicknesses x,
τgðλ; xÞ is the group delay (GD) of the pair, τ̂gðλÞ is the
ideal GD, and the wr;dðλÞ are weighting functions. To
account for an irrelevant offset between the com-
puted and ideal group delay curves, we include a
constant offset, τ0ðxÞ, that minimizes the error. For
the reflectivity errors, we use the fourth power of
the error to approximate a Chebychev norm, though
a standard squared error can also be used.

The computation of reflectivity from a thin-film
stack is done using transfer matrix methods [13].
In a standard nominal optimization, the merit func-
tion and its gradient must be evaluated thousands
of times over hundreds of wavelengths. In a robust
optimization, the computational burden is even
greater, with the merit function typically computed
on the order of a million times. Any discrepancy in
the gradient will hinder the convergence rate. Thus,
it is imperative that the merit function be computed
efficiently and accurately. We employ the methods
described in [14,15], where the group delay is com-
puted in an approximate analytic form that allows
for a significant reduction in computational complex-
ity. The approximation simply neglects the local
change in wavelength of the Fresnel reflections be-
tween each layer. For chirped mirrors, the approxi-
mation error is negligible, as demonstrated and
explained in [14]. The gradient of the group delay
is computed analytically in a self-consistent manner
with the approximation, resulting in an optimization
that converges quickly, both in terms of iterations
and total processing time.

3. Problem Statement

Our design problem consists of a double-chirped
mirror pair with 208 layers for use in a few-cycle
titanium:sapphire mode-locked laser [16]. The ini-
tial design was computed using the analytic method
of [4]. The materials used were SiO2 and TaO5, with
the dispersion of each modeled using Sellmeier
coefficients obtained from fits to manufacturer’s
index data. The total reflection dispersion of the pair
is specified to compensate for 2:2mm of Titanium:
sapphire, 2m of air, and 8mm of Barium Fluoride
in a cavity containing six mirrors. The group delay
and reflectivity are optimized over 156 wavelengths,
uniformly spaced from 650 to 1200nm. This dis-
cretization was empirically found to be sufficient
to avoid narrow resonances “leaking” through the
grid. The angle of incidence is taken to be 6°, and
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the polarization is assumed to be transverse in the
magnetic field (TM). The reflectivity and group delay
are optimized as in Eq. (1), with constant weightings
wr ¼ 1 and wd ¼ 10−8 fs−2.

4. Implementation Errors

A. General Model

For the purposes of developing this algorithm, we
model manufacturing errors as independent random
sources of additive noise, since any known systematic
errors, such as miscalibration, can be best addressed
in the actual production. As empirically supported,
the layer-thickness errors can be regarded as not cor-
related. Therefore, we assume that when manufac-
turing a mirror with layer thicknesses given by x,
statistically independent additive implementation
errors Δx ∈ Rn may be introduced due to variation
in the coating process, resulting in an actual thick-
nesses xþΔx. We assume a mean of zero and a var-
iance on each layer that is motivated by actual
manufacturing errors. Here, Δx resides within an
uncertainty set

U≔fΔx ∈ Rnj‖Δx‖2 ≤ Γg; ð2Þ
where ‖⋅‖2 is the Euclidean norm. Note that Γ > 0 is
a scalar describing the size of perturbation against
which the design needs to be protected. For this
paper, we took the manufacturing uncertainty to
be normally distributed with a standard deviation
of σ ¼ 0:5nm. To maintain 95% cumulative confi-
dence to capture all errors within U for this 208-
dimensional problem, we chose Γ ¼ 0:0075 μm. We
seek a robust design of x by minimizing the worst-
case cost

gðxÞ≔ max
Δx∈U

f ðxþΔxÞ: ð3Þ

The worst-case cost gðxÞ is the maximum possible
cost of implementing x due to an error Δx ∈ U. Thus,
the robust optimization problem is given through

min
x

gðxÞ≡min
x

max
Δx∈U

f ðxþΔxÞ: ð4Þ

In other words, the robust optimization method
seeks to minimize the worst-case cost. When imple-
menting a certain design x ¼ x̂, the possible realiza-
tion due to implementation errors Δx ∈ U lies in the
set

N≔fxj‖x − x̂‖2 ≤ Γg: ð5Þ
We call N the neighborhood of x̂; such a neigh-
borhood is illustrated in Fig. 1. A design x is a
neighbor of x̂ if it is in N . Therefore, gðx̂Þ, is the
maximum cost attained within N . Let Δx� be one
of the worst implementation errors at x̂, Δx� ¼
arg maxΔx∈U f ðx̂þΔxÞ. Then, gðx̂Þ is given by
f ðx̂þΔx�Þ.

Since we seek to navigate away from all the worst
implementation errors, the inner maximization pro-
blem needs to be solved first. Given that f is noncon-
vex and provided through numerical calculations,
we cannot exploit any possible internal structure
to compute g. Therefore, we conduct local searches
to determine worst configurations within N .

Previously, it was shown that all worst-case sce-
narios reside on the shell of N [17]. Thus, to improve
the speed of the inner maximization, we can restrict
ourselves to only considering error vectors Δx such
that the ‖Δx‖2 ¼ Γ. Problem (4) then transforms
into a constrained maximization over the shell
‖Δx‖2 ¼ Γ, which makes the search more computa-
tionally efficient.

B. Restricted Search Space

To protect a design against errors, it is helpful to uti-
lize available understanding of possible errors. For
example, if there are worst-case scenarios in the re-
spective neighborhood that are very rare according to
our assumed layer perturbation distribution, there is
no need for them to be considered during the inner
maximization problem (3). By excluding these rare
events from U, we are able to protect the design
against realistic and statistically relevant errors
only, without needlessly sacrificing nominal perfor-
mance to guard against rare errors. Moreover, this
approach leads to a reduction of the size of the re-
spective search space and, thus, to an increase of
the computational efficiency.

It is well known that the reflection coefficients of
thin-film stacks are closely related to the Fourier
transform of the layer thicknesses [18]. Thus, one
promising class of rare perturbations to eliminate
from consideration are those which have strong cor-
relations between the layers. These errors involve,
for example, shifting of all the thicknesses in one di-
rection, which results in a spectral shift regardless of
the design. Even though such errors may occur in ac-
tual manufacturing due to systematic issues, there is
little or nothing that can be done to deal with them
by design optimization, and to attempt to do so will
only result in a highly compromised design. We thus
restrict ourselves to considering only statistically
independent random perturbations to the layers.

Fig. 1. (Color online) Two-dimensional illustration of the neigh-
borhood. For a design x̂, all possible implementation errorsΔx ∈ U
are contained in the shaded circle. The bold arrow d shows a pos-
sible descent direction and thin arrowsΔx�i represent worst errors.
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In this context, the probability of errors occurring
with high correlation between the layers is negligi-
ble, and thus we should not concern ourselves with
protecting against them. We therefore seek a class
of errors which restricts the allowable correlation be-
tween layers, i.e., we restrict the maximum variation
in the amplitude of the Fourier components of the
error vector. A straightforward way to do this is to
restrict the search to the class of error vectors with
minimum coherence, requiring all Fourier compo-
nents to have a uniform amplitude.
In addition to the above, this choice of subset is jus-

tified empirically. Monte Carlo simulations reveal
that the set of perturbations with uniform amplitude
in the Fourier domain with uniformly distributed
phases have virtually identical statistics to the gen-
eral uncertainty set U defined in Eq. (2). The cumu-
lative probability distribution of the reduced set
never exceeds the full set by more than 4%. This con-
firms that our worst-case search over the reduced
subset will not miss anything statistically relevant
in the full set, and thus robustness is not compro-
mised by using this set.
In the restricted space, the components of Δx can

be written as

Δxj ¼
Γ

⌊N=2⌋

X⌊N=2⌋

k¼1

cos
�
2πkj
N

þ ϕk

�
; ð6Þ

where ϕk is the phase of the kth Fourier component of
Δx and N is the number of layers. We furthermore
assume the constant (zero frequency) component
is zero, which corresponds to the aforementioned
pathological case of all layers shifting a similar
amount. Using Parseval’s theorem, i.e., the sum of
the square of a function is equal to the sum of the
square of its transform, we can verify that the mag-
nitude of the errors remains on the shell of the
original uncertainty set U,

‖Δx‖2
2 ¼

XN
k¼1

jΔxkj2 ¼ Γ2: ð7Þ

Using this transformation, we search over the phases
ϕk for worst-case neighbors. Therefore, the search
space dimensionality is reduced to ⌊N=2⌋; hence,
the efficiency of this algorithm increases by N2. Most
importantly, since the maximization problem is over
the free phase-space on the shell and the magnitude
of these vectors are constant, the advantages of
an unconstrained search can be exploited. Conse-
quently, we obtain the set of local maxima in the
phase space using standard gradient-based optimi-
zation. Furthermore, we obtain a set of true bad
neighbors, which is significantly smaller in size
(≪ 500) than had we left the search space more gen-
eral. Since this size determines the number of
constraints in the problem, we experience a signifi-
cant speed up in this part of the algorithm as well.

5. Robust Optimization

Once worst-case neighbors are identified, a direction
is sought along which an updated neighborhood
would not include these worst-case scenarios any
longer. This direction is a vector that spans the lar-
gest angleΘ ≥ 90° to all worst implementation errors
at x̂ in the set of worst implementation errors

U�ðx̂Þ≔ fΔx�jΔx� ¼ arg max
Δx∈U

f ðx̂þΔxÞg: ð8Þ

To navigate away from the elements in U�ðx̂Þ, a des-
cent direction d� can be found efficiently by solving
the following second-order cone problem (SOCP):

minimize
d;β

β
subject to ‖d‖2 ≤ 1

dΔx� ≤ β ∀Δx� ∈ U�ðx̂Þ
β ≤ −ϵ;

ð9Þ

where ϵ is a small positive scalar and β is an auxili-
ary variable. A feasible solution to problem (9), d�,
forms the maximum possible angle θmax with all
Δx�, as illustrated in Fig. 1. This angle is always
greater than 90° due to the constraint β ≤ −ϵ < 0.
This constraint guarantees that d� will provide an
updated design neighborhood that excludes all
known Δx�. The value of ϵ is chosen heuristically
such that when problem (9) is infeasible, then x̂ is
a robust local minimum. Note, that the constraint
‖d�‖2 ¼ 1 is automatically satisfied if the problem
is feasible. Such an SOCP can be solved efficiently
using both commercial and noncommercial solvers,
e.g., [19]. Because Δx� usually reside among de-
signs with nominal costs higher than the rest of
the neighborhood, the following algorithm sum-
marizes a heuristic strategy for the robust local
search [17]:

Algorithm 1

Step 0—Initialization: Let x1 be an arbitrarily cho-
sen initial decision vector. Set k≔1.

Step 1—Neighborhood Exploration: Find a set of
implementation errors Δxi with the highest cost
within the neighborhood of xk. For this, we conduct
multiple unconstrained maximization searches over
the shell of the uncertainty set starting from random
initial configurations. The results of all function eva-
luations ðx; f ðxÞÞ are recorded in a bad-neighbors set.

Step 2—Robust Local Move:

i. Solve the SOCP (9); terminate if the problem is
infeasible

ii. Set xkþ1≔xk þ tkd�, where d� is the optimal
solution to the SOCP.

iii. Set k≔kþ 1. Go to Step 1.

The step size tk is computed as the shortest step
size that eliminates all bad neighbors from xk.
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Reference [17] provides a detailed discussion on the
actual implementation.

6. Results

Starting from a nominally optimized solution, our ro-
bust optimization algorithm successively decreased
the worst-case cost, as in Eq. (3). This performance
is shown in Fig. 2. The significant improvement
of robustness comes at the price of a small increase
in the nominal cost. The algorithm converges to the
robust local minimum, at which point no descent
direction can be found.
The reflectivity and group delay of the robust and

nominal optimum are shown in Fig. 3. While both
solutions satisfy the design objectives, the robust
design is significantly more protected against pos-
sible errors. The unavoidable “price of robustness”
through a decrease of the nominal performance of
the robust solution is apparent, with increased ripple
in the group delay and reflectivity. This price is espe-
cially apparent in the bottom plot of Fig. 3, which
compares the total group delay error for the robust
and nominally optimized mirror pairs. However, as

is shown in Figs. 5 and 6, the robust solution per-
forms better when the layer perturbations are
taken into account. Even though the nominally opti-
mized design is able to achieve GD errors of less than
1 fsec, it turns out that the half nanometer layer per-
turbations we took as our assumed manufacturing
tolerances result in GD errors on the order of plus
or minus five femtoseconds.

In Fig. 4, we show the layer thicknesses for the
mirror pair both after nominal optimization and
robust optimization. The general structure of the
mirror is preserved in the robust optimum solution,
in keeping with the observation that its nominal per-
formance is not degraded significantly. The larger
variations are found in the first several layers, which
perform impedance matching into the chirped stack,
suggesting that they are the most sensitive to pertur-
bation. This is consistent with the fact that any spur-
ious reflections off of the front surface of the mirror
will significantly degrade the GD performance.

While we intended to match the size of the un-
certainty to the reported manufacturing and mea-
surement errors, the value of Γmight not fully reflect

Fig. 2. (Color online) Robust optimization algorithm improves (left) the worst-case cost in the neighborhood of the current design.
Discoveries of new bad neighbors cause the small peaks. (Right) The price of robustness is an increase in the nominal cost.

Fig. 3. (Color online) Reflectivity and group delay for each chirped mirror in the pair: (left) nominally optimal design; (right) robustly
optimal configuration.
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the actual errors. Therefore, our algorithm seeks to
find robust solutions with stable performance even
beyond predicted errors. To illustrate these effects,
we varied the size of the uncertainty set and evalu-
ated the worst possible neighbor within this neigh-
borhood. The worst-case scenarios of the nominal
optimum and robust optimum, both in cost as well
as the optical properties, are compared for increasing
neighborhood size in Fig. 5.
The worst-case performance of both the nominal

and robust designs behave fairly similarly within a
small range of perturbations, which is in fact compar-
able to Γ. However, once the size of possible errors
increases, the worst-case cost of the nominal design
drastically rises, showing that this design would lose
its phenomena completely.
Since any manufacturing process is to some ex-

tent statistical, it is essential for a design to yield
a high manufacturing yield. Our robust optimization
method not only minimizes the worst-case perfor-
mance, but also addresses these statistical effects.
This is demonstrated in Fig. 6. A series of Monte
Carlo simulations, each with 106 randomly sampled
designs with normally distributed layer perturba-
tions, were performed with varying standard devia-
tions at the robust and the nominal optimum. The

mean μ and the ninety-fifth percentile P95 of the dis-
tribution for each perturbation size are plotted to il-
lustrate the center and the actual width of this
statistical process. While both designs are similarly
distributed within the expected errors σ, they deviate
significantly beyond this mark. In fact, the mean and
more importantly the spread of the distribution for
the nominal optimum design increases rapidly be-
yond σ, while the robust optimum is more moderate.
Moreover, the mean of the nominal optimum at all
perturbation sizes is within the distribution (P95)
of the robust optimum, demonstrating that the man-
ufacturing yield of the robust solution remains high
and provides performances comparable to the nom-
inal design, even beyond the assumed errors. Since
the notion of the actual manufacturing errors are
often somewhat uncertain, our method can provide
a robust solution despite these uncertainties.

7. Conclusions

We have developed a new robust optimization tech-
nique specifically tailored to the problem of thin-film
filter optimization. Our method obtains robust solu-
tions by performing a series of deterministic gradient
ascent searches around a given trial solution for
worst-case errors. To avoid taking into account extre-
mely rare potential errors, we perform this search
over the space of all errors on the shell of our neigh-
borhood whose components are minimally coherent.
This avoids taking into account rare but highly sig-
nificant errors, such as those associated with certain
types of systematic manufacturing errors, which
would otherwise dominate the optimization. This
modification allows an unconstrained inner maxi-
mization over a reduced search space, and thus,
improves the efficiency. Once, a set of worst-case
designs are identified within an uncertainty set,
our method provides an updated design that has
reduced worst-case performance. After a number of
iterations, we obtain a robust optimum that has
the lowest worst-case performance.

Fig. 5. (Color online) Comparison of worst-case cost and worst-
case GD cost of two designs, the nominal and robust optimum,
for increasing size of possible perturbations or errors.

Fig. 6. (Color online) Comparison of the nominal and robust de-
sign: mean and ninety-fifth percentile of the cost distribution of
106 randomly sampled designs for varying perturbation sizes.

Fig. 4. (Color online) Layer thicknesses of nominal optimum and
robust optimum of the mirror pair.
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We apply the method to a demanding optimization
of a 208 layer chirped mirror pair with nearly an oc-
tave of bandwidth. The robust solution is compared
with that obtained using standard optimization tech-
niques, and is found to achieve improved statistical
performance for layer errors of half a nanometer.
Furthermore, the fault tolerance of the robust solu-
tion increases significantly relative to the nominally
optimized mirror as the error variance increases, de-
monstrating that the robust solution is not tied to the
particular manufacturing error variance assumed
during optimization (see Fig. 6). Therefore, our ro-
bust design warrants for a high manufacturing yield
even when errors occur that are larger than origin-
ally assumed.
In this initial demonstration, we performed the op-

timization on a fixed number of layers. However, the
robust optimization problem can be viewed as pro-
viding a new cost function which takes into account
robustness and, thus, can be used within other re-
finement algorithms, such as needle optimization
[20], that allow for changing layer counts.

J. Birge received support from the Office of Naval
Research under grant ONR N00014-02-1-0717 and
the National Science Foundation under grant ECS-
0501478.
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