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Abstract. We present a distribution-free model of incomplete-information games, both with and without
private information, in which the players use a robust optimization approach to contend with payoff uncer-
tainty. Our “robust game” model relaxes the assumptions of Harsanyi’s Bayesian game model, and provides an
alternative distribution-free equilibrium concept, which we call “robust-optimization equilibrium,” to that of
the ex post equilibrium. We prove that the robust-optimization equilibria of an incomplete-information game
subsume the ex post equilibria of the game and are, unlike the latter, guaranteed to exist when the game is
finite and has bounded payoff uncertainty set. For arbitrary robust finite games with bounded polyhedral payoff
uncertainty sets, we show that we can compute a robust-optimization equilibrium by methods analogous to
those for identifying a Nash equilibrium of a finite game with complete information. In addition, we present
computational results.
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1. Introduction

1.1. Finite games with complete information

Game theory is a field in economics that examines multi-agent decision problems, in
which the rewards to each agent, or player, can depend not only on his action, but also
on the actions of the other players. In his seminal paper [39], John Nash introduced the
notion of an equilibrium of a game. He defined an equilibrium as a profile of players’
strategies, such that no player has incentive to unilaterally deviate from his strategy,
given the strategies of the other players.

In [39] and [40], Nash focused on non-cooperative, simultaneous-move, one-shot,
finite games with complete information, a class of games encompassing various situ-
ations in economics. “Simultaneous-move” refers to the fact that the players choose
strategies without knowing those selected by the other players. “One-shot” means that
the game is played only once. “Finite” connotes that there are a finite number of players,
each having a finite number of actions, over which mixed strategies in these actions may
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be defined. Finally, “complete information” implies that all parameters of the game,
including individual players’ payoff functions, are common knowledge.

In his analysis, Nash modeled each player as rational and wanting to maximize
his expected payoff with respect to the probability distributions given by the mixed
strategies. Nash proved that each game of the aforementioned type has an equilibrium in
mixed strategies. In fact, Nash gave two existence proofs, one in [39] based on Kakutani’s
Fixed Point Theorem [28] and one in [40] based on the less general Brouwer’s Fixed
Point Theorem [10].

Nash’s equilibrium concept and existence theorem have become a cornerstone in the
field of game theory and earned him the 1994 Nobel Prize in Economics. The concept
is regarded as practically significant largely because, under the standard assumptions
that players are rational and that the structure of a game is common knowledge, the
concept offers a possible approach to predicting the outcome of the game. The argument
is as follows. Any rational player who thinks his opponents will use certain strategies
should never play anything other than a best response to those strategies. By the com-
mon knowledge assumption, the other players know this, the player knows that the other
players know this, etc., ad infinitum. Thus, the players may be able to reach consistent
predictions of what each other will play. The classical game theory literature concludes
from this observation that we should expect the realized behavior in a game to belong to
the set of equilibria. As discussed in the introduction of Fudenberg and Levine [19], in
practice, this conclusion can prove to be unreliable. Nonetheless, the concept of Nash
equilibrium remains the central idea in game theory, in part because no solution concept
has been offered that overcomes these prediction issues.

1.2. Finite games with incomplete information

While the existence of an equilibrium can be asked in any game, Nash’s existence result
addresses only non-cooperative, simultaneous-move, one-shot, finite games with com-
plete information. Of course, in real-world, game-theoretic situations, players are often
uncertain of some aspects of the structure of the game, such as payoff functions.

Harsanyi [24] modeled these incomplete-information games as what he called “Bayes-
ian games.” He defined a player’s “type” as an encoding of information available to that
player, including knowledge of his own payoff function and beliefs about other play-
ers’ payoff functions. In this way, he used type spaces to model incomplete-information
games, in which some players may have private information. He assumed that the players
share a common-knowledge prior probability distribution over the type space. Harsanyi
suggested that each player would use this prior probability distribution, together with his
type, to derive a conditional probability distribution on the parameter values remaining
unknown to him. Furthermore, he assumed that each player’s goal would then be to,
using a Bayesian approach in this way, maximize his expected payoff with respect to
both the aforementioned conditional probability distribution and the mixed strategies of
the players.

In this framework, Harsanyi extended Nash’s result to games with incomplete infor-
mation. In particular, he showed that any Bayesian game is equivalent to an extensive-
form game with complete, but imperfect information. This extensive-form game, in turn,
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is known to have a static-form representation. Using an equilibrium existence result more
general than Nash’s and due to Debreu [14], Harsanyi thus proved the existence of equi-
libria, which he called “Bayesian equilibria,” in Bayesian games. For his work on games
with incomplete information, he won the 1994 Nobel Prize in Economics, alongside
Nash and Selten.

Harsanyi’s work relaxes the assumption that all parameters affecting the payoffs of
the players are known with certainty. His model technique is essentially analogous to
the stochastic programming approach to data uncertainty in mathematical optimization
problems. As in stochastic programming, Harsanyi’s model assumes the availability of
full prior distributional information for all unknown parameters. In addition, his analysis
assumes that all players use the same prior, and that this fact is common knowledge.
Many, including Morris [38] and Wilson [55], have questioned the common prior and
common knowledge aspects of these assumptions. Nonetheless, Harsanyi’s Bayesian
model remains the accepted convention for analyzing static games with incomplete
information.

Some contributions to the literature have relaxed the common prior and common
knowledge assumptions of Harsanyi’s model. Most importantly, Mertens and Zamir
[37] formalized the notion of a “universal type space,” a type space large enough to cap-
ture players’ higher-order beliefs, players’ use of different prior probability distributions
on the uncertain parameters, and the absence of common knowledge of these priors.

Taking a different approach, other contributors to the game theory literature have
offered distribution-free equilibrium concepts for incomplete-information games. These
analyses address the possibility that distributional information is not available to the
players, or that they opt not to use potentially inaccurate distributional information. The
notion of an ex post equilibrium is the most common distribution-free solution concept
and is especially prevalent in the auction theory literature. Holmström and Myerson
[25] first introduced this notion under the name “uniform incentive compatibility,” and
Crémer and McLean [12] first used it in the context of auctions. The ex post equilib-
rium is a refinement of the Bayesian equilibrium and is an appealing solution concept,
because it is relevant even when the players lack distributional information on the uncer-
tain parameters. However, it is a strong concept, and ex post equilibria need not exist in
an incomplete-information game.

1.3. Contributions and structure of the paper

The contributions of this paper are as follows.

1. We propose a distribution-free, robust optimization model for incomplete-informa-
tion games. Our model relaxes the assumptions of Harsanyi’s Bayesian games model,
and at the same time provides a more general equilibrium concept than that of the
ex post equilibrium.
Specifically, in Section 2, we review relevant results from the literature on robust
optimization. In Section 3, we formally propose the robust optimization model for
non-cooperative, simultaneous-move, one-shot, finite games with incomplete infor-
mation. We start by discussing precedents, from the game theory literature, for using
a worst-case approach to uncertainty, in the absence of probability distributions.
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We then note the novelty of our approach with respect to these works. After setting
forth our model, we describe the “robust games,” analogous to Harsanyi’s Bayesian
games, to which this approach gives rise. We compare the equilibrium conditions
for such robust games to those for Bayesian equilibria and ex post equilibria. Fur-
thermore, we note that any ex post equilibria of an incomplete-information game
are what we call “robust-optimization equilibria,” i.e., equilibria of the correspond-
ing robust game, just as they are Bayesian equilibria under Harsanyi’s model. We
then discuss our union of the notion of equilibrium with the robust optimization
paradigm, and we give interpretations of mixed strategies in the context of robust
games. We relate this discussion and these interpretations to those in the literature
on complete-information games.
At the end of Section 3, to concretize the idea of a robust game, we present some
examples. In addition, we use one of these examples to illustrate that ex post equi-
libria need not exist, thereby motivating the need for an alternate distribution-free
equilibrium concept.
Let us pause to note that, for the sake of simplicity, in Sections 3 through 6, we focus
on situations of uncertainty in which no player has private information. This focus
allows for a clearer and a sufficiently rich discussion of the main ideas underlying
our model and results, without hindering the reader’s understanding through the use
of cumbersome notation and references to results from the theory of Banach spaces.
Such notation and results are required for the general case of incomplete-informa-
tion games involving potentially private information. In Section 7, we extend our
analysis to this general case.

2. In Section 4, we prove the existence of equilibria in robust finite games with bounded
uncertainty sets and no private information.

3. In Section 5, we formulate the set of equilibria of an arbitrary robust finite game, with
bounded polyhedral uncertainty set and no private information, as the dimension-
reducing, component-wise projection of the solution set of a system of multilinear
equalities and inequalities. We provide a general method for approximately comput-
ing sample robust-optimization equilibria, and we present numerical results from the
application of this method. For a special class of such games, we show equivalence
to finite games with complete payoff information and the same action spaces. As a
result, in order to compute sample equilibria for robust games in this class, one need
only solve for the equilibria of the corresponding complete-information game.

4. In Section 6, we compare properties of robust finite games with those of the cor-
responding complete-information games, in which the uncertain payoff parameters
of the former are commonly known to take fixed, nominal values. In the absence of
private information, these nominal games are precisely the Bayesian games arising
from attributing symmetric probability distributions over the uncertainty sets of the
corresponding robust games. In addition, turning our attention to a notion of symme-
try unrelated to the symmetry of probability distributions, we extend the definition of
a symmetric game, i.e., one in which the players are indistinguishable with respect
to the structure of the game, to the robust game setting. We prove the existence of
symmetric equilibria in symmetric, robust finite games with bounded uncertainty
sets and no private information.



Robust game theory 235

5. In Section 7, we generalize our model to the case with potentially private informa-
tion. We extend our existence result to this context and generalize our computation
method to such situations involving private information and finite type spaces.

1.4. Notation

We will use the following notation conventions throughout the paper. Boldface letters
will denote vectors and matrices. In general, upper case letters will signify matrices,
while lower case will denote vectors. To designate uncertain coefficients and their nom-
inal counterparts, we will use the tilde (e.g., ã) and the check (e.g., ǎ), respectively.
Lastly, vec(A) will denote the column vector obtained by stacking the row vectors of
the matrix A one on top of another. Thus, if A is an m × n matrix, vec(A) will be an
mn × 1 vector.

2. Review of robust linear optimization

For the purpose of more precisely characterizing the robust optimization approach, let
us consider the mathematical optimization problem (MP)

P : max
x

f (x)

s.t. x ∈ X(δ̌1, δ̌2, . . . , δ̌ω),

where x is the vector of decision variables, X(δ1, δ2, . . . , δω) is the feasible region
defined by parameters δi , i ∈ {1, . . . , ω}, and f (x) is the objective function. In the above
nominal MP, we regard the parameter values as being fixed at δi = δ̌i , i ∈ {1, . . . , ω}.
Suppose instead that we do not know the exact values of these parameters δ̃1, . . . , δ̃ω,
but know that (δ̃1, . . . , δ̃ω) belongs to some uncertainty set U . Under this model of
uncertainty, the robust counterpart of the above nominal problem is given by

RP : max
x

f (x)

s.t. x ∈ X(δ̃1, δ̃2, . . . , δ̃ω), ∀ (δ̃1, δ̃2, . . . , δ̃ω) ∈ U.

Without loss of generality, we can restrict our discussion of data uncertainty to the
constraints, since the objective can always be incorporated into the constraints. Indeed,
the nominal problem P can be rewritten as a maximization over a new decision vari-
able, z.

max
x,z

z

s.t. z ≤ f (x)

x ∈ X(δ̌1, δ̌2, . . . , δ̌ω).

Initial results on robust linear optimization were given by Soyster in [47]. Soyster
considered linear optimization problems (LPs) subject to column-wise uncertainty in
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the constraint matrix. His model is equivalent to the LP in which all uncertain parame-
ters have been fixed at their worst-case values from the uncertainty set. Soyster’s model
is overly conservative; in practice, it seems quite unlikely that the uncertain parame-
ters would all simultaneously realize their worst-case values. In addition, his model is
specific to column-wise uncertainty and does not easily generalize.

Twenty years later, Ben-Tal and Nemirovski [1–3] and, independently of them,
El Ghaoui et al. [16, 17] renewed the discussion of optimization under uncertainty.
They examined ellipsoidal models of uncertainty, which, for the robust LP case, are less
conservative than the column-wise model considered by Soyster. They showed that the
robust counterpart of an LP under such ellipsoidal uncertainty models is a second-order
cone optimization problem (SOCP). Furthermore, they remarked that polyhedral uncer-
tainty can be regarded as a special case of ellipsoidal uncertainty. As a result, LPs under
polyhedral uncertainty of the coefficient matrix can be solved via SOCPs.

Ellipsoidal uncertainty formulations of robustness are attractive in that they offer a
reduced level of conservatism, as compared with the Soyster model, and lead to efficient
solutions, via SOCPs, of LPs under uncertainty. Unfortunately, ellipsoidal uncertainty
formulations give rise to robust counterparts whose exact solution is more computa-
tionally demanding than that of the corresponding nominal problem. In response to this
drawback, Bertsimas and Sim [6, 7] offered an alternative model of uncertainty, under
which the robust counterpart of an LP is an LP. Their formulation yields essentially the
same level of conservatism as do those of Ben-Tal and Nemirovski and El Ghaoui et al.

Bertsimas, Pachamanova, and Sim [5] further extended the results of Bertsimas and
Sim [7] to the case of general polyhedral uncertainty of the coefficient matrix. In par-
ticular, where Ã is an m × n coefficient matrix, they modeled the uncertainty set as a
polyhedron

U =
{

vec(Ã)

∣∣∣ G · vec(Ã) ≤ d
}

, (1)

where G ∈ R
�×mn, vec(Ã) ∈ R

mn×1, and d ∈ R
�. They considered the robust LP given

by

max
x

c′x

s.t. Ãx ≤ b (2)

x ∈ S

∀Ã ∈ U,

where x ∈ R
n is the decision vector and S is a polyhedron defined by constraints that

are not subject to uncertainty. They showed that, if the number of constraints defining S

is r , then robust LP (2) in n variables and m + r constraints is equivalent to a nominal
LP in n + m� variables and m2n + m + m� + r constraints.

3. A robust approach to payoff uncertainty in games

As an alternative to Harsanyi’s model and the notion of the ex post equilibrium, we pro-
pose a new distribution-free model of and equilibrium concept for incomplete-informa-
tion games. Our model is based on robust optimization, in which one takes a deterministic
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approach to uncertainty and seeks to optimize worst-case performance, where the worst
case is taken with respect to a set of possible values for the uncertain parameters. Let
us note that, in Sections 3 through 6, we will focus on incomplete-information games
without private information. In Section 7, we will extend our analysis to the general case
involving potentially private information.

3.1. Precedents for a worst-case approach

In fact, the game theory literature is ripe with precedents for using a worst-case approach.
The field arose in large part from von Neumann’s and Morgenstern’s “max-min” for-
mulation of behavior in games [52]. More recently, for example, Goldberg et al. [22]
proposed a worst-case, competitive-analysis approach to auction mechanism design. In
the more general context of games in normal form, several authors, including Gilboa and
Schmeidler [21], Dow and Werlang [15], Klibanoff [29], Lo [32], and Marinacci [34],
have argued for a max-min-based approach to “ambiguous uncertainty,” uncertainty in
the absence of probabilistic information. They contend that expected utility models are
well-suited for decision-theoretic situations characterized by “risk,” uncertainty with
distributional information, but that these models do not capture behavior observed in
practice in situations of ambiguous uncertainty.1 As Dow and Werlang [15] note, the
former type of uncertainty is exemplified by the outcome of a coin toss, while the latter
is typified by the outcome of a horse race.

While the max-min approaches of Gilboa and Schmeidler, Dow and Werlang, Kliba-
noff, Lo, and Marinacci share the worst-case perspective of our model, their approaches
are fundamentally different from ours for at least three reasons. First, these authors con-
sider complete-information games, whereas we address incomplete-information games.
In their models, players know, with certainty, the payoffs under given tuples of actions,
but do not know which tuple of actions will be played. In our model, the players may
be uncertain of the payoffs, even under given tuples of actions. Accordingly, the afore-
mentioned authors use a pessimistic approach to model each player’s uncertainty of the
other players’ behaviors, whereas we use a worst-case approach to model each player’s
uncertainty of the payoff functions themselves.

Second, although these authors take a worst-case approach to some extent, their
models are nonetheless inherently probabilistic, unlike our approach, which is funda-
mentally deterministic. Klibanoff [29] and Lo [32] model each player’s uncertainty of
the other players’ behaviors using the notion of multiple prior probability distributions.
They characterize each player as believing his counterparts’actions are a realization from
some unknown probability distribution, belonging to a family of known multiple priors.
Each player then seeks to maximize his minimum expected utility, where the minimum
is taken with respect to this set of multiple priors. Gilboa and Schmeidler [21], Dow and
Werlang [15], and Marinacci [34] propose a related approach using non-additive prob-
ability distributions in place of sets of multiple priors. Unlike these authors, we offer a
model in which the players give no consideration whatsoever to probability distributions
over the uncertain values. Under our approach, the players regard the uncertain values
as simply unknown and not as realizations from some probability distribution, even a

1 Knight [30] was one of the first to draw a distinction between these two forms of uncertainty.
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distribution that is itself not exactly known. Consequently, our model of the players’
responses to uncertainty is distribution-free and deterministic in nature.

Third, these authors offer no guidelines for equilibria computation in the context of
their models. In contrast, in Section 5, we propose such a computation method. Despite
these differences, the aforementioned authors’ contributions provide ample support for
the robust optimization model we propose for games with incomplete information.

In addition, since the submission of our paper, Hyafil and Boutilier [27] have recently
offered a worst-case approach for incomplete-information games, based on the distri-
bution-free decision criterion of minimax regret, popular in the online optimization
literature [9]. Their approach is in contrast to our framework of modeling the players as
each seeking to maximize his worst-case expected payoff. Hyafil and Boutilier provide
an existence result for a very restricted, special case of incomplete-information games,
involving private information, but finite type spaces. They offer no ideas on computation
of their equilibria.

Having discussed some precedents for taking a worst-case approach to analyzing
game-theoretic situations, let us now formalize our robust games model.

3.2. Formalization of the robust game model

In our robust optimization model of incomplete-information games, we assume that the
players commonly know only an uncertainty set of possible values of the uncertain payoff
function parameters.2 They need not, as Harsanyi’s model additionally assumes, have
distributional information for this uncertainty set. In addition, we suppose that each
player uses a robust optimization, and therefore a worst-case, approach to the uncer-
tainty, rather than seeking, as in Harsanyi’s model, to optimize “average” performance
with respect to a distribution over the uncertainty set. In the game theory literature, the
“performance” of a player’s mixed strategy is measured by his expected payoff. Accord-
ingly, in our model, given the other players’strategies, each player seeks to maximize his
worst-case expected payoff. The worst-case is taken with respect to the uncertainty set,
and the expectation is taken, as in complete-information games, over the mixed strate-
gies of the players. Analogous to Harsanyi’s “Bayesian game” terminology, we call the
resulting games “robust games,” and we refer to their equilibria as “robust-optimization
equilibria” of the corresponding incomplete-information games.

In this section we will formalize our robust game model and its relation to Nash’s and
Harsanyi’s models for the complete- and incomplete-information settings, respectively.
We will also compare the notion of ex post equilibrium with the concept of robust-opti-
mization equilibrium.

Let us first define some terms and establish some notation. Suppose there are N

players and that player i ∈ {1, . . . , N} has ai > 1 possible actions.

Definition 1. A game is said to be finite if the number of players N and the number of
actions ai available to each player i ∈ {1, . . . , N} are all finite.

2 Incomplete-information games in the absence of distributional information are sometimes called “games
in informational form” [26].
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So, we will use the term “robust finite game” to refer to robust games that have finitely
many players with finitely many actions each, even when the uncertainty sets are not
finite.

In the complete-information game setting, a multi-dimensional payoff matrix P̌,
indexed over {1, . . . , N}×∏N

i=1{1, . . . , ai}, records the payoffs to the players under all
possible action profiles for the players. In particular, for i ∈ {1, . . . , N}, (j1, . . . , jN) ∈∏N

i=1{1, . . . , ai}, let P̌ i
(j1,...,jN ) denote the payoff to player i when player i′ ∈ {1, . . . , N}

plays action ji′ ∈ {1, . . . , ai′ }. Let

Sai
=

xi ∈ R

ai

∣∣∣∣∣∣
xi ≥ 0,

ai∑
ji=1

xi
ji

= 1


 .

That is, Sai
is the set of mixed strategies over action space {1, . . . , ai}. Let us define

πππ : U ×∏N
i=1 Sai

→ R
N as the vector function mapping a payoff matrix and the mixed

strategies of N players to a vector of expected payoffs to the N players. In particular,
πi

(
P; x1, . . . , xN

)
will denote the expected payoff to player i when the payoff matrix

is given by P and player i′ ∈ {1, . . . , N} plays mixed strategy xi′ ∈ Sai′ . That is,

πi

(
P; x1, . . . , xN

)
=

a1∑
j1=1

· · ·
ai∑

ji=1

· · ·
aN∑

jN=1

P i
(j1,...,jN )

N∏
i=1

xi
ji
.

Now that we have established some notation, we can formulate the best response
correspondence in our robust optimization model for games with incomplete payoff
information. We will compare this correspondence with those in Nash’s and Harsanyi’s
models for games with complete and incomplete information, respectively. In the remain-
der of the paper, we will use the following shorthands.

x−i �
(

x1, . . . , xi−1, xi+1, . . . , xN
)

(
x−i , ui

)
�
(

x1, . . . , xi−1, ui , xi+1, . . . , xN
)

S �
N∏

i=1

Sai
(3)

S−i �
N∏

i′=1
i′ �=i

Sai′ .

Every model of a game attributes some objective to each player. A player’s objective
in turn determines the set of best responses to the other players’ strategies.

Definition 2. A player’s strategy is called a best response to the other players’strategies
if, given the latter, he has no incentive to unilaterally deviate from his aforementioned
strategy.
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In the complete-information game setting, with payoff matrix P̌, the classical model
assumes that each player seeks to maximize his expected payoff. So, player i’s best
response to the other players’ strategies x−i ∈ S−i belongs, by definition, to

arg max
ui∈Sai

πi

(
P̌; x−i , ui

)
.

In games with incomplete payoff information, the payoff matrix P̃ is subject to
uncertainty. In Harsanyi’s Bayesian model, in the context of games without private
information, in which the type spaces are singletons, player i’s best response to the
other players’ strategies x−i ∈ S−i must belong to

arg max
ui∈Sai

[
E
P̃

πi

(
P̃; x−i , ui

)]
.

In our robust model, for the case without private information, player i’s best response
to the other players’ strategies x−i ∈ S−i must belong to

arg max
ui∈Sai

[
inf

P̃∈U

πi

(
P̃; x−i , ui

)]
.

Thus, in moving from Harsanyi’s Bayesian approach to our robust optimization model,
we replace the expectation in the definition of the best response correspondence with an
infimum operator.

Note that ∀i ∈ {1, . . . , N} and ∀ (x−i , ui
) ∈ S, by the linearity of πi over U and by

the linearity of the expectation operator,

E
P̃

πi

(
P̃; x−i , ui

)
= πi

(
E
P̃

[
P̃
]
; x−i , ui

)
, (4)

where E
P̃

[
P̃
]

is the component-wise expected value of P̃. Hence, in the Bayesian game

setting, the average expected payoffs and expected average payoffs are in fact equiva-
lent.3 Recall, from Harsanyi [24], that any Bayesian game with incomplete information
is equivalent to a static game with complete but imperfect information. As indicated by
Equation (4), in the absence of private information, a Bayesian game is equivalent to
a finite game with complete and perfect information, with the same action spaces and

with payoff matrix E
P̃

[
P̃
]
.

In contrast, under the robust model, the worst-case expected payoff expressed above
is no less than, and is generally strictly greater than, the expected worst-case payoff.
That is,

inf
P̃∈U

πi

(
P̃; x−i , ui

)
≥ πi

(
inf

P̃∈U

[
P̃
]
; x−i , ui

)
,

3 We use the terms “average” and “expected” in an effort to distinguish between two different types of
expectations, namely, the expectation (“average”) taken with respect to the distribution over the uncertainty
set of payoff parameter values and the expectation (“expected payoff”) taken with respect to the distributions
induced by the players’ mixed strategies.
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where inf P̃∈U
[P̃] denotes the component-wise infimum of P̃. Thus, a robust finite game

without private information is, in general, not equivalent to the complete-information,
finite game with the same action spaces and with payoff matrix commonly known to be
inf P̃∈U

[P̃]. We will see in Section 5 that this equivalence does, however, hold for certain
classes of robust games.4

We are now ready to apply the concept of equilibrium to robust finite games.

Definition 3. A tuple of strategies is said to be an equilibrium if each player’s strategy
is a best response to the other players’ strategies.

Accordingly, the criterion for an equilibrium is completely determined by the best
response correspondence, which in turn is completely determined by the players’ objec-
tives. For example, in the complete-information game setting,

(
x1, . . . , xN

) ∈ S is said
to be a Nash equilibrium iff, ∀i ∈ {1, . . . , N},

xi ∈ arg max
ui∈Sai

πi

(
P̌; x−i , ui

)
. (5)

Similarly, under Harsanyi’s model for finite games with incomplete payoff information
and with no private information,

(
x1, . . . , xN

) ∈ S is said to be an equilibrium iff,
∀i ∈ {1, . . . , N},

xi ∈ arg max
ui∈Sai

[
E
P̃

πi

(
P̃; x−i , ui

)]
. (6)

Finally, under our robust model for finite games with incomplete payoff information and
with no private information,

(
x1, . . . , xN

) ∈ S is said to be an equilibrium, i.e., a robust-
optimization equilibrium of the corresponding game with incomplete information, iff,
∀i ∈ {1, . . . , N},

xi ∈ arg max
ui∈Sai

[
inf

P̃∈U

πi

(
P̃; x−i , ui

)]
. (7)

Let us contrast the equilibrium concepts arising from Harsanyi’s Bayesian game
model and our robust game model with the notion of the ex post equilibrium, defined as
follows.

4 One could model each player as wishing to maximize his expected worst-case payoff, rather than, as
we have done, his worst-case expected payoff. We chose the latter over the former for two reasons. First, the
former model is not, while the latter model is, in the spirit of robust optimization, in which we seek to optimize
a worst-case version of the nominal objective, i.e., the expected payoff. Second, while a robust approach is by
its nature pessimistic, the former model is even more, and perhaps excessively, pessimistic. In it, each player
assumes that the uncertain data realization will be maximally hostile with respect to the action outcomes of the
randomizations yielded by all the players’ mixed strategies. In contrast, in the robust model we propose, the
maximal hostility is assumed by the players to be with respect to the mixed strategy probability distributions
themselves; i.e., the “adversary” does not have the benefit of seeing the action outcomes of the randomizations,
before he is forced to choose values of the uncertain data.

If one nonetheless opts, despite these drawbacks, to model each player as seeking to maximize his expected
worst-case payoff, rather than his worst-case expected payoff, the game with incomplete information will be
equivalent to one with complete information and with payoff matrix inf P̃∈U

[P̃]. Accordingly, the existence and
computation results that we will present in this paper for the robust model follow trivially for this excessively
pessimistic model.
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Definition 4. A tuple of strategies is said to be an ex post equilibrium if each player’s
strategy is a best response to the other players’strategies, under all possible realizations
of the uncertain data.

More precisely, in the absence of private information,
(
x1, . . . , xN

) ∈ S is said to be an
ex post equilibrium iff, ∀i ∈ {1, . . . , N},

xi ∈ arg max
ui∈Sai

πi

(
P̃; x−i , ui

)
, ∀P̃ ∈ U. (8)

By definition, an ex post equilibrium must be an equilibrium of every nominal game
in the family of nominal games arising from U . This condition is quite strong. In fact, it
is easy to prove the well-known result that every ex post equilibrium of an incomplete-
information game is an equilibrium of any corresponding Bayesian game arising from
the assignment of a distribution over the set U . Similarly, we have the following lemma,
establishing an analogous result for the set of robust-optimization equilibria.

Lemma 1. Any ex post equilibrium of an incomplete-information game, without private
information, is a robust-optimization equilibrium of the game.

Proof. Suppose
(
x1, . . . , xN

) ∈ S is an ex post equilibrium of the game with incomplete
information and uncertainty set U . Suppose, ∃i ∈ {1, . . . , N} and ∃ui ∈ Sai

, such that

inf
P̃∈U

πi

(
P̃; x−i , xi

)
< inf

P̃∈U

πi

(
P̃; x−i , ui

)
.

By the definition of ex post equilibrium,

πi

(
P̃; x−i , ui

)
≤ πi

(
P̃; x−i , xi

)
, ∀P̃ ∈ U,

yielding a contradiction of the fact that inf P̃∈U
πi

(
P̃; x−i , xi

)
is the greatest lower

bound on πi

(
P̃; x−i , xi

)
over P̃ ∈ U . Therefore, ∀i ∈ {1, . . . , N}, and ∀ui ∈ Sai

,

inf
P̃∈U

πi

(
P̃; x−i , xi

)
≥ inf

P̃∈U

πi

(
P̃; x−i , ui

)
,

establishing that
(
x1, . . . , xN

) ∈ S is an equilibrium of the corresponding robust
game. 	


In Section 3.5, we will illustrate, with examples, our robust optimization model for
games with incomplete information. Using one of these examples, in Section 3.6, we will
demonstrate that, in general, ex post equilibria do not exist in incomplete-information
games. Before giving these examples, we wish to address two questions that the reader
may have regarding our approach. In Section 3.3, we will discuss why, in the context of
distribution-free, incomplete-information games, it is reasonable, and in fact natural, to
combine the notion of equilibrium with a worst-case viewpoint. In Section 3.4, we will
discuss our motivation for considering mixed strategies.
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3.3. Why combine equilibrium and worst-case notions?

Recall that, with the exception of two-person, zero-sum games with complete informa-
tion, mixed strategy equilibria do not generally consist of max-min strategies. That is, a
player’s strategy in a mixed-strategy equilibrium is not generally the one guaranteeing
him the best possible expected payoff when his counterparts collude to minimize this
quantity. The reason is that a player’s counterparts generally have incentive to deviate
from such collusive behavior, in order to try to individually maximize their own pay-
offs. In turn, the player himself therefore generally has incentive to deviate from the
aforementioned max-min strategy.

In contrast, the robust optimization paradigm is fundamentally such a max-min, or
a worst-case, approach. In our robust games model, given his counterparts’ strategies,
each player formulates a best response as the solution of a robust optimization problem.
Based on the discussion in the preceding paragraph, one may worry that, by analogy, best
responses based on robust optimization are not conducive to equilibrium. This analogy
fails, and this worry is therefore unfounded, for the following reason. In our model, a
player’s counterparts are outside the scope of that player’s pessimistic viewpoint. In par-
ticular, each player takes a worst-case view only of the uncertain parameters that define
his payoff function, under a given tuple of his counterparts’ strategies. Each player does
not take a worst-case approach to his uncertainty with respect to this tuple itself, as is
done in classical max-min strategies. Indeed, “nature,” rather than any of the players
themselves, selects these unknown payoff parameter values. Accordingly, in order for
the analogy to hold, nature must be a participant, on the same footing as the other players,
in the game. However, nature receives no payoff in the game, and therefore cannot be
characterized as a player itself.

Thus, it is indeed reasonable to combine, as we have done, the notion of equilibrium
with the robust optimization paradigm. Let us now explain why this union is in fact natu-
ral, in the context of incomplete-information games. If the players commonly know that
they all take a robust optimization approach to the payoff uncertainty, then they would all
commonly know each others’ best response correspondences. Armed with this common
knowledge, the players could then attempt to mutually predict each other’s behavior,
just as they could in a complete-information game, as discussed in Section 1.1. Recall
from this discussion that the set of Nash equilibria are the set of consistent such mutual
predictions in a finite, complete-information game.Analogously, the set of equilibria of a
robust finite game are the set of consistent such mutual predictions in the corresponding
finite, distribution-free, incomplete-information game. As such, our notion of equilib-
rium in a robust game offers a natural approach to attempting to predict the outcomes
of such incomplete-information games.

3.4. Interpretation of mixed strategies

We will now explain our motivation for considering mixed strategies, and we will relate
this discussion to interpretations of mixed strategies in the context of complete-infor-
mation games (see, for example, Chapter 3 of Osborne and Rubinstein [41]). In the
case of finite games with complete information, some game theorists support the literal
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interpretation of mixed strategies as actual randomizations by the players over their
action spaces. Others are dissatisfied with this viewpoint. The latter group note the fol-
lowing property of mixed strategy equilibria, in finite, complete-information games. In
response to his counterparts’ behaviors in any such equilibrium, each player’s mixed
strategy does as well, but no better than the actions contained in its support. The oppo-
nents of the literal interpretation therefore argue that this lack of strict preference for
randomization undermines the belief that players randomize in reality.

In the case of robust finite games, this argument against the literal interpretation
does not hold. In particular, because of the infimum in the worst-case expected payoff
function, this function is nonlinear. Consequently, for any mixed strategy equilibrium in
such a game, in response to his counterparts’ behavior in this equilibrium, each player
will, in general, strictly prefer his mixed strategy over the actions in its support. Accord-
ingly, one may argue that the literal viewpoint of mixed strategies is more justified in
the context of robust games than it is in the context of complete-information games.

One may nonetheless remain dissatisfied with this belief that players randomize in
real-world, game-theoretic settings, even those involving payoff uncertainty. Let us then
consider an alternative interpretation of mixed strategies. In the literature on finite, com-
plete-information games, some have advocated the viewpoint of mixed strategy equilibria
as limiting, empirical frequencies of actions played, when the game is repeated.

The same empirical frequency interpretation extends to robust finite games. Imag-
ine that the players engage concurrently in many instances of the same game, with the
same, unknown payoff matrix P̃. Suppose the players know that P̃ is constant across all
instances, but are uncertain of its true value. As before, suppose each player knows only
an uncertainty set to which P̃ belongs, has no distributional information with respect
to this set, and takes a worst-case approach to this uncertainty. Lastly, suppose that, in
each instance of the game, each agent may play a different action. Each player thus
builds, in essence, a “portfolio” of actions. The payoff from each action in the portfolio
is determined by the other players’ actions in the corresponding instance of the game
and by the single unknown value of P̃. Accordingly, we may view the mixed strategy
equilibria as the limiting, empirical frequencies describing each player’s level of diver-
sification within his portfolio of actions. Note that this portfolio interpretation can be
recast in terms of sequentially repeated games, in which the players know that the uncer-
tain payoff matrix is constant over all rounds, and in which they do not receive their
payoffs until the final round is played. That is, the players do not know, until at least
after play has terminated, the true value of P̃.

3.5. Examples of robust finite games

Having presented our robust games model and addressed some interpretation issues, we
will now illustrate our approach with a few examples.

Example 1. Robust Inspection Game

Consider the classical inspection game discussed in [20]. The row player, the em-
ployee, can either shirk or work (actions 1 and 2, respectively). The column player, his
employer, can either inspect or not inspect (actions 1 and 2, respectively). The purpose of
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inspecting is to learn whether the employee is working. The two players simultaneously
select their actions. When the employee works, he suffers an opportunity cost g̃, and his
employer enjoys a value of work output of ṽ. When the employer inspects, she suffers
an opportunity cost of h̃. If she inspects and finds the employee shirking, she need not
pay him his wage w. Otherwise, she must pay him w. In the nominal version of the
game, ṽ, w, g̃, and h̃ are commonly known with certainty by the players. In practice, it
seems reasonable that the opportunity costs and the value of work output (e.g., subject
to unpredictable defects) would be subject to uncertainty. To this end, suppose that ṽ, g̃,
and h̃ are subject to independent uncertainty, the nature of which is common knowledge
between the two players. For example, we may consider the robust game in which the
payoff uncertainty set is given by

U =
{(

(0,−h̃) (w,−w)

(w−g̃, ṽ−w−h̃) (w − g̃, ṽ − w)

)∣∣∣∣
(
g̃, ṽ, h̃

)
∈ [g, g] × [v, v] × [h, h]

}
.

Example 2. Robust Free-Rider Problem

Consider the symmetric version of the classical, 2-player, free-rider problem dis-
cussed in [20]. Each player must make a binary decision of whether or not (actions 1 and
2, respectively) to contribute to the construction of a public good. The players make their
decisions simultaneously. If a player contributes, the player incurs some cost c̃, which is
subject to minor uncertainty (e.g., because projected costs are rarely accurate), in a way
that is common knowledge to the two players. If the public good is built, each player
enjoys a payoff of 1. The good will not be built unless at least one player contributes.
So, we may consider the resulting robust game with payoff uncertainty set

U =
{(

(1 − c̃, 1 − c̃) (1 − c̃, 1)

(1, 1 − c̃) (0, 0)

) ∣∣∣∣ c̃ ∈ [č − �, č + �]

}
,

for some fixed � > 0.

Example 3. Robust Network Routing

Network routing games, formulated as early as 1952 by Wardrop [54], have become
an increasingly popular topic in the game theory literature. Within the last five years,
Papadimitriou [42] and others have studied the so-called “price of anarchy,” or the ratio
of total payoffs at equilibrium to those at Pareto optimality.

Consider a network routing game, in which N internet service providers must each
contract for the use of a single “path” in a network of a paths (e.g., servers, wiring, etc.).
The providers must make these arrangements simultaneously and prior to knowing the
demand to be faced (i.e., the amount of data their customers will want to route). So,
each provider’s action space is the set of paths in the network. Suppose edge latencies
in the network are linear and additive, and that the payoff to provider i when he uses
path ji is given by the negative of total latency experienced on edge ji . That is, higher
latencies yield lower payoffs. Specifically, we can express the uncertain payoff matrix
P̃ as a function, P, of the uncertain demands to be faced. Let d̃i denote the uncertain
demand to be faced by provider i. ∀i ∈ {1, . . . , N}, ∀(j1, . . . , jN) ∈ {1, . . . , a}N , let

P i
(j1,...,jN )

(
d̃1, . . . , d̃N

)
= −

∑
{i′ | ji′=ji }

λ(i′,ji′)d̃i′ ,
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where λ(i,ji ) are nonnegative coefficients that account for the fact that the marginal laten-
cies may differ by provider and path. The demand uncertainty may arise from the fact
that the providers commonly know the total demand D to be faced by all of them, but do
not know how this demand will be distributed among them (e.g., uncertainty of projected
subscribership for a future year). For example, the uncertainty set may be given by

U =
{

P
(
d̃1, . . . , d̃N

) ∣∣∣∣∣
N∑

i=1

d̃i = D, d̃i ≥ di, i = 1, . . . , N

}
,

where

D >

N∑
i=1

di

di > 0, i = 1, . . . , N,

are commonly known by the players.

3.6. Nonexistence of ex post equilibria

We will now use the incomplete-information inspection game presented in Example 1 to
illustrate that not all incomplete-information games have an ex post equilibrium. Each

possible realization of
(
g̃, ṽ, h̃

)
∈ [g, g] × [v, v] × [h, h] gives rise to a nominal game,

i.e., a game with complete information. It is easy to show that each such game has a
unique equilibrium in which the employee shirks (action 1) with probability h̃/w and
the employer inspects (action 1) with probability g̃/w. So, unless g = g and h = h, this
incomplete-information game has no ex post equilibria.

Accordingly, the ex post equilibrium concept cannot be applied to all games with
incomplete information, because such equilibria need not exist. In contrast, in the next
section, we will prove that any robust finite game with bounded uncertainty set has an
equilibrium. In this way, robust games offer an alternative distribution-free notion of
equilibrium, whose existence is guaranteed.

4. Existence of equilibria in robust finite games

Having formalized and given examples illustrating our robust optimization model of
games with incomplete payoff information, let us now establish the existence of equi-
libria in the resulting robust games, when these games are finite and have bounded
uncertainty sets. Our proof of existence directly uses Kakutani’s Fixed Point Theorem
[28] and parallels Nash’s first existence proof in [39]. As already mentioned, we focus
in this section on incomplete-information games not involving private information. In
Section 7, we extend our existence result to the general case involving potentially private
information.

To begin, let us state Kakutani’s theorem and a relevant definition. Kakutani’s defi-
nition of upper semi-continuity relates to mappings from a closed, bounded, convex set
S in a Euclidean space into the family of all closed, convex subsets of S. 2S will denote
the power set of S.
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Definition 5 (Kakutani [28]). A point-to-set mapping � : S → 2S is called upper
semi-continuous if

yn ∈ �(xn), n = 1, 2, 3, . . .

lim
n→∞ xn = x

lim
n→∞ yn = y

imply that y ∈ �(x). In other words, the graph of �(x) must be closed.

Theorem 1 (Kakutani’s Fixed Point Theorem [28]). If S is a closed, bounded, and con-
vex set in a Euclidean space, and � is an upper semi-continuous point-to-set mapping
of S into the family of closed, convex subsets of S, then ∃x ∈ S s.t. x ∈ �(x).

To use Kakutani’s Fixed Point Theorem, we must first establish some properties of
the worst-case expected payoff functions, given by

ρi

(
x1, . . . , xN

)
� inf

P̃∈U

πi

(
P̃; x1, . . . , xN

)
, (9)

i ∈ {1, . . . , N}. In an N -person, robust finite game, let U ⊆ R
N
∏N

i=1 ai be the uncertainty
set of possible payoff matrices P̃.

Lemma 2. Let U ⊆ R
N
∏N

i=1 ai be bounded. Then, ∀ (x1, . . . , xN
) ∈ R

a1+···+aN and

∀ε > 0, ∃δ
(
ε, x1, . . . , xN

)
> 0 such that, ∀P̃ ∈ U and ∀i ∈ {1, . . . , N},

∥∥∥
(

y1, . . . , yN
)

−
(

x1, . . . , xN
)∥∥∥∞

< δ
(
ε, x1, . . . , xN

)

implies
∣∣∣πi

(
P̃; y1, . . . , yN

)
− πi

(
P̃; x1, . . . , xN

)∣∣∣ < ε.

Proof. ∀ (x1, . . . , xN
) ∈ R

a1+···+aN , and ∀ε > 0, consider δ
(
ε, x1, . . . , xN

)
given by

δ
(
ε, x1, . . . , xN

)
= min{ε, 1}

2
(
2N − 1

)
M ·

N∏
i=1

(
ai max

{
max

ji∈{1,...,ai }

∣∣∣xi
ji

∣∣∣ , 1

}) ,

where 1 < M < ∞ satisfies

∣∣∣P̃ i
(j1,...,jN )

∣∣∣ ≤ M, ∀i ∈ {1, . . . , N}, ∀(j1, . . . , jN) ∈
N∏

i=1

{1, . . . , ai}, ∀P̃ ∈ U.

The result follows from algebraic manipulation. 	

Lemma 2 immediately gives rise to the following continuity result, which we there-

fore state without proof.

Lemma 3. Let U ⊆ R
N
∏N

i=1 ai be bounded. Then, ∀i ∈ {1, . . . , N}, ρi

(
x1, . . . , xN

)
is

continuous on R
a1+···+aN .

Similarly, it is trivial to prove the following lemma.
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Lemma 4. ∀i ∈ {1, . . . , N} and ∀x−i ∈ S−i fixed, ρi

(
x−i , xi

)
is concave in xi .

We are now ready to prove the existence of equilibria in robust finite games with
bounded uncertainty sets.

Theorem 2 (Existence of Equilibria in Robust Finite Games). Any N -person, non-
cooperative, simultaneous-move, one-shot robust game, in which N < ∞, in which
player i ∈ {1, . . . , N} has 1 < ai < ∞ possible actions, in which the uncertainty set of

payoff matrices U ⊆ R
N
∏N

i=1 ai is bounded, and in which there is no private information,
has an equilibrium.

Proof. We will proceed by constructing a point-to-set mapping that satisfies the condi-
tions of Kakutani’s Fixed Point Theorem [28], and whose fixed points are precisely the
equilibria of the robust game. To begin, clearly, S is closed, bounded, and convex, since
Sai

is, ∀i ∈ {1, . . . , N}. Define � : S → 2S as

�
(

x1, . . . , xN
)

=
{(

y1, . . . , yN
)

∈ S

∣∣∣∣∣ yi ∈ arg max
ui∈Sai

ρi

(
x−i , ui

)
, i = 1, . . . , N

}
. (10)

Let us show that �
(
x1, . . . , xN

) �= ∅, ∀ (x1, . . . , xN
) ∈ S. By Lemma 3, ∀i, ∀x−i ∈ S−i

fixed, ρi

(
x1, . . . , xN

)
is continuous on Sai

, a nonempty, closed, and bounded subset of
R

ai . Thus, by Weierstrass’ Theorem,

arg max
ui∈Sai

ρi

(
x−i , ui

)
�= ∅.

Accordingly, ∀ (x1, . . . , xN
) ∈ S,

�
(

x1, . . . , xN
)

�= ∅.

It is obvious from the definition of �, that ∀ (x1, . . . , xN
) ∈ S, �

(
x1, . . . , xN

) ⊆ S,
and that

(
x1, . . . , xN

)
is an equilibrium of the robust game iff it is a fixed point of �.

Thus, we need only prove the existence of a fixed point of �. Let us therefore establish
that � satisfies the remaining conditions of Kakutani’s Fixed Point Theorem; that is,
we must show that � maps S into a family of closed, convex sets, and that � is upper
semi-continuous.

Let us first prove that, ∀ (x1, . . . , xN
) ∈ S, �

(
x1, . . . , xN

)
is a convex set. Suppose

(
u1, . . . , uN

)
,
(

v1, . . . , vN
)

∈ �
(

x1, . . . , xN
)

.

Then, by the definition of �, ∀i ∈ {1, . . . , N}, ∀yi ∈ Sai
,

ρi

(
x−i , ui

)
= ρi

(
x−i , vi

)
≥ ρi

(
x−i , yi

)
.
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It follows that, ∀λ ∈ [0, 1], ∀yi ∈ Sai
,

λρi

(
x−i , ui

)
+ (1 − λ)ρi

(
x−i , vi

)
≥ ρi

(
x−i , yi

)
.

By the concavity result of Lemma 4,

λ
(

u1, . . . , uN
)

+ (1 − λ)
(

v1, . . . , vN
)

∈ �
(

x1, . . . , xN
)

.

Let us now show that � is upper semi-continuous, per Kakutani’s definition. Suppose
that, for n = 1, 2, 3, . . . ,

(
x1,n, . . . , xN,n

)
∈ S

(
y1,n, . . . , yN,n

)
∈ �

(
x1,n, . . . , xN,n

)

lim
n→∞

(
x1,n, . . . , xN,n

)
=
(

u1, . . . , uN
)

∈ S

lim
n→∞

(
y1,n, . . . , yN,n

)
=
(

v1, . . . , vN
)

∈ S.

By the definition of �, we know that, ∀n = 1, 2, 3, . . . , ∀i ∈ {1, . . . , N} and ∀wi ∈ Sai
,

ρi

(
x−i,n, yi,n

)
≥ ρi

(
x−i,n, wi

)
.

Taking the limit of both sides, and using Lemma 3 (continuity of ρi), we obtain that,
∀i ∈ {1, . . . , N} and ∀wi ∈ Sai

,

ρi

(
u−i , vi

)
≥ ρi

(
u−i , wi

)
.

Hence,
(

v1, . . . , vN
)

∈ �
(

u1, . . . , uN
)

,

and � is upper semi-continuous. Note that the fact that �
(
x1, . . . , xN

)
is closed follows

from the fact that � is upper semi-continuous (take
(
x1,n, . . . , xN,n

) = (
u1, . . . , uN

) =(
x1, . . . , xN

)
, ∀n = 1, 2, 3, . . . ).

This completes the proof that � satisfies the conditions of Kakutani’s Fixed Point
Theorem, and thereby establishes the existence of an equilibrium in the robust game. 	


5. Computing sample equilibria of robust finite games

In Section 4, we established the existence of robust-optimization equilibria in any finite,
incomplete-information game with bounded uncertainty set and no private information.
In this section, for any resulting robust game with bounded polyhedral uncertainty set,
we show that the set of equilibria is a projection of the set of solutions to a system of
multilinear equalities and inequalities. This projection is a simple component-wise one,
into a space of lower dimension. Based on this formulation, we present an approximate



250 M. Aghassi, D. Bertsimas

computation method for finding a sample equilibrium of such a robust game. We pro-
vide numerical results from the application of our method. Finally, we describe a class of
robust finite games whose set of equilibria are precisely the set of equilibria in a related
complete-information, finite game in the same action spaces. As noted before, in this
section, we focus on robust games not involving private information. In Section 7, we
provide a more general result on the computation of robust-optimization equilibria in
games with private information.

5.1. Review for complete-information, finite games

Before describing our technique for finding robust-optimization equilibria, let us review
the state of the art for complete-information, finite games.

Solving for an equilibrium of a general complete-information, finite game is regarded
as a difficult task [42]. Two-person, zero-sum games are the exception. As noted in von
Stengel [53], in any such game, the set of Nash equilibria is precisely the set of maximin-
imizers, as defined by von Neumann and Morgenstern [52]. Accordingly, the equilibria
are pairs of solutions of two separate LPs, one for each player, and the set of equilibria
is therefore convex. For non-fixed-sum games, solving for Nash equilibria is more com-
putationally demanding, and the set of equilibria is generally nonconvex. As discussed
in McKelvey and McLennan [35], the set of Nash equilibria can be cast as the solution
set of several well-known problems in the optimization literature: fixed point problems,
nonlinear complementarity problems (linear in the case of two-player games), station-
ary point problems, systems of multilinear equalities and inequalities, and unconstrained
penalty function minimization problems, in which a penalty is incurred for violations of
the multilinear constraints.

Algorithms for finding sample Nash equilibria exploit special properties of these
formulations. Traditionally, the favored algorithm for two-player, non-fixed-sum, finite
games with complete information has been the Lemke-Howson path-following algorithm
[31] for linear complementarity problems. For this more general class of problems, the
algorithm’s worst-case runtime is exponential. The worst-case runtime in the specific
application context of two-person games is unknown. For N -player complete-informa-
tion, finite games with N > 2, the traditionally favored algorithms have been different
versions of path-following methods based on Scarf’s simplicial subdivision approach
[44, 45] to computing fixed points of a continuous function on a compact set. These sim-
plicial subdivision algorithms include that of van der Laan and Talman [49, 50], and their
worst-case runtimes are also exponential. The Lemke-Howson and simplicial subdivi-
sion algorithms form the backbone of the well-known game theory software Gambit [36].

More recent approaches to solving for sample Nash equilibria have exploited the
multilinear system formulation, and have applied general root-finding methods to the
complementarity conditions that arise from this system. For an overview of the formu-
lation, we refer the reader to Chapter 6 of [48]. For a comparison of these Gröbner basis
and homotopy continuation methods of computation with the more traditional Gam-
bit software, we refer the reader to Datta [13]. Govindan’s and Wilson’s [23] global
Newton method similarly uses the multilinear system formulation. Finally, Porter, Nud-
elman, and Shoham [43] offer a potential shortcut, which exploits the fact that, for
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complete-information games, it is easier to solve for a Nash equilibrium with a fixed
support, and that smaller supports yield lower runtimes.

These more recent numerical techniques are more powerful in terms of their apti-
tudes at computing all equilibria of a complete-information, finite game, a more difficult
task than computing a single, sample equilibrium. For example, PHCpack [51] can find
all isolated roots of a system of polynomials.

5.2. Robust finite games

5.2.1. Multilinear system formulation for equilibria In this subsection, we show that
the set of equilibria of a robust finite game, with bounded polyhedral uncertainty set and
no private information, is the projection of the solution set of a system of multilinear
equalities and inequalities. The projection is a simple component-wise projection into a
space of lower dimension.

As a basis of comparison, for an N -player, complete-information, finite game, in
which player i has action space {1, . . . , ai}, and in which the payoff matrix is P̌, let us
formulate the multilinear system whose solutions are the set of Nash equilibria. From
Condition (5), we see that

(
x1, . . . , xN

)
is a Nash equilibrium iff it satisfies the following

system.

πi

(
P̌; x−i , xi − ei

ji

)
≥ 0, i = 1, . . . , N; ji = 1, . . . , ai

e′xi = 1, i = 1, . . . , N

xi ≥ 0, i = 1, . . . , N,

where e is the vector, of appropriate dimension, of all ones, and where ei
ji

denotes the

j th
i unit vector in R

ai .
Analogously, from Condition (7),

(
x1, . . . , xN

)
is an equilibrium of the robust finite

game with closed and bounded uncertainty set U ⊆ R
N
∏N

i=1 ai , and with no private
information, iff

min
P̃∈U

πi

(
P̃; x−i , xi

)
− max

ui∈Sai

min
P̃∈U

πi

(
P̃; x−i , ui

)
≥ 0, i = 1, . . . , N

e′xi = 1, i = 1, . . . , N

xi ≥ 0, i = 1, . . . , N.

Stated in another way,
(
x1, . . . , xN

)
is an equilibrium of the robust finite game iff, for

each i ∈ {1, . . . , N}, xi is a max-min strategy in a two-person, zero-sum game between
player i and an adversary. In this two-person, zero-sum game, the payoff matrix is
determined by x−i , and the adversary’s strategy space is U .

Although the above system may not seem amenable to reformulation as a system
of multilinear equalities and inequalities, we establish in Theorem 3 that, when U is a
bounded polyhedron, the system can, in fact, be reformulated in this way. Before stating
and proving this theorem, let us state and prove the following lemma, inspired by the
LP duality proof techniques used in [7].
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Lemma 5. Let U ⊆ R
N
∏N

i=1 ai be a bounded polyhedral set, given by

U =
{

P̃
∣∣∣ F · vec

(
P̃
)

≥ d
}

�= ∅, (11)

where

vec (P) �
(
P i

(j1,...,jN )

)
i=1,...,N; (j1,...,jN )∈∏N

i=1{1,...,ai }
.

Let G(�), � ∈ {1, . . . , k}, denote the extreme points of U . ∀i, ∀ (x−i , ui
) ∈ S, the

following three conditions are equivalent.

Condition 1) zi ≤ min
P̃∈U

πi

(
P̃; x−i , ui

)

Condition 2) zi ≤ πi

(
G(�); x−i , ui

)
, � = 1, . . . , k.

Condition 3) ∃ηηηi ∈ R
m such that

d′ηηηi ≥ zi

F′ηηηi = Yi
(

x−i
)

ui

ηηηi ≥ 0,

where Yi
(
x−i

) ∈ R

(
N
∏N

i=1 ai

)
×ai denotes the matrix such that

vec (P)′ Yi
(

x−i
)

ui = πi

(
P; x−i , ui

)
. (12)

Proof. Conditions 1 and 2 are equivalent, since by the linearity of πi in P̃,

min
P̃∈U

πi

(
P̃; x−i , ui

)
= min

�∈{1,...,k}
πi

(
G(�); x−i , ui

)
.

To prove the equivalence of Conditions 1 and 3, consider the following primal-dual
pair, in which

(
x−i , ui

)
is treated as data.

min
vec(P)

vec (P)′ Yi
(

x−i
)

ui (13)

s.t. F · vec (P) ≥ d

max
ηηηi

d′ηηηi (14)

s.t. F′ηηηi = Yi
(

x−i
)

ui

ηηηi ≥ 0.

Since U �= ∅, Problem (13) is feasible. Suppose
(
x−i , ui

)
satisfies Condition 1. Then,

Problem (13) is also bounded. By strong duality, Problem (14) is feasible and bounded
with optimal value equal to that of Problem (13). Thus, Condition 3 is satisfied. For
the other direction, suppose Condition 3 is satisfied. Then, Problem (14) is feasible. By
weak duality, Condition 1 must hold. 	
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Theorem 3 (Computation of Equilibria in Robust Finite Games). Consider theN -player
robust game, in which player i ∈ {1, . . . , N} has action set {1, . . . , ai}, 1 < ai < ∞,

in which the payoff uncertainty set U ⊆ R
N
∏N

i=1 ai is polyhedral, bounded, and given
by (11), and in which there is no private information. Let G(�), � ∈ {1, . . . , k}, denote
the extreme points of U . The following three conditions are equivalent.

Condition 1)
(
x1, . . . , xN

)
is an equilibrium of the robust game.

Condition 2) For all i ∈ {1, . . . , N}, there exists zi ∈ R, θθθi ∈ R
k , φi ∈ R such that(

x1, . . . , xN, zi, θθθ
i, φi

)
satisfies

zi = φi

zi − πi

(
G(�); x1, . . . , xN

)
≤ 0, � = 1, . . . , k

e′xi = 1

xi ≥ 0 (15)

e′θθθi = 1
k∑

�=1

θi
�πi

(
G(�); x−i , ei

ji

)
− φi ≤ 0, ji = 1, . . . , ai

θθθ i ≥ 0,

where e is the vector, of appropriate dimension, of all ones, and where ei
ji

is the j th
i

unit vector in R
ai .

Condition 3) For all i ∈ {1, . . . , N}, there exists ηηηi ∈ R
m and ξξξ i ∈ R

N
∏N

i=1 ai such
that

(
x1, . . . , xN,ηηηi, ξξξ i

)
satisfies

(
ξξξ i
)′

Yi
(

x−i
)

ei
ji

≤ d′ηηηi, ji = 1, . . . , ai

F′ηηηi − Yi
(

x−i
)

xi = 0

e′xi = 1 (16)

xi ≥ 0

ηηηi ≥ 0

Fξξξ i ≥ d,

where Yi
(
x−i

) ∈ R

(
N
∏N

i=1 ai

)
×ai is as defined in (12).

Proof. Since U is closed and bounded, Condition 1 is equivalent, by Relation (7), to

(
x1, . . . , xN

)
∈ S

xi ∈ arg max
ui∈Sai

[
min
P̃∈U

πi

(
P̃; x−i , ui

)]
, i = 1, . . . , N.
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In turn, these constraints are equivalent to the requirement that, ∀i ∈ {1, . . . , N}, ∃zi ∈ R

such that
(
xi , zi

)
is a maximizer of the following robust LP.

max
ui ,zi

zi

s.t. zi ≤ min
P̃∈U

πi

(
P̃; x−i , ui

)
(17)

e′ui = 1

ui ≥ 0.

In this robust LP, x−i is regarded as given data, and e denotes the vector, of appropriate
dimension, of all ones.

Suppose Condition 1 is satisfied. Then, by Lemma 5, ∃zi ∈ R and ηηηi ∈ R
m such

that
(
xi , zi

)
is a maximizer of

max
ui ,zi

zi

s.t. zi ≤ πi

(
G(�); x−i , ui

)
, � = 1, . . . , k (18)

e′ui = 1

ui ≥ 0,

whose dual is

min
θθθi ,φi

φi

s.t. e′θθθi = 1 (19)
k∑

�=1

θi
�πi

(
G(�); x−i , ei

ji

)
− φi ≤ 0, ji = 1, . . . , ai

θθθ i ≥ 0,

and such that
(
xi , ηηηi, zi

)
is a maximizer of

max
ui ,ηηηi ,zi

zi

s.t. zi − d′ηηηi ≤ 0

F′ηηηi − Yi
(

x−i
)

ui = 0 (20)

e′ui = 1
ui ≥ 0
ηηηi ≥ 0,

whose dual is

min
ξξξ i ,νi

νi

s.t. Fξξξ i ≥ d (21)

νi ≥
(
ξξξ i
)′

Yi
(

x−i
)

ei
ji
, ji = 1, . . . , ai .
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Conditions 2 and 3 follow from LP strong duality.
For the reverse direction, suppose that Condition 2 holds.Then, for all i ∈ {1, . . . , N},

and for x−i ,
(
xi , zi

)
is a feasible solution of (18), and

(
θθθi, φi

)
is a feasible solution of (19),

such that zi = φi . By LP weak duality,
(
xi , zi

)
is an optimizer of (18). Equivalently, by

Lemma 5,
(
xi , zi

)
is an optimizer of (17), and Condition 1 follows.

Similarly, suppose that Condition 3 holds. ∀i ∈ {1, . . . , N}, let

zi = d′ηηηi

νi = max
ji∈{1,...,ai }

(
ξξξ i
)′

Yi
(

x−i
)

ei
ji
.

Then, for x−i ,
(
xi , ηηηi, zi

)
is a feasible solution of (20) and

(
ξξξ i, νi

)
is a feasible solu-

tion of (21) such that zi ≥ νi . By LP weak duality,
(
xi , ηηηi, zi

)
is an optimizer of (20).

Equivalently, by Lemma 5,
(
xi , zi

)
is an optimizer of (17), and Condition 1 follows. 	


Remark. Note that Systems (15) and (16) are derived using the extreme-point and con-
straint representations of the polyhedral set U , respectively. These systems are very
sparse as a result of their multilinearity. In addition, it is possible to formulate Sys-
tem (16) more compactly if U can be described by m constraints and only v variables,
with v < N

∏N
i=1 ai . Let atot = ∑N

i=1 ai , v and m be the number of variables and
constraints, respectively, needed to define U , and k be the number of extreme points of
U . Table 1 summarizes the sizes of the different multilinear systems of equalities and
inequalities whose solution sets are precisely the set of equilibria of an N -player game
in which player i ∈ {1, . . . , N} has action space {1, . . . , ai}.

5.2.2. Computation method For robust finite games with bounded polyhedral uncer-
tainty sets and no private information, we showed in Section 5.2.1 that the set of equilibria
is a projection of the solution set of a system of multilinear equalities and inequalities.
This projection is a simple component-wise projection into a space of lower dimension.
Currently available and computationally effective solvers for large polynomial systems
tend to be specific to systems of equations and not inequalities. Accordingly, we pro-
pose to solve the multilinear systems for the robust-optimization equilibria by converting
any such system into a corresponding penalty function, and then solving the resulting
unconstrained minimization problem. The penalty method we use is based on Courant’s
quadratic loss technique [11], which Fiacco and McCormick later more fully developed
in [18].

To more concretely describe our approach, consider any system

gn(y) = 0, n ∈ E

gn(y) ≤ 0, n ∈ I,
(22)

Table 1. Sizes of multilinear systems for equilibria

Robust game Robust game
using constraints using extreme points Complete-info game

Variables atot + N(m + v) atot + N(k + 2) atot
Constraints 2atot + N(2m + v + 1) 2atot + N(2k + 3) 2atot + N

Maximum degree N N N
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with y ∈ R
V , |I | < ∞, and |E| < ∞. Let

h(y) = 1

2

∑
n∈E

[
gn(y)

]2 + 1

2

∑
n∈I

[
max {gn(y), 0}]2 .

Since h(y) ≥ 0, ∀y ∈ R
V , it is easy to see that y satisfies System (22) iff

h(y) = min
u∈RV

h(u) = 0.

So, we can solve System (22) by solving the unconstrained minimization problem

min
u∈RV

h(u).

For the unconstrained minimization problem, we propose the use of a pseudo-New-
ton method using the Armijo rule (see, for example, [4]) for determining step size at
each iteration. Each pseudo-Newton method run attempts to find a single point satis-
fying the constraints. It is possible, though not guaranteed, that, when the system of
constraints has more than one solution, multiple pseudo-Newton method runs may iden-
tify multiple, distinct approximate solutions of the system. Furthermore, in contrast to
most other state-of-the-art polynomial system solvers, this method is capable of finding
non-isolated, as well as isolated solutions.

In the next subsection, we present numerical results from the implementation of this
technique for approximately computing a sample robust-optimization equilibrium.

5.2.3. Numerical results For each problem instance, we formulated the set of equilib-
ria using System (15). We executed all computations in MATLAB 6.5.0 R13, running
on the Red Hat Linux 7.2-1 operating system, on a Dell with a Pentium IV processor, at
1.7 GHz with 512 MB RAM. To encourage the numerical method to find points satis-
fying the nonnegativity and normalization constraints on xi and θθθi , i ∈ {1, . . . , N}, we
multiplied the amount of violation of each such constraint by M = 100, before halving
the square of this violation. We initialized all runs of the pseudo-Newton method by,
for each i ∈ {1, . . . , N}, randomly generating xi and θθθi , satisfying the aforementioned
nonnegativity and normalization constraints. We initialized zi to be the maximum pos-
sible value satisfying the upper-bound constraint on zi , and we set φi either equal to zi

or to the minimum possible value allowed by the lower-bound constraint on φi . For each
pseudo-Newton method run, we terminated the run if the current and previous iterate
were too close, if the norm of the direction was too small, if the penalty was already
sufficiently small, or if the number of iterations already executed was too large.

We executed the method on the robust inspection game, described in Example 1 in
Section 3.5, with

g = 8, v = 16, h = 4, w = 15,

g = 12, v = 24, h = 6.

The multilinear system for the equilibria of this robust game has 22 constraints in 10
variables, after elimination of some redundant variables. We terminated the pseudo-
Newton method run once the penalty function dipped below 10−8. As will follow from
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Theorem 4, in the unique equilibrium of this robust game, the employee (row player)
shirks (plays action 1) with probability x1

1 = 2/5, and the employer (column player)

inspects (plays action 1) with probability x2
1 = 4/5. Our numerical method terminates at(

x1
1 , x2

2

) = (0.4000, 0.8000) after 0.5000 seconds of one pseudo-Newton run, requiring
71 iterations.

In addition, we executed the method on the robust free-rider game, described in
Example 2 in Section 3.5, with

c = 1/4, c = 5/8.

The multilinear system for the equilibria of this robust game has 18 constraints in 8
variables, after elimination of some redundant variables. We terminated each pseudo-
Newton method run once the penalty function dipped below 10−10 or the number of
iterations reached 2000. We used M = 1, since the method did not seem to be attracted
to strategy profiles outside of the simplex. Let xi

1 denote the probability with which player
i ∈ {1, 2} contributes. As will follow from Theorem 4, this robust game has 3 equilibria(
x1

1 , x2
1

)
: (1,0), (0,1), and (1 − c, 1 − c) = (3/8, 3/8). We made 15 sequential runs of

the pseudo-Newton method, each initialized at a randomly generated point. These 15
runs required 1.8458 minutes, with each run executing an average of 1,652.1 iterations
in an average of 7.3827 seconds. Terminal points with penalty function less than 10−10

included (0.0000, 0.9999), (0.9999, 0.0000), (0.3750, 0.3751), and (0.3751, 0.3750).
This example demonstrates that the method is capable of finding multiple equilibria, and
possibly all equilibria, of a robust game.

Lastly, we executed the method on several instances of the robust network routing
game, described in Example 3 in Section 3.5. The instances differ in terms of their values
of N , the number of players, and a, the number of paths available. The resulting versions
of System (15) consist of 2N2 + N(2a + 3) constraints in N2 + N(2 + a) variables.

For all the instances, we used the same values for D and λλλ. In particular, we set
D = 5 and λ(i,ji ) to be a realization of the uniform distribution on [0, 4]. The compu-
tational results for these robust network routing games are summarized in Table 2. For
each instance, we made only one run of the pseudo-Newton method, and terminated it
after the lesser of 50 iterations or the minimum number of iterations required to produce
an iterate with associated penalty less than 10−5. The “vars” and “constr’s” columns in

Table 2. Numerical results for instances of robust network routing game

Vars Constr’s Cpu time Iters Penalty Proportional
(mins) error

N = 2, a = 2 12 22 0.0612 37 7.9811 × 10−6 1.8850 × 10−7

N = 3, a = 2 21 39 0.3887 17 5.5489 × 10−8 8.0825 × 10−10

N = 3, a = 3 24 45 1.4572 50 9.7746 × 10−3 2.2952 × 10−4

N = 4, a = 2 32 60 3.4895 50 9.2659 × 10−3 1.3192 × 10−4

N = 4, a = 3 36 68 3.8935 50 1.2910 × 10−1 3.0427 × 10−3

N = 4, a = 4 40 76 4.7893 50 3.8569 1.4566 × 10−1

N = 5, a = 2 45 85 7.3268 50 5.7834 × 10−1 7.7508 × 10−3

N = 5, a = 3 50 95 9.2945 50 1.3551 2.5495 × 10−2

N = 5, a = 4 55 105 12.6322 50 3.4239 8.7083 × 10−2

N = 5, a = 5 60 115 17.6880 50 15.3203 5.9287 × 10−1
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Table 2 give the number of variables and constraints, respectively, in System (15) for
each problem instance. The “iters” column gives the number of iterations executed. The
“penalty” column gives the penalty value of the final iterate. Finally, the “proportional
error” column gives

penalty

min
i∈{1,...,N}

min
{
|ẑi |, |φ̂i |

} ,

where ẑi and φ̂i denote the values of zi and φi in the final iterate. We could obviously
achieve better speed or accuracy by varying the cap on the number of iterations and the
penalty threshold used to decide whether to terminate the pseudo-Newton method run.

These numerical results demonstrate that a practical method, simple in nature and
general in its applicability, exists for approximately solving, with considerable accuracy
and speed, for sample equilibria of robust games of small size. Furthermore, with longer
runtimes and lower accuracy, this method may be capable of finding solutions for robust
finite games of larger size.

5.2.4. A special class of Robust finite games Under certain conditions, the set of equi-
libria of a robust finite game is equivalent to that of a related finite game with complete
payoff information, with the same number of players, and with the same action spaces.
In these cases, equilibria computation for the robust game will reduce to computation
in the context of the related complete-information finite game. As shown in Table 1,
the multilinear systems arising from robust finite games are larger than those arising
from complete-information, finite games with the same number of players and with the
same action spaces. Thus, it will be computationally beneficial to take advantage of this
equivalence when it holds. As we will discuss in Section 6, the complete-information
equivalent of the robust finite game will generally not be the nominal (i.e., average)
version of the robust game.

The following theorem establishes sufficient conditions for the equivalence of a
robust finite game with a complete-information finite game having the same number of
players and the same action spaces.

Theorem 4. Consider the robust finite game, without private information and in which
the payoff uncertainty set is

U =
{

P
(
f̃1, . . . , f̃v

) ∣∣∣
(
f̃1, . . . , f̃v

)
∈ Uf

}
, (23)

where

Uf =
{(

f̃1, . . . , f̃v

) ∣∣∣ f̃� ∈
[
f�, f�

]
, � ∈ {1, . . . , v}

}
, (24)

and P is a continuous and differentiable vector function. Suppose that, for all i ∈
{1, . . . , N} and ∀� ∈ {1, . . . , v}, ∃κ(i, �) ∈ {−1, 0, 1} such that, ∀(j1, . . . , jN) ∈∏N

i=1 {1, . . . , ai} and ∀
(
f̃1, . . . , f̃v

)
∈ Uf ,

sign

(
∂

∂f�

[
P i

(j1,...,jN ) (f1, . . . , fv)
]
(f1,...,fv)=

(
f̃1,...,f̃v

)
)

= κ(i, �).
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Then
(
x1, . . . , xN

)
is an equilibrium of this robust game iff it is a Nash equilibrium of

the complete-information, finite game, with the same number of players and the same
action spaces, and in which the payoff matrix is Q, defined by

Qi
(j1,...,jN ) = P i

(j1,...,jN )

(
hi

1, . . . , h
i
v

)

hi
� =

{
f�, κ(i, �) < 0

f�, κ(i, �) ≥ 0.

Proof. Let

Ai � {1, . . . , ai}

A �
N∏

i=1

Ai.

Q ∈ U implies that, ∀i ∈ {1, . . . , N}, ∀ (x−i , ui
) ∈ S,

πi

(
Q; x−i , ui

)
≥ min

P̃∈U

πi

(
P̃; x−i , ui

)
.

Conversely, by the definition of h, ∀i ∈ {1, . . . , N}, ∀(j1, . . . , jN) ∈ A,

P i
(j1,...,jN )

(
hi

1, . . . , h
i
v

)
≤ P i

(j1,...,jN ) (f1, . . . , fv) , ∀ (f1, . . . , fv) ∈ Uf .

Thus, ∀i ∈ {1, . . . , N}, ∀ (x−i , ui
) ∈ S,

min
P̃∈U

πi

(
P̃; x−i , ui

)
= min

f̃∈Uf

πi

(
P
(
f̃1, . . . , f̃v

)
; x−i , ui

)

≥
a1∑

j1=1

· · ·
ai∑

ji=1

· · ·
aN∑

jN=1




N∏

i′=1
i′ �=i

xi′
ji′


 ui

ji
min
f̃∈Uf

P i
(j1,...,jN )

(
f̃1, . . . , f̃v

)

=
a1∑

j1=1

· · ·
ai∑

ji=1

· · ·
aN∑

jN=1




N∏

i′=1
i′ �=i

xi′
ji′


 ui

ji
P i

(j1,...,jN )

(
hi

1, . . . , h
i
v

)

= πi

(
Q; x−i , ui

)
.

Therefore, ∀i ∈ {1, . . . , N}, ∀ (x−i , ui
) ∈ S,

min
P̃∈U

πi

(
P̃; x−i , ui

)
= πi

(
Q; x−i , ui

)
.

By Relation (7),
(
x1, . . . , xN

) ∈ S is an equilibrium of the robust finite game iff,
∀i ∈ {1, . . . , N},

xi ∈ arg max
ui∈Sai

[
min
P̃∈U

πi

(
P̃; x−i , ui

)]
= arg max

ui∈Sai

[
πi

(
Q; x−i , ui

)]
.
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Let us give an example of an application of Theorem 4. For i ∈ {1, . . . , N}, let I (i)+
and I (i)− form a partition of {1, . . . , v}. Consider U given as in Theorem 4, with the
function P defined as follows. ∀i ∈ {1, . . . , N} and ∀(j1, . . . , jN) ∈ A,

P i
(j1,...,jN ) (f1, . . . , fv) =

∑
�∈I (i)+

γ
i,�
(j1,...,jN )f� −

∑
�∈I (i)−

γ
i,�
(j1,...,jN )f�

γ
i,�
(j1,...,jN ) ≥ 0, � = 1, . . . , v.

Then

Qi
(j1,...,jN ) =

∑
�∈I (i)+

γ
i,�
(j1,...,jN )f� −

∑
�∈I (i)−

γ
i,�
(j1,...,jN )f�.

6. Comparison of robust and Bayesian finite games

Having established, in Section 5, a computation method for identifying equilibria of
robust finite games without private information, in this section, using illustrative exam-
ples, we compare properties of these robust games with those of their nominal-game
counterparts. By Equation (4), each nominal game we present is in fact equivalent to
the Bayesian game that assigns a symmetric distribution to the uncertainty set in the
corresponding robust game. Thus, our comparisons can be said to be between robust
games and these corresponding Bayesian games.

In this same vein of comparison, turning our attention to a notion of symmetry unre-
lated to the symmetry of probability distributions, we end this section by discussing sym-
metric robust games, i.e., those in which the players are indistinguishable with respect to
the game structure. We prove the existence of symmetric, robust-optimization equilibria
in these games, thereby establishing a result analogous to Nash’s existence theorem for
symmetric Nash equilibria of symmetric, complete-information, finite games [40].

6.1. Equilibria sets are generally not equivalent

The set of equilibria of a robust finite game and that of its nominal counterpart, e.g., the
Bayesian game which assigns a symmetric distribution to the uncertainty set, may be
disjoint. For example, consider the two-player inspection game presented in Example 1
in Section 3.5, with

g̃ ∈ [8, 12], ṽ ∈ [16, 24], h̃ ∈ [4, 6], w = 15,

ǧ = 10, v̌ ∈ 20, ȟ = 5.

The nominal version of the game has payoff matrix
(

(0, −ȟ) (w, −w)

(w − ǧ, v̌ − w − ȟ) (w − ǧ, v̌ − w)

)
=
(

(0, −5) (15, −15)

(5, 0) (5, 5)

)
.

For the values given above, the nominal game has a unique equilibrium, in which the
employee shirks with probability 1/3 and the employer inspects with probability 2/3.
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In contrast, by Theorem 4, the robust game is equivalent to the complete-information
inspection game with payoff matrix

(
(0, −h) (w, −w)

(w − g, v − w − h) (w − g, v − w)

)
=
(

(0, −6) (15, −15)

(3, −5) (3, 1)

)
.

Thus, the robust game has a different, unique equilibrium, in which the employee shirks
with probability 2/5 and the employer inspects with probability 4/5.

It is not surprising that the worker would shirk with higher probability and the
employer would inspect with higher probability in the robust game than in the nominal
game (i.e., in the Bayesian game assigning a symmetric distribution over the uncer-
tainty set). Indeed, in moving from the average parameter values, as used in the nominal
game, to the worst-case parameter values, as used in the robust game, the employee’s
opportunity cost of working increases, and the employer’s cost of inspecting increases.
As the employee’s opportunity cost of working increases, the employer expects that the
employee will be less willing to work. In order to make the employee indifferent between
shirking and working, the employer must therefore be more prone to inspect, despite her
higher inspection cost. Conversely, as the employer’s cost of inspecting increases, the
employee expects that the employer will be less willing to inspect. In order to make the
employer indifferent between inspecting and not inspecting, the employee must therefore
be more prone to shirk.

6.2. Sizes of sets of equilibria

The set of equilibria of a robust finite game may be smaller or larger than that of the
corresponding Bayesian game assigning a symmetric distribution over the uncertainty
set. For an extreme example in which the set of equilibria of a robust finite game is
smaller than that of the nominal-game counterpart, consider the robust game without
private information and with payoff uncertainty set

{(
(2, f̃ ) (f̃ , 2)

(f̃ , 2) (2, f̃ )

) ∣∣∣∣ f̃ ∈ [0, 4]

}
.

Consider the nominal version of the game in which f̃ = f̌ = 2 is commonly known
with certainty by the players. In this game, all pairs of mixed strategies for the two
players are Nash equilibria. In contrast, by Theorem 4, the robust game is equivalent to
the complete-information game with payoff matrix

(
(2, 0) (0, 2)

(0, 2) (2, 0)

)
,

i.e., is equivalent to the classical, complete-information game of matching pennies (see,
for example, [20]), and therefore has a unique equilibrium. In moving from the robust
game to its Bayesian counterpart, the set of equilibria shrinks, because the payoff uncer-
tainty results in reduced indifference, by each player, between his two actions.
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Conversely, for an equally extreme example in which the set of equilibria of a robust
finite game is larger than that of the corresponding nominal game, consider the robust
game without private information and with payoff uncertainty set

{(
(f̃1, f̃2) (f̃2, f̃1)

(f̃2, f̃1) (f̃1, f̃2)

) ∣∣∣∣ (f̃1, f̃2) ∈ [0, 8] × [0, 4]

}
.

Consider the nominal version of the game in which (f̃1, f̃2) = (f̌1, f̌2) = (4, 2) is com-
monly known with certainty by the players. This nominal game is now equivalent to the
complete-information game of matching pennies and therefore has a unique equilibrium.
In contrast, by Theorem 4, the robust game is equivalent to the complete-information
game with payoff matrix

(
(0, 0) (0, 0)

(0, 0) (0, 0)

)
.

Thus, all pairs of mixed strategies for the two players are equilibria of the robust game. In
moving from the robust game to its Bayesian counterpart, the set of equilibria expands,
because the payoff uncertainty results in increased indifference, by each player, between
his two actions.

6.3. Zero-sum becomes non-fixed-sum under uncertainty

In general, if we subject to uncertainty the payoff matrix in a zero-sum game, the resulting
robust game will not be a fixed-sum game. For example, consider the payoff uncertainty
set

{(
(f̃1, −f̃1) (f̃2, −f̃2)

(f̃3, −f̃3) (f̃4, −f̃4)

) ∣∣∣∣ (f̃1, f̃2, f̃3, f̃4) ∈
4∏

�=1

[f�, f�]

}
.

In the nominal version of this game, the players commonly know with certainty that

(f̃1, f̃2, f̃3, f̃4) = (f̌1, f̌2, f̌3, f̌4),

for some (f̌1, f̌2, f̌3, f̌4) ∈ ∏4
�=1[f�, f�]. In contrast, by Theorem 4, the robust game

is equivalent to the complete-information game, with payoff matrix




(f1, −f1) (f2, −f2)

(f3, −f3) (f4, −f4)


 ,

which is not fixed-sum unless f� − f� is constant for � ∈ {1, 2, 3, 4}. This result is not
surprising, since the two players’ worst-case perspectives need not agree.
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6.4. Symmetric robust games and symmetric equilibria

Let us turn our attention to symmetric games and their symmetric equilibria, which com-
prise an important topic in the game theory literature. We end this section by showing
that symmetric equilibria are guaranteed to exist in symmetric, robust finite games, just
as they are in symmetric, complete-information, finite games.

Stated very generally, a symmetric game is one in which the players are indistinguish-
able with respect to the game’s structure (action and strategy spaces, payoff functions,
information, etc.). More formally, we have the following definition.

Definition 6. A finite game with complete information is said to be symmetric if all
players have the same action space, all players’ payoff functions are invariant under
permutations of the other players’ actions, and all players’ payoff functions are equiva-
lent. That is, a complete-information game is symmetric if

ai = a, i = 1, . . . , N

P i
(j−i ,ji )

= P i′
(jσσσ(−i),ji )

, i, i′ = 1, . . . , N; ∀(j−i , ji) ∈ {1, . . . , a}N ; ∀σσσ ∈ �N−1,

where

(j−i , j ) � (j1, . . . , ji−1, j, ji+1, . . . , jN)

(jσσσ(−i), j) � (jσ(1), . . . , jσ(i−1), j, jσ(i+1), . . . , jσ(N)),

and �N−1 denotes the set of permutations of N − 1 elements.
A tuple of players’strategies will be said to be symmetric if all players’strategies in

the tuple are identical. In particular, a symmetric equilibrium refers to an equilibrium
in which all players play the same strategy.

Similarly, this definition extends, as follows, to robust finite games.

Definition 7. A robust finite game with uncertainty set U ⊆ R
N
∏N

i=1 ai and no private
information is said to be symmetric if

ai = a, i = 1, . . . , N

ρi

(
x−i , xi

)
= ρi′

(
xσσσ(−i), xi

)
, i, i′ = 1, . . . , N; ∀

(
x−i , xi

)
∈ S; ∀σσσ ∈ �N−1,

where
(
xσσσ(−i), xi

)
denotes

(
xσ(1), . . . , xσ(i−1), xi , xσ(i+1), . . . , xσ(N)

)
.

Accordingly, for example, the robust game presented in Example 2 of Section 3.5 is
symmetric.

In [40], Nash proved the existence of symmetric equilibria in symmetric, finite games
with complete information. We state and prove the following analogous existence result
for robust games.

Theorem 5 (Existence of Symmetric Equilibria in Symmetric Robust Finite Games).
Any N -person, non-cooperative, simultaneous-move, one-shot, symmetric robust game,
in which N < ∞, in which each player i ∈ {1, . . . , N} has 1 < a < ∞ possible actions,
in which the uncertainty set of payoff matrices U ⊆ R

NaN
is bounded, and in which

there is no private information, has a symmetric equilibrium.
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Proof. By the definition of symmetry of a robust game, there exists a function ρ : S → R

such that ρ ≡ ρi , ∀i ∈ {1, . . . , N}. Now define � : S → 2S as

�(x) =
{

y ∈ Sa

∣∣∣∣ y ∈ arg max
u∈Sa

ρ
(

x−i , u
)}

,

where x−i denotes the (N − 1)-tuple (x, x, . . . , x). The N -tuple (x, x, . . . , x) ∈ S is a
symmetric equilibrium of the robust game iff x is a fixed point of �. From an argument
paralleling that given in the proof of Theorem 2, it follows that � satisfies Kakutani’s
Fixed Point Theorem. 	


Symmetric games with incomplete information may be of particular interest for two
reasons. First, incomplete-information games, in which the players are indistinguishable
with respect to the game structure, may be especially amenable to the common prior
assumption in Harsanyi’s model and to its analog, the assumption of a common uncer-
tainty set, in our robust game model. Second, the multilinear system formulations for
symmetric equilibria of symmetric, robust finite games are smaller, by a factor of N , than
those for the general equilibria of these games. Indeed, in systems (15) and (16), if we
replace xi , i ∈ {1, . . . , N}, by the single a ×1 vector variable x, subsequent elimination
of redundancies then reduces the number of variables and constraints in these systems
by a factor of N . Thus, we may be able to compute symmetric equilibria of symmetric,
robust finite games more quickly and accurately, and with less computational effort, than
we can compute the general equilibria of these games.

7. Robust games with private information

In the preceding sections, we proposed a robust optimization approach and a corre-
sponding distribution-free equilibrium concept for modeling games with incomplete
information. We proved existence and computation results. Until now, we have focused
on incomplete-information games without private information. In this section, we extend
our discussion to the general case, involving potentially private information.

7.1. Extension of the model

As in the preceding sections of the paper, consider an N -person, incomplete-information
game, in which player i ∈ {1, . . . , N} has ai < ∞ possible actions, and in which each
player is in some way uncertain of the multi-dimensional payoff matrix P̃ that parame-
terizes the expected payoff vector functionπππ . Suppose that each player may have private
information about P̃ or about the other players’ beliefs. For each player i ∈ {1, . . . , N},
his potentially private information may be encoded in his “type” θi . Since the informa-
tion is potentially private, player i may be uncertain of the type θi′ of player i′, i′ �= i.
Let U denote, as before, a set of possible payoff matrices P̃. Let �i denote the set of
possible types of player i ∈ {1, . . . , N}, and � = ∏N

i=1 �i .
In using separate notation for the unknown payoff parameters P̃ and the players’

types θθθ , we make explicit the difference between the actual payoff parameters and the
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players’beliefs about these parameters and about the other players’ convictions. In addi-
tion, this notation allows us to very clearly address the situation in which players may
both possess private information and yet still be uncertain of the parameters affecting
their own payoffs. In fact, the model we propose in this section is sufficiently flexible
to simultaneously capture the case of no private information (the �i are singletons,
∀i ∈ {1, . . . , N}), the differential information setting involving all-but-self uncertainty
(each θi ∈ �i is consistent with only a single P̃i), and the aforementioned differential
information case in which agents may possess private information, while also being
uncertain of both their own and others’ payoff functions.

In the same spirit as does Harsanyi, we assume that the players commonly know a
“prior” set V ⊆ U ×� of realizable tuples of payoff parameters and type vectors. While
Harsanyi furthermore assumes, in terms of our notation, that the players commonly
know a distribution over this set V , we assume that the players lack such distributional
information or have chosen not to use it. Player i’s type θi induces the subset Vi(θi) of
V consistent with θi ,

Vi(θi) = {(P, θθθ−i , θi) ∈ V } .

That is, Vi(θi) gives the set of tuples of payoff matrices and type vectors that player i,
when he is of type θi , believes are possible. As does Harsanyi, throughout the remainder
of this section, we require that ∩N

i=1Vi(θi) �= ∅, ∀θθθ ∈ � such that {(P, θθθ) ∈ V } �= ∅, and
that the true payoff matrix P̃ belongs to the projection of ∩N

i=1Vi(θi) onto U . The first
requirement ensures that the players’ beliefs are consistent, and implies that θθθ belongs
to the projection of ∩N

i=1Vi(θi) onto �, i.e., that the players believe that the true type
vector is possible. The second requirement ensures that the players believe that the true
payoff matrix is possible.

In the private information setting, for i ∈ {1, . . . , N}, player i’s pure strategies are
mappings from his type θi to his action space {1, . . . , ai}. His so-called behavioral strat-
egies (see, for example, Chapter 3 of [20] for an introduction to behavioral strategies) are
mappings from his type θi to probability distributions over his action space {1, . . . , ai}.
More formally, we denote a behavioral strategy for player i by bi : �i → Sai

. That is,
under behavioral strategy bi , if player i is of type θi , then he plays action ji ∈ {1, . . . , ai}
with probability bi

ji
(θi). Let us define the notation

Bai
�
{

bi : �i → Sai

}

B �
N∏

i=1

Bai

B−i �
N∏

i′=1
i′ �=i

Bai

b−i (θθθ−i ) �
(

b1(θ1), . . . , bi−1(θi−1), bi+1(θi+1), . . . , bN(θN)
)

(
b−i (θθθ−i ), bi (θi)

)
�
(

b1(θ1), . . . , bN(θN)
)

.
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Recall that, in Harsanyi’s model, each player seeks to optimize his average perfor-
mance, i.e., his average expected payoff, where the average is taken with respect to
a probability distribution over Vi(θi). That is, in terms of our notation, in Harsanyi’s
model, the set of best responses by player i ∈ {1, . . . , N}, when he is of type θi ∈ �i ,
to b−i (·) is given by

arg max
ui∈Sai


 E(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; b−i (θθθ−i ), ui

) ∣∣∣ θi

]
 ,

where the expectation is taken with respect to the conditional probability distribution
induced by θi over V . We use the notation b−i (·) to highlight the fact that b−i is a
function. Since the best response correspondence completely determines the criterion
for equilibrium, it follows that the tuple of behavioral strategies

(
b1(·), . . . , bN(·)) ∈ B

is a Bayesian equilibrium in Harsanyi’s model iff, ∀i ∈ {1, . . . , N},

bi(θi) ∈ arg max
ui∈Sai


 E(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; b−i (θθθ−i ), ui

) ∣∣∣ θi

] , ∀θi ∈ �i.

In contrast to Harsanyi, we assume that each player i ∈ {1, . . . , N} lacks distri-
butional information over V and Vi(θi) and therefore seeks to optimize his worst-case
performance, i.e., his worst-case expected payoff, where the worst case is taken with
respect to Vi(θi). Therefore, in a robust game involving private information, the set of
best responses by player i ∈ {1, . . . , N}, when he is of type θi ∈ �i , to b−i (·) is given
by the set

arg max
ui∈Sai


 inf(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; b−i (θθθ−i ), ui

)] .

Accordingly, the tuple of behavioral strategies
(
b1(·), . . . , bN(·)) ∈ B is an equilib-

rium of the robust game with private information, i.e., is a robust-optimization equilib-
rium of the corresponding game with incomplete information, iff, ∀i ∈ {1, . . . , N},

bi (θi) ∈ arg max
ui∈Sai


 inf(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; b−i (θθθ−i ), ui

)]
 , ∀θi ∈ �i.

Before turning to the issue of equilibria existence, let us revisit the relation of
the ex post equilibria of an incomplete-information game to the corresponding robust-
optimization equilibria, this time in the context involving potentially private informa-
tion. In any such game, the tuple

(
b1(·), . . . , bN(·)) ∈ B is an ex post equilibrium of

the incomplete-information game, iff, ∀i ∈ {1, . . . , N},
bi (θi) ∈ arg max

ui∈Sai

([
πi

(
P̃; b−i (θθθ−i ), ui

)])
, ∀θi ∈ �i; ∀

(
P̃, θθθ

)
∈ Vi(θi).

By a proof analogous to that of Lemma 1, we may extend the result of that lemma
to the general case involving potentially private information.
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Lemma 6. The set of ex post equilibria of an incomplete-information game is contained
in the corresponding set of robust-optimization equilibria.

7.2. Existence of equilibria

We will now extend our existence result from Section 4, in which we considered robust
finite games without private information, to general robust finite games. Let us start by
considering such games in which all of the players’ type spaces are finite, i.e., ∀i ∈
{1, . . . , N}, �i = {1, . . . , ti}, where ti < ∞. Recall that player i’s pure strategies are
mappings from �i to {1, . . . , ai}. Then, the set of player i’s pure strategies is simply
{1, . . . , ai}ti . Similarly, player i’s behavioral strategies can be encoded as ai × ti matri-
ces, where column � ∈ �i gives player i’s randomization over his action space when he
is of type θi = �. More precisely,

Bai
= {

X ∈ R
ai×ti | X� ∈ Sai

, � ∈ �i

}
,

where X� denotes the �th column of the matrix X. Let us define the additional shorthands

X−i
θθθ−i

�
(

X1
θ1

, . . . , Xi−1
θi−1

, Xi+1
θi+1

, . . . , XN
θN

)

τi

(
θi; X−i , xi

)
� inf(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; X−i

θθθ−i
, xi
)]

,

where Xi
θi

denotes the θ th
i column of the matrix Xi . That is, τi denotes player i’s worst-

case expected payoff function.

Theorem 6. Consider a robust game that is non-cooperative, simultaneous-move, and
played in one shot. Suppose there are N < ∞ players, that player i ∈ {1, . . . , N} has
1 < ai < ∞ possible actions, and that the prior uncertainty set of payoff matrices

U ⊆ R
N
∏N

i=1 ai is bounded. Suppose that, ∀i ∈ {1, . . . , N}, player i’s type space is
given by �i = {1, . . . , ti}, where ti < ∞. Then the robust game has an equilibrium in
B.

Proof. Let us define the point-to-set mapping � : B → 2B , where 2B is the power set
of B, as

�
(

X1, . . . , XN
)

=
{(

Y1, . . . , YN
)

∈ B

∣∣∣∣∣ Yi
θi

∈ arg max
ui∈Sai

τi

(
θi; X−i , ui

)
,

∀i ∈ {1, . . . , N}, ∀θi ∈ �i

}
.

It is obvious that
(
X1, . . . , XN

)
is a behavioral strategy equilibrium of the robust game

iff it is a fixed point of �. That � satisfies the conditions of Kakutani’s Fixed Point The-
orem [28] follows from the facts that, ∀i ∈ {1, . . . , N} and ∀θi ∈ �i , τi

(
θi; X−i , xi

)
is

continuous on B−i × Sai
and is concave in xi over Sai

for fixed X−i ∈ B−i . The details
of the proof are analogous to those in our proof of Theorem 2, and we therefore omit
them. 	
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Having treated the case in which all of the players’ type spaces are finite, let us now
consider the more general case in which there may exist an i ∈ {1, . . . , N} such that
|�i | = ∞. If player i has infinitely many types, his behavioral strategies

Bai
=
{

bi : �i → Sai

}

cannot be encoded as finite matrices but are functions with infinite domains, and there-
fore belong to an infinite dimensional space. Kakutani’s Fixed Point Theorem applies to
correspondences defined over Euclidean spaces, which are, by definition, finite dimen-
sional. Accordingly, we cannot use Kakutani’s theorem to prove the existence of behav-
ioral strategy equilibria in robust finite games in which at least one player’s type space
is infinite. Instead, we need a fixed point theorem that applies to Banach spaces. The fol-
lowing fixed point result of Bohnenblust and Karlin [8] generalizes Kakutani’s theorem
to Banach spaces. Before stating it, we first recall a relevant definition.

Definition 8 (as stated in Smart [46]). Let S and T be subsets of a normed space. � is
called a K-mapping of S into T if the following two conditions hold.

1. ∀s ∈ S, �(s) ⊆ T , �(s) �= ∅, and �(s) is compact and convex.
2. The graph {(s, t) | t ∈ �(s)} is closed in S × T .

Theorem 7 (Bohnenblust and Karlin [8], as restated in Smart [46]). Let M be a closed,
convex subset of a Banach space, and let � be a K-mapping of M into a compact subset
M′ of M. Then ∃x ∈ M such that x ∈ �(x).

In order to apply this theorem to prove the existence of behavioral strategy equilibria
in robust finite games with private information and potentially infinite type spaces,5 we
must first establish some preliminary results. In the next two lemmas, ∀i ∈ {1, . . . , N},
we consider the metric space

(
B−i × Sai

)
[d], with metric d defined as follows.

∀ (b−i (·), xi
)
,
(
f−i (·), yi

) ∈ B−i × Sai
,

d
((

b−i (·), xi
)

,
(

f−i (·), yi
))

� max




‖yi − xi‖∞, max
i′∈{1,...,N}\{i}
ji′ ∈{1,...,ai′ }

[
sup

θi′ ∈�i′

∣∣∣f i′
ji′ (θi′) − bi′

ji′ (θi′)
∣∣∣
]


.

Lemma 7. Let U ⊆ R
N
∏N

i=1 ai be bounded. Then ∀ε > 0, ∃δ(ε) > 0 such that, ∀i ∈
{1, . . . , N}, ∀θi ∈ �i , and ∀ (b−i (·), xi

)
,
(
f−i (·), yi

) ∈ B−i × Sai
,

d
((

b−i (·), xi
)

,
(

f−i (·), yi
))

< δ(ε)

implies that, ∀
(

P̃, θθθ
)

∈ Vi(θi),

∣∣∣πi

(
P̃; f−i (θθθ−i ), yi

)
− πi

(
P̃; b−i (θθθ−i ), xi

)∣∣∣ < ε.

5 Recall that a game is said to be finite if the number of players and the number of actions available to
each player are all finite. Accordingly, it is possible for a finite game with incomplete information to involve
infinite type spaces.
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Proof. ∀ε > 0, consider

δ(ε) = min {ε, 1}
2
(
2N − 1

)
M
∏N

i=1 ai

,

where 1 < M < ∞ satisfies

∣∣∣P̃ i
(j1,...,jN )

∣∣∣ ≤ M, ∀i ∈ {1, . . . , N}, ∀(j1, . . . , jN) ∈
N∏

i=1

{1, . . . , ai}, ∀P̃ ∈ U.

The result follows from algebraic manipulation. 	

Lemma 7 immediately gives rise to the following continuity result.

Lemma 8. Let U ⊆ R
N
∏N

i=1 ai be bounded. Then ∀i ∈ {1, . . . , N}, ∀θi ∈ �i ,

τi

(
θi; b−i (·), xi

)
� inf(

P̃,θθθ
)
∈Vi(θi )

[
πi

(
P̃; b−i (θθθ−i ), xi

)]

is continuous on B−i × Sai
.

In addition, it is trivial to prove the following lemma.

Lemma 9. ∀i ∈ {1, . . . , N}, ∀θi ∈ �i , and ∀b−i (·) ∈ B−i fixed, τi

(
θi; b−i (·), xi

)
is

concave in xi over Sai
.

We may now apply Bohnenblust’s and Karlin’s fixed point theorem to prove the
existence of behavioral strategy equilibria in robust finite games with potentially infinite
type spaces.

Theorem 8 (Existence of Equilibria in Robust Finite Games). Consider an N -person,
non-cooperative, simultaneous-move, one-shot robust game, in which N < ∞, in which
player i ∈ {1, . . . , N} has 1 < ai < ∞ possible actions, in which player i’s type space

is given by �i , and in which the prior uncertainty set of payoff matrices U ⊆ R
N
∏N

i=1 ai

is bounded. This robust game has an equilibrium in B.

Proof. We will proceed by constructing a point-to-set mapping that satisfies the con-
ditions of Bohnenblust’s and Karlin’s fixed point theorem, and whose fixed points are
precisely the behavioral strategy equilibria of the robust game with private information.
Recall that, for a non-empty set �i , the vector space of all bounded functions defined on
�i is a Banach space under the supremum norm (Theorem 3-2.4 of [33]). Furthermore,
the direct product of finitely many Banach spaces is a Banach space (Theorem 2-4.6 of
[33]). Accordingly,

F =
N∏

i=1

{
f i : �i → R

ai | f i is bounded
}

is a Banach space. In the notation we used to state Bohnenblust’s and Karlin’s fixed
point theorem, take M = M′ = B. B is a convex, closed, and compact subset of F .
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Let us define the point-to-set mapping � : B → 2B as

�
(

b1(·), . . . , bN(·)
)

=
{(

y1(·), . . . , yN(·)
)

∈ B

∣∣∣∣

yi (θi) ∈ arg max
ui∈Sai

τi

(
θi; b−i (·), ui

)
, ∀i ∈ {1, . . . , N}, ∀θi ∈ �i

}
.

The rest of the proof follows similarly to that of Theorem 2. 	


7.3. Computation of equilibria

Having extended our equilibria existence result to incomplete-information games involv-
ing private information, let us now establish that one may compute these robust-optimi-
zation equilibria, when the players’ type spaces are finite, via a formulation analogous
to the one we gave in Section 5 for the case without private information.

Theorem 9. Consider a robust game that is non-cooperative, simultaneous-move, and
played in one shot. Suppose there are N < ∞ players, that player i ∈ {1, . . . , N} has
1 < ai < ∞ possible actions, and that the prior uncertainty set of payoff matrices

U ⊆ R
N
∏N

i=1 ai is bounded. Suppose ∀i ∈ {1, . . . , N}, player i’s type space is given by
�i = {1, . . . , ti}, where ti < ∞. Let

V (θθθ) = {(P, θθθ) ∈ V }
Ti(θi) = {(θθθ−i , θi) ∈ � | V (θθθ−i , θi) �= ∅} ,

and Proj
(
A, A′) denote the projection of a set A onto a set A′. In addition, suppose

that, ∀i ∈ {1, . . . , N}, ∀θi ∈ �i , ∀θθθ ∈ Ti(θi), there exists a polyhedron U(θθθ) =
Proj (V (θθθ), U). Then, the set of behavioral strategy equilibria of the robust game is the
component-wise projection of the solution set of a system of multilinear equalities and
inequalities.

Proof. Since ∀i ∈ {1, . . . , N}, ti < ∞,

Bai
= {

X ∈ R
ai×ti | X� ∈ Sai

, � ∈ �i

}
.

(
X1, . . . , XN

) ∈ B is an equilibrium of this robust game iff, ∀i ∈ {1, . . . , N}, ∀θi ∈ �i ,

∃zi
θi

∈ R such that
(

Xi
θi
, zi

θi

)
is a maximizer of the following robust LP, in which X−i

is regarded as data.

max
Xi

θi
,zi

θi

zi
θi

s.t. zi
θi

≤ πi

(
P̃ ; X−i

θθθ−i
, Xi

θi

)
, ∀θθθ ∈ Ti(θi); ∀P̃ ∈ U(θθθ)

e′Xi
θi

= 1

Xi
θi

≥ 0,

where e ∈ R
ai is the vector of all ones. The proof follows analogously to that of Theo-

rem 3, since |Ti(θi)| < ∞ and |�i | < ∞. 	
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8. Conclusions

We make several contributions in this paper. We propose a novel, distribution-free model,
based on robust optimization, of games with incomplete information, and we offer a
corresponding distribution-free, robust-optimization equilibrium concept. We address
incomplete-information games without private information as well as those involving
potentially private information. Our robust optimization model of such games relaxes
the assumptions of Harsanyi’s Bayesian games model and simultaneously gives a notion
of equilibrium that subsumes the ex post equilibrium concept. In addition, we prove the
existence of equilibria in any such robust finite game, when the payoff uncertainty set
is bounded. This existence result is in contrast to the fact that incomplete-information
games need not have any ex post equilibria. For any robust finite game with bounded
polyhedral payoff uncertainty set and finite type spaces, we formulate the set of equi-
libria as the dimension-reducing, component-wise projection of the solution set of a
system of multilinear equations and inequalities. We suggest a computational method
for approximately solving such systems and give numerical results of the implemen-
tation of this method. Furthermore, we describe a special class of robust finite games,
whose equilibria are precisely those of a related complete-information game with the
same number of players and the same action spaces. Using illustrative examples of robust
games from this special class, we compare properties of robust finite games with those of
their Bayesian-game counterparts. Moreover, we prove that symmetric equilibria exist
in symmetric, robust finite games with bounded uncertainty sets.

We hope that these contributions will provide a new perspective on games with
incomplete information.
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