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In this paper we consider the general class of non-stationary queueing models and identify
structural relationships between the number of customers in the system and the delay at time
t, denoted by L(t) and S(t), respectively. In particular, we first establish a transient Little’s
law at the same level of generality as the classical stationary version of Little’s law. We
then obtain transient distributional laws for overtake free non-stationary systems. These
laws relate the distributions of L(t) and S(t) and constitute a complete set of equations
that describes the dynamics of overtake free non-stationary queueing systems. We further
extend these laws to multiclass systems as well. Finally, to demonstrate the power of the
transient laws we apply them to a variety queueing systems: Infinite and single server
systems with non-stationary Poisson arrivals and general non-stationary services, multiclass
single server systems with general non-stationary arrivals and services, and multiserver
systems with renewal arrivals and deterministic services, operating in the transient domain.
For all specific systems we relate the performance measures using the established set of
laws and obtain a complete description of the system in the sense that we have a sufficient
number of integral equations and unknowns. We then solve the set of integral equations
using asymptotic expansions and exact numerical techniques. We also report computational
results from our methods.

Keywords: non-stationary systems, transient analysis, Little’s law, non-homogeneous
Poisson process

1. Introduction

Transient analysis of queueing models has long been considered a very difficult
problem that becomes even more complicated when we allow for the arrival and/or
the service rates to change over time, i.e., when we consider the general class of non-
stationary systems. On the other hand, it has long been recognized that non-stationary
queueing models are needed to most appropriately model many complex production,
service, communication and air transportation systems. Furthermore, even for the
subclass of stationary systems, i.e., systems with constant arrival and service rates,
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the convergence to steady-state is often so slow that the equilibrium behavior is not
indicative of the system behavior. Therefore, the need arises for a better understanding
of the transient behavior of queueing models.

In this paper we consider the general class of non-stationary queueing systems
and we address the following questions: are there “transient laws” of non-stationary
queueing systems? In other words, are there generic relationships between the fun-
damental quantities of interest for general queueing systems (such as the number of
customers in the system and the delay at time t)? If so, how can they be used in
particular applications?

Traditionally, transient analysis of queueing systems is addressed either via sim-
ulation or via approximate numerical methods. Computer simulation may provide
insights on the system evolution, but many replication runs are required to obtain
good estimates of time dependent probability distributions. In some cases, approx-
imate numerical methods can be effective; see, for example, Odoni and Roth [25],
Malone [22], Ong and Taaffee [26] and references cited therein.

In the last decades, work on the transient behavior of queueing systems has been
mainly concentrated on exact numerical techniques; see, for example, Choudhury et al.
[8], Green, Kolesar and Svoronos [12], and references cited therein. Moreover, there
exist analytical results for infinite server systems (Massey and Whitt [23]), and for
systems with phase type arrival and service distributions (Bertsimas and Nakazato [6]).

This paper takes a different standpoint, trying to identify structural relationships
between the fundamental quantities of queueing systems that evolve over time. These
relationships are next used in a variety of applications to obtain specific results. Our
approach has its methodological foundation on Little’s law and its extensions. In par-
ticular, Little [21] and Stidham [30] expressed via Little’s law a fundamental principle
of queueing theory: for stationary systems in steady-state, under very general condi-
tions, the expected number of customers in the system, E[L], is equal to the product
of the arrival rate, λ, and the expected time a customer spends in the system, E[S]. An
important generalization of Little’s law, for overtake free systems, are the distributional
laws first obtained by Haji and Newell [13]. The significance of these laws lies in the
fact that, as demonstrated by Keilson and Servi [17,18] and Bertsimas and Mourtzinou
[4,5], they can lead to complete solutions for a variety of systems in steady-state.

The major contributions of this work are as follows:

1. We establish a transient Little’s law at the same level of generality as the classical
stationary version of Little’s law. This transient Little’s law relates the expected
number of customers in the system at time t, to the system time of customers
joining the system in the interval (0, t]. It is important to notice that the form of
the law depends on the initial conditions and therefore it demonstrates the influence
of the initial state on the evolution of the system.

2. We obtain transient distributional laws for overtake free non-stationary systems.
These laws relate the distributions of the most commonly used transient perfor-
mance measures, i.e.,
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(a) the number of customers in the system at time t, denoted by L(t) and

(b) the system time, S(t), of a customer that arrived to the system at (t− dt, t].

They constitute a complete set of equations that describes the dynamics of overtake
free non-stationary queueing systems. Moreover, the multiclass versions of these
laws capture the interaction of customers from different classes, in the case of
multiclass non-stationary systems.

3. To demonstrate the power of transient Little’s law and the transient distributional
laws we apply them to a variety of specific queueing systems. In particular, we
consider

(a) Infinite server systems with non-stationary Poisson arrivals and general non-
stationary services. In this case, we establish the known exact formula for
the number of customers in the system at time t.

(b) Single server systems with non-stationary Poisson arrivals and general non-
stationary services. In this case, we propose an algorithm to obtain exact
numerical results for L(t) and S(t).

(c) Multiclass single server systems with renewal arrivals and services, operating
in the transient domain. In this case, we obtain a set of integral equations that
completely characterize the distributions of the performance measures and
then we obtain explicit asymptotic formulae. Furthermore, we numerically
investigate the performance of our asymptotic expressions and assess their
proximity to simulation results in a variety of settings. We also determine
that they give rise to very similar numerical results with traditional Brownian
approximations.

(d) Multiserver systems with renewal arrivals and deterministic services, oper-
ating in the transient domain. We obtain integral equations that completely
characterize the distributions of the performance measures and then we obtain
explicit asymptotic formulae.

For all specific systems we use the same approach: we relate the performance
measures using the established set of laws. In this way we have a complete
description of the system in the sense that we have a sufficient number of integral
equations and unknowns. Once we formulate the stochastic system the next step
is to actually solve it; in this step we use different math techniques depending on
the application.

The rest of this paper is structured as follows: in section 2, we define some
notation and present some mathematical preliminaries. In section 3, we establish the
transient generalization of Little’s law based on a sample path argument. Then, in
section 4 we first review the steady-state distributional laws and then derive transient
distributional laws for both single class and multiclass non-stationary queueing systems
under arbitrary initial conditions. In section 5, we apply the transient laws to derive
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the transient performance analysis of several systems. Finally, in section 6 we present
some concluding remarks.

2. Notation and preliminaries

In this section we consider a generic queueing system where customers arrive
bringing random service requirements and upon completion of service they leave. To
simplify the exposition, we assume a single class of customers; whenever we consider
multiclass systems we will appropriately adapt our notation.

We let Tj be the arrival time of the jth customer, with T0 = 0 and T0 < T1 < · · ·,
and Sj be his system time. We, also, let Na(t) be the number of arrivals in (0, t] for
all 0 < t 6 ∞. Note that the counting process Na(t) is completely defined when we
know the probability distribution of the random variables Tj , j = 1, 2, . . . , via

Na(t) > n if and only if Tn 6 t. (1)

In the special case where Tj − Tj−1 for j = 1, 2, . . . are independent and identically
distributed random variables, the arrival process is an ordinary renewal process and
we use the notation No

a (t) for the number of arrivals in (0, t] for all t > 0. Similarly, if
Tj − Tj−1 for j = 2, . . . are independent and identically distributed random variables
and T1 is distributed as the forward recurrence time of T2 − T1, the arrival process
is an equilibrium renewal process and we use the notation Ne

a (t) for the number of
arrivals in (0, t] for all t > 0.

We also define h(t) to be the “local rate” (see Cox and Isham [10]), i.e.,

h(t)
∆
= lim

∆t→0
E
[
Na(t)−Na(t− ∆t)

]
, (2)

assuming that the limit exist. In our analysis we do not allow multiple arrivals and
therefore h(t)∆t (as ∆t→ 0) is the probability of an arrival in (t− ∆t, t] – given that
the limit in (2) exists. In the special case of renewal arrival processes, for the limit to
exist the interarrival distribution has to be absolutely continuous. Then, h(t) is simply
the derivative of the renewal function and depends on the distribution of the remaining
time for the first customer to arrive to the system. If we assume that this is distributed
as the forward recurrence time of the arrival process, then h(t) = λ, t > 0, where
1/λ is the mean interarrival. This assumption physically means that we start counting
arriving customers to the system at a random time relative to the arrival process.
Moreover, naturally as t → ∞, h(t) → λ, as the influence of the initial distribution
disappears. On the other hand, for a nonhomogeneous Poisson arrival process with
rate λ(t), h(t) = λ(t).

So far we have not imposed any assumptions on the counting process of the
arrivals other than the ones necessary for the existence of the limit in (2). However
for the analysis of section 4 and thereafter, we will assume that successive interarrivals
satisfy a particular independence criterion:
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Assumption A.1. The time interval between two successive arrival epochs, Ai(Ti)
∆
=

Ti+1 − Ti, is independent of {Aj(Tj), j < i}, conditional on Ti, for all i = 1, 2, . . . .
Moreover, new arriving customers do not affect the time in the system of previous
customers.

Examples of arrival processes satisfying Assumption A.1 include (a) all renewal
processes, and (b) a nonhomogeneous Poisson process of rate λ(t). An example of a
non traditional, although somewhat contrived, process satisfying Assumption A.1 is a
counting process with Ai(Ti) being distributed as an Erlang 2 random variable with
rate λ(Ti).

Under Assumption A.1 we introduce some further notation. We denote by∑n
i=1 Ai(x) the random variable that represents the sum of n sequential interarrival

times with the first one starting at time x. We further define No
a (to, t) to be the number

of customers that arrived in the time interval (to, t] given that to is an arrival epoch.
The distribution of No

a (t0, t) can be calculated from the equivalence:

No
a (to, t) > n if and only if

n∑
i=1

Ai(to) 6 t− to. (3)

Note, that for the case of renewal arrival processes No
a (to, t) is the same as No

a (t− to).
Moreover, for the analysis of section 4 and thereafter, we will assume that cus-

tomers bring to the system random stationary identically distributed service require-
ments. We will, however, allow for the service rate, i.e., the maximum number of
units of work that the server can clear in one unit of time, to change over time. In this
sense, the time a random customer spends in the service facility is a non-stationary ran-
dom variable and it only depends on the time the customer enters the service facility.
Furthermore, we assume that the interarrivals and service requirements are mutually
independent.

We use the notation GI(t)/G(t)/s to denote s-server systems with service process
as described above and non-stationary arrivals satisfying Assumption A.1. In the case
where successive service requirements are mutually independent, we use the notation
GI(t)/GI(t)/s.

The natural transient performance measures in such a generic queueing system
are

• L(t) the number of customers in the system at time t, characterized by its generating
function

GL(z, t)
∆
= E

[
zL(t)] =

∞∑
n=0

znP
{
L(t) = n

}
,

• Sj the time that the jth customer spends in the system.
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For our analysis we introduce another performance measure, S(t), by defining its
distribution for each time t > 0 as follows:

h(t) dtP
{
S(t) > τ

} ∆
=
∞∑
n=1

P{t− dt < Tn 6 t}P
{
Sn > τ | Tn = t

}
,

for t, τ > 0. Intuitively,

• S(t) is the time that a customer who arrived to the system at (t − dt, t] spends in
the system.

It is important to notice that L(t) and S(t) depend on the initial state of the
system, i.e., on the initial number of customers, L(0), as well as on the initial work,

V (0)
∆
= V̂ (0) +

L(0)∑
i=1

Xi,

where V̂ (0) is the set-up work in the system, which is independent of the number of the
initial customers, and Xi is the service requirement of the ith initial customer. Without
loss of generality we will assume for the rest of paper that the initial customers – if
any – are going to receive service in the following order (X1,X2, . . . ,XL(0)).

3. Transient Little’s law

One of the most celebrated results in queueing theory is that for systems in
steady-state under natural and rather mild assumptions (see Heyman and Sobel [14]),
the expected number of customers in the system E[L] and the expected system time
E[S] in steady-state are linearly related via E[L] = λE[S], where λ is the arrival rate.
For general systems that are not functioning in steady-state, we prove the following
transient generalizations of this result.

Theorem 1. For a single class system that starts empty, L(0) = V (0) = 0, if we
denote by L(t) the number of customers in the system at time t, and by S(u) the time
spent in the system for a customer that arrived at (u− du,u], we have that

E
[
L(t)

]
=

∫ t

0
h(u)P

{
S(u) > t− u

}
du, (4)

where

h(u)
∆
= lim

∆u→0
E
[
Na(u)−Na(u− ∆u)

]
.
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Proof. Consider a particular realization of the system, ω. We define l(t;ω) to be the
number of customers in the system at time t for this particular realization and introduce
the indicator function

ft(u;ω) =

{
1 if we have an arrival at (u− du,u] who is still in the system at t,
0 otherwise.

Then it is clear that

l(t;ω) =

∫ t

0
ft(u;ω) du.

If we denote by Ft(u) the stochastic process that corresponds to ft(u;ω) we have that

E
[
L(t)

]
= E

[ ∫ t

0
Ft(u) du

]
=

∫ t

0
E
[
Ft(u)

]
du, (5)

where the second equality follows from Fubini’s theorem. Moreover,∫ t

0
E
[
Ft(u)

]
du=

∫ t

0
P{an arrival at (u− du,u] who is still in the system at t}

=

∫ t

0
h(u)P

{
S(u) > t− u

}
du. (6)

Hence we proved (4). �

Next, we extend Theorem 1 to the more general case where the systems starts
with initial some customers L(0) 6= 0 and initial work V (0). In particular we consider
a system that starts with k initial customers, L(0) = k, and initial work V (0) =

V̂ (0) + X1 + · · · + Xk, where Xi is the service time requirement of the ith initial
customer. To simplify the presentation, we assume that

Assumption B. The system clears first the set-up work V̂ (0), then the initial customers
in the order {1, . . . , k}, and then starts working on the customers who arrive after
time 0. Moreover, until the system finishes the initial work V (0), it does not idle.

The transient Little’s law is as follows:

Theorem 2. For a single class system that starts with k initial customers, L(0) = k,
and initial work V (0) = V̂ (0) +X1 + · · ·+Xk, and satisfies Assumption B, we have
that

E
[
L(t)

]
=

∫ t

0
h(u)P

{
S(u) > t− u

}
du+

k∑
i=1

P{Vi > t}, (7)

where Vi
∆
= V̂ (0) +Xk + · · · +Xi, for i = k, . . . , 1.
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Proof. Consider a particular realization of the system ω. We denote by v(0;ω) the
initial work for this particular realization and with m(t;ω) the number of initial cus-
tomers that are still present in the system at time t. In this case,

l(t;ω) = m(t;ω) +

∫ t

0
ft(u;ω) du.

If we denote by M (t) the number of initial customers still present in the system at
time t, we get that

E
[
L(t)

]
=E

[ ∫ t

0
Ft(u) du

]
+E

[
M (t)

]
=

∫ t

0
h(u)P

{
S(u) > t− u

}
du+E

[
M (t)

]
. (8)

Since M (t) is the number of initial customers still present in the system at time t,
M (t) ∈ {1, . . . , k}. In particular, since the server services the initial customers first,
under Assumption B, we have that

P
{
M (t) = k

}
= P

{
V̂ (0) +Xk > t

}
and

P
{
M (t) = i

}
= P{Vi > t}− P{Vi+1 > t},

with Vi
∆
= V̂ (0) +Xk + · · · +Xi. Therefore,

E
[
M (t)

]
= kP{Vk > t} +

k−1∑
i=1

i
[
P{Vi > t}− P{Vi+1 > t}

]
=

k∑
i=1

P{Vi > t}. (9)

From (5), (6) and (9), (7) follows. �

It is important to notice that (8) holds independently of Assumption B; we in-
troduced Assumption B to quantify E[M (t)] and obtain (9). Hence, we can relax
Assumption B and still get a transient Little’s law.

Recall that for systems in steady-state the classical Little’s law is

E[L] = λ

∫ ∞
0

P{S > t} dt = λE[S].

Notice that unlike the steady-state Little’s law, E[L(t)] in (7) and (4) depends on the
entire distribution of S(t), not just its expectation, and on the initial conditions. If we
further assume that the arrival process is renewal and that the initial interarrival time is
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distributed as the forward recurrence time of the interarrival distribution, i.e., h(t) = λ
we obtain in the case where the system starts empty

E
[
L(t)

]
= λ

∫ t

0
P
{
S(u) > t− u

}
du.

4. Transient distributional laws

In this section we present laws that relate the distributions of the number of
customers in the system and the system time for both single class queueing systems,
where all the customers have the same characteristics, as well as multiclass systems,
where each class of customers has some special characteristics and is treated differently
by the system. These laws are called distributional laws and hold for general, possible
non-stationary, systems in the transient domain as well as for stationary systems in
steady-state, given that the systems satisfy the following assumptions:

Definition 3 (Distributional laws assumptions).

A.1. The time interval between two successive arrival epochs, Ai(Ti), is independent
of {Aj(Tj), j < i} conditional on Ti, for all i = 1, 2, . . . . Moreover, new arriving
customers do not affect the time in the system of previous customers.

A.2. The customers leave the system in the order of arrival (FIFO).

A.3. All arriving customers enter the system one at a time, remain in the system until
served (there is no blocking, balking or reneging) and leave also one at a time.

A.4. Arrival streams from different classes are mutually independent.

Assumption A.2 is the crucial assumption that restricts the class of systems that
admit distributional laws to the class of overtake-free systems, namely systems where
customers exit in the order of their arrival. Assumption A.3 can be relaxed (see
Mourtzinou [24]). Finally, Assumption A.4 is used only in the case of multiclass
systems.

We define as overtake free queueing systems those systems that satisfy the Dis-
tributional Laws Assumptions and therefore, satisfy distributional laws. Using the
notation of section 2, the following systems are examples of overtake free systems:

(a) Multiclass M (t)/G(t)/1 queueing system under FIFO (where we can define “the
system” to be either just the queue or the queue together with the server).

(b) Multiclass GI(t)/D/s under FIFO (where we can define “the system” to be either
just the queue or the queue together with the s servers).

(c) Multiclass GI/G/s under FIFO (where we define the “the system” to be only the
queue, since if “the system” is the queue together with the s servers, overtaking
can take place and therefore Assumption A.2 is violated).
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(d) Non-stationary single-server systems where the server is unavailable for occasional
intervals of time and customers are served under FIFO (see Bertsimas and Mourtzi-
nou [5], Keilson and Servi [18]) (where, once again, we can define we can define
“the system” to be either just the queue or the queue together with the server).

4.1. A review of steady-state distributional laws

In this section we first review steady-state distributional laws for single class
systems, and then we briefly review distributional laws for multiclass systems with N
different customers classes.

The single class steady-state distributional law
Consider a general stationary queueing system that satisfies Assumptions A.1–

A.3. Customers arrive to the system according to a single ordinary renewal arrival
process described by No

a (t), the number of arrivals up to time t. We use the notation
of section 2 and, therefore, denote by Ne

a (t) the number of arrivals up to time t for
the corresponding equilibrium renewal process.

We assume that the system is in steady-state and denote by L the number of
customers in the system in steady-state and by S the time a customers spends in the
system in steady-state, called the system time. Finally, we denote by

FS(t)
∆
= P{S 6 t}

the distribution function of S and by GL(z)
∆
= E[zL] the generating function of L.

The single class steady-state distributional law can be stated as follows:

Theorem 4 (Haji and Newell [13], Bertsimas and Nakazato [7]). For a stationary
system that satisfies Assumptions A.1–A.3 and has a single renewal arrival process,
the steady-state number of customers, L, and the steady-state system time, S, are
related in distribution by

L
d
= Ne

a(S) and equivalently GL(z) =

∫ ∞
0

Ke(z, t) dFS (t), (10)

where

Ke(z, t)
∆
= E

[
zN

e
a (t)] =

∞∑
n=0

znP
{
Ne
a (t) = n

}
is the generating function of Ne

a (t).

Intuitively, (10) says that the number of customers in an overtake-free system in
steady-state has the same distribution as the number of arrivals from the equilibrium
renewal process during an interval of time distributed as the system time.
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The multiclass steady-state distributional law
We consider now a multiclass stationary queueing system, with N classes of

customers. Customers of class i, i = 1, . . . ,N , arrive at the system according to
a renewal process with rate λi and have their own service requirements distributed
according to a random variable Xi, i = 1, . . . ,N . We assume that the system satisfies
Assumptions A.1–A.4. Let No

ai(t), N
e
ai(t) be the number of customers up to time t for

the ordinary and equilibrium renewal process of the ith class, respectively. Given that
they exist in steady-state, let Si be the time spent in the system for class i customers in
steady-state and let Li be the number of class i customers in the system in steady-state.
Finally let

L
∆
=

N∑
i=1

Li, FSi(t)
∆
= P{Si 6 t}

and

GL1,...,LN (z1, . . . , zN )
∆
= E

[
zL1

1 · · · z
LN
N

]
.

The multiclass steady-state distributional law can be stated as follows:

Theorem 5 (Bertsimas and Mourtzinou [4]). For a multiclass queueing system that
satisfies Assumptions A.1–A.4, the joint generating function of the number of cus-
tomers in the system from all classes and the individual system times are related as
follows:

GL1,...,LN (z1, . . . , zN )

= 1 +
N∑
i=1

∫ ∞
0

∫ t

0

N∏
j=1
j 6=i

Ke,j(zj ,x)
∂

∂x
Ke,i(zi,x) dFSi (t), (11)

where

Ke,i(zi, t)
∆
= E

[
z
Ne
ai

(t)
i

]
=
∞∑
n=0

zni P
{
Ne
ai(t) = n

}
is the generating function of Ne

ai(t).

Note that for each individual class Theorem 5 yields the single class distributional law
of Theorem 4. Moreover, the generating function of the total number of customers in

the system, L
∆
=
∑N

i=1 Li, can be found if we set z1 = · · · = zN = z in (11).

4.2. Transient single class distributional laws

In this section we generalize the single class distributional law to the transient
domain for general queueing systems satisfying Assumptions A.1–A.3.
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Figure 1. A scenario for a single class system in the transient regime.

We use the notation introduced in section 2. For ease of the presentation, we first
prove the transient single class distributional law assuming that the system starts with
L(0) = 0 with probability 1 (w.p.1) and V (0) = V̂ (0); we then state the more general
theorem that accounts for an arbitrary distribution of L(0) and V (0).

A transient law between L(t) and S(t) when the system starts with no initial
customers

Theorem 6. For a queueing system that satisfies Assumptions A.1–A.3 and starts with
L(0) = 0 w.p.1, and V (0) = V̂ (0), the transient number in the system L(t) and the
transient system time S(t) are related as follows:

GL(z, t) = 1 + (z − 1)
∫ t

0
h(u)P

{
S(u) > t− u

}
Ko(z,u, t) du, (12)

where

Ko(z,u, t)
∆
= E

[
zN

o
a (u,t)] =

∞∑
n=0

znP
{
No
a (u, t) = n

}
is the generating function of No

a (u, t).

Proof. The proof of the relationship between L(t) and S(t) is based on the following
observation: In an overtake-free system that starts empty, in order to have at least n
(n > 1) customers in the system at time t, the nth most recently arrived customer with
respect to t, i.e., the nth customer counting backwards in time, should still be in the
system at time t.

This observation is based on Assumptions A.3 and A.2, since each customer
arrives individually and stays in the system until served and also customers leave the
system in the order of their arrival. Therefore, if the nth most recently arrived customer
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is in the system at time t, all the customers that came after him (and there are n− 1
of those) are also still in the system at time t.

Therefore, the event {L(t) > n} is equivalent to the intersection of the following
events:

E1: the nth most recently arrived customer with respect to t arrives at time (u−du,u],

E2: his system time, is greater than t− u, for all u ∈ (0, t].

We can further decompose event E1 into the event of an arrival at time (u−du,u]
(that occurs with probability h(u) du) and the event of n− 1 arrivals in (u, t] given an
arrival at (u−du,u] (that occurs with probability P{No

a (u, t) = n−1}). Furthermore,
the probability of event E2 is P{S(u) > t − u}. Finally, according to Assumption
A.1, S(u) is independent of the path of the arrival process after time u and therefore
events E1 and E2 are independent. The previous discussion leads to the relationship
for n > 1:

P
{
L(t) > n

}
=

∫ t

0
h(u)P

{
S(u) > t− u

}
P
{
No
a (u, t) = n− 1

}
du. (13)

Given that P{L(t) > 0} = 1 and that P{L(t) = n} = P{L(t) > n}−P{L(t) > n+1}
we can easily calculate the generating function GL(z, t) to obtain (12). �

Note that although V̂ (0) is not explicitly present in (12), it does influence both
L(t) and S(t), as it will become apparent in the sequel.

A transient law between L(t) and S(t) with arbitrary initial conditions
We, now, generalize the distributional law of Theorem 6 to account for the effect

of initial customers. We assume, that the system starts with k initial customers, i.e.,
L(0) = k w.p.1 and initial work V (0) = V̂ (0) + X1 + · · · + Xk, where V̂ (0) is the
set-up work and Xi is the service time requirement of the ith initial customer.

Theorem 7. For a queueing system that satisfies Assumptions A.1–A.3, Assumption
B and starts with L(0) = k w.p.1 and V (0) = V̂ (0) + X1 + · · · + Xk, the transient
number of customers in the system, L(t), and the transient system time S(t) are related
as follows:

GL(z, t) = I (k)(z, t) + P
{
V (0) < t

}
×
[

1 + (z − 1)
∫ t

0
h(u)P

{
S(u) > t− u | V (0) < t

}
Ko(z,u, t) du

]
, (14)

where

I (k)(z, t)
∆
= K(z, t)

[
zkP{Vk > t} +

k−1∑
i=1

zi
[
P{Vi > t}− P{Vi+1 > t}

]]
,
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with Vi
∆
= V̂ (0) +Xk + · · · +Xi, i = 1, . . . , k, and also

Ko(z,u, t)
∆
= E

[
zN

o
a (u,t)] =

∞∑
n=0

znP
{
No
a (u, t) = n

}
,

K(z, t)
∆
= E

[
zNa(t)] =

∞∑
n=0

znP
{
Na(t) = n

}
.

Proof. Let M (t) be the number of initial customers present in the system at time t,

M (t) ∈ {1, . . . , k}. Let also Vi
∆
= V̂ (0) +Xk + · · ·+Xi, i = k, . . . , 1. Then,

P
{
M (t) = 0

}
= P

{
V (0) < t

}
and P

{
M (t) = k

}
= P{Vk > t}

and

P
{
M (t) = i

}
= P{Vi > t}− P{Vi+1 > t}, for i = 1, . . . , k.

Let us define

GLi(z, t)
∆
= E

[
zL(t) |M (t) = i

]
,

then

GL(z, t) = P
{
M (t) = 0

}
GL0 (z, t) +

k∑
i=1

P
{
M (t) = i

}
GLi(z, t). (15)

In the special case where M (t) = 0 the analysis of Theorem 6 holds, i.e., in order
to have at least n (n > 1) customers in the system at time t, given that no initial
customer is present, the nth most recently arrived customer with respect to t should
still be in the system at time t. Hence,

GL0(t) = 1 + (z − 1)
∫ t

0
h(u)P

{
S(u) > t− u | V (0) < t

}
Ko(z,u, t) du. (16)

On the other hand, if i = 1, 2, . . . , k of the initial customers are present at time t we
have that

P
{
L(t) = n |M (t) = i

}
= P

{
Na(t) = n− i

}
for n > i,

P
{
L(t) = n |M (t) = i

}
= 0 for n < i.

Therefore, if we define

K(z, t)
∆
= E

[
zNa(t)] =

∞∑
n=0

znP
{
Na(t) = n

}
we have that

GLi(z, t) =
∞∑
n=i

znP
{
Na(t) = n− i

}
= ziK(z, t). (17)
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Combining, (15), (16) and (17) we complete the proof. �

4.3. Transient multiclass distributional law

We, next, consider a general queueing system, with N classes of customers having
independent arbitrary arrival streams and different service requirements. We assume
that the system satisfies Assumptions A.1–A.4.

Let No
ai(u, t) be the number of customers from class i that arrived in the time

interval (u, t], given a class i arrival at (u − du,u], and hi(t)∆t (as ∆t → 0) be the
probability of a class i arrival in (t−∆t, t]. Furthermore, let Si(t) be the time spent in
the system for class i customers that arrived at (t− dt, t] and let Li(t) be the number
of class i customers in the system as observed at time t. Finally let

L(t)
∆
=

N∑
i=1

Li(t), ~z
∆
= (z1, . . . , zN )

and

GL1,...,LN (~z, t)
∆
= E

[
zL1(t)

1 · · · zLN (t)
N

]
.

Assuming that the system starts empty we have:

Theorem 8. For a queueing system that satisfies Assumptions A.1–A.4 and starts
empty, we have that

GL1,...,LN (~z, t)

= 1−
N∑
j=1

∫ t

0

∂

∂a
Ke,j(zj , a, t)

N∏
i=1
i6=j

Ke,i(zi, a, t)P
{
Sj(a) > t− a

}
da, (18)

where

Ko,i(zi,u, t)
∆
= E

[
zN

o
ai

(u,t)] =
∞∑
n=0

zni P
{
No
ai(u, t) = n

}
and

Ke,i(zi, a, t)
∆
= 1 + (zi − 1)

∫ t

a
hi(u)Ko,i(zi,u, t) du.

Proof. The essential observation of the proof is that, for all i = 1, . . . ,N , in order to
have at time t at least ni customers of the ith class in the system, where ni > 1, we
must have that the nith most recently arrived customer of the ith class is still in the
system at t. Hence, the event {

⋂N
i=1(Li(t) > ni)} is equivalent to the intersection of

the following events (for all ti ∈ (0, t] and for all i = 1, . . . ,N ):

E1,i: a customer of the ith class arrives at (ti − dti, ti],
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Figure 2. A scenario for a 2-class system in the transient regime.

E2,i: the system time of the customer who arrived at (ti−dti, ti] is greater than t− ti,

E3,i: there are exactly ni − 1 arrivals at (ti, t] given an arrival at (ti − dti, ti] for the
ith class.

Therefore,

P

{
N⋂
i=1

(
Li(t) > ni

)}
=

∫ t

t1=0
· · ·
∫ t

tN=0
P

{
N⋂
i=1

E1,i

N⋂
i=1

E2,i

N⋂
i=1

E3,i

}
.

From Assumptions A.1 and A.3 events E1,i, E2,i and E3,i are independent for any
fixed ti. Moreover, from Assumption A.4, the events E1,i and E3,i for all i = 1, . . . ,N ,
are also mutually independent. Hence, we can write that

P

{
N⋂
i=1

(
Li(t) > ni

)}
=

∫ t

t1=0
· · ·
∫ t

tn=0
P

{
N⋂
i=1

E2,i

}
N∏
i=1

P{E1,i}P{E3,i}.

Conditioning on the type of customer that arrived first to the system we have

P

{
N⋂
i=1

(
Li(t) > ni

)
∩ (the customer who arrived the first is of class j)

}

=

∫ t

tj=0

∫ t

t1=tj

· · ·
∫ t

tj−1=tj

∫ t

tj+1=tj

· · ·
∫ t

tN=tj

P

{
N⋂
i=1

E2,i

}
N∏
i=1

P{E1,i}P{E3,i}.

Conditioning on the event E2,j we have that

P

{
N⋂
i=1

(
Li(t) > ni

)
∩ (the customer who arrived the first is of class j)

}
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=

∫ t

tj=0

∫ t

t1=tj

· · ·
∫ t

tN=tj

P

{
N⋂
i=1

E2,i | E2,j

}
P{E2,j}

N∏
i=1

P{E1,i}P{E3,i}.

Since the discipline is FIFO (Assumption A.2), for any arbitrary choice of time epochs
ti, i = 1, . . . ,n, such that tj = mini ti we have that

P

{
N⋂
i=1

E2,i | E2,j

}
= 1,

i.e., if the customer that arrives first is still in the system at an observation epoch t,
all the customers that arrived after him are, also, still in the system at t. Therefore,

P

{
N⋂
i=1

(
Li(t) > ni

)
∩ (the customer who arrived the first is of class j)

}

=

∫ t

tj=0
P{E2,j}P{E1,j}P{E3,j}

N∏
i=1
i6=j

∫ t

ti=tj

P{E1,i}P{E3,i}.

From the definitions of the events E1,i, E2,i and E3,i we have that∫ t

ti=tj

P{E1,i}P{E3,i} =

∫ t

tj

hi(ti)P
{
No
ai(ti, t) = ni − 1

}
dti, i 6= j,

P{E2,j}P{E1,j}P{E3,j} = hj(tj) dtjP
{
Sj(tj) > t− tj

}
P
{
No
aj (tj , t) = nj − 1

}
,

where in the second formula we use the fact that Snj conditioned on the arrival time
of the nj th customer does not depend on nj , and therefore it is distributed as Sj(tj).
Hence,

P

{
N⋂
i=1

(
Li(t) > ni

)}
=

N∑
j=1

∫ t

0
hj(tj)P

{
Sj(tj) > t− tj

}
×P

{
Naj (tj , t) = nj − 1

} N∏
i=1
i6=j

Hi(tj , t,ni) dtj , (19)

where we define

Hi(tj , t,ni)
∆
=

∫ t

tj

hi(ti)P
{
No
ai(ti, t) = ni − 1

}
dti.
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In the general case where at time t there are no customers from class k ∈ A ⊂
{1, . . . ,N} in the system, and there are ni > 1 customers from class i /∈ A we can
prove in a similar way

P

{ ⋂
i/∈A

(
Li(t) > ni

)}
=
∑
j /∈A

∫ t

0
hj(tj)P

{
Sj(tj) > t− tj

}
×P

{
No
aj (tj , t) = nj − 1

} ∏
i6=j
i/∈A

Hi(tj , t,ni) dtj . (20)

We now compute P{
⋂N
i=1(Li(t) = ni)} iteratively, using (19), (20) and the fact that

for ni > 0

P

{
i⋂

k=1

(
Lk(t) = nk

) N⋂
j=i+1

(
Lj(t) > nj

)}

= P

{
i−1⋂
k=1

(
Lk(t) = nk

) N⋂
j=i

(
Lj(t) > nj

)}

−P
{

i−1⋂
k=1

(
Lk(t) = nk

)
∩
(
Li(t) > ni + 1

) N⋂
j=i+1

(
Lj(t) > nj

)}
.

Having calculated P{L1(t) = n1, . . . ,LN (t) = nN}, some tedious but straight-
forward manipulation yields (18). �

Remarks
1. In the case of a single class we define

Ke(z, a, t)
∆
= 1 + (z − 1)

∫ t

a
h(u)Ko(z,u, t) du,

and (18) yields (12). Moreover, the generating function of the total number of
customers L(t) in the system can be obtained if we set z1 = z2 = · · · = zN in
(18):

GL(z, t) = 1−
N∑
j=1

∫ t

0

∂

∂u
Ke,j(z,u, t)

×
N∏
i6=j

Ke,i(z,u, t)P
{
Sj(t− u) > u

}
du. (21)

2. Notice that (18) is the transient counterpart of (11), although in the latter we have
performed an integration by parts. We can not perform the same integration in
(18) since the distribution function of S(t) depends on t.
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3. Notice also that for renewal arrival processes

Ko,i(zi,u, t) = Ko,i(zi, t− u) and Ke,i(zi,u, t) = Ke,i(zi, t− u),

where

Ko,i(zi, t− u)
∆
= E

[
zN

o
a (t−u)] and Ke,i(zi, t− u)

∆
= E

[
zN

e
a (t−u)]

are the generating functions of the number of arrivals from an ordinary and an
equilibrium renewal process, respectively.

4. Finally, one can prove multiclass transient distributional under arbitrary initial
conditions by combining the proof techniques used in Theorems 6 and 7. The
analysis is complicated and therefore it is omitted.

5. Transient performance analysis of specific queueing systems

In this section we apply transient Little’s law and the transient distributional laws
to derive the transient performance analysis of several systems. The following table
summarizes our results:

System Type of results

M (t)/G(t)/∞ exact formulae
GI(t)/GI(t)/1 integral equations
transient GI/GI/1 integral equations & asymptotic formulae
transient GI/D/s integral equations & asymptotic formulae
M (t)/GI(t)/1 algorithm for exact numerical solutions
ΣGI(t)/GI(t)/1 integral equations
transient ΣGI/GI/1 integral equations & asymptotic formulae

5.1. The M (t)/GI(t)/∞ queueing system

We start by investigating the transient behavior of the M (t)/GI(t)/∞ queueing
system; which often arises in wireless communication systems, where we use the
nonhomogeneity to capture the important time-of-day effect and we ignore the resource
constraints (limited number of lines) by assuming an infinite number of servers (see
Massey and Whitt [23]). Since this system is not overtake-free, the distributional laws
presented in the previous sections do not directly apply. However, we can still use
them as the building blocks of our analysis since they do apply in the special case
of the M (t)/D/∞ system, when all customers have the same deterministic service
requirement and hence they leave the system in the order of their arrival.

Hence we start by proving the following proposition.
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Proposition 9. For a M (t)/D/∞ system with arrival rate λ(t) and service time x that

starts empty with no initial work, if we define Λ(t)
∆
=
∫ t

0 λ(τ ) dτ , we have that

GL(z, t) =

{
e−(Λ(t)−Λ(t−x))(1−z), if t > x,

e−Λ(t)(1−z), otherwise.
(22)

Proof. From Theorem 6 we have that

GL(z, t) = 1 + (z − 1)
∫ t

0
λ(u)P

{
S(u) > t− u

}
Ko(z,u, t) du, (23)

where S(u) denotes the system time of a customer that arrived at time u. Since
there are infinitely many servers and no initial work there is no waiting time, so that
S(u) = x. Moreover,

if t < x then P
{
S(u) > t− u

}
= 1 for u ∈ [0, t),

if t > x then P
{
S(u) > t− u

}
= 1 for u ∈ [t− x,x),

P
{
S(u) > t− u

}
= 0 for u ∈ [0, t− x).

(24)

On the other hand, since the arrival process is a nonhomogeneous Poisson of rate
λ(t), we have that Ko(z,u, t) = e−(Λ(t)−Λ(u))(1−z). Substituting Ko(z,u, t) and (23),
(24) we obtain (22). �

We next consider the M (t)/GI(t)/∞ queueing system and denote by X(t) the
service time of a customer entering service at (t − dt, t], and we prove the following
theorem.

Theorem 10. For a M (t)/GI(t)/∞ system that starts empty, we have that the number
of customers in the system at time t, L(t), is distributed as a Poisson random variable
with rate

∫ t
0 λ(τ )P{X(τ ) > t− τ} dτ , i.e.,

GL(z, t) = e−(1−z)
∫ t

0
λ(τ )P {X(τ )>t−τ} dτ

. (25)

Proof. We can decompose this system into a number of M (t)/D/∞ systems. Sup-
pose that instead of having a general time-dependent service distribution the service
time has P{X(t) = xj} = pj(t) for j = 1, 2, . . . , k. The customers with service
times xj can be treated as a separate class Cj of customers with arrival process be-
ing a nonhomogeneous Poisson process of rate λ(t)pj(t). Therefore, if we denote by

Λj(t)
∆
=
∫ t

0 λ(τ )pj(τ ) dτ , we have

GLj (z, t) =

{
e−(Λj (t)−Λj (t−xj))(1−z), if t > xj ,
e−Λj (t)(1−z), otherwise.
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Moreover as discussed in Ross [29, p. 24], these processes are mutually independent
and thus

GL(z, t) =
k∏
j=1

GLj (z, t) = e
−(1−z)

∑k

j=1
Λj(t)

e
(1−z)

∑
j: xj6t

Λj(t−xj)
. (26)

Using simple algebraic manipulations on the exponents we obtain (25) for this case.
Since any general distribution is the limit of a sequence of mixtures of deterministic
distributions, (25) holds in general. Moreover, the generating function GL(z, t) in (25)
for every time t corresponds to a Poisson random variable of rate

∫ t
0 λ(τ )P{X(τ ) >

t− τ} dτ. �

Notice that one can actually obtain the expected number of customers in the
M (t)/GI(t)/∞ system,

E
[
L(t)

]
=

∫ t

0
λ(u)P

{
X(u) > t− u

}
du, (27)

directly from the transient form of Little’s law, (7), by substituting h(u) = λ(u)
and S(u) = X(u), since there is no waiting. Furthermore, (27) is independent of the
Poisson assumption and gives the expected number of customers in any GI(t)/G(t)/∞
system.

In the special case of the M (t)/GI/∞ system, Theorem 10 can be traced back
to Palm [27], Bartlett [2], Doob [11], Khintchine [19] and Prékopa [28], all before
1958. For a recent reference on Theorem 10 and its extension to networks of infinite
server queues with non-stationary Poisson input see Massey and Whitt [23].

5.2. The GI(t)/GI(t)/1 queueing system under FIFO

In this section we consider a single server system and use the notation of section 2.
We assume that the system starts empty with initial work V (0) equal the set-up work
V̂ (0), and that customers are served according to a FIFO discipline. We furthermore
impose a stronger version of Assumption B, namely:

Assumption C. The system clears first the initial work V (0), and then starts working
on the customers who arrive after time 0. Moreover, the server never idles as long as
there is work in the system.

We denote by X(t) the time a customer who enters service at (t−dt, t], spends in
service. We denote by Q(t) the number of customers waiting in the queue at time t and
by L(t) the number of customers in the system, i.e., the queue plus the server, at time t.
Similarly, we denote by W (t) the time that a customer who arrived at (t−dt, t] spends
waiting in the queue and by S(t) the time that a customer who arrived at (t − dt, t]
spends in the system. Finally, we denote by GL(z, t) (resp. GQ(z, t)) the generating
function of L(t) (resp. Q(t)).
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For this system we derive another relationship between L(t) and Q(t), which
in contrast with the laws presented in section 4, does not hold for all overtake-free
systems, but it requires the existence of a single server, and it is, therefore, specialized
to the case of a GI(t)/GI(t)/1 system under FIFO.

Proposition 11. For a GI(t)/GI(t)/1 queueing system with FIFO, that starts with
L(0) = 0 w.p.1, initial work V (0), and satisfies Assumptions A.1–A.3 and Assumption
C, the transient quantities L(t) and Q(t) are related as follows:

GL(z, t) = (1− z)idle(t) + (1− z)P{V (0) > t}K(z, t) + zGQ(z, t), (28)

where idle(t)
∆
= P{the system is empty at time t} and

K(z, t)
∆
= E

[
zNa(t)] =

∞∑
n=0

znP
{
Na(t) = n

}
.

Proof. Notice that at time t the system can be in either of the following states:

1. It is empty (with probability idle(t)).

2. The server is working on the initial work, V (0) (with probability P{V (0) > t}).

3. It is busy servicing customers (with probability 1− P{V (0) > t}− idle(t)).

In the first case, the number of customers in the queue, Q(t), and in the system, L(t),
satisfy Q(t) = L(t) = 0. Similarly, in the second case, Q(t) = L(t) = Na(t), as in
this case, all the customers that arrived to the system up to time t are still waiting
for the server to finish the initial set-up work, V (0). However, in the third case,
L(t) = Q(t) + 1, as one of the customers is receiving service at time t. We can,

therefore, decompose the generating functions of Q(t) and L(t), GQ(z, t)
∆
= E[zQ(t)]

and GL(z, t)
∆
= E[zL(t)] as follows:

GQ(z, t) = idle(t) +K(z, t)P
{
V (0) > t

}
+
(
1− idle(t)− P

{
V (0) > t

})
GQB (z, t),

GL(z, t) = idle(t) +K(z, t)P
{
V (0) > t

}
+ z
(
1− idle(t)− P

{
V (0) > t

})
GQB (z, t),

where GQB (z, t)
∆
= E[zQ(t) | the server is servicing customers]. Combining the last

two relations we obtain (28). �

The above proposition together with the transient distributional laws of section 4 leads
to a complete description of the GI(t)/GI(t)/1 system as a function of the emptiness
function, idle(t), as the following theorem demonstrates.

Theorem 12. For a GI(t)/GI(t)/1 system under FIFO that starts with L(0) = 0
and initial work V (0) and satisfies Assumptions A.1–A.3 and C, the probability dis-
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tribution function of the waiting time of a customer who arrived to the system at

(to − dto, to], FW (to)(x)
∆
= P{W (to) 6 x}, satisfies the following integral equation∫ t

0
h(u)Ko(z,u, t)

[ ∫ ∞
0

dFW (u)(a)P
{
X(u+ a) > t− u− a

}
− zP

{
W (u) > t− u

}]
du

= 1− idle(t)− P
{
V (0) > t

}
K(z, t), (29)

where

idle(t)
∆
= P{the server is idle at time t},

dFW (u)(·) is the pdf of W (u), Ko(z,u, t)
∆
= E[zN

o
a (u,t)] and K(z, t)

∆
= E[zNa(t)].

Proof. Notice that Theorem 7 holds for the pair (L(t), S(t)), if we regard “the system”
as the queue and the server, as well as the pair (Q(t), W (t)), if we regard “the system”
as just the queue. Therefore,

GQ(z, t) = 1 + (z − 1)
∫ t

0
h(u)P

{
W (u) > t− u

}
Ko(z,u, t) du, (30)

GL(z, t) = 1 + (z − 1)
∫ t

0
h(u)P

{
S(u) > t− u

}
Ko(z,u, t) du. (31)

Moreover, from the definitions of S(t), W (t) and X(t) we have that

P
{
S(t) > x

}
=

∫ ∞
a=0

P
{
a 6W (t) 6 a+ da

}
P
{
X(t+ a) > x− a

}
, (32)

so that from (31) we get

GL(z, t) = 1+ (z−1)
∫ t

0
h(u)

∫ ∞
0

dFW (u)(a)P
{
X(u+a) > t−u−a

}
Ko(z,u, t) du.

Combining the last equation with (28) we complete the proof. �

By solving eq. (29) and then using (32) we also obtain the pdf of S(t) as a
function of idle(t). Moreover, using the distributional laws of Theorem 6 we ob-
tain the description of the GI(t)/GI(t)/1 system with no initial customers, again as
a function of idle(t). In the case where L(0) = k we can use a similar analysis,
see Mourtzinou [24]. However, solving the equation of Theorem 12 for the general
GI(t)/GI(t)/1 case is quite complicated and therefore in the sequel we consider two
special cases: the M (t)/GI(t)/1 and the GI/GI/1 queue. In both cases, we solve for
the fundamental quantities of the system as function of idle(t) and then we calculate
idle(t) from analytic properties of Laplace transforms.
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5.3. The M (t)/GI(t)/1 queueing system under FIFO

In this section we analyze single server systems with nonhomogeneous Poisson
arrivals and general time-dependent service time distributions as defined in section 2,
that satisfy the following set of assumptions

Assumption D

D.1. There exists a set of ordered time epochs, tai, i = 0, 1, 2, . . . , with ta0
∆
= 0,

such that the arrival rate λ(t) is piecewise constant with value λ(t) = λi for
t ∈ [tai, tai+1).

D.2. There exists a set of ordered time epochs, tsi, i = 0, 1, 2, . . . , with ts0
∆
= 0, such

that the service time distribution X(t)
d
= Xi for t ∈ [tsi, tsi+1).

We define the set of all times epochs T
∆
= {tai, i ∈ Z+} ∪ {tsi, i ∈ Z+} and

let the set O
∆
= {0, t1, t2, . . .} be the ordering of the elements of T such that ti 6 tj

for i 6 j.
Since the arrival process is memoryless, we can decompose the system in the time

intervals [ti, ti+1), for i = 1, 2, . . . , in order to calculate the distribution of the waiting
time. In other words, for t ∈ [ti, ti+1), if also t ∈ [tak, tak+1) and t ∈ [tsm, tsm+1),
the original system behaves as an M/GI/1 queueing system with arrival rate λk,
service time distribution represented by the random variable Xm and the appropriate
initial work conditions. Based on the above observation we define

ΦW0(w, s) =
(w/η0)φV (0)(η0)− φV (0)(w)
λ0φX0(w)− λ0 − s+ w

, (33)

where φV (0)(w) is the Laplace transform of the initial work at t = 0, V (0) and η0
∆
=

η0(s) is the unique root of λ0φX0 (w)−λ0−s+w = 0 in the region <(s) > 0, <(w) > 0.
We also define φW0(w, t) to be the inverse Laplace transform of ΦW0 (w, s), i.e.,

ΦW0(w, s)
∆
=

∫ ∞
0

e−stφW0(w, t) equivalently φW0(w, t) = L−1{ΦW0(w, s)
}
.

Finally, we define for all i = 1, 2, . . .

ΦWi(w, s) =
(w/ηi)φWi−1(ηi, ti)− φWi−1(w, ti)

λkφXm(w)− λk − s+ w
, (34)

where ηi
∆
= ηi(s) is the unique root of λkφXm(w) − λk − s + w = 0 in the region

<(s) > 0, <(w) > 0 (recall that Benĕs [3] has shown that in this region this equation
has a unique solution).

We next state the main theorem of this section (see Mourtzinou [24]).
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Theorem 13. For an M (t)/GI(t)/1 queueing system under FIFO that satisfies As-
sumptions C, D and starts with an arbitrary initial work V (0) we can evaluate the
Laplace transform of the distribution of W (t) as follows:

φW (w, t) = φWi(w, t− ti) for t ∈ [ti, ti+1), (35)

where t0
∆
= 0 and φWi(w, t) is calculated recursively as follows:

φW0(w, t) = L−1
{

(w/η0)φV (0)(η0)− φV (0)(w)
λ0φX0(w) − λ0 − s+ w

}
,

φWi(w, t) = L−1
{

(w/ηi)φWi−1(ηi, ti)− φWi−1(w, ti)

λkφXm(w)− λk − s+ w

}
for t ∈ [ti, ti+1),

where [ti, ti+1)
∆
= [tak, tak+1) ∩ [tsm, tsm+1).

The above theorem provides a recursive algorithm for obtaining the Laplace transform
of the waiting time in a M (t)/G(t)/1 queue that satisfies Assumptions D.

Independently, Choudhury et al. in [8] used a very similar approach to obtain the
performance of the M (t)/GI(t)/1 queue under Assumptions D. The only difference is
that we obtained the performance of the M/GI/1 queue using distributional laws and
they obtained it using the Takács integrodifferential equation (see Takács [31]). In the
same paper the authors also proposed an algorithm to numerically invert the Laplace
transforms. We do not report numerical results since they coincide with those reported
in Choudhury et al. [8].

5.4. Transient analysis of GI/GI/1 queueing system under FIFO

In this section we focus on an important class of systems where customers ar-
rive according to a single equilibrium renewal arrival process, have general service
requirements and the single server has a constant rate.

We use the notation of the section 5.2. Moreover, since the arrival process
is renewal, the number of arrivals, No

a (u, t) only depends on the difference t − u.
Therefore, in this section we write Ko(z,u, t) as Ko(z, t−u). Moreover, as the arrival
process is an equilibrium process Na(t) = Ne

a (t), h(u) = λ for all u > 0, where λ is

the arrival rate, and also K(z, t)
∆
= E[zNa(t)] = Ke(z, t). We also define by α(s) the

Laplace transform of the interarrival times.
Since the GI/GI/1 queueing system is just a special case of the GI(t)/GI(t)/1

system, Theorem 12 still holds and the integral equation takes the following form:

λ

∫ t

0
Ko(z, t− u)

(
P
{
W (u) +X > t− u

}
− zP

{
W (u) > t− u

})
du

= 1− idle(t)− P
{
V (0) > t

}
Ke(z, t). (36)
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The integral equation (36) is still difficult to solve analytically for general arrival
processes. One possibility would be to solve it numerically, and then use the distri-
butional laws to find the complete description of the GI/GI/1 system numerically.
In the next section we follow another approach and we examine the behavior of the
GI/GI/1 system for large times t � to and under the assumption that the traffic
intensity ρ→ 1.

In the rest of this section we focus our attention to another pair of performance
measures, namely, the expected number of customers in the system at time t, E[L(t)],
and the expected number of customers in the queue at time t, E[Q(t)]. We define
LE[L](s) and LE[Q](s) to be the Laplace transform of E[L(t)] and E[Q(t)], respec-
tively, i.e.,

LE[L](s)
∆
=

∫ ∞
0

e−stE
[
L(t)

]
dt and LE[Q](s)

∆
=

∫ ∞
0

e−stE
[
Q(t)

]
dt,

and we also define by φW (w, t) the Laplace transform of W (t) and by ΦW (w, s) the
double Laplace transform of W (·), i.e.,

φW (w, t)
∆
=

∫ ∞
0

e−wx dFW (t)(x) and ΦW (w, s)
∆
=

∫ ∞
0

e−stφW (w, t) dt.

Similarly, S(t) has Laplace transform φS(w, t) and double Laplace transform ΦS(w, s).

Theorem 14. For a GI/GI/1 system that starts empty with initial work V (0), and
satisfies Assumption C, the Laplace transform of the expected number of customers in
the system and the queue are given by

LE[Q](s) =
λ

s2 −
sLidle(s)− φV (0)(s)
s(φX(s)− 1)

and

LE[L](s) =
λ

s2 −
sLidle(s)− φV (0)(s)
s(φX (s)− 1)

φX (s), (37)

where

Lidle(s)
∆
=

∫ ∞
0

e−stidle(t) dt

is the Laplace transform of idle(t) and

φV (0)(s)
∆
=

∫ ∞
0

e−st dP
{
V (0) 6 t

}
is the Laplace transform of V (0).

Proof. From the transient form of Little’s law we have that

E
[
L(t)

]
= λ

∫ t

0
P
{
S(u) > t− u

}
du and E

[
Q(t)

]
= λ

∫ t

0
P
{
W (u) > t− u

}
du.
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Taking Laplace transforms in the first of the previous two equations we obtain

LE[L](s) = λ

∫ ∞
0

e−st
∫ t

0
P
{
S(u) > t− u

}
du dt

= λ

∫ ∞
0

e−sa
∫ ∞

0
e−suP

{
S(u) > a

}
du da,

where we set a
∆
= t− u and we changed integration variables. Equivalently, from the

definition of the double Laplace transforms:

LE[L](s) =
λ

s2 −
λ

s
ΦS(s, s) and LE[Q](s) =

λ

s2 −
λ

s
ΦW (s, s). (38)

Moreover, we know that S(u) = W (u) +X, so taking Laplace transforms

ΦS(s, s) = φX (s)ΦW (s, s). (39)

On the other hand we have, from Proposition 11, that for a system that starts empty
with initial work V (0),

GL(z, t) = (1− z)idle(t) + (1− z)P
{
V (0) > t

}
Ke(z, t) + zGQ(z, t),

where

Ke(z, t)
∆
= E

[
zN

e
a (t)] =

∞∑
n=0

znP
{
Ne
a (t) = n

}
.

By differentiation we get that

E
[
L(t)

]
= −idle(t)− P

{
V (0) > t

}
+ 1 +E

[
Q(t)

]
and by taking Laplace transforms

LE[L](s) = −Lidle(s) +
1
s
φV (0)(s) + LE[Q](s). (40)

Solving the linear system of eqs. (38)–(40), we complete the proof. �

It is important to notice that since the transient form of Little’s law holds independently
of FIFO, (37) holds independently of the service discipline, as long as Assumption
C is satisfied. However, the form of the emptiness function, which is not in general
known and can not be obtained from the analytic properties of LE[L](s) and LE[Q](s),
changes with the policy and so do E[Q(t)] and E[L(t)]. Under the FIFO discipline we
will use asymptotics to obtain a closed form expression for Lidle(s), from the analytic
properties of ΦW (w, s), in the next section.

Finally notice that we can obtain the steady-state queue length, E[Q], from the
properties of the Laplace transforms as follows:

E[Q] = lim
s→0

sLE[Q](s) = lim
s→0

[
λ

s
− sLidle(s)− φV (0)(s)

φX (s)− λ

]
.
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In the sequel we will show, using the asymptotic form of Lidle(s), that under FIFO
and as ρ→ 1, we obtain for E[Q] exactly the formula we obtained in Bertsimas and
Mourtzinou [4].

The asymptotic heavy traffic analysis of the GI/GI/1 queue under FIFO
We, next, analyze the asymptotic heavy traffic transient behavior of the GI/GI/1

queueing system, where we define asymptotic heavy traffic behavior to mean the
behavior as the traffic intensity ρ → 1 and the observation time t is large, i.e., as
t → ∞. As we will see in the proof of the next theorem, in the transform domain,
where we are dealing with

GQ(z, s)
∆
=

∫ ∞
0

e−stE
[
zQ(t)] dt

and

ΦW (w, s)
∆
=

∫ ∞
0

e−st
∫ ∞

0
e−wx dFW (t)(x) dt,

we can equivalently define the asymptotic heavy traffic behavior to mean the behavior
for z relatively large, i.e., z → 1, and s,w relatively small, i.e., s,w → 0.

In particular, in the rest of this section we first obtain asymptotic expressions of
the distributional laws in the transform domain under heavy traffic conditions. Us-
ing these expressions we obtain an asymptotic closed form expression of the double
Laplace transform of the waiting time under heavy traffic conditions as a function of
the Laplace transform of the emptiness function, Lidle(s). Then, we also obtain an as-
ymptotic closed form expression for Lidle(s) under heavy traffic conditions, and hence
we complete our asymptotic heavy traffic analysis of the GI/GI/1 queueing system.

The starting point of our analysis is the following proposition (see Bertsimas and
Mourtzinou [5]), where we use the notation that h(x) ∼ r(x) as x → a means that
limx→a(h(x)/r(x)) = 1.

Proposition 15. Asymptotically, as t → ∞ and z → 1 the kernels Ke(z, t) and
Ko(z, t) behave as follows:

Ke(z, t) ∼ e−tf (z), (41)

Ko(z, t) ∼
[
1− 1

2 (1− z)(c2
a − 1) + O

(
(1− z)2)] e−tf (z), (42)

where f (z)
∆
= λ(1− z)− λ(1− z)2(c2

a − 1)/2.

Given that we will extensively use the asymptotic forms in later chapters we will
evaluate numerically the accuracy of our asymptotic expansion as a function of time
for different values of z and different arrivals processes. In the following figures the
solid line corresponds to the exact value of the kernel Ke(z, t), obtained via numerical
Laplace inversion, and the dashed line to the asymptotic expansion. To invert the
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Figure 3. The function Ke(z, t) for Erlang 2 arrivals.

Figure 4. The function Ke(z, t) for Erlang 16 arrivals.

Laplace transform of Ke(z, t) we used the two algorithms in Hosono [15] and in
Abate and Whitt [1] which we programmed in Matlab and we got exactly the same
results. The results are shown in figures 3–6.

Notice that our expansion is indeed asymptotically exact as z → 1 and t → ∞.
Moreover, in all the cases we consider, it is exact for t > 20. It is also interesting to
notice that our asymptotic expansion is more accurate for values of c2

a close to 1 and
indeed is exact for Poisson arrivals c2

a = 1. In other words it performs better for Erlang
2 than Erlang 16 arrivals and it also performs better for hyperexponential arrivals with
c2
a = 1.5 than for arrivals with c2

a = 2.
It is important to notice that according to the line of arguments in Mourtzinou [24],

−f (z) is the root of 1 − zα(s) = 0 for small values of s and for values of z close
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Figure 5. The function Ke(z, t) for hyperexponential arrivals with c2
a = 1.5.

Figure 6. The function Ke(z, t) for hyperexponential arrivals with c2
a = 2.

to 1, in other words

1− zα
(
−f (z)

)
= 0. (43)

Using the above asymptotic results we obtain the following theorem.

Theorem 16. In a GI/GI/1 queueing system under FIFO that starts empty with initial
work V (0), and satisfies Assumptions A.1–A.3 and C, the distributional laws take the
following form, asymptotically in heavy traffic:

GQ(z, s)∼ 1
s+ f (z)

[
1 + f (z)ΦW

(
s+ f (z), s

)]
, (44)

GL(z, s)∼ 1
s+ f (z)

[
1 + f (z)ΦS

(
s+ f (z), s

)]
, (45)
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with f (z) = λ(1 − z) − λ(1 − z)2(c2
a − 1)/2. Moreover, asymptotically under heavy

traffic conditions

GQ(z, s) ∼ 1
s+ f (z)

(
1 +

z − 1
z − φX(s+ f (z))

(
(s+ f (z)

)
Lidle(s)− φV (0)(w)

)
, (46)

ΦW (w, s) ∼ wLidle(s)− φV (0)(w)
1− α(s−w)φX (w)

1− α(s− w)
(w − s) , (47)

where φV (0)(s) is the Laplace transform of the initial work, Lidle(s) is calculated in
Proposition 17 and α(s) is the Laplace transform of the interarrival times.

Proof. To justify (44) we argue as follows: by taking the Laplace transform of the
transient distributional law applied to the pair (Q(t),W (t)) we obtain

GQ(z, s) =
1
s

+ λ(z − 1)

×
∫ ∞
t=0

e−st
[ ∫ t

u=0
P
{
W (u) > t− u

}
Ko(z, t− u) du

]
dt. (48)

We initially defined the asymptotic heavy traffic behavior of the system to mean the
behavior as the traffic intensity ρ → 1 and the observation time t is large, i.e., as
t → ∞. We know from the theory of Laplace transforms (Tauberian theorems, see
Cox [9]) that the behavior of GQ(z, t) as t → ∞ is associated with the behavior of
GQ(z, s) as s → 0. Moreover, as ρ → 1 and t → ∞ we have that Q(t) → ∞. From
the definition of

GQ(z, t)
∆
= E

[
e−Q(t) log(z)]

we observe that the behavior of Q(t) when Q(t)→∞ is associated with the behavior of
GQ(z, t) as z → 1. Hence, the asymptotic heavy traffic behavior of Q(t) is associated
with the behavior of GQ(z, s) for small values of s and z close to 1.

So, we have to prove that for small values of s and large values of z the RHS of
(48) yields the RHS of (44). Notice, now, that in (48) the second term is the Laplace
transform of the function

β(t)
∆
=

∫ t

u=0
P
{
W (u) > t− u

}
Ko(z, t− u) du.

Therefore, its behavior for s relatively small is related to the behavior of β(t) for t
relatively large. Since we are also interested in z close to 1, we can substitute the
asymptotic form of the kernel Ko(z, t− u) from (42)

Ko(z, t− u) ∼ f (z)
λ(1− z)

e−f (z)(t−u) as t→∞ and z → 1.

Using the above expression in (48) we obtain (44). Similarly, we prove (45).
Next, using a similar type of asymptotic expansions in (36) (see [24] for a more

detailed proof) we obtain (47) and (46) and therefore we complete the proof. �
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It is important to note, that if the renewal process is Poisson, the asymptotic expressions
of this theorem are exact with f (z) = λ(1 − z). Therefore, if we consider a system
with Poisson arrivals, the asymptotic relations of Theorem 16 are exact under any
traffic conditions and for any s. In particular, (47) is exact and yields

ΦWM/G/1
(w, s) =

φV (0)(w) − wLidle(s)
λ+ s− w − λφX (w)

,

which is the exact transient solution for a M/G/1 queue (see Kleinrock [20]).
We can obtain the z-transform of the steady-state queue length, denoted by GQ(z),

if we observe that GQ(z) = lims→0 sGQ(z, s). Indeed,

GQ(z) = lim
s→0

sGQ(z, s) ∼ z − 1
z − φX(f (z))

lim
s→0

sLidle(s) =
(1− ρ)(z − 1)
z − φX (f (z))

.

This is exactly the result obtained in Bertsimas and Mourtzinou [5].
To completely characterize the asymptotic behavior of the system we also need

to obtain an asymptotic closed form expression for Lidle(s).

Proposition 17. In a GI/GI/1 queue with initial work V (0), that is operating under
FIFO and satisfies Assumptions A.1–A.3 and C, asymptotically in heavy traffic, the
Laplace transform of the emptiness function for ρ < 1 is given as

idle(s) ∼ φV (0)(w2)
w2

with w2 =
−p1(s)−

√
(p1(s))2 − 4p0(s)p2(s)

2p2(s)
, (49)

where

p0(s)
∆
=
s

λ
− (c2

a + 1)s2

2λ2 ,

p1(s)
∆
=

(
1− s

λ
+

(c2
a + 1)s2

2λ2

)
E[X]− 1

λ
+

(c2
a + 1)s
λ2 ,

p2(s)
∆
=−1

2

(
1− s

λ
+

(c2
a + 1)s2

2λ2

)(
c2
x + 1

)(
E[X]

)2

+

(
1
λ
− (c2

a + 1)s
λ2

)
E[X] − c2

a + 1
2λ2 .

Proof. See Appendix. �

Using the asymptotic expression for Lidle(s) we rewrite ΦW (w, s) as follows:

ΦW (w, s) ∼ (φV (0)(w2))/w2 − φV (0)(w)
p2(s)(w − w1)(w − w2)

· 1− α(s− w)
(w − s)

with w2 =
−p1(s)−

√
(p1(s))2 − 4p0(s)p2(s)

2p2(s)
, (50)
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where p0(s), p1(s) and p2(s) are defined in Proposition 17.
On the other hand, using Brownian approximations for general arrival we get

(see, for example, Kleinrock [20])

ΦW (w, s) ∼ (φV (0)(ŵ2))/ŵ2 − φV (0)(w)
(1/2λ)ρ2(c2

x + c2
a)(w − ŵ1)(w − ŵ2)

with ŵ1,2 =
−λ(1− ρ)
ρ2(c2

x + c2
a)

[
1∓

√
1 + 2sρ2 (c2

x + c2
a)

λ(1− ρ)2

]
, (51)

which is different from (50).
Using the asymptotic form of Lidle(s) from [24] we also obtain an asymptotic

form of the Laplace transform of the expected queue length, LE[Q](s) via Theorem 14.
Indeed,

LE[Q](s) =
λ

s2 −
sLidle(s)− φV (0)(s)
s(φX(s)− 1)

∼ λ

s2 −
sφV (0)(w2)− w2φV (0)(s)

w2s(φX (s)− 1)
. (52)

It is interesting to note that if we calculate the asymptotic steady-state queue length,
using the asymptotic value of w2 we obtain the same result we obtained in Bertsimas
and Mourtzinou [5].

Another important performance measure is the expected waiting time of a cus-
tomer that arrives at time t denoted by E[W (t)]. If we denote by LE[W ](s) its Laplace
transform, i.e.,

LE[W ](s)
∆
=

∫ ∞
0

e−stE[W (t)] dt,

we have from the properties of Laplace transform that

LE[W ](s) = lim
w→0

∂

∂w
ΦW (w, s).

Hence, we can prove the following corollary of Theorem 16.

Corollary 18. In a GI/G/1 queue with FIFO service policy, and initial work V (0),
under Assumptions A.1–A.3 and C, asymptotically in heavy traffic:

LE[W ](s) ∼
Lidle(s)
s

+
E[V (0)]

s
+

E[X]α(s)
s(1− α(s))

− 1
s2 , (53)

where E[V (0)] is the expected initial work in the system.

If we calculate the steady-state expected waiting time E[W ] = lims→0 sLE[W ](s) we
get

E[W ] = lim
s→0

sLE[W ](s) ∼
ρ(c2

a − 1) + ρ2(c2
x + 1)

2λ(1− ρ)
,

the same result we obtained in Bertsimas and Mourtzinou [5].
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It is important to notice that although Theorem 14 holds for any traffic intensity
and for any s, Corollary 18 only holds asymptotically in heavy traffic.

Numerical results

In order to obtain a better understanding of the asymptotic method and to quantify
the range of its validity we now present some numerical results. We start by evaluating
the function idle(t) for an M/G/1 queue with λ = 0.75, E[X] = 1 and c2

x = 2 that
starts empty with no initial work, the same queue if V (0) = 5 units and if V (0) = 10
units. Recall that limt→∞ idle(t) = (1−ρ) = 0.25. To invert the Laplace transform we
used two algorithms, one proposed by Hosono in [15] and one proposed by Abate and
Whitt in [1], and we got exactly the same results. Notice that we have asymptotically
evaluated idle(t) for t � to, so our results for t < 15 are not very accurate and
therefore we do not report them. The results for idle(t) via our asymptotic method as
well as the Brownian approximation are depicted in figure 7.

Notice that for times t > 20 the two methods produce identical results. We next
evaluate idle(t) for an E2/E2/1 queue and an H2/H2/1 with c2

a = 3 and c2
x = 1.5,

in figure 8. In both cases we assume that V (0) = 0 units and we plot the results of
both the asymptotic method and the Brownian approximation. For the E2/E2/1 queue
the two methods give rise to identical results for t > 12; however in the case of the
H2/H2/1 queue the two methods give rise to almost identical results only for t > 30.

Next, we calculate the difference E[Q(t)] − E[Q] for an E2/H2/1 queue with
λ = 0.75, E[X] = 1 and c2

x = 3, when V (0) = 0 units using our asymptotic method.
Notice that for this system E[Q] = 2.625, according to our asymptotic method. For
this particular system our results are relevant for t > 80 as the figure 9 indicates.

Furthermore, we calculate the difference E[Q(t)]−E[Q] for an H2/E10/1 queue
with λ = 0.75, E[X] = 1 and c2

a = 1.5, when V (0) = 0 units. Now, E[Q] = 1.9875
and our results are relevant for t > 20.

From the above figures we see that the performance of our asymptotic method in
sensitive to the variance of the arrival and service time distributions. In particular, if
we denote by to the earliest time for which our asymptotic method correctly predicts
the behavior of the system, we observe that for systems where both the arrival and
the service distributions are close to Poisson (i.e., c2

a and c2
x close to 1), to ≈ 20.

Moreover, to ≈ 20 even if c2
a is big, provided that c2

x is small (see figure 5, the case
of the H2/E10/1 queue). On the other hand, for systems where c2

a is small and c2
x is

big, to is bigger, for example to ≈ 80 in figure 9, the case of the E2/H2/1 queue.
It is also interesting to compare the predictions of the asymptotic method for

E[Q] − E[Q(t)] versus the exact values of E[Q] − E[Q(t)]; we do so in figure 10,
where use the exact results presented in Odoni and Roth [25] for various systems that
start empty. Notice that the asymptotic method is performing very well and for all
systems for t > to ≈ 30.

The previous results for the GI/G/1 system can also be used in a GI/D/s
queue. Since the service times are deterministic, every s customers are served by the
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Figure 7. The function idle(t) for an M/G/1 queue.

Figure 8. The function idle(t) for an GI/GI/1 queue with V (0) = 0.

same server. Therefore, as it is well known (see Iversen [16]), each customer sees a
GI (s)/D/1 queue, where GI (s) is the s fold convolution of the interarrival distribution.
As a result, the waiting time in queue in the GI/D/s queue is the same as in the
GI (s)/D/1 queue.
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Figure 9. The function E[Q]− E[Q(t)] for an GI/GI/1 queue.

Figure 10. A semilogarithmic plot of E[Q]− E[Q(t)]− ρ = 0.75, E[X] = 1.

5.5. The ΣGI(t)/GI(t)/1 queue under FIFO

In this section we consider the multiclass ΣGI(t)/G(t)/1 queue under FIFO. We
denote by Li(t) (Qi(t)) the number of class i customers in the system (queue) at a

random observation time t. We, also, denote by GLi(z, t)
∆
= E[zLi(t)] the generating
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function of Li(t) and with GLi(z, s) its Laplace transform (similar definitions hold for
GQi(z, t), GQi(z, s)). Furthermore, Wi(t) represents the waiting time of a customer
that arrived at (t− dt, t] and dFWi(t)(·) is the pdf of Wi(t). Similarly to section 2, we
denote by Xi(t) the service time of a class i customer that enters the server at (t−dt, t].

Finally, we denote by ~z
∆
= (z1, . . . , zN ) and by GL1,...,LN (~z, t) (resp. GQ1,...,QN (~z, t))

the joint generating function of L1(t), . . . ,LN (t) (resp. Q1(t), . . . ,QN (t)).
As in the single class case we first prove another distributional law that relates

GL1,...,LN (~z, t) and GQ1,...,QN (~z, t) and requires the existence of a single server (see
[24] for a proof).

Proposition 19. In a ΣGI(t)/GI(t)/1 system with N -classes of customers that satis-
fies Assumptions A.1–A.4:

GLi(z, t) = zGQi(z, t)

+ (1− z)

[
idle(t) +

N∑
j=1
j 6=i

∫ t

0
hj(a)Ke,i(z, a, t)Mj(a, t) da

]
, (54)

where idle(t) is the emptiness process,

Ko,i(zi, a, t)
∆
=
∞∑
n=0

zni P
{
Ni(a; t) = n

}
,

and

Ke,i(zi, a, t)
∆
= 1 + (zi − 1)

∫ t

a
hi(u)Ko,i(zi,u, t) du,

and

Mi(a, t)
∆
= P

{
Si(a) > t− a >Wi(a)

}
.

Using Proposition 19 together with the multiclass transient distributional and the
fact that for all i = 1, . . . ,N

P
{
Si(t) > x

}
= P

{
a 6Wi(t) 6 a+ da

}
P
{
Xi(t+ a) > x− a

}
,

we obtain a system on N integral equations on N unknowns, the cdf of Wi(t) for i =
1, . . . ,N. This system constitutes a complete description of the fundamental quantities
of a ΣGI(t)/G(t)/1 queue as functions of idle(t) and can be solved numerically. For
the ΣGI/G/1 queueing system, under heavy traffic conditions we use asymptotic
expansions to obtain the following theorem (see [24] for a proof).



152 D. Bertsimas, G. Mourtzinou / Transient laws of non-stationay systems

Theorem 20. In a ΣGI/GI/1 system under FIFO that starts empty the Laplace trans-
forms of the individual queue lengths asymptotically under heavy traffic conditions are
given by

GQi(z, s) ∼ 1
s+ fi(z)

[
1 +

fi(z)C(z, s)(z − 1)
z − φXi(s+ fi(z)) + (z − 1)ρiφX∗i (s+ fi(z))

]
, (55)

where

fi(s) = λi(1− z)−
(1− z)2(c2

ai − 1)

2
, C(z, s)

∆
=

idle(s)
1−D(z, s)

and

D(z, s)
∆
=

N∑
i=1

ρiφX∗i (s+ fi(z))(z − 1)

z − φXi(s+ fi(z)) + (z − 1)ρiφX∗i (s+ fi(z))
.

6. Concluding remarks

In this paper we established a set of “laws” that completely characterize the
performance of a broad class of multiclass queueing systems that are operating in
a time-varying environment. An important characteristic of the laws we derived, is
that they provide insight on the influence of the initial conditions for systems that are
operating in a time-varying environment. Moreover, they give rise to structural results
such as a transient extension of Little’s law. Finally, we applied this set of laws as well
as the transient extension of Little’s law to specific queueing systems and presented
several insights and new results.

Although we demonstrated in this paper the power of the proposed approach
in several applications, there exist many systems widely used in applications that our
method does not address, such as multiserver queueing systems and queueing networks.
The major open problem is to identify queueing laws for these systems. A solution to
this rather challenging but important problem will lead to a more complete theory of
queues and is likely to provide very valuable new insights.
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Appendix

In this Appendix we give a proof of Proposition 17: recall that idle(s) may be
determined by insisting that the transform ΦW (w, s) is analytic in the region <(s) > 0
and <(w) > 0, where

ΦW (w, s) ∼ w idle(s)− φV (0)(w)
α(s− w)φX (w)− 1

1− α(s− w)
(w − s) .

Since our asymptotic formula holds for both s,w small, we can expand α(s−w) as a
Taylor series around s− w and obtain

α(s− w) = 1− 1
λ

(s− w) +
1
2
c2
a + 1
λ2 (s− w)2 + O

(
(s− w)3).

Hence, we have that

1− α(s− w)
(w − s) = − 1

λ
− 1

2
c2
a + 1
λ2 (w − s) + O

(
(s− w)2)

so that (1− α(s− w))/(w − s) is analytic in the region <(s) > 0 and <(w) > 0.
Therefore, ΦW (w, s) is analytic in the region <(s) > 0 and <(w) > 0 if and only if

w idle(s)− φV (0)(w)
1− α(s− w)φX (w)

is analytic in the same region. Expanding the denominator around w = 0 and s = 0,
we get

1− α(s− w)φX (w) ∼ p0(s) + p1(s)w + p2(s)w,

where if we denote by E[X] the mean service time and by c2
x the squared coefficient

of variation of X we have

p0(s)
∆
=
s

λ
− (c2

a + 1)s2

2λ2 ,

p1(s)
∆
=

(
1− s

λ
+

(c2
a + 1)s2

2λ2

)
E[X] − 1

λ
+

(c2
a + 1)s
λ2 ,

p2(s)
∆
=−1

2

(
1− s

λ
+

(c2
a + 1)s2

2λ2

)
(c2
x + 1)

(
E[X]

)2

+

(
1
λ
− (c2

a + 1)s
λ2

)
E[X] − c2

a + 1
2λ2 .

Equivalently, we have that

1− α(s− w)φX (w) ∼ p2(s)(w − w1)(w − w2)

with w1,2 =
−p1(s)∓

√
(p1(s))2 − 4p0(s)p2(s)

2p2(s)
,
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with w1 corresponding to the + sign and w2 to the – sign. Notice that for s ≈ 0 we
have that

p1(s) ≈ E[X] − 1
λ

=
1
λ

(ρ− 1) < 0

and

p2(s) ≈ E[X]
λ
− 1

2λ2

(
ρ2(c2

x + 1) + c2
a + 1

)
< 0.

Therefore we have that <(w2) > 0 and <(w1) < 0 for s small. Then, from the analytic
properties of ΦW (w, s) we obtain (49).
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