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Throughout the United States and Europe, demand for airport use has been increasing rapidly, while airport capacity has been 
stagnating. Over the last ten years the number of passengers has increased by more than 50 percent and is expected to continue 
increasing at this rate. Acute congestion in many major airports has been the unfortunate result. For U.S. airlines, the expected 
yearly cost of the resulting delays is currently estimated at $3 billion. In order to put this number in perspective, the total reported 
losses of all U.S. airlines amounted to approximately $2 billion in 1991 and $2.5 billion in 1990. Furthermore, every day 700 to 1100 
flights are delayed by 15 minutes or more. European airlines are in a similar plight. Optimally controlling the flow of aircraft either 
by adjusting their release times into the network (ground-holding) or their speed once they are airborne is a cost effective method to 
reduce the impact of congestion on the air traffic system. This paper makes the following contributions: (a) we build a model that 
takes into account the capacities of the National Airspace System (NAS) as well as the capacities at the airports, and we show that 
the resulting formulation is rather strong as some of the proposed inequalities are facet defining for the convex hull of solutions; (b) 
we address the complexity of the problem; (c) we extend that model to account for several variations of the basic problem, most 
notably, how to reroute flights and how to handle banks in the hub and spoke system; (d) we show that by relaxing some of our 
constraints we obtain a previously addressed problem and that the LP relaxation bound of our formulation is at least as strong when 
compared to all others proposed in the literature for this problem; and (e) we solve large scale, realistic size problems with several 
thousand flights. 

Throughout the United States and Europe, demand for 
airport use has been increasing rapidly during recent 

years, while airport capacity has been stagnating. Over the 
last ten years the number of passengers has increased by 
more than 50 percent and is expected to continue increas- 
ing at this rate, while no appreciable increase in capacity is 
expected. Acute congestion in many major airports has 
been the unfortunate result. For U.S. airlines, the expected 
yearly cost of the resulting delays is currently estimated at 
$3 billion. In order to put this number in perspective, the 
total reported losses of all U.S. airlines amounted to ap- 
proximately $2 billion in 1991 and $2.5 billion in 1990. 
Furthermore, every day 700 to 1100 flights are delayed by 
15 minutes or more. European airlines are in a similar 
plight. Thus, congestion is a problem of undeniable practi- 
cal significance. 

Faced with the realities of congestion, the FAA has 
been using ground-holding policies to reduce delay costs. 
These short-term policies consider airport capacities and 
flight schedules as fixed for a given time period, and adjust 
the flow of aircraft on a real time basis by imposing 
"ground holds" on certain flights. Such a flight is then held 
on the ground at its departure airport even if it is other- 
wise ready for takeoff. Ground-holding makes sense in the 
following situation. Suppose it has been determined that if 
an aircraft departs on time, then it will encounter conges- 
tion, incurring an airborne delay as it awaits landing clear- 
ance at its destination airport. However, by delaying its 
departure, the aircraft will arrive at its destination at a 
later time when minimal congestion is expected, thus, in- 

curring no airborne delay. Therefore, the objective of 
ground-holding policies is to "translate" anticipated air- 
borne delays to the ground. 

The effectiveness of ground-holding policies lies in the 
following two fundamental facts. First, while a flight is 
airborne it incurs costs such as fuel and safety costs that 
are not applicable before the flight takes off. These costs 
make airborne delays much costlier than ground delays. 
Second, airport capacity is highly variable due to its heavy 
dependence on the weather (visibility, wind, precipitation, 
cloud ceiling). It is not unusual for the capacity of an 
airport to be reduced by 50 percent in inclement weather. 
Given these two facts, there is significant potential to re- 
duce costs when adjusting aircraft flow as weather (hence 
airport capacity) forecasts change in such a way that 
ground delays are substituted for the much costlier air- 
borne delays. 

Currently, the FAA implements a national ground- 
holding policy. This policy uses a computerized procedure 
based on a first-come, first-served rule, in order to select 
appropriate ground-holds. These selections are further en- 
hanced through the experience of its air traffic controllers. 
In the last decade, several models have been developed 
that use optimization techniques to improve upon current 
practices. We will briefly review these developments. 

A Taxonomy of Models. In Odoni (1987), the problem of 
scheduling flights in real time in order to minimize conges- 
tion costs was first conceptualized and introduced. Since 
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then several models have been proposed for solving differ- 
ent versions of this problem. The first and simplest version 
considers a single airport and makes decisions about the 
ground-holds for this Single-Airport Problem (SAGHP). 
The Multi-Airport Ground-Holding Problem (MAGHP) was 
the next problem to be introduced. It makes ground- 
holding decisions for an entire network of airports. Thus, 
the SAGHP and the MAGHP are distinguished by 
whether delays are assumed to propagate in the network 
of airports as aircraft perform consecutive flights. Besides 
determining release times for aircraft (ground-holding), 
the Air Traffic Flow Management Problem (TFMP) also de- 
termines the optimal speed adjustment of aircraft while 
airborne for a network of airports taking into account the 
capacitated airspace. Thus, the TFMP determines how to 
control a flight throughout its duration, not simply before 
its departure. If we add the final complication, rerouting of 
flights due to drastic fluctuations in the available capacity 
of airspace regions, we obtain the Air Traffic Flow Manage- 
ment Rerouting Problem (TFMRP). In this problem, a flight 
may be rerouted through a different flight path in order to 
reach its destination if the current route passes through a 
region that is unusable for reasons usually related to poor 
weather conditions. In order to describe the work on these 
problems we consider the following modeling variations: 

1. Deterministic vs. stochastic models, which are distin- 
guished by whether the capacities of the system (airports 
and sectors in the airspace) are assumed deterministic or 
probabilistic. 

2. Static vs. dynamic models, which are distinguished by 
whether or not the solutions are updated dynamically dur- 
ing the day. 

The deterministic SAGHP (both static and dynamic) 
was first formulated as a network flow problem in Terrab 
and Odoni (1991). The stochastic SAGHP was formulated 
and solved as a stochastic programming problem in Rich- 
etta and Odoni (1993) (the static case) and Richetta and 
Odoni (1994) (the dynamic case). A review of optimization 
models for the SAGHP is given in Andreatta et al. (1993). 
The deterministic MAGHP was formulated as a 0-1 inte- 
ger programming problem in Vranas et al. (1994a) (the 
static case) and in Vranas et al. (1994b) (the dynamic 
case). Terrab and Paulose (1993) address the stochastic 
MAGHP as a stochastic programming problem. 

In this paper we present a 0-1 integer programming 
model for the deterministic, multiairport TFMP that ad- 
dresses capacity restrictions on the en route airspace. Si- 
multaneously with our work, models addressing enroute 
capacities were also introduced by Lindsay et al. (1993). 
They propose integer programming formulations for a ver- 
sion of TFMP that tracks a flight as it passes from fix to fix 
in the airspace. As the linear programming relaxations of 
these formulations are not very strong, branch and bound 
is needed to generate integral solutions. However, by de- 
veloping a wide array of novel formulation strengthening 
techniques, the dependence on "pure" branch and bound, 
as well as the computation times, are actually reduced. 

Helme (1994) has presented a method for the TFMP by 
designing a multicommodity minimum cost flow model 
over a network in space-time. To our knowledge, this method 
has not been fully tested, but it is expected that there will be 
severe dimensionality problems. To the best of our knowl- 
edge the TFMRP has not previously been addressed. 

Contribution of This Work. We feel that our work makes 
the following contributions: 

1. In the last fifteen years the field of polyhedral combi- 
natorics has demonstrated that the key to solving large 
scale integer programming problems is to obtain strong 
formulations, which include facets of the convex hull of 
solutions. Our success in solving large scale, practical size 
instances of the TFMP lies exactly on this principle. We 
propose an integer programming model for the TFMP 
which is rather strong as some of the proposed inequalities 
are facet defining for the convex hull of solutions. 

2. We address the complexity of the TFMP and show 
that it is NP-hard. 

3. We illustrate how our models can be adjusted to ac- 
count for several variations in the problem's characteristics, 
most notably how to handle banks in the hub and spoke 
system and how to reroute flights (the TFMRP problem). 

4. When specialized for the MAGHP, we prove that the 
LP relaxation bound of our formulation is at least as 
strong when compared to all others proposed in the liter- 
ature. As our model gives solutions that were almost al- 
ways integral experimentally, there is no need for rounding 
heuristics that were used in Vranas et al. (1994a). 

5. The solutions of the LP relaxation of the TFMP were 
almost always integral, so there was no need to branch and 
bound. In essense, our formulations reduce the problem to 
efficiently solving large scale linear programming prob- 
lems. As a result, the computation times were reasonably 
small for large scale, realistic size problems involving thou- 
sands of flights. Short computational times and integrality 
properties are particularly important, since these models 
are intended to be used on-line and solved repeatedly dur- 
ing a day. 

The paper is structured as follows. In Section 1 we for- 
mally introduce the TFMP and present our formulation. In 
Section 2 we address the complexity of the TFMP. In Sec- 
tion 3 we address modeling variations for the TFMP. In 
Section 4 we examine the theoretical properties of our 
formulation, proving that the proposed constraints are 
facet defining providing insights on the excellent computa- 
tional performance. In Section 5 we report computational 
results and in Section 6 we include some concluding re- 
marks and directions of future research. We include some 
technical proofs in the appendices. 

1. THE AIR TRAFFIC FLOW MANAGEMENT 
PROBLEM FORMULATION 

The National Airspace System (NAS) is divided into sec- 
tors. A map of the United States that displays all of the 
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Figure 1. U.S. map with sector regions. 

sector boundaries is given in Figure 1. Each flight passes 
through contiguous sectors while it is en route to its desti- 
nation. There is a restriction on the number of airplanes 
that may fly within a sector at a given time. This number is 
dependent on the number of aircraft that an air traffic 
controller can manage at one time, the geographic loca- 
tion, and the weather conditions. We will refer to the re- 
strictions on the number of aircraft in a given sector at a 
given time as the en route sector capacities. There are 
several key sectors throughout the United States that are 
often operated at full capacity. The issue of congestion at 
these sectors is as critical as congestion in the terminal 
areas, since the cost of holding an airborne aircraft is not 
dependent on the location of the aircraft. Thus, airborne 
delay costs could further be reduced if we could determine 
the optimal time for a flight to traverse the capacitated 
sectors. We first formulate the TFMP, examine the size of 
the formulation and make the connection with the ground- 
holding problem. 

1.1. The 0-1 IP Formulation 

Consider a set of flights, 9 = {1, . .. , F}, a set of airports, 
X = {1, ... , K}, a set of time periods, fJ = {1, ..., T}, 
and a set of pairs of flights that are continued, IC = 

{ (f', f ): f' is continued by flight f}. We shall refer to any 
particular time period t as the "time t." The problem input 
data are given as follows: 

Data. 

Nf = number of sectors in flight f s path, 
the departure airport, if i = 1, 

P(f, i) = | the (i - 1)S sector in flight f s path, 
if 1 < i<Nf, 

the arrival airport, if i = Nf, 
Pf= (P(f, i) :1 i - 

Nf), 
Dk(t) = departure capacity of airport k at time t, 
Ak(t) = arrival capacity of airport k at time t, 

Sj(t) = capacity of sector j at time t, 

df = scheduled departure time of flight f, 
rf = scheduled arrival time of flight f, 
Sf = turnaround time of an airplane after flight f, 

C= cost of holding flight f on the ground for one 
unit of time, 

Ct = cost of holding flight f in the air for one unit of 
time, 

Ifj = number of time units that flight f must spend 
in sector j, 
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Figure 2. Two possible flight routes. 

TJ= set of feasible times for flight f to arrive to 
sector j = [!TJ, Tf], 

Tf = first time period in the set Tt, and 
TJ = last time period in the set TJf. 

Note that by "flight," we mean a "flight leg" between 
two airports. Also, flights referred to as "continued" are 
those flights whose aircraft is scheduled to perform a later 
flight within some time interval of its scheduled arrival. 

Objective. The objective in the TFMP is to decide how 
much each flight is going to be held on the ground and in 
the air in order to minimize the total delay cost. 

We model the problem as follows. 

Decision Variables. 

J1 if flight f arrives at sector j by time t, 
t 0 otherwise. 

Note that the Wift are defined as being 1 if flight f arrives at 
sector j by time t. This definition using by and not at is 
critical to the understanding of the formulation. Also re- 
call that we have also defined for each flight a list Pf 
including the departure airport, the pertinent sectors and 
the arrival airport, so that the variable Wift will only be 
defined for those elements j in the list Pf. Moreover, we 
have defined 7} as the set of feasible times for flight f to 
arrive to sector j, so that the variable Wift will only be 
defined for those times within Et. Thus, in the formulation 
whenever the variable W]ft is used, it is assumed that this is 
a feasible (f, j, t) combination. Furthermore, one variable 
per flight-sector pair can be eliminated from the formula- 
tion by setting Wfiy = 1. Since flight f has to arrive at 
sector j by the last possible time in its time window, we can 
simply set it equal to one as a parameter before solving the 
problem. To ensure the clarity of the model, consider the 
following example which depicts two flights traversing a set 
of sectors. (See Figure 2.) 

In this example, there are two flights, 1 and 2, each with 
the following associated data: 

P1 = (1, A, C, D, E, 4) and 

P2 = (2, F, E, D, B, 3). 

If we consider the current position of the aircraft to occur 
at time t, then the variables for these flights at this time 
will be: 

W , = 1, w4,A = 1, w ,C = 1, lwft = 0, w 
E 

= 0, w4,, = 0, 

and 

w2t = 1, w ,t = 1, w ,t = 1, w 
D 

= 0, wBt = 0, wIt = 0. 

Having defined the variables W, we can express several 
quantities of interest as linear functions of these variables 
as follows. 

1. The variable Ufit = 1 if flight f arrives at sector j at 
time t and 0 otherwise, can be expressed as follows: 

ujt = wft - w>i, 1 and vice versa, wt = Z Uft'. (1) 

As expressed earlier, the variables Wift are only defined in 
the time range E7t, so that Wl(Tt 1)=0. Furthermore, the 
constraint that a flight must arrive at sector j at some time 
t, originally expressed by the restriction Et Eu=ft =1 can 
now be replaced by the simpler expression Wfj = 1. As pre- 
viously mentioned, this can be handled as a parameter 
before the problem is solved, thus eliminating many vari- 
ables and constraints. This substitution is fundamental to 
the performance of this model. 

2. Noticing that the first sector for every flight represents 
the departing airport, the total number of time units that 
flight f is held on the ground can be expressed as the actual 
departure time minus the scheduled departure time, i.e., 

gf= Z tu k - df 
tEETf,k=P( f,l) 

= Z t ( k - wfkt_1) - df. 
tETfk,k=P(f,I) 

3. Noticing that the last sector for every flight represents 
the destination airport, the total number of time units that 
flight f is held in the air can be expressed as the actual arrival 
time minus the scheduled arrival time minus the amount of 
time that the flight has been held on the ground, i.e., 

af= Z tufkt-rf-gf 
tETfk,k=P( f,Nf) 

- E t ( Wft- Wf t -kX- ) - rf - gfX 
tETf,k=P( f,Nj1) 

The Objective Function. The objective of the formulation 
is to minimize total delay cost. Using the variables gf and 
af for the amounts of ground and air delay respectively, as 
defined in items 2 and 3 above, the objective function can 
be expressed simply as follows: 

Min E [clgf+ cfaaf]. 
fES~~~ 

Substituting the expressions we derived in items 2 and 3 
above for the variables wjft, we obtain the following expres- 
sion: 

Mmin c Y( t (t wTk- wfkt_1) - df) 
f ( tE Tfk,k=P(f, N) 

+ f ( E t (wfkt Wflt_)- rf 
t C Tfkrk=P(fNf 
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Rearranging variables, we can now present the objective 
function along with the complete formulation. 

(TFMP) 

IZTFMP = Min (c/ -c) t(w - wf't_1) 
fe L tET',k=P(f,l) 

+ Ca E t(w k - w k_) 

tECTf,k=P(f,N1 ) 

? (cfa - c -)d -Cf arf 

subject to 

Z (w-wfl)Dk(t) kV k E X, t E (2) 
f:P(f,l)=k 

E (wfkt Wflt_1) Ak (t) V k E Xf, t E , (3) 
f:P(f,Nf)=k 

E ~~(wf W Wfit) -, sj (t) V j E 1, t E J, 
f : Pf fi) =j,P f,i + 1) =j' ,i<Nj, (4 ) 

wf,t+ifj -w t , ? { 
t_p(f, i + 1), i < Nf; 

k wk < (6 Wf,t -Wf',t-sr-? Lk=P(f, 1) = P(f', N), (6) 

Wf,t - Wf', t- ) VfEX j E iPf, t T 4 (7) 

WAtE c t, l} VfE i,J j C Pf, t E T.- (8) 

The first three constraints take into account the capaci- 
ties of various aspects of the system. The first constraint 
ensures that the number of flights which may take off from 
airport k at time t, will not exceed the departure capacity 
of airport k at time t. Likewise, the second constraint en- 
sures that the number of flights which may arrive at airport 
k at time t, will not exceed the arrival capacity of airport k 
at time t. In each case, the difference will be equal to one 
only when the first term is one and the second term is zero. 
Thus, the differences capture the time at which a flight 
uses a given airport. The third constraint ensures that the 
sum of all flights which may feasibly be in sector j at time 
t will not exceed the capacity of sector j at time t. This 
difference gives the flights that are in sector j at time t, 

since the first term will be 1 if flight f has arrived in sector 
j by time t and the second term will be 1 if flight f has 
arrived at the next sector by time t. So, the only flights that 
will contribute a value of 1 to this sum are those flights 
that have arrived at j and have not yet departed from j by 
time t. 

Constraints (5) represent connectivity between sectors. 
They stipulate that if a flight arrives at sector j' by time 
t + ifj, then it must have arrived at sector j by time t where 

j and j' are contiguous sectors in flight fs path. In other 
words, a flight cannot enter the next sector on its path until 
it has spent lfj time units (the minimum possible) traveling 
through sector ], the current sector in its path. 

Constraints (6) represent connectivity between airports. 
They handle the cases in which a flight is continued, i.e., 

the flight's aircraft is scheduled to perform a later flight 
within some time interval. We will call the first flight f and 
the following flight f. Constraints (6) state that if flight f 
departs from airport k by time t, then flight f must have 
arrived at airport k by time t - St. The turnaround time, Sp, 
takes into account the time that is needed to clean, refuel, 
unload and load, and further prepare the aircraft for the next 
flight. In other words, flight f cannot depart from airport k, 
until flight f has arrived and spent at least Sr7 time units at 
airport k. 

Constraints (7) represent connectivity in time. Thus, if a 
flight has arrived by time t, then Wlf, has to have a value of 
1 for all later time periods, t' : t. 

Important Remark. The major reason we used the vari- 
ables Wvft, as opposed to the variables u1ft is that the former 
variables nicely capture the three types of connectivity in 
TFMP: connectivity between sectors, connectivity between 
airports, and connectivity in time. Of course, given that the 
two sets of variables are linearly related, the same constraints 
can be captured using the utft variables. We feel, however, that 
the variables W1tt not only take connectivity naturally into ac- 
count, but also they define connectivity constraints that are 
facets of the convex hull of solutions (see Section 3). As we 
report in Section 4, the LP relaxation of (TFMP) is almost 
always integral, i.e., the given formulation is a particularly 
strong one. We believe that the key for this is the use of the 
decision variables vVft in the formulation. 

1.2. Size of the Formulation 

Let D be the maximum cardinality of the set of feasible 
times for flight f to be in sector j taken over all f and j, 
i.e., 

D = max I Tfl 

Let 

X = max Nf, fcq 

be the maximum number of sectors that a flight passes 
through along its route, taken over all flights. Note that X : 

2, since the departure and arrival airports are always counted 
as sectors on a flight's path. Let |15 be the total number of 
flights, IET1 be the total number of time periods, 1X1 be the 
total number of airports, 1II be the total number of sectors, 
and |%| be the total number of flights that are continued. 

The actual number of variables 4lft is If Ej,p, 774 since 
each flight has a different number of sectors and number 
of feasible time intervals associated with it. An upper 
bound on the number of variables iW?t will be 

15 DX. 

The exact number of constraints is 

2IXIIJTI + ,IlIITI + 2 E E ITfI 
fECF, JEPf 

+ min {|Tyl, ITf1}. 
(f'.f )Et~, 
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An upper bound on the number of constraints can then 
be calculated as 

21XV131 + 1X111f1 + 21jIDX + TID. 

In order to get a feeling of the size of the formulation, 
let us consider an example that adequately represents the 
U.S. network: 

1. X/ = 20 representing the most congested airports in the 
U.S. 

2. 10f1 = 14 * 12 = 168, representing a 14 hour day with 
five-minute intervals. 

3. III = 200, representing 200 sectors. 
4. 1YI = 10000, representing approximately half of the 

number of daily flights of major carriers. 
5. IIC = 8000, representing an 80-percent connectivity 

among flights. 
6. D = 6, representing an upper bound of half an hour 

that a flight can be late to any given sector. 
7. X = 5, representing an upper bound of at most five 

sectors in a flight's path. 

For this example the number of variables is at most 
300,000 and the number of constraints is at most 688,320. 
The critical quantities that significantly affect the number 
of variables and constraints are D, X, and 15;1 If for exam- 
ple any of these parameters doubles, the number of vari- 
ables doubles and the number of constraints nearly 
doubles. 

1.3. The Ground-Holding Problem as a Special Case 

As mentioned in the introduction, the ground-holding 
problem is a special case of the TFMP. If we remove the 
sector capacity constraints and the variables associated 
with the sectors, we obtain a new formulation of the 
MAGHP which, as we demonstrate in Section 5, leads to 
significant computational advantages compared to alterna- 
tive formulations that have previously been proposed (see 
the introduction). Notice that Nf = 2 for all f E 5, since a 
flight's path consists solely of the departure and arrival 
airports. 

Let us redefine the variables as: 

Yft = wk, for the departure airport, k = P(f, 1). 
Zft = wjk, for the arrival airport, k = P(f, 2). 

Also, let 77 be the set of feasible departure times for 
flight f, and let T7 be the set of feasible arrival times for 
flight f. 

Using the new variables, the formulation (TFMP) spe- 
cializes to the following new formulation of (MA GHP): 

(MA GHP) 

IZMAGHP = Min E [(ce -c) E t(yft Yf,t- ) 
feF tETfd 

+ C E t(Zft - Zf,t-1) 
tE Tt 

+ (cfa _cY)df-cfarfl1 

subject to 

E (yft - yp - 1 Dk(t V k f, t c , (9) 
f: teTf 

E (zft-zft-1)1Ak(t) Vk Jf ,te T, (10) 

Zf,t Yft-(r,-df) 0 V f E i, t E Ti, (11) 

Yp, - Zf,t-sf 0 V (f', f) E C, t E Tfd (12) 

YP tYP -I 0 ? Vf E g,t E Tfd, (13) 

Zf,t-Zf,t1- 0 Vf E ,t Tf, (14) 

Yft, Zft E {, 1} Vf E i, t (E W-. 

The first two constraints incorporate the capacity restric- 
tions of the departure and arrival airports. The next con- 
straint is the sector connectivity constraint, which is 
equivalent to constraint (5) in the TFMP formulation. 
However, for the ground-holding problem the only ele- 
ments in the path are the departure airport and the arrival 
airport. So this constraint connects these two elements by 
making sure that flight f cannot arrive at time t unless it 
has departed by at least t minus the minimum flight time. 
The next constraint is the flight connectivity constraint, 
which is equivalent to constraint (6) in the TFMP formu- 
lation. The last two constraints are time connectivity con- 
straints, which are equivalent to constraint (7) in the 
formulation (TFMP). 

Using the previous definitions, an upper bound on the 
number of variables is 215;|D, and an upper bound on the 
number of constraints is 21X|I1TI + 3|5|D + |9|D. For the 
same example as in the end of the previous subsection, an 
upper bound on the number of variables in the above 
formulation is 120,000 and an upper bound on the number 
of constraints is 234,720. 

If we remove the constraint (12) and consider the set 
X to be the singleton set, then we have a valid formu- 
lation for SAGHP, which we will call (SAGHP). We 
define the feasible regions for the formulations (TFMP), 
(MAGHP), and (SAGHP) as IPTFMP, IPMAGHP, and 
IPSAGHP, respectively. 

The variables used in the formulation in Vranas et al. 
(1994a) are defined differently: uft = 1 if flight f takes off 
at time t and vft = 1 if flight f arrives at time t. These are 
linearly related to variables Yft and Zft as per the relation- 
ship given by (1). As already mentioned, the ground- 
holding delays can be expressed in terms of these variables 
in the following manner: 

gf = tUft -df, (15) 
teTf 

as can the airholding delay, 

af = E tVft - rf - gf. (16) 
teT/ 

In Vranas et al. (1994a), it is assumed that when the de- 
parture capacity is large, without loss of generality, af = 0, 
thus implying that all of the delay would be taken on the 
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ground before departure. This gives an equivalent expres- 
sion for gf as, gf = EtcTfn tvft - rf, which contains no 
departure information, thus eliminating the variables uft 
from the formulation. Moreover, instead of the flight con- 
nectivity constraints (12), the following constraints, 

gf' - (df - Sf, - rf, ) > gf, (17) 

establish connectivity between the arriving flight f and the 
departing flight f by forcing the amount of ground-hold for 
flight f to be at least the amount that flight f arrives late, gf, 
minus the amount of slack time, df - sf - rf. The description 
of the feasible space in Vranas et al. (1994a) expressed in the 
Zft space as per the relationship (1) is as follows: 

IPVBO = {Zft E {O, 1} E (Zft - Zf,t) I Ak(t), 
f 

(Zft- p 1, 
teTf' 

gf = t(zft 
- Zft-) - rf, 

tETfa 

gf' - (df - sf - rf) gf, Zft - Zf,t-l I 0} 

Terrab and Paulose (1993) use the same variables, vft as 
in Vranas et al. (1994a). However, they express the flight 
connectivity constraints as follows: 

E Vft - E Vft < . (18) 
tCTt',t--T t'CTja,t'--T-Sr -(rf -df) 

Constraint (18) forces connectivity, since if the second sum 
is zero then flight f' has not landed by time T - Sf, - (rf - 
df), which is time period T minus the turnaround time, 
minus the flight time of f. This forces the first sum to be 
zero so that flight f can not land before time T. The de- 
scription of their formulation expressed in the Zft space as 
per the relationship (1) is: 

IPTP= {Zft E {O, 1} E (zft Zf,t-1) > Ak(i) 
f 

(zft - Zf,t-1) = 1, (Zft -Zf,t1) 
te T tE Tj',t< T 

- E C(Zfj> Zf',t'- ) t , 
t'EETf',t'--T-Sf' -(rf -df) 

Zft 
- Zf,t-l 0 O} 

If we specialize our formulation for the case of large de- 
parture capacities and use only the variables, zft(Yft - 

Zftt(rf-df)), we obtain: 

IP'MAGHP = tZft E {O, 1} (Zft - Zft-I) Ak(t), 
f:tETf 

E (Zft - Zf,t-1)=, 
tE Ta 

Zf,t+(rf -df) 
- 

Zf,t-s1 % 0, 

Zf,t - Zf,tl > 04l. 

In all of these formulations, the expression 1,T7 (Zft - 

Zft-l) = 1 reduces to the expression ZfTf- = 1. This tele- 
scoping property is due to the unique definition of the 
decision variables as flights arriving by some time t rather 
than at time t. 

If we denote the polyhedra corresponding to the linear 
programming relaxations of IPM'GHP, IPVBO, and IPTp as 
PMAGHP, PVBO, and PTP and denote their corresponding 
values as ZMAGHP, ZVBO, and ZTP, then we can state the 
following proposition whose proof is included in Appendix 
A. 

Proposition 1. IPTP = IPVBO = IP'MAGHP C "MGHP C 

PTP P PVBO, and correspondingly, ZVBO ? ZTP 
- 

ZMAGHP 

MAGHP = IZVBO = IZTP. 

Therefore, the LP relaxation of (MAGHP) gives bounds 
that are at least as strong as those from the LP relaxations 
of either Vranas et al. (1994a) or Terrab and Paulose 
(1993). 

2. COMPLEXITY OF THE TFMP 

In this section we show that the TFMP is an NP-hard 
problem. 

Theorem 1. The TFMP with all capacities equal to 1 is 
NP-hard. 

Proof. We show that job-shop scheduling (see Garey and 
Johnson 1979) reduces to TFMP. 

JOB SHOP SCHEDULING PROBLEM (JSP) 
INSTANCE: Number m C Z+ of processors, set J of jobs, 
each i E J consisting of an ordered collection of tasks tk[J], 
1 - k ? nj, for each task t a length l(t) C ZO and a 
processor p(t) E {fl, 2, . . , m}, where p(tk[i]) + 

P(tk?+[I]) for all j C J and 1 : k < nj, and a deadline D C 
Z+. 
QUESTION: Is there a job-shop schedule for J that meets 
the overall deadline, i.e., a collection of one-processor 
schedules o-, mapping {t: p(t) = i} into Z4+, 1 - i - m, 
such that ui(t) > qi(t') implies uri(t) o-qi(t') + I(t), such 
that 0-i(tk+?4I]) O (i(tk[j]) + l(tk[j]) where i = p(tk+1[I]) 
and i = p(tk[d]), for all j E J and 1 - k S n1, and such that 
for all j E J, o-(Jnj[j]) + l(tJj[]]) ? D where i = p(tn [j])? 

For each job we create an aircraft. For each processor 
we associate an airport or sector. Task tk[j] of job j corre- 
sponds to a flight segment, fk[j] of aircraft j. Given a 
collection of tasks, tk[j] of job j, we associate a list of 
airports and sectors to be visited by aircraft j. Further- 
more, the processing time of task tk[j] corresponds to the 
time required to perform the flight segment, fk[j]. We 
obtain a list of airports and sectors, (AJ, Si, ... Aj, 
S(k+ 1).. Aj'j), and a list of the flight segment times, (tj, 
td,tj,..., Ikj, tk l. ~ t j), for each aircraft j by the rela- 

tionships: 
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A) = p(t [l]), t J = (tJ]) 

S72 = p(tj[2]), t2 l(tj [2]) 

S 3 = p(tj[3]), tj3 =l(tj[3]) 
. 

Si 

A3j - p(j [n]), t = [n]) 

So by finding a job-shop schedule that satisfies the given 
conditions, we will find a solution to the transformed prob- 
lem such that all flights are performed by the deadline D. 
Also, according to the relationship o(i'(tk+[]) oi(tkU]) + 

l(tk[]) where i' = p(tk+ L]) and i = p(tkU]), no two tasks will 
ever performed simultaneously on the same processor, which 
is equivalent to limiting the capacities of airports and sectors 
to one. Moreover, the relationship, -i(t) > o-#(') implies ui(t) 

0 o-1') + I(t), dictates that a task can not be processed 
unless the previous task has completed. This stipulation 
guarantees connectivity between flights, and sectors, as 
specified by the set of tasks for each aircraft. Thus, all the 
constraints of the TFMP will be satisfied if and only if 
there exists a feasible job-shop schedule. D2 

3. MODELING VARIATIONS 

Our goal in this section is to demonstrate that the formu- 
lation (TFMP) can be easily extended in many directions 
to take into account several variations of the model. 

3.1. Dependence Between Arrival and Departure 
Capacities 

The interdependence between the arrival and departure 
capacities of airports results from the fact that the same 
runways are used for both arrivals and departures. Thus, 
the runway allocation will determine how an airport's 
available capacity is allocated between the arrivals and de- 
partures at a given time. By operating under a specific 
runway configuration, arrival and departure capacities can 
be adjusted. This will significantly influence airport effi- 
ciency. By choosing a particular configuration of runways 
for a given time, the capacity allocation will be fixed. The 
complete set of runways for Logan Airport is given in 
Figure 3. A common configuration used at Logan Airport 
is to use runways 4L and 4R for arriving flights and to use 
runways 9 and 4R for departing flights. Notice that since 
runway 4R is the longest runway and certain types of air- 
craft require a long runway, it is used for both arrivals and 
departures. Since it takes longer for an aircraft to arrive 
than to depart, if all the capacity at Logan Airport is allo- 
cated to arrivals then 52 flights could arrive, and if all the 
capacity is allocated to departures then 62 flights could 
depart within an hour. We review briefly ideas introduced 
in Gilbo (1993) and Vranas et al. (1994a). We represent 
the runway allocation by a set of linear constraints indexed 
by i for airport k at time t of the type 

(19) 

where a4t, kt, and y', are given constants. The region 
formed by the above constraints gives a complete depiction 
of all the possible runway allocations at a given time, and 
likewise, all possible departure and arrival capacity assign- 
ments. So, for the Logan example, the set of linear con- 
straints is given in Figure 4. 

In order to solve this variation, we treat Dk(t) and Ak(t) 

as variables that satisfy constraints (19) and add them to 
(TFMP). We can further reduce the size of the resulting 
formulation by eliminating the variables Dk(t) and Ak(t) by 
incorporating constraints (2) and (3) taken at equality into 
(19) as follows: 

akt E ft (w - Wft) 
f: tETf ,k=P( f,l) 

+ kt E (Wft Wft _1) < Ykt 
f:tETf,k=P(f,Nf) 

The addition of this constraint to (TFMP) incorporates the 
dependence between the arrival and departure capacity 
assignments without the addition of any new variables. 

3.2. Hub Connectivity with Multiple Connections 

Given that many airlines now control key hub airports 
through which most of their flights are directed, it is no 

Figure 3. Complete runway configuration for Logan 
Airport. 

Figure 4. Runway departure/arrival allocation for the spe- 
cific configuration. 
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longer obvious which aircraft will fly a subsequent flight. 
At these hubs, many airplanes are capable of performing 
any one of multiple consecutive flights. We refer to the 
issue of assigning aircraft to continuing flights as hub con- 
nectivity. This can be achieved by extending the model as 
follows. For each arriving flight f' that is continued there 
is a set of flights Rf that can continue flight f'. Introducing 
the 0 - 1 variables xff, which take on the value 1 if flight 
f' is continued by flight f E Rf and 0 otherwise, we alter 
constraint (6) as follows 

k k 
wt Wft wft-Sr 

< I -Xftf 

V (f'1, f ) E IC, t E T k, k = P(f, 1) = P(f', Nf ), 

and add the constraint that each continued flight f' has to 
be assigned to a flight in Rf,: 

E Xff 
feRr 

3.3. Banks of Flights 

With the evolution of the hub and spoke system, airlines 
have a set of flights (banks) that are scheduled to arrive at 
a hub airport and another set scheduled to depart within a 
small time window of the arrival bank. Each arriving air- 
craft will be assigned to perform at most one of the depart- 
ing flights. This situation is similar to hub connectivity, 
except that airlines seek to minimize the time between the 
departure of the first and the last flight in the bank. Let B 
be the set of flights in a bank. We define the decision 
variables 

t11 if the first flight f in B arrives by time t, 
But -to otherwise. 

1 if the last flight f in B arrives by time t, 
ZB,t 10 otherwise. 

These definitions require the constraints: 

YB,t - Wjpt 0 Vf E B, t E Tf , k = P(f, Nf), 

ZB,t - Wp 0 Vf E B, t E Tf, k = P(f, Nf). 

We also need the additional time connectivity constraints 
for these variables 

YB,t YB,t-1 0 ? V8 t EC 

ZB,t ZB,t-I V 8 tE 

The objective function of minimizing the "spread" in the 
arrival times for the flights in the bank B can be modeled 
as follows: 

min E t(ZB,t -ZB,t-1) - t(YB,t -YB,t-l)- 
tee! tee! 

This is equivalent to determining 

min E (fmax t(Wk W- k 

- fEB,k=P(fNf) ft f ) 

With the addition of these new variables, new constraints, 
and new objective function, banking can be incorporated 
into the formulation. An alternative approach to handle 
banking constraints is proposed in Ball (1993). 

3.4. Rerouting of Aircraft 

Very often, extreme weather conditions force the capaci- 
ties of some sectors (and airports) in the NAS to drop 
significantly or even to become zero. Air traffic controllers 
are then forced to use alternative routes for aircraft pass- 
ing through these sectors to accommodate these changes 
in capacities (see Figure 5 for an example). Currently, 
these rerouting decisions are handled through the experi- 
ence of the air traffic controllers and not through a formal 
optimization model. We illustrate in this section that our 
models can be extended to efficiently accommodate dy- 
namic rerouting decisions. We present two possible ap- 
proaches: the path approach and the sector approach. 

The path approach first defines Qf as a set of possible 
routes that flight f may fly. In the formulation (TFMP) we 
have assumed that Qf only contains one route, which we 
have denoted as Pf. In order for the formulation to be of 
manageable (but still large) size we need to restrict the 
size of Qf. We extend the TFMP variables in the following 
manner: 

I if flight f arrives at sector j by time t 
w= along route r, 

O otherwise. 

Clearly, the variables wftt defined in Section 1 can be writ- 
ten as: 

rEQf 

Moreover, since the departure and arrival airports will re- 
main the same for a given flight over all routes, P(f, 1) and 
P(f, Nf) will be independent of the particular route. Using 
the newly defined variables we can modify the TFMP to 
include rerouting. The size of the resulting formulation 
will be at most a factor maxf |QJ larger than the TFMP 
formulation. This implies that we should be able to handle 
problems with a relatively small number of alternative 
paths. 

The sector approach decides at each sector in its route 
which sector to enter next. We need to define N(f, j), the 
set of sectors that flight f can enter immediately after 
exiting sector j, as well as P(f, j), the set of sectors that 
flight f can enter immediately before entering sector j. We 
extend the TFMP variables in the following manner: 

1 if flight f arrives at sector j' from 
w7 = sector j by time t, 

0 otherwise. 

Clearly, the variables Wft defined in Section 1 can be writ- 
ten as: 

j'EN(f,j) 
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Figure 5. Alternative routes taken as flights avoid a low capacity region. 

As before, the departure and arrival airports will remain 
the same for a given flight over all routes, P(f, 1) and Pff, 
Nf) will be independent of the particular choice of sectors. 

Although both the path and sector approach will give 
correct formulations for the TFMRP, further investigation is 
needed to determine which variable definition will perform 
the best in terms of integrality and computation speed. 

4. INSIGHTS FROM THE POLYHEDRAL 
STRUCTURE 

In Section 5 we report computational results for the TFMP 
based on the formulation (TFMP). Even for large scale 
problems and for a variety of problem parameters, the 
solutions of the LP relaxation of both (TFMP) and 
(MAGHP) were integral. In the tradition of polyhedral 
combinatorics in mathematical programming, we examine 
the polyhedral structure of PTFMP and PMAGHP in order to 
obtain a deeper understanding of why this formulation 
performs so well computationally. Given a set S we denote 
with conv(S) the convex hull of solutions in S. In particular 
we will now address the following questions: 

1. Are the polyhedra PTFMP and PMAGHP integral? If 
not, is the optimal solution to the optimization problem 
integral if we impose the simplification that cg = 

Cf and ca 
= cl for allfE Hi;;? 

2. Are the constraints in (TFMP) and (MA GHP) facets 
of conv(IPTFMP) and conv(IPMAGHP) respectively? 

We summarize our findings in the following theorem. 

Theorem 2. 1. The polyhedra PTFMP and PMAGHP are not 
integral. Even with the simplification that cg = cf and Ca= 

ci for all f E i, integral solutions are not obtained. 
2. Inequalities (11), (12), (13), and (14) are facets for 
conv(IPMAGHP), while the constraints (9) and (10) are not. 
Inequalities (5), (6), and (7) are facets for conv(IPTFMp), 
while the constraints (2), (3), and (4) are not. 

As the proofs of the theorem are somewhat technical, we 
have placed them in Appendices B, and C, respectively. 

The previous theorem gives some partial insight on the 
usefulness of the new variables we introduced, which make 
it easy to express sharply the various types of connectivity 
in the problem. While the formulations are not integral, 
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Table I 
Results at the Infeasibility Border for 1,000 Flights 

Dep. Arr. N 
|9| |%|09 Capacity Capacity Time Nonint. 

1,000 0.20 32 15 262 0 
1,000 0.40 17 10 741 4 
1,000 0.60 20 14 359 0 
1,000 0.80 20 20 283 0 

the inequalities that the three types of connectivity impose 
are indeed facets. As the solutions obtained were integral 
for a wide spectrum of examples and parameters, we did 
not investigate further the determination of other facets. 

5. INSIGHTS FROM COMPUTATIONS 

In this section we report the results of a series of compu- 
tational experiments that we conducted. In performing the 
computational experiments, we aimed to address the fol- 
lowing questions. 

1. How frequently are the solutions obtained by solving 
the LP relaxations of (TFMP) and (MA4GHP) integral? 

2. How is the integrality of solutions affected by the 
various problem parameters and the size of the problem? 

3. How is the computational time required to obtain an 
optimal solution affected by the various problem parame- 
ters and the size of the problem? 

4. How does the present approach compare with other 
approaches in the literature? 

5. Given that the TFMP needs to be solved on line for 
controlling air traffic in the United States, perhaps the 
most important question to ask is: How large problems 
can we solve in reasonable computational times? In other 
words, is the present approach a realistic method to con- 
trol air traffic in the United States? 

Ground-Holding Problem Test Cases. We performed 
computational experiments on datasets used in Vranas et 
al. (1994a) on the Ground-Holding Problem. Specifically, 
we looked at the datasets consisting of two and six airports 
with 500 flights per airport, 1000 and 3000 flights, respec- 
tively. Some adjustments in the data were necessary in 
order to accommodate the differences between the two 
models. In particular, the previous model did not include 
of any departure data, as all of the optimization was done 
with respect to arrivals. Thus, we generated departure data 
(times and capacities) that were compatible with the exist- 
ing arrival data. 

As in Vranas et al. (1994a), for each of these cases, four 
levels of flight connectivity were considered. These levels 
give the ratios of continued flight to total flights, |%|/13;1, as 
0.20, 0.40, 0.60, and 0.80. 

We considered 15-minute time intervals taken over a 
16-hour day. All experiments were performed on a Sun 
SPARCstation 10 model 41. GAMS was used as the mod- 
eling tool and CPLEXMIP 2.1 was used as the solver. The 
results that we obtained using the above datasets and our 
(MAGHP) formulation are summarized in Tables I and LI. 
Tables I and II give results at the infeasibility border for 
each case. The infeasibility border is the set of critical 
values for the departure and arrival capacities, in units of 
flights per time interval, under which the problem becomes 
infeasible. We expect that it is in this region that the prob- 
lem is very relevant practically and is harder to solve. The 
critical capacity levels were found by a series of trial and 
error tests. The times reported are in CPU seconds and 
the % Nonint column is the percentage of total flights 
whose solution was noninteger. If we compare these re- 
sults with the results from Vranas et al. (1994a) (see Ta- 
bles III and IV), we can see that the largest amount of 
improvement occurred in the integrality of the solutions. 
The computational times for solving our LP for 1000 
flights (see Table I; column Time) are comparable to the 
time required to solve their LP (see Table III; column LP 
Time), while for the 3000 flights the LP in Vranas et al. 
(1994a) was solved faster. However, our solutions are for 
the most part already integral (the only instance where the 
solution was not integral was the 40-percent connectivity 
instance of the 1000-flight example). The total amount of 
time required to find an integral solution from the LP in 
Vranas et al. (1994a), found in the total time column, 
includes the time required to solve the LP relaxation, 
found in the LP Time column, plus the time required to 
perform a branch and bound heuristic. If we compare the 

Table II 
Results at the Infeasibility Border for 3,000 Flights 

Dep. Arr. % 
01 |t |/| Capacity Capacity Time Nonint. 

3,000 0.20 20 20 5,475 0 
3,000 0.40 20 20 4,703 0 
3,000 0.60 20 20 5,407 0 
3,000 0.80 20 20 9,411 0 

Table III 
Previous Results at the Infeasibility Border for 1,000 

Flights 

Dep. Arr. LP Total % 
ij| ||I/|IJ Capacity Capacity Time Time Nonint. 

1,000 0.20 w (12, 14) 258 374 6.3 
1,000 0.40 0c 10 327 894 8.4 
1,000 0.60 0c 11 377 6,958 12.8 
1,000 0.80 x 10 453 9,512 16.8 

Table IV 
Previous Results at the Infeasibility Border for 3,000 

Flights 

Dep. Arr. LP Total % 
151 JICJ/19;1 Capacity Capacity Time Time Nonint. 

3,000 0.20 < 12 1,453 11,360 not given 
3,000 0.40 c 18 1,808 13,291 not given 
3,000 0.60 c 17 2,547 17,980 not given 
3,000 0.80 oc 18 3,072 25,021 not given 



BERTSIMAS AND STOCK PATTERSON / 417 

Table V 
Results for Varying Capacity Levels for 1,000 Flights 

Dep. Arr. Obj. % 
19;1 JICI/151 Capacity Capacity Value Time Nonint. 

1,000 0.20 32 17 50,750 342 0 
1,000 0.20 32 16 55,450 227 0 
1,000 0.20 32 15 63,525 262 0 
1,000 0.20 32 14 inf 
1,000 0.40 18 12 47,000 290 0 
1,000 0.40 18 10 79,916 521 2.2 
1,000 0.40 17 10 88,241 741 4 
1,000 0.40 16 10 inf 
1,000 0.60 20 18 22,316 369 0 
1,000 0.60 20 15 33,292 376 0 
1,000 0.60 20 14 39,266 359 0 
1,000 0.60 20 13 inf 
1,000 0.80 30 30 17,000 183 0 
1,000 0.80 20 20 28,250 283 0 
1,000 0.80 19 19 inf 

amount of time required to find an integral solution, we 
see a significant improvement in computational time. 

Tables V and VI were constructed to demonstrate how 
computational time and integrality are affected by changes 
in the capacities, i.e., how well does the model perform 
when the capacities are not at the infeasibility border? 
These results suggest that the computational time did not 
change significantly at different capacity levels. For the one 
case in which the solution was not completely integral, 
(1,000 flights at 40-percent connectivity), increasing the 
capacity resulted in integral solutions. 

Air Traffic Flow Management Problem Test Cases. We 
next performed experiments on a connected network of 
four airports: Boston Logan (BOS), NY LaGuardia 
(LGA), Washington National (DCA), and a node repre- 
senting all other airports (X). (See Figure 6.) Three hypo- 
thetical sectors, surrounding LaGuardia, were also 
introduced into the model. Different flights would traverse 
these sectors while en route to LaGuardia depending on 
the origin of the flight. The three airports (BOS, LGA, 
DCA) and the three sectors were the only capacitated 
elements in the system. The other sectors were allocated 

unlimited capacity. We performed one set of experiments 
for 200 flights over a 24-hour time period and another set 
for 1,000 flights over a 24-hour time period. The 200-flight 
dataset was obtained from the January 1993 Official Air- 
line Guide (OAG). For the larger set of 1,000 flights, the 
data were generated by the Pseudo-OAG Generator (PO- 
AGG), which is flight generation software developed at 
Draper Laboratories that realistically mimics the flight 
schedules of the OAG. All models were programmed in 
GAMS, run on a Sun SPARCstation 10 model 41 and 
solved with the solver CPLEXMIP 2.1. For most of the 
test cases the time interval was five minutes long. Since 
some of the sectors could be crossed in under 15 minutes, 
we tried to select a time interval that would capture as 
many sectors as possible without becoming prohibitively 
large. With this in mind, we decided to use a five-minute 
interval whenever possible. 

For the set of 200 flights, the time frame was 24 hours 
divided into discrete time units of five minutes each. To 
solve the problem CPLEX requires 234 seconds CPU 
time. Moreover, the resulting optimal solution was 
integral. 

We were able to solve the 1000 flights problem at the 
infeasibility border over a 24 hour time period considering 
15 minute intervals in 436 seconds CPU time. The optimal 
solution was once again integral. For the complete set of 
results see Table VII. Notice that the computation time in 
CPU seconds varies very little with the capacity restrictions 
in flights per time interval and that the solutions were 
completely integral. 

Lastly, we obtained two realistic size datasets obtained 
directly from the OAG flight guide. This dataset has also 
been used to solve similar problems at the MITRE Corpo- 
ration. The first dataset consists of 278 flights, 10 airports 
and 178 sectors, tested over a 7-hour time-frame with 
5-minute intervals. The second of these datasets consists of 
1,002 flights, 18 airports, and 305 sectors tested over an 
8-hour time frame with 5-minute intervals. 

Table VI 
Results for Varying Capacity Levels for 3,000 Flights 

Dep. Arr. Obj. % 
19;1 JIC /191 Capacity Capacity Value Time Nonint. 

3,000 0.20 30 30 42,000 4,537 0 
3,000 0.20 20 20 228,000 5,475 0 
3,000 0.20 19 19 inf 
3,000 0.40 30 30 42,000 5,062 0 
3,000 0.40 20 20 234,000 4,703 0 
3,000 0.40 19 19 inf 
3,000 0.60 30 30 42,000 5,629 0 
3,000 0.60 20 20 234,000 5,407 0 
3,000 0.60 19 19 inf 
3,000 0.80 30 30 42,000 6,021 0 
3,000 0.80 20 20 252,000 9,411 0 
3,000 0.80 19 19 inf 

Figure 6. Sector flow model. 
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Table VII 
Results for Varying Capacity Levels for 1,000 Flights 

Sector Dep. Arr. Obj. % 
Capacity Capacity Capacity Value Time Nonint. 

50 20 20 31,975 425 0 
20 20 20 31,975 427 0 
20 10 10 inf 
15 15 15 68,725 427 0 
12 12 12 244,225 450 0 
11 11 11 inf 
10 12 12 24,225 456 0 
5 12 12 24,350 432 0 
4 12 12 250,975 466 0 
3 12 12 295,225 459 0 
2 12 12 inf 

The sector crossing times, sector and airport capacities, 
and required turnaround times were all provided by the 
FAA. Nothing used in these datasets was generated or 
hypothesized. We believe that these datasets are very com- 
parable to the problem being solved everyday by the FAA. 

For the first problem, consisting of 43,226 constraints 
and 18,733 variables, we found an optimal solution in 
1,141 seconds. Furthermore, the solution obtained was 
completely integral. The second and larger dataset consist- 
ing of 151,662 constraints and 69,497 variables, was solved 
to optimality in 29,920 seconds, again achieving completely 
integral solutions. 

In summary, to address the questions we raised in the 
beginning of Section 5 we remark: 

1. In all but one instance in MAGHP and all instances 
of TFMP the relaxations of (MA4GHP) and (TFMP) were 
integral. 

2. The integrality of solutions was not affected by prob- 
lem parameters, nor the size of the problem, except for the 
one instance in which the solution was nonintegral. 

3. The computational time required to obtain an opti- 
mal solution increases with the degree of connectivity as 
well as with the size of the problem. 

4. Our approach improves upon earlier work particu- 
larly in obtaining integral solutions. 

5. We are able to solve large, realistic size problems in a 
reasonable amount of time. In addition, because we were 
able to solve the two instances of the TFMP with real data, 
we are very optimistic that our approach can effectively 
address the TFMP. Indeed, the reason we did not solve 
bigger problems is the difficulty of obtaining real data and 
memory restrictions of the SPARCstation. 

6. CONCLUSIONS AND DIRECTIONS FOR 
FUTURE WORK 

We have presented what we believe is a realistic and prac- 
tical approach to solve the Air Traffic Flow Management 
Problem. The TFMP model takes into account all the ca- 
pacitated elements in the system (arrival, departure, and 
sector capacity) and easily extends to incorporate the de- 
pendence of airport runway capacity of departures and 

arrivals, hub connectivity, banking, and rerouting flights 
when capacity levels drop drastically. 

The FAA has been operating for several years in Wash- 
ington, D.C. an Air Traffic Control System Command Cen- 
ter (ATCSCC), equipped with outstanding information- 
gathering capabilities that dynamically keeps track of all 
the information about capacities, flight information, 
weather, etc. As we have mentioned earlier, the FAA uses 
a computerized procedure to allocate ground holding de- 
lays based on first-come-first-serve rule. We believe that 
the present optimization-based approach is well suited to 
be the optimization "brain" for this system. However, 
there are important issues that need to be addressed be- 
fore applying an optimization based approach in a real 
world environment: 

(a) Interaction with airlines. After the ground delays are 
issued, the airlines have the opportunity to propose modi- 
fications to these delays through a cancellation and substi- 
tution process. It would be interesting to analyze the 
effects of this interaction. 

(b) Dynamic updating of decisions. Ground and enroute 
delays are both generated simultaneously several hours be- 
fore a flight leaves. In practice, however, enroute delays 
are not issued until after the aircraft is in the air. Clearly 
more research is needed on the implications of issuing 
enroute delays on a much shorter time scale and on how to 
update the previous solution to incorporate any new avail- 
able information. 

(c) Stochastic modeling. The model presented in this 
paper assumes a deterministic environment. Clearly 
more research is needed to account for stochasticities 
inherent in a system that is dependent upon weather 
conditions. 

Although we have presented our formulations in the 
context of air traffic control, we envision other applications 
of our models in any area in which goods are dynamically 
flowing through a system with several types of capacitated 
elements such as manufacturing and ground transportation 
systems. 

APPENDIX A. ON THE POLYHEDRAL 
RELATIONSHIPS BETWEEN GROUND HOLDING 
FORMULATIONS 

We intend to establish Proposition 1. Since 'PMGHP, 

IPVBO and IPTP are valid integer programming formula- 
tions, it is clear that IPMGHP = IPVBO= IPTP. Moreover, 
since the IP is more restrictive than its relaxation, IPM4AGHP 

C P'MAGHP 

To show the relationship PMAGHP C PTP we will start 
with a feasible point in PIAGHP, Zft, and show that this is 
indeed feasible to PTP. The first two constraints and the 
last constraint are identical in the two models. So what 
remains to be shown is that any point, z,- that satisfies the 
third constraint of PMAGHP will also satisfy the third con- 
straint of PTP. SO 
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Zf- Zf',T-Sf -(rf-df) = Zft+(rf-df) Zf,t- s ? 

So the point, -f, satisfies the third constraint of PTP and 
all of the constraints of PTP hold. Thus, the point 

- 
does 

indeed lie in the polyhedron PTP. This establishes the rela- 
tionship PMAGHP C PTP- 

Now we need to prove the relationship PTp C PVBO. To 
show this we will start with a feasible point in PTP, 

- 
, and 

show that this is indeed feasible to PVBO- Once again, the 
first two constraints and the last constraint are identical in 
the two models. So what remains to be shown is that any 
point, Zft, that satisfies the third constraint of PTP will also 
satisfy the third and fourth constraints of PVBO So 

gf = t(2ft -Z,-) - rpS 
teT 

gf - + sf, + rf - gf 

= t(ft - 2fr,t-i) - rf - df + sf + rf 
tET 

- Z t(2ft- f,-j)-rf 
teTf 

-Zf,r; - . . * - Tf + rf + Tf- - df 

+ Sf + rf + fr + . *. + Zf,rt+T;Iil - rf- T + rf 
= -Zfrt -* * -Zf,t+-T-l +Tf - f + Sf + rf 

+ Zf,rf + rf + Zf,rf+IJ-I1 - f 

+rf~~~~~~~r +OT 

- (rf, + Tf - rf +s f + rf -df)+ T df +sf, 

+ r + 0 

-rf - sf' + df - df + sf + rf =O, 

where Tf is maximum amount of time that flight f may 
arrive late, so all the constraints hold and the point Zft does 
indeed lie in the polyhedron PVBO. This establishes the 
relationship PTP C PVBO- 

APPENDIX B. ON THE NONINTEGRALITY OF THE 
POLYHEDRON PMAGHP 

In this section we prove Theorem la, i.e., the polyhedron 
PMAGHP is not integral, by providing the following example 
which has a fractional extreme point. Consider the case in 
which there are two flights arriving and being continued by 
two flights departing from a given airport during a restricted 
time window. The data of the problem is as follows: 

1XI = 1, r = {1, 2, 3, 4}, ( = {(1, 1), (2, 2)}, 

i.e., the arriving flight i is continued by departing flight i. 
The turnaround times are 

Si =?0,S2 = 1. 

The time windows are: 

Ta = {1, 2}, T2 = {1, 2}, Td = {1, 2}, Td= {2, 3}. 

Notice that flight 2 can depart only during time slots 2 and 
3, since the turnaround time for the second flight is 1. The 
decision variables are: 

Yll, Y12, Y22, Y23, Zll, Z12, Z21, Z22, 

with the interpretation that yij = 1 if flight i departs by 
time j and zij = 1 if flight i arrives by time j. Because of 
the time windows, 

Y13 = 1, Y24 = 1, z13==1, Z23=1. 

The capacities are: 

D(1) =D(2) =D(3) = 1, A(1) =A(2) =A(3) = 1. 

The resulting formulation (MA GHP) is: 

Yll ' 1, Y12 Yll + Y22 - 1, 1 -Y12 + Y23 Y22 > 1, 

Zll + Z21 1, z12 -Zll + Z22 -Z21 1, 

1 - Z12 + 1-22 1, Y12 - Yii 0, 

Y23-Y22 0? Z12-Z11 0, 

Z22 -Z21 0, Yll -Zll 0, Y12 -Z12 '- , 

Y22-Z21 0, Y23-Z22 ?- 

Letting 

X (Yll, Y12, Y22, Y23, Zll, Z12, Z21, Z22)' and b 

= (1, 1, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0)', 

and 

Yll Y12 Y22 Y23 Zll Z12 Z21 Z22 

1 0 0 0 0 0 0 0 

-1 1 1 0 0 0 0 0 

O -1 -1 1 0 0 0 0 

O 0 0 0 1 0 1 0 

O O 0 0 -1 1 -1 1 

O O 0 0 0 -1 0 -1 

A= 1 -1 0 0 0 0 0 0 

O 0 1 -1 0 0 0 0 

O O 0 0 1 -1 0 0 

O O 0 0 0 0 1 -1 

1 0 0 0 -1 0 0 0 

0 1 0 0 0 -1 0 0 

0 0 1 0 0 0 -1 0 

0 0 0 1 0 0 0 -1 

the feasible space can be written as Ax - b. 
Notice that matrix A is not totally unimodular since the 

submatrix consisting of the columns corresponding to the 
variables Y12 Y22, z12, and z21 and the third, fifth, twelfth, 
and thirteenth rows: 
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Y12 Y22 Z12 Z21 

-1 0 0 

0 0 1 -1 

1 0 -1 0 
0 1 0 -1 

has determinant of 2. The objective function 

Min 2y 1 - 4Y12 + 2Y22 - 6Y23 - 3z11 + 6z12 - 3z21 

+ 6z22, 

gives an optimal solution of 

Yl= 0 Y22 0 Zil1=- Z21 = 

Y12 Y23 = Z12 Z22 = 

which shows that the polyhedron PMAGHP is not integral. 
Furthermore, this is the objective function that is obtained 
when we let cf = 1, cl = 3 for all f E i;. So, even with the 
restriction that cg = cf and ca = cy for all f E i, the 
polyhedron PMAGHP is not integral. 

APPENDIX C. FACET DEFINING CONSTRAINT 
PROOFS 

In this section we analyze the polyhedral structure of the 
conv(IPMAGHP) and provide the proof of the first half of 
Theorem lb that establishes which constraints are facets of 
conv(IPMAGHP). The proof of the second half of Theorem 
lb concerning problem (TFMP) is similar, but more alge- 
braically involved. We first show that the constraint 

E (yft - y -) 1 Dk (t) V k C Xf, t Ez i~, 
f: t(Tfd 

is not a facet of conv(IPMAGHP) by constructing a counter- 
example with two flights, one arriving at airport k and one 
departing from airport k, three time periods and D(t) = 1, 
A(t) = 1. Then only the variables y11, Y12, Y13, Z11, Z12, and 
Z13 are defined. The complete set of feasible solutions to 
IPMAGHP is given by: 

Yll Y12 Y13 Zll Z12 Z13 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 1 

0 0 0 1 1 1 

0 0 1 0 0 1 
0 0 1 0 1 1 

0 0 1 1 1 1 

0 1 1 0 1 1 

0 1 1 1 1 1 

\1 1 1 1 1 11 

In this case, dim(IPMAGHP) = 5 which can be determined 
by checking the rank of the matrix of solutions. We define 
the set 

Ht {(Y, Z) E IPMAGHP: Z (Yft - Yf,t-1) = 1} 
f:tE Tf 

for some t E ST. 

Then, H3 = {(O, 0, 1, 0, 0, 1), (0, 0, 1, 0, 1, 1), (0, 0, 1, 1, 
1, 1)}. In this case, the maximum number of affinely inde- 
pendent points in H3 is less than the dim(IPMAGHP) - 1 
We conclude that the constraint 1f:tGTdf (Yft 

- Yf,t-I) S 
Dk(t), Vk E Xi, t E J is not a facet. The same result can 
be checked in a similar manner for the constraint CZ T! 
(zJ-Z ft- 1) A,4t), Vk, t. D 

For ease of exposition we consider instances of 
(MA4GHP) such that 

. T} is that same for all f and therefore D = maxlT] ] 
77], 

. Sf = 0, Vf E i, 

* Ak(t), Dk(t) - 1, Vk, t. 

We consider an instance of (MAGHP) with 131 flights in 
which 1%1 (<151) of these flights are continued. These 
flights were arranged such that the first 1%1 flights are con- 
tinued by flights 1T1 + 1, .. ., 211C I I1, with flight 1 being 
followed by flight f%1 + 1, flight 2 being followed by flight 
1%1 + 2, and so on. 

We first determine dim(IPMAGHP) by constructing the 
following matrix of solutions, in which each row represents 
a solution to (M4GHP) (see Figure 7). The rows of this 
matrix are affinely independent and there are 2lJID + 1 
such rows. So, we have exhibited 219J|D + 1 affinely inde- 
pendent points in IPMAGHP and thus, dim(IPMAGHP) = 

21JID. 
We next consider the set 

Gft= {(Y, Z) E IPMAGHP :Yft - Yft-1 0 ?} 

for some f i J, t E W. 
If f E {1,..., 1' I}, then there are four distinct solu- 

tions from the matrix of Figure 7 that do not belong to Gft. 
For each of these rows, replace the 0 in the Yft- 1 column 
with an 1. If f E { 'CI + 1, ... ., 21'6I} then there are two 
distinct solutions from Figure 7 that do not belong to Gft. 
For each of these rows, replace the 1 in the Yft column with 
a 0. If f E {2|(T| + 1,..., IJI} then there are two unique 
solutions from Figure 7 which do not belong to Gft. For each 
of these rows, replace the 0 in the Yft-I column with a 1. 
For all of these cases, we have constructed a matrix 
with IJID affinely independent rows, proving that dim(Gft) 

I ID - 1. Since Gft is a proper face of IPMAGHP, we 
know that dim(Gft) < dim(IPMAGHP). So, dim(Gft) = 

I3ID - 1 and thus, Gft is a facet of IPMAGHP. D 
We next consider the set 

Kft = {(Y, Z) E IPMAGHP :Zft 
- 

Zf,t-I 0} 

for some f i J, t E . 
If f E { 1, . . ., % I} then there are three distinct solu- 

tions from the matrix of Figure 7 that do not belong to Gft. 
For each of these rows, replace the 1 in the Yft column 
with a 0. If f {ICI + 1, . . ., IFI}, then there is only one 
distinct solution from Figure 7 that does not belong to Gft, 
so remove this row. For each of these cases, we have con- 
structed a matrix with |?JjD affinely independent rows, 
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Figure 7. Matrix of Solutions to IPMAGHP 

proving that dim(Kft) - |5ID - 1. Since Kft is a proper 
face of IPMAGHP, we know that dim(Kft) < dim(IPmAGHp). 
So, dim(Kft) = k5ID - 1 and thus, Kft is a facet of 
IPMAGHP- O 

We next consider the set 

Mft = {(Y, Z) E IPMAGHP Zft - Yf,t-(rf-df) - O} 

for some f & 5, t E W. 
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For all f {1,..., 19;1} there are t - 7f + 1 distinct 
solutions from the matrix of Figure 7 that do not belong to 
Mft. For each of these rows replace the Os in the columns 
corresponding to zftf, t - t' , Tf with ls. Tf and if are the 
last possible and the earliest possible times that flight f 
could arrive, respectively. The remaining matrix will have 
|5|D affinely independent rows, proving that dim(Mft) > 

9|D- 1. Since Mf, is a proper face of IPMAGHP, we know 
that dim(Mf,) < dim(IPMAGHP). So, dim(Mft) = 19 D -- 1 
and thus, Mft is a facet of IPMAGHP. D 

Finally, we consider the set 

Nfft {(Y, Z) E IPMAGHP :Yft - Zft = } 

for some (f,f) E IC, t E iT. 
For all f E {1, .. . , 1911} there are t - Tf + 1 distinct 
solutions from the matrix of Figure 7 that do not belong 
to Nfft. For each of these rows replace the Os in the 
columns corresponding to Yft, t , t' - Tft with ls. The 
remaining matrix will have |JID affinely independent 
rows, proving that dim(Nfft) D JIJD - 1. Since Nfft is a 
proper face of IPMAGHP, we know that dim(Nfft) < 

dim(IPMAGHP). So, dim(Nfft) = 19|D - 1 and thus, Nfft 
is a facet of IPMAGHP- D 
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