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Abstract

We present a model of digital advertising with three key features: (i) advertisers

can reach consumers on and off a platform, (ii) additional data enhances the value of

advertiser-consumer matches, and (iii) bidding follows auction-like mechanisms. We

contrast data-augmented auctions, which leverage the platform’s data advantage to

improve match quality, and managed campaign mechanisms that automate match for-

mation and price-setting.

The platform-optimal mechanism is a managed campaign that conditions on-platform

prices for sponsored products on the off-platform prices set by all advertisers. This

mechanism yields the efficient on-platform allocation but inefficient off-platform allo-

cations due to high product prices; it attains the vertical integration profit for the

platform and advertisers; and it increases off-platform product prices and decreases

consumer surplus, relative to data-augmented auctions.
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1 Introduction

1.1 Motivation

Digital advertising facilitates the matching of consumers and advertisers online. Large plat-

forms utilize their extensive consumer data to connect online shoppers with their preferred

firms and products. In turn, advertisers join these platforms in order to target a wide range

of potential consumers beyond their existing customer base. As a result, sponsored content is

ubiquitous on the Internet: advertising makes up nearly all the revenue of search engines and

social media platforms, a growing fraction of the revenue of retail platforms such as Ama-

zon and Instacart, and a large fraction of other retail platforms’ revenue, such as Alibaba’s

Taobao marketplace.

The role of these platforms’ proprietary datasets becomes apparent when we decompose

the value of digital paid traffic across the web. Google, Meta, Amazon, and other platforms

place advertising directly on their own sites (through sponsored search results, stories, and

products) and also serve as intermediaries that place advertising on third-party sites. The

most recent data from public filings show that nearly 60% of the worldwide digital advertising

revenue (which exceeds $600 billion) accrued on the platforms’ own websites (Lebow, 2023).

In particular, Google received revenues of $191 billion from digital advertising on its own

sites, (e.g., google.com, youtube.com, etc.) and merely $33 billion from ad placement on

third-party websites.1 Thus, the majority of revenue accrues precisely where the deployment

of proprietary data is completely unrestricted and not accessible to competing marketers.

Indeed, the evolution of this marketplace suggests a reversal in the traditional assumptions

on asymmetric information in digital advertising.

As the market for digital advertising has grown and become more complex, the prevailing

mechanisms by which platforms sell ads have also shifted. Digital platforms increasingly act

as intermediaries that run managed campaigns for advertisers, who set a fixed budget, specify

high-level objectives for their campaigns, and leave the task of bidding to “auto-bidding”

algorithms offered by the platform. The most recent estimates suggest that over 80% of

digital advertising is now generated by managed campaigns (Deng et al., 2022a,b). For

example, over 80% of Google advertisers were using automated bidding in 2023.2

1See Google’s 2023 financial report to the Securities and Exchange Commission, available at
https://www.statista.com/study/163755/alphabet-google-annual-report-2023.

2See https://ads.google.com/home/measurement/bidding/. Furthermore, Competition & Markets
Authority (2020, §5.201, §5.76) reported that 40-50% of Google’s 2019 search advertising revenue in the UK
came from advertisers using automated bidding. Finally, 90-100% of UK advertisers on Facebook were using
the default auto-bidding feature, which does not allow advertisers to specify a maximum bid.
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In this paper, we provide an equilibrium treatment of how data-intensive mechanisms

for selling advertising impact product prices and welfare both on and off the platform.

Our approach takes two fundamental aspects of digital advertising into account. First,

consistent with the revenue breakdown described above, platforms possess valuable data

that can enhance the matching efficiency. Second, advertisers have parallel sales channels,

i.e., they can reach their customers on and off the platform.

We consider a monopolist digital platform that sells access to its users. Advertisers de-

termine their pricing strategy on and off the platform and their advertising strategy on the

platform. On-platform consumers act as shoppers and choose the product that offers the

highest net value. Because these consumers compare the advertised offers to all firms’ off-

platform prices, advertisers endogenously behave as if under a “showrooming” constraint:

they wish to ensure their on-platform offers are at least as attractive as their off-platform

offers. Conversely, consumers off the platform are loyal and buy from a single brand. Conse-

quently, advertisers face a trade-off between setting optimal prices for their loyal customers

off-platform and the option of charging higher personalized prices to on-platform shoppers.3

A key innovation in our model is that the platform actively influences the firms’ adver-

tising campaigns. With access to the platform’s data, advertisers can offer prices that reflect

the consumers’ willingness to pay. This form of price discrimination broadens the market

and enhances the efficiency of matching on the platform. Off the platform, advertisers lack

additional data and offer a uniform price. We contrast two main mechanisms for allocating

advertising space on the platform: data-augmented auctions and managed campaigns. Both

these mechanisms, as well as our simple advertising model, are of course simplifications.

Throughout the paper, we discuss the relevance of each of our modeling choices to real-

world advertising markets: our model of advertised prices in Section 2; the auction format

in Section 3; and the managed-campaign mechanism in Section 4.

Our model demonstrates how any analysis of the pass-through of online advertising costs

must account for cross-channel distortions. Indeed, we show that advertisers raise prices off

the platform to gain a competitive edge on the platform. In particular, under the platform-

optimal mechanism, the higher costs of online advertising are passed on to consumers by

means of higher product prices off rather than on the platform.

3In pure advertising platforms, where the matching fee is typically incurred before the transaction (e.g.,
through pay-per-impression or pay-per-click fees), the advertiser faces the showrooming constraint directly.
The advertiser wants to pay for the listing only if it leads to a sale, as the offline transaction would have
occurred without the advertising. In platforms where the fee is based on transactions, such as referral fees
on shopping services like Amazon, the platform often imposes the showrooming constraint through a most
favored nation clause. This clause requires the advertiser to offer the most favorable price online.
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1.2 Results

We begin our analysis with a second-price auction for a single advertising slot where the

platform augments the bidders’ information by soliciting bids based on the match values

with each consumer. We refer to this as data-augmented bidding : each advertiser submits a

bid for the slot and a price at which to offer its product if it wins the slot.

We derive the optimal bidding and pricing strategy of the advertisers. On the platform,

the second-price auction implements an efficient allocation, and the additional data allows

the advertisers to sell successfully to consumers with lower values without the need to price

them out of the market (Theorem 1). Additionally, each advertiser must set the price at

which to offer its product to loyal customers off the platform. In equilibrium, the advertisers

raise their off-platform prices, relative to the prices they would have charged in a stand-alone

market (Proposition 2): by offering their product only at a higher price, each advertiser can

weaken the showrooming constraint and extract more surplus on the platform. Consequently,

the off-platform prices increase with the number of on-platform shoppers.

Next, we introduce the concept of a managed campaign. In this more centralized mech-

anism, the platform proposes to each advertiser a steering policy and a pricing policy for

their product on the platform. Contextually, the platform requests a fixed fee from each

advertiser, which we can interpret as a required advertising budget. Each advertiser simul-

taneously decides whether to enter into the managed campaign or not, and how to price

its product off the platform. We show that the platform optimizes its revenue by matching

firms and consumers efficiently and by offering a best-value pricing policy. This policy en-

sures the efficient firm always makes the offer with the best value to the consumer, even if

its competitors deviate in their posted prices (Theorem 2). In doing so, the platform weak-

ens competition and leads the firms to raise their posted prices off the platform in order to

extract more surplus from online consumers.

Best-value pricing is not only revenue-optimal for the platform; the joint producer surplus

attains the vertical integration benchmark where one firm controls all the advertisers and the

platform (Theorem 3). In consequence, the posted prices off-platform are higher than under

the data-augmented auction (Theorem 4). By comparing the prices charged to consumers

and the advertising costs across these two mechanisms, we can then quantify a notion of

pass-through (Proposition 3).
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1.3 Policy Relevance

The digital platforms that offer managed campaigns also enjoy significant market power,

which has raised regulatory concerns. In a recent report, the UK regulator argues:

“Where an advertising platform has market power [...] advertiser bids in its

auctions are higher, resulting in higher prices. In addition, the platforms may

be able to use levers including the use of reserve prices or mechanisms such as

automated bidding to extract more rent from advertisers. [...]

Higher advertising prices matter because they represent increased costs to the

firms producing goods and services which are purchased by consumers. We would

expect these costs to be passed through to consumers in terms of higher prices

for goods and services, even if the downstream market is highly competitive.”

(Competition & Markets Authority, 2020, §6.19, §6.20.)

The Competition & Markets Authority (2020, Chapter 5 and Appendix Q) sets forth the

principle that platforms should act in customers’ best interests when making choices on their

behalf. Our baseline model raises the concern that automated bidding options in Google and

Facebook could be used to increase platform revenues to the consumers’ detriment instead.

We therefore deploy our model to examine two competition- and privacy-policy inter-

ventions. The first policy we consider restricts the platform’s auto-bidding algorithms by

requiring the pricing and steering policies to be independent of all off-platform posted prices.

We show that any independent managed campaign that steers consumers efficiently leads to

lower on-platform prices than the fully optimal managed campaign (Theorem 5). In particu-

lar, limiting the signals that the pricing policy can use restores the possibility for on-platform

consumers to be poached by other firms through off-platform price cuts. This force fosters

competition and benefits consumers on both sales channels.

The second policy we consider is a privacy restriction that prevents the platform from

steering consumers and setting prices on the basis of the consumers’ detailed data. Instead,

we allow the platform to condition its steering and pricing decision on the basis of coarse

information only, i.e., on the identity of each consumer’s favorite firm. This restriction is

equivalent to removing the ability to perfectly price discriminate using the platform’s data.

In this scenario, the firms sell to both on- and off-platform consumers via the same posted

price (Proposition 4). The privacy restriction reduces off-platform prices compared to the

benchmark of a managed campaign, but may reduce total surplus on the platform, because

low-value consumers no longer receive personalized discounts.
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1.4 Related Literature

Our paper contributes to the literature on online advertising auctions. Recent work in this

field studies learning in repeated auctions (Balseiro and Gur, 2019; Kanoria and Nazerzadeh,

2020; Nedelec et al., 2022), discriminatory effects (Celis et al., 2019; Ali et al., 2019; Nasr

and Tschantz, 2020), and collusion (Decarolis et al., 2020, 2022). Our focus, instead, is the

comparison of auctions with other allocation mechanisms in a setting with a given informa-

tion structure and parallel sales channels. As such, our approach is related to, yet distinct

from, Bar-Isaac and Shelegia (2022), who compare auctions and auto-bidding mechanisms

in a single market under exogenous limits to the ability to steer and to price discriminate.

Motta and Penta (2022) study a model of targeted bidding (i.e., data-augmented auctions)

where the number of organic search results is fixed. In their setting, sponsored content may

crowd out organic information when the same firm wins both types of links. This limits

competition, facilitates market segmentation, and reduces welfare.

Several papers (Golrezaei et al., 2021; Liaw et al., 2022; Mehta, 2022; Deng et al., 2022b)

study online auction design in the presence of autobidders and return-on-investment con-

straints.4 Our setting adds a dimension related to advertised prices: firms submit both bids

for a sponsored link and tailored prices to offer consumers. While Li and Lei (2023) also

investigate mechanisms that allow for advertised prices, we further explore the interaction

of these mechanisms with off-platform activity.

Our paper also relates to the literature on information design in auctions and markets. In

particular, Bergemann et al. (2015), Haghpanah and Siegel (2022), and Elliott et al. (2022)

study the effect of market segmentations and the achievable combinations of consumer and

producer surplus, i.e., how to use data to make markets more or less competitive.

As in Varian (1980), the advertisers in our model face two segments of consumers, shop-

pers on the platform and loyals off the platform. The design of the auction is therefore subject

to the showrooming constraint, i.e., to competition from a separate and distinct market. Ear-

lier papers on “partial mechanism design” or “mechanism design with a competitive fringe”

studied mechanism design in settings where the agents’ outside option consists of participat-

ing in alternative markets, e.g., Philippon and Skreta (2012), Tirole (2012), Calzolari and

Denicolò (2015), and Fuchs and Skrzypacz (2015).

4A recent literature on auto-bidding algorithms allows for objective functions by the bidders outside of
the class of quasilinear utility models common in mechanism design. For example, the bidder may seek to
maximize return on investments and have budget or spending constraints. Aggarwal et al. (2019), Balseiro
et al. (2021), and Deng et al. (2021) offer excellent introductions this rapidly growing research area.

6



The showrooming constraint in our model is related to a growing literature on digi-

tal platforms with competing advertisers or multiple sales channels. Recent contributions

include de Cornière and de Nijs (2016), Bar-Isaac and Shelegia (2020), Miklós-Thal and

Shaffer (2021), and Wang and Wright (2020). In our setting, advertisers deter consumers

from showrooming to capture the added value of making data-augmented offers when selling

on the platform. In parallel work, Bergemann and Bonatti (2023) study on- and off-platform

competition with multi-product firms and nonlinear pricing. They focus on the implications

of managed campaigns for equilibrium product quality, relative to our paper’s exploration

of showrooming and its impact on pricing strategies in the off-platform markets.

Finally, a recent contribution by Varian (2022) analyzes the relationship between adver-

tising costs and product prices through the lens of a single (representative) online merchant.

The size of the advertising audience increases sales proportionally at every price level, with

a convex cost of increasing the audience size. In his separable model, an exogenous increase

in advertising costs does not necessarily lead to an increase in product prices.

2 Model

Payoffs and Information There are J advertisers (or firms) indexed by j = 1, 2, ..., J ,

each selling unique indivisible products and a single digital platform. Each firm’s production

cost is normalized to zero. There is a unit mass of consumers, each demanding a single

product. The willingness to pay vj for each firm’s product is drawn independently across

consumers and firms according to a distribution function F that admits a strictly positive

density f on its support V = [v, v̄] ⊂ R+. The consumer’s value is given by the vector of

willingness to pay

v = (v1, ..., vJ) ∈ V J ⊂ RJ
+.

The utility for a consumer with value v of purchasing product j at price pj is given by

vj − pj.

Initially, values are observed by the consumers and by the platform, but not by the firms.5

5The symmetry in the information is helpful for the welfare comparison but is clearly a stark assumption.
The equilibrium implications are robust to a more general formulation in which the platform is endowed
with partial information.
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Firms and Platform The platform presents consumers with a single “sponsored” result

followed by a list of non-sponsored products. The platform allocates the sponsored position

using either a data-augmented auction or a managed campaign. We describe these two

mechanisms in Sections 3 and 4, respectively, and we connect them to current practices in

digital advertising markets. Under either mechanism, an on-platform consumer with value v

receives a personalized offer to buy some firm j’s product at a price pj(v). Thus, the firm in

the sponsored slot can condition its price on the J-dimensional consumer value. In addition

to the on-platform prices pj(v), each firm j posts a price p̄j for its product off the platform.

On-platform Consumers A measure λ ∈ [0, 1] of consumers are on-platform “shoppers.”

These consumers observe J+1 prices: the advertised price pj(v) by the firm j that is awarded

the sponsored slot, as well as the prices p̄k posted by all firms k = 1, ..., J . We can view

these prices as organic results shown by the platform, or equivalently interpret the model as

allowing for free search: only a “sponsored” firm can target a price offer to an on-platform

consumer, but the consumer can search and find the prices posted by any firm.6

Under either interpretation, each firm j is subject to a showrooming constraint when

setting its on-platform prices: for all v, the prices it advertises on the platform must satisfy

pj(v) ≤ p̄j. Thus, in this model, firms offer the lowest prices on the platform, regardless of

whether the platform imposes price-parity or most-favored-nation clauses.7

Off-platform Consumers The remaining 1 − λ measure of consumers are “loyals” who

visit only a single firm off the platform (e.g., its physical store or website).8 The off-platform

consumer population is divided into J captive segments of size (1−λ)/J . Segment j considers

firm j only: these consumers buy if and only if the off-platform price p̄j is lower than their

willingness to pay vj. Figure 1 summarizes our model.

Digital Advertising through the Lens of the Model Digital platforms offer a variety

of advertisement formats, such as sponsored links, images, or videos. The content, often a

product-price pair selected from the advertiser’s portfolio, can differ across media channels

and is tailored to individual consumers. Advertisers face three key decisions: identifying

6The dual presence of sponsored and organic search describes most closely the practice of platforms such
as Google or Amazon. However, in our model, the key feature is having at least some organic search results,
not necessarily having both types under one platform. Thus, our model applies even to social networks like
Meta, which have less search functionality compared to Google or Amazon.

7We use the upper bar notation for off-platform prices because the posted price p̄j is an upper bound on
the amount that any consumer will pay for firm j’s good.

8Section 6.1 extends the model to off-platform competition.
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Figure 1: Model Depiction

the target users, selecting the appropriate advertisement for each user, and determining the

bid for each user’s attention. The best strategy depends on the platform’s nature and the

advertiser’s product line. For instance, a brand with multiple product lines would adopt a

different approach than a single-product firm, adjusting its campaign according to the type

of platform, e.g., search engines, social networks, or third-party publishers.

In our model, each firm offers a single product with fixed characteristics. Thus, the

content of an advertisement is limited to a specific brand and to a personalized price. As

such, our model is certainly an abstraction from the rich practice of digital advertising, where

brands have multiple product lines and products have many features.

At the same time, our model allows us to capture two crucial aspects features of real-

world digital advertising: the platform’s ability to match consumers with their preferred

firms and the value created through personalized pricing, which offers discounts to lower-

value consumers who would not purchase at the monopoly price.

The model also accommodates a broader interpretation where each firm offers a range

of products varying in quality and price. The platform’s information enables firms to guide

each consumer to a different quality-price pair within their product line, a process known

as product steering. This process combines value creation and extraction, similar to our

single-product model. As the variation in product quality diminishes (i.e., the products of

each firm become more alike), product steering becomes akin to personalized pricing.9

9See Bar-Isaac and Shelegia (2022), Bergemann and Bonatti (2023), and Teh and Wright (2022) for recent
models of product steering on digital platforms.
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Finally, in our model, personalized pricing is exclusive to the platform and only applies

to the firm that wins the sponsored slot. This is due to the consumers’ unit demand and the

significant difference in the information each firm possesses on- and off-platform. However,

in real-world scenarios, multiple forms of price discrimination, such as market segmentation

and nonlinear pricing, can occur both on and off the platform. In that sense, our model

accentuates the differences between these two sales channels.

3 Data-Augmented Auctions

In this section, the platform runs an auction to determine which firm makes a personalized

offer to each consumer. The platform provides the advertisers with information about the

characteristics of the consumer, summarized by the vector of values v. Because the adver-

tisers can make their bidding and pricing decisions contingent on the information disclosed

by the platform, we refer to this mechanism as data-augmented bidding.

3.1 Data-Augmented Bidding: Mechanism

The platform runs a second-price auction for each realized consumer value v separately. In

each auction, the platform enables the advertisers to condition bids and sponsored prices on

the consumer’s value. Formally, each advertiser j adopts a bidding strategy

bj : V
J → R+,

and a sponsored pricing strategy

pj : V
J → R+.

This game proceeds as follows. First, all firms (simultaneously) post off-platform prices p̄j.

Second, each firm j submits a bid function bj : V J → R+ and a sponsored price function

pj : V J → R+ to the platform. Third, a consumer value v is realized, and a second-price

auction (with no reserve) determines which firm j and which price pj(v) are advertised to

the consumer. We characterize the symmetric Bayesian Nash equilibria of the bidding and

pricing game among the advertisers.
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3.2 Data-Augmented Bidding: Practice

Manual bidding is the original mechanism for selling advertising online and is still in use,

though it is becoming less common.10 When bidding manually, an advertiser typically spec-

ifies their willingness to pay for a click on a search result, display ad, or sponsored product

listing. The advertisers can also modify their bids and their messages according to the plat-

form’s information on each consumer. Thus, the platform monetizes its data through an

indirect sale of information (Admati and Pfleiderer, 1990; Bergemann and Bonatti, 2019),

whereby advertisers can act as if they had direct access to the consumers’ characteristics. In

our model, where the platform has complete information about the consumer’s preferences,

the entire value profile v acts as a targeting category.

The rules for the allocation of sponsored placements vary across digital platforms and

publishers. Broadly speaking, second-price mechanisms are used by the digital platforms

on their own websites, e.g., by Google for sponsored search on google.com (Edelman et al.,

2007), by Meta on its social networks, and by Amazon for its sponsored product listings. By

contrast, the pricing of display advertising by third party publishers such as nytimes.com or

wsj.com, which is often mediated by the digital platforms, has recently seen a transition from

second price auctions to first-price auctions.11 In what follows, we focus on the second-price

data-augmented auction for its prevalence in digital advertising and its simplicity.12

3.3 Data-Augmented Bidding: Equilibrium

To help characterize the firms’ equilibrium bidding and pricing strategies for this setting,

we first establish a useful property. Proposition 1 below shows that, regardless of the prices

posted by the firms off the platform, a bidding equilibrium in undominated strategies results

in a symmetric and efficient assignment of on-platform consumers. In other words, each

on-platform consumer sees a sponsored offer from the firm they like best.

10See, for example, https://support.google.com/google-ads/answer/2390250. At the same time,
Google also suggests to advertisers that setting bids manually may result in lower performance, as reported
in https://growthmindedmarketing.com/blog/google-ads-mistakes-new-campaigns.

11This shift is largely due to the organization of this market through ad exchanges (Goke et al., 2022).
12Yet the details of the auction do not matter for our characterization of equilibrium bids and prices.

Indeed, as the platform enables the firms to bid in a complete-information auction for each consumer type,
both the winner and the price paid for each v are identical in a first- and second-price auction. Thus, the
platform revenue and the equilibrium posted price are also equivalent for our data-augmented auctions.
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Proposition 1 (Efficient Bidding Outcome)

Fix a profile of posted prices p and consider an on-platform consumer with value v. If

vj > vk, firm j bids at least as much as firm k for consumer v in any bidding equilibrium in

undominated strategies.

Proof of Proposition 1 Fix the vector of posted prices p̄ and consider a second-price

auction for a consumer with value v. In this auction, it is weakly dominant for each firm j

to bid up to the price it would charge if it won the sponsored slot, bj(v) = pj(v). Having

observed all posted prices p̄, each firm knows that consumer v has the option to buy from

the most attractive off-platform offer,

u(v, p̄) ≜ max
k=1,...,J

(vk − p̄k)+ , (1)

where (·)+ denotes the nonnegative part throughout the paper.

Given this outside option, firm j can offer consumer v (and therefore bid)

pj(v) = bj(v) = (vj − u(v, p̄))+ ,

which in particular implies that the showrooming constraint pj(v) ≤ p̄j is satisfied.

Because the outside option u in (1) is common to all firms, the highest-value firm j =

argmaxk vk can offer consumer v the highest price pj and still make a sale on the platform.

Consequently, the highest-value firm also makes the highest bid bj.

Proposition 1 allows us to separate the outcome of the bidding stage from the posted

prices: the equilibrium matches in the bidding game are invariant with respect to the posted

prices. Our main result in this section (Theorem 1), uses this property to characterize the

unique symmetric equilibrium (in undominated strategies) of the data-augmented auctions

and the associated posted price pB.

Theorem 1 (Symmetric Equilibrium)

There exists a symmetric equilibrium in undominated strategies. In any such equilibrium:

1. Consumer v receives and buys a sponsored offer from j = argmaxk vk.

2. Each firm k posts price p̄k = pB satisfying

(1− λ)(1− F (pB)− pBf(pB)) + λJ

∫ v̄

pB

F J−1(v − pB)dF (v) = 0. (2)
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Further, when there is a unique solution to (2), the symmetric equilibrium in undomi-

nated strategies is unique.13

3. Firm j = argmaxk vk bids bj(v) = pj(v) = min(vj, pB).

4. Firm j ̸= argmaxk vk bids bj(v) = pj(v) = (vj −maxk(vk − pB)+)+.

The proofs of all results, unless noted otherwise, are collected in the Appendix. To gain

intuition for the firm’s trade-off when posting a price p̄k , consider the case of a single bidder

(J = 1). Because the losing bid is trivially nil, the profit of the firm is then

(1− λ)(1− F (p))p+ λ

∫ v̄

v

min{v, p}dF (v). (3)

We can therefore view the optimal posted price as solving a monopoly profit maximization

problem, plus a second term capturing the on-platform benefit which is increasing in p.

In our setting with J competing firms, equation (2) is the first-order condition for the

competitive analog to the monopoly profit (3). The equilibrium posted price pB balances the

winning firm’s profit on the two sales channels. By showrooming, the posted price sets an

upper bound on the prices that can be advertised to the on-platform consumers. Therefore,

the potential to price discriminate more effectively on-platform pushes firms to raise their

posted prices. This effect is captured by the second term in the first-order condition (2),

which is positive.

While it is intuitive that higher posted prices enable higher advertised prices, equation

(2) illustrates a more nuanced, important property of data-augmented auctions. A marginal

increase in p̄j above pB benefits firm j only if (i) a consumer values firm j’s product at

least pB, and (ii) a consumer values all other brands k less than vj − pB, so that the second

highest bid bk(v) is nil. If the second condition is not met, i.e., if the auction is sufficiently

competitive, the second highest bid is given by bk(v) = p̄j+vk−vj as in part (4.) of Theorem

1. This bid equals the price that firm k would advertise if it won the auction. Critically,

firm k’s bid increases one-to-one with firm j’s posted price p̄j: firm k bids more aggressively

for consumer v when winning the auction would enable it to charge a higher price and still

make a sale. Thus, a higher posted price relaxes showrooming but makes a firm a softer

competitor in the more competitive auctions, which dampens the effect of raising the price

in the first place.

13The proof shows the symmetric equilibrium profit level is unique and the symmetric equilibrium posted
price is generically unique. When there are multiple equilibrium prices, pB denotes the highest such price.
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3.4 Welfare Implications

We now discuss the welfare implications of data-augmented bidding. Theorem 1 shows that

the on-platform allocation is socially efficient: every consumer participates and buys their

favorite product. Relative to the on-platform channel, the off-platform market suffers from

two sources of inefficiency: first, consumers are loyal to a random firm, i.e., they might be

unaware of the existence of a firm they prefer; and second, since firms optimally post a single

off-platform price, those consumers with values below the posted price do not buy at all.

Turning to the welfare implications for consumers, part (3.) of Theorem 1 shows that the

winning firm extracts all consumer surplus on-platform, up to the equilibrium posted price.

Thus, the expected surplus of an off-platform and an on-platform consumer are given by

CSoff(pB) =

∫ v̄

pB

(v − p) dF (v), and CSon(pB) =

∫ v̄

pB

(v − p) dF J(v). (4)

On both channels, only consumers with values above pB obtain a positive surplus.

To capture the effect of the platform on consumer surplus, we then consider the posted

prices. We first define pM as the monopoly price for distribution F ,

pM ≜ argmax
p

p (1− F (p), (5)

and we assume pM > v throughout.

All firms would post price pM if they had a loyal off-platform population only, as can

be seen by setting λ = 0 in (2). For any λ > 0, the second term on the right-hand side of

(2) pushes the equilibrium price pB above pM . Formally, part (1.) of Proposition 2 uses a

monotone comparative statics argument (which we shall invoke repeatedly) to show that the

equilibrium price is increasing in λ. Therefore, posted prices are larger than the monopoly

price pM . We trace out the welfare implications of this result in part (2.) of Proposition 2.

Proposition 2 (Posted Prices and Welfare Effects)

1. The symmetric equilibrium posted price pB is increasing in λ.

2. Off-platform per capita total surplus and consumer surplus are both decreasing in λ.

In traditional models of search stemming from brick and mortar stores with non-posted

prices, the increased presence of consumers who obtain more quotes has a positive externality

on the other consumers. Our model generates the opposite prediction because the growth of

the platform is unambiguously harmful for off-platform consumers.
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In contrast, the effect of λ on on-platform consumer surplus is more nuanced. Because

every on-platform consumer is matched with their favorite firm (as captured by the distri-

bution F J), the expected welfare of an on-platform consumer in (4) is always larger than

an off-platform consumer’s. Moreover, every consumer gains weakly ex post (after learning

their v) by joining the platform.

This creates an important participation externality, however, because more consumers

joining the platform increases λ, which raises all off- and on-platform prices.14 As λ → 1,

the equilibrium posted price pB → v̄. This means total surplus is at the first-best level, but

the firms extract all consumer surplus on and off the platform.

4 Managed Advertising Campaigns

We now contrast data-augmented auctions with the more novel auto-bidding and managed-

campaign mechanisms. In a managed advertising campaign, the platform determines which

firm wins the sponsored slot for each consumer value and makes an offer to the consumer

on behalf of that firm. The platform collects a fixed upfront fee for this service from each

participating firm. In turn, the firms relinquish agency over the on-platform allocation

process, but they still collect the resulting revenue and post the off-platform prices.

4.1 Managed Campaigns: Mechanism

A managed campaign is a mechanism where the platform conditions the advertised products

and prices on all available information: the consumer’s value v ∈ V J , the firms’ participation

decisions in the mechanism a ∈ {0, 1}J , and the posted prices p̄ ∈ RJ
+. We thus consider the

following extensive form.

1. The platform proposes a mechanism (s, p, T ) to all firms, where s : V J×{0, 1}J×RJ
+ →

J is a steering policy, p : V J × {0, 1}J ×RJ
+ → R+ is a pricing policy, and T ∈ RJ

+ is a

profile of fixed fees (advertising budgets).

2. The firms simultaneously decide whether to accept (aj = 1) or reject (aj = 0) the

platform’s offer and what off-platform price pj to post.

14In recent work, Kirpalani and Philippon (2021) and Bergemann et al. (2022) document the externalities
that consumers impose on each other through their decisions to share data with a two-sided platform.
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3. If firm j accepts the platform’s offer, it pays a fee Tj. Its product is offered to a subset

of on-platform consumers according to the steering policy s and priced according to

the policy p.

In other words, the steering policy steers each consumer to a firm, depending on all firms’

participation decisions, their posted prices, and the consumer’s own value. The pricing policy

maps those same variables into an advertised price. In the remainder of this section, we focus

on a specific instance of a managed campaign and then show that these pricing and steering

policies are revenue optimal for the platform.

Definition 1 (Best-Value Pricing)

The best-value pricing policy sets

p(v, a, p̄) = min(vj, p̄j,min
k ̸=j

(vj − vk + p̄k))+, (6)

where j = s(v, a, p̄) is the firm selected by the platform’s steering policy.

Correspondingly, the efficient steering policy selects the consumer’s favorite firm among

those that participate in the mechanism.

Definition 2 (Efficient Steering)

The efficient steering policy sets s(v, a, p̄) = argmaxj ajvj.

When combined with efficient steering, the best-value pricing policy ensures that the

sponsored firm’s advertised price pj(v) yields the best value to each consumer that likes

product j the best, so that no other firm can poach the consumer by posting a lower price

p̄k. In this sense, the best-value pricing guarantee (6) is stronger than a most-favored-nation

clause that ensures firms offer their goods at lower prices on- than off-platform: it guarantees

that the sponsored firm will compete aggressively with any deviating firm.

4.2 Managed Campaigns: Practice

We now discuss the connections between the model and real-world platforms. Indeed, all

three key elements of our model of managed campaigns connect to the current practices of

large digital platforms.

First, relative to data-augmented auctions, ex-ante fixed fees replace individual, per-

auction payments. In the model, the fixed fees represent advertising budgets that firms

submit to the platform. This is the predominant mechanism on pure advertising platforms,
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such as Google, Facebook, or Tiktok that match advertisers and consumers, but do not

charge any transaction fees. In all these markets, the firms delegate the spending decisions

to the platform, subject to constraints on the returns to their investment.15

By contrast, retail platform such as Amazon or Instacart typically receive revenue from

a mixture of advertising and sales commissions. Significantly, Amazon’s advertising revenue

is catching up to those of Google and Meta (Konstantinovic, 2023), which suggests that

the relevance of the advertising mechanisms is extending to retail platforms. Other retail

platforms, most notably Alibaba, have very low sales commissions and generate most of

their revenue from sponsored listings. In particular, Alibaba’s Taobao operates as a fee-free

consumer-to-consumer marketplace where users can pay to rank higher in the search results,

thus generating all its revenue from advertising (Stapleton, 2021).

Second, the platform controls both the allocation of sponsored slots and the prices of the

firms’ products. Many advertisers run advertising campaigns that target different consumers

with promotional offers, which can involve personalized prices, varieties, or product versions.

For example, Amazon and Google offer portfolio bidding strategies, which consist of “AI-

powered, goal-driven bid strategies that help you optimize bids across multiple campaigns,”

i.e., that choose which offers to target to which user.16 Likewise, Meta’s Advantage+ Cata-

log Ads automatically delivers relevant product recommendations to people based on their

revealed intent. Meta describes this service as follows.

“You can create a catalog with all your products and create one campaign that

drives sales on your website or app. When someone expresses interest in an item

from your catalog [or in the types of products or services you are offering], Meta

can dynamically generate an ad for that person and deliver it automatically on

mobile, tablet and desktop.”17

In our model (see the discussion at the end of Section 2), each firm sells a single product,

and therefore the platform’s choice of personalized advertising content reduces to a targeted

promotional discount.

15Our model is also consistent with this type of arrangement. After Theorem 3, we discuss a sense in which
the optimal mechanism promises firms a strictly positive return on their on-platform advertising spending.

16See https://support.google.com/google-ads/answer/6263058 for Google’s description of portfolio
bidding and https://advertising.amazon.com/blog/introducing-portfolios-for-sponsored-ads for
Amazon’s version.

17Meta offers two targeting options that reach customers across different stages of the buying journey,
depending on whether they have manifested interest in an advertiser’s own products or in their industry’s
products. See https://www.facebook.com/business/help/397103717129942.
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Third, the platform conditions the advertised prices on all off-platform posted prices.

Real-world managed-campaign algorithms such as Google’s Performance Max and Meta’s

Advantage+ can be viewed as implementing our static mechanism by adapting behavior

over time. The connection is as follows. Google’s algorithm “uses Google AI across bidding,

budget optimization, audiences, creatives, attribution, and more.”18 Thus, the algorithm

adjusts not only the automated bids, but also the creative content shown to each consumer

in order to achieve the campaign goals. For example, if the algorithm detects a drop in

clicks on a given advertisement by a certain consumer segment, it can advertise a cheaper

product to those consumers, so to improve sales. In practice, this adjustment process occurs

gradually.19 In our static model, the adjustment is instantaneous: the platform modifies the

advertised prices as soon as a firm deviates from the equilibrium posted price.

Table 1 offers two interpretations of our model that summarize the above discussion. The

narrow interpretation is the focus of our model, the broader interpretation links our model

to a more extensive set of practices and tools.

Narrow Broad

Product Line Single product Multiple products

Targeting Personalized pricing Product steering

Algorithm
Advertised price reacts
to all posted prices

“Portfolio bids” and “catalog ads”
select most profitable product

Timing One-time pricing Learning over time

Table 1: Mapping the model to real-world managed campaigns

4.3 Managed Campaigns: Equilibrium with Best-Value Pricing

A key consequence of best-value pricing and efficient steering is that firms are insulated from

competition. We now characterize the symmetric equilibria of the managed campaign with

efficient steering and best-value pricing.

18For a detailed description, see https://support.google.com/google-ads/answer/10724817.
19The initial learning phase of a portfolio advertising campaign mechanism usually lasts a few weeks. See,

for example, https://support.google.com/google-ads/answer/13020501. Any subsequent adjustment
period is presumably shorter.

18

https://support.google.com/google-ads/answer/10724817
https://support.google.com/google-ads/answer/13020501


Theorem 2 (Best-Value Pricing Managed Campaign Equilibrium)

In any symmetric equilibrium with efficient steering and best-value pricing:

1. On-platform consumers v with vj = maxk vk buy from firm j at pj(v) = min{vj, pV }.

2. The posted price pV is characterized by the following equation:

(1− λ)(1− F (pV )− pV f(pV )) + λJ

∫ v̄

pV

F J−1(v)dF (v) = 0. (7)

Further, when there is a unique solution to (7), the symmetric equilibrium is unique.20

The best-value pricing policy (6) ensures that each firm makes a sale to its favorite

customers regardless of the posted prices. Therefore, part (1.) shows that each firm sets its

posted price like a monopolist with exogenous market segments, subject to showrooming.

The characterization of the equilibrium pV in (7) follows from the first-order condition for

each firm’s profit. Indeed, each firm posts a price that balances the profit off-platform with

the relaxation of the showrooming constraint. In particular, the second term in (7) shows

that a marginal posted price increase yields a one-for-one benefit to firm j when facing any

consumer that values product j the most and values it more than pV .

As it turns out, best-value pricing is revenue-optimal for the platform. Moreover, it

attains an exogenous upper bound on the platform’s revenue across all managed campaigns.

Theorem 3 (Optimal Managed Campaign)

There exists an equilibrium best-value pricing managed campaign with efficient steering that:

1. maximizes revenue for the platform among all steering and pricing policies;

2. attains the integrated (collusive) gross profit for the firms.

The argument proceeds by considering the problem of a vertically integrated platform

that jointly maximizes the profit of the firms and the platform. The vertically integrated

platform can jointly coordinate on-platform and off-platform pricing but still faces the show-

rooming constraint due to consumer search. The optimal joint solution is then decentralized

by charging a fixed fee that extracts all of the firms’ surplus, net of an exogenous outside

option for the firms.21

20As in Theorem 1, there is a unique symmetric equilibrium profit level and a generically unique symmetric
equilibrium price. If there are multiple equilibrium prices, pV denotes the largest such price.

21Alternatively, we can decompose the advertising budget into a payment per winning bid for each con-
sumer value. In this case, one can show that the bidding algorithm boosts the bids of the advertisers, but
never beyond the value of the match. Thus, the auto-bidding mechanism satisfies an ex-post participation
constraint for every (winning and losing) bid.
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The firms’ outside option consists of not participating in the mechanism and posting

a price that maximizes profit on the captive consumers and competes with the advertised

prices set by the best-value pricing policy. This outside option yields a profit level

ΠO = max
p

{
1− λ

J
p(1− F (p)) + λ

∫ v̄

p

pF J−1(v − p) dF (v)

}
. (8)

The first term in (8) is the profit from selling to loyal consumers. The second term

denotes the profit the firm makes due to the ability of on-platform consumers to search:

upon rejecting the platform’s offers, any firm could still make a sale to any on-platform

consumer with a sufficiently high value for its product. In this case, the best-value pricing

policy, which attempts to sell the second-highest valued product to the consumer, charges a

price of zero. The deviating firm then makes the sale when the consumer’s value v satisfies

v − p > v′, where v′ is the value for the best competitor. The optimal campaign cannot

therefore charge firms their entire revenues on the platform. In this sense, the mechanism

could be framed as delivering a positive return on investment.

4.4 Comparing Advertising Mechanisms

We now compare the equilibrium posted prices and the welfare implications under the data-

augmented second price auction and the optimal managed campaign. We begin with the

comparison of the prices off the platform where we refer to pricing equations (2) and (7).

Theorem 4 (Welfare and Posted Price Comparison)

The posted price pV in the optimal managed campaign is higher than the posted price pB

under data-augmented bidding:

pV ≥ pB ≥ pM .

Total consumer surplus and total welfare are lower in the optimal managed campaign than

under data-augmented bidding.

In our model, the impact of digital advertising auctions on product prices is entirely due

to the different competitive responses under the data-augmented auctions and the managed

campaign mechanism. Theorems 1 and 2 showed that both data-augmented auctions and

the optimal managed campaign yield an efficient matching of all on-platform consumers to

firms. Moreover, under both mechanisms, the on-platform consumers buy from their favorite

firm (say, j) at a price pj(v) = min{vj, p̄j}. Therefore, both mechanisms create a common
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benefit of raising the posted price p̄j, namely to increase revenue on all consumers that like

firm j best and value product j more than the posted price.

However, with data-augmented auctions, raising p̄j raises all rivals’ bids bk by the same

amount, because any firm k ̸= j that wins the auction can now charge a higher price and still

induce the consumer to buy its product rather than shop for firm j’s. (Recall the discussion

after Theorem 1.) Therefore, raising the posted price p̄j helps firm j only if all other bids

are nil (bk ̸=j = 0), which occurs when the consumer v is willing to pay a large enough

premium for firm j’s product, i.e., vj > p̄j +maxk ̸=j vk. The latter effect is absent under the

optimal managed campaign, where fixed fees replace variable, endogenous payments for each

consumer. Therefore, raising posted prices is more profitable under managed campaigns.22

Finally, our model admits a formal notion of “advertising cost pass-through” driven by

the mechanisms for selling ads, namely as platforms move from data-augmented bidding to

managed campaigns. To compute this measure of pass-through, we fix the bargaining power

of the platform to that of the sophisticated campaign; that is, the platform charges fees in

order to hold firm profit to their outside option. We take these fees as a proxy for advertising

cost, and compare the firm net transfer under data-augmented bidding to the transfer under

the optimal sophisticated campaign. More precisely, let TB be the total transfer paid by

an individual firm under revenue-maximizing data-augmented bidding,23 and let TV be the

total transfer paid by an individual firm under the sophisticated managed campaign. Then

we define the “pass-through” of the change in mechanisms as:

η =
pV − pB
TV − TB

, (9)

as how the change in advertising impacts the off-platform posted prices. We can thus char-

acterize the pass-through more formally.

Proposition 3 (Advertising Mechanism Pass Through)

The pass-through rate satisfies η > J . The increase in advertising costs induced by a managed

campaign relative to bidding are reflected by an amplified increase in off-platform prices.

Proposition 3 shows that the pass-through of costs is greater the more firms there are.

In particular, prices rise more dramatically with more competitors as a result of switching

mechanisms precisely because the sophisticated managed campaign softens competition.

22Consistent with this intuition, the proof of Theorem 4 uses a monotone comparative statics argument
that does not require assumptions on the distribution of consumer values.

23To fix the bargaining power of the platform, we consider the data-augmented bidding where the platform
can charge a participation fee before bidding occurs. This results in no changes to the pricing outcome and
makes the platform’s bargaining power comparable.
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5 Policy Interventions

In this section, we investigate the impact of potential interventions that a policymaker might

impose on the platform. We specifically consider restricting the platform’s ability to use

sophisticated algorithms that respond to posted prices, and its ability to condition advertising

and prices on the consumer’ full value profile.

5.1 Competition Management

A first regulatory question is whether fully automated systems should be kept in check.

The Competition & Markets Authority (2020, §6.15) expresses concerns that “Although

both Google’s and Facebook’s core services can be accessed by consumers at no direct cost,

consumers therefore nevertheless suffer financially from the exercise of market power.” The

alleged concern is that the platform’s market power raises the cost of advertising, which is

then passed on to consumers.

To address these concerns, we analyze a policy that limits the platform’s active role in

managing firm competition. In particular, we assume the platform’s pricing and steering

policies can condition on the consumer’s full value profile, but not on the posted prices.

Current Practice Limiting auto-bidding algorithms to enable rule-based bidding only

is an example of such a policy intervention. According to Amazon, rule-based bidding is

an existing automated bidding strategy that “take[s] the guesswork out of adjusting bids,”

but lets advertisers introduce fixed rules for showing creatives to (and bidding on) specific

consumer segments.24 Likewise, Google’s “Demand Gen” campaigns allow advertisers to

manually select specific channels for ad display, “offering more control over where and how

ads appear.”25 Letting advertisers retain partial control over the bidding rules necessarily

slows down the algorithm’s adjustment process. In our static model, we capture these

algorithms by means of managed campaigns that do not react to evolving market conditions

(as proxied by deviations in posted prices).

Independent Managed Campaign We now restrict the platform’s pricing and steering

policy space by removing the platform’s ability to condition on off-platform prices. The

24See a complete description of available bidding strategies on Amazon at https://advertising.amazon.
com/help/GCU2BUWJH2W3A8Z7.

25See https://ads.google.com/home/campaigns/demand-gen.

22

https://advertising.amazon.com/help/GCU2BUWJH2W3A8Z7
https://advertising.amazon.com/help/GCU2BUWJH2W3A8Z7
https://ads.google.com/home/campaigns/demand-gen


platform can now only propose a pricing policy p : V J ×{0, 1}J → R+ and a steering policy

s : V J ×{0, 1}J → J that depend on the value v and the participation decision of the firms.

In the previous section, we showed that the optimal managed campaign dampens compe-

tition between firms, resulting in higher posted prices off-platform than in data-augmented

bidding. Theorem 5 shows that forcing the platform to price independently of the posted

price decisions curtails the ability of the platform to soften competition. We denote the

posted price off the platform induced by the independent campaign by pI .

Theorem 5 (Independent Managed Campaigns)

Any independent managed campaign with efficient steering results in lower prices relative to

the optimal campaign: pI < pV , higher social welfare, and higher consumer surplus.

The critical economic feature that an independent campaign introduces is the potential

for consumers to be poached by other firms. In particular, since the on-platform prices cannot

condition on the off-platform prices, a deviating price downwards by firm i can induce some

consumers whose favorite firm is j ̸= i to buy from i instead. This downward pressure helps

mitigate the platform’s ability to soften competition.

To illustrate how an independent campaign restores a downward competitive pressure on

prices, we present two examples where the platform steers consumers efficiently and prices

as in the optimal managed campaign (i.e. pi(v) = min(vi, pV )). We show that the posted

price pI in the independent campaign can even fall below the monopoly price pM . In such

an independent managed campaign, the best-response problem of the firm simplifies to

max
p

[
1− λ

J
p(1− F (p)) + λ

∫ v̄

v

min(v, p, p̂)F J−1(v −min(v, p, p̂) + p′)dF (v)

]
.

The first-order condition for p at or below p̂ then implies that:

1− λ

J
(1− F (p)− pf(p)) + λ

∫ v̄

p

(F J−1(v)− pdF J−1(v))dF (v) = 0. (10)

Note the presence of the term p dF J−1(v), which captures the poaching gain/loss from con-

sumers who at the margin are nearly indifferent between firms.

Example J = 2 : pI > pM . Take a uniform distribution of values (F (x) = x), and suppose

there is an equal share of on-platform and off-platform consumers (λ = 1/2), and consider

two firms. Computing the best-response price using the first-order condition (10), we obtain

pI = 1− pI + 2

∫ 1

pI

(v − pI) dv ≈ 0.59 > 0.5 = pM .
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Example: J = 3 : pI < pM . Consider almost the exact same environment as the previous

example (uniform distribution of values, equal share of consumers on- and off-platform) but

now we consider three firms. In this case, we obtain

pI = 1− pI + 3

∫ 1

pI

(v2 − pI(2v)) dv ≈ 0.43 < 0.5 = pM .

By adding one firm to the previous example, the competitive effect becomes stronger,

and the posted price falls to a level below the monopoly price pM . Note that the pricing

in sophisticated managed campaign—which allows for perfect price discrimination up to the

showrooming constraint—may not be the optimal independent pricing policy for the plat-

form. In particular, as the example shows, this pricing policy induces stronger competition

by firms and sometimes lower posted prices than even the monopoly price. Note that a

pricing policy that offers a product for free to consumers whose values are all below pM , and

price pM for a consumer’s favorite firm otherwise, can induce an equilibrium posted price

of pM ; however, such a pricing policy necessarily concedes rent to the consumer or reduces

aggregate welfare. This illustrates the platform’s trade-off under the independent pricing re-

striction: the more aggressive the price discrimination offered by the platform, the stronger

the incentives for firms to undercut each other, and the lower the posted prices. However,

to raise the posted prices, the platform must concede utility to the consumers; an optimal

independent pricing policy must therefore balance these two forces.

5.2 Privacy and Data

We now assess the impact of privacy regulation by considering policies that limit the firms’

access to the consumers’ information. Specifically, we consider cohort-based privacy, which

is a restriction in line with the recent Google Privacy Sandbox proposals to replace third-

party cookies. Under this policy, the platform in our model informs the firms about the

consumer’s ranking of their products, without disclosing the consumer’s exact value for any

specific product.26

Formally, the platform’s steering policy selects a firm to advertise to each cohort of

consumers, and each consumer within a cohort has the same preference ranking over the J

firms. In what follows, we maintain the efficient steering policy (i.e., the platform shows the

consumer her favorite product), which yields exactly J distinct consumer cohorts. We then

26See the complete Google proposal at https://privacysandbox.com/. In this Section, we focus on ex-
ogenous restrictions on information disclosure. Voluntary information disclosure by the consumer is another
important, though different dimension. See Ali et al. (2023) for a treatment of this question.
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restrict the platform’s pricing policy space to

p : J × {0, 1}J × RJ
+ → R+.

Thus, the platform cannot price based on the consumer’s individual value vector v, but it can

condition the advertised price on the consumer’s cohort, the firms’ participation decisions,

and the posted prices. This is in contrast to the independent managed campaign, which

conditions advertised prices on the consumer’s value but not on posted prices. We denote

the resulting equilibrium off-platform price with privacy protection by pP .

Proposition 4 (Cohort Privacy)

In the platform-optimal managed campaign with cohort privacy, the posted price is pP with:

pP =
1− (1− λ)F (pP )− λF J(pP )

(1− λ)f(pP ) + λJF J−1(pP )f(pP )
. (11)

This managed campaign can be implemented by the platform pricing each segment at the

lowest off-platform price: p(i, ·, p̄) = mini p̄i. On path, the on-platform price is also pP , and

the equilibrium posted price pP satisfies pM ≤ pP ≤ pV .

Intuitively, firms face a distributional mixture of consumers; a measure (1−λ)/J of con-

sumers are loyal with values distributed according to F ; and a measure of λ/J consumers are

on-platform shoppers who are matched to the efficient firm, i.e., their values are distributed

as F J . Hence, the firm would like to be able to set higher prices to take advantage of a more

favorable distribution of consumer values, but showrooming limits its ability to do so.

Proposition 4 also shows that the off-platform posted prices are lower than under the

optimal managed campaign, which implies greater consumer surplus and total welfare off

the platform. However, the inability to price discriminate on-platform means the privacy

restriction reduces total welfare on the platform too, because low-value consumers are priced

out. Hence, as the platform size λ grows, total welfare can be worse under privacy restrictions

than under data-augmented bidding or managed campaigns. However, consumer surplus

grows because low-value consumers’ surplus is nil in both settings without privacy protection;

that is, the loss in welfare comes entirely from reduced producer surplus.
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6 Extensions and Robustness

We discuss two extensions of the basic model that speak to the robustness of the analysis.

The first variation concerns the nature of the off-platform market, the second the nature of

the platform, in particular the revenue model of the platform.

6.1 Off-Platform Competition

Previously, we modeled each firm as operating as a monopolist of a market segment off

the platform. We now show that the analysis and consequent results extend to a more

competitive structure in the off-platform markets. Suppose then that the off-platform market

is divided into K markets, and each firm operates in one market off-platform, so each off-

platform market has N = J/K firms (and assume N is an integer).

Now, the posted price impacts the off-platform market slightly differently. In particular,

by setting a posted price p when the competitors in the off-platform market set price p′, the

firm wins an off-platform consumer if and only if v− p ≥ v′ − p′, where v′ is the value of the

best competitor. Hence, the firm’s profit off the platform is given by∫ v̄

p

pFN−1(v − p+ p′)dF (v). (12)

In the absence of the platform, the symmetric equilibria of the game with payoffs (12) yield

the oligopoly prices, which we denote by pKO . These are the prices the firms would charge if

there were K segmented markets. The basic model considered K = J segmented markets, so

that each firm was acting as a monopolist in its market; thus for K = J, pJO = pM . We now

investigate how a more competitive off-platform market affects the behavior in the bidding

and managed campaign mechanism.

To this end, note that the on-platform profit terms in our previous analysis are not

affected by changes in the off-platform market as suggested above. We now consider the

symmetric equilibrium off-platform prices with competition in K market segments, both

under data-augmented bidding (pKB ) and under the fully optimal managed campaign (pKV ).

We obtain the following comparison.

Proposition 5 (Off-Platform Competition)

In the highest-price symmetric equilibria with off-platform competition in K markets, the

off-platform posted prices satisfy

pKO ≤ pKB ≤ pKV .
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Thus, the equilibrium ordering of the off-platform prices, and the corresponding welfare

results are invariant to the structure of competition in the off-platform markets. In particular,

the above ordering is same as in Theorem 4 where we observed: pM ≤ pB ≤ pV .

6.2 Platform Revenue Models

In our modeling of the managed campaign, the platform requests an up-front participation

fee, the advertising budget. This aligns with the practice of managed campaigns on pure

advertising platforms such as google, Facebook or Tiktok. These platforms match advertisers

and consumers, but do not charge any transaction fees. By contrast, shopping or retail

platform such as amazon or Instacart typically receive revenue from a mixture of advertising

and sales commissions. One might thus wonder whether there are multiple, and payoff

equivalent mechanisms that could all attain the same total revenue. Here, we shall focus

one such alternative in which the platform is charging a constant transaction fee tj to each

firm and does not impose a fixed payment Tj. We then show that for modest transaction

fees, the firms’ incentives for setting prices off the platform are exactly as in the managed

campaign we discussed in Theorem 2

Proposition 6 (Transaction Fees)

Suppose the platform proposes a transaction fee tj for each sale of firm j on the platform.

There exists a t̄ > 0 such that if the fee satisfies tj ≤ t̄, then the off platform prices p̄ are the

same as in the best-value managed campaign of Theorem 2.

In the managed campaign the platform receives all the revenue from the sponsored prod-

uct placement through the fixed fees. By contrast, the platform does not receive a revenue

share or a commission on the sales realized on the platform. The revenue from the sales

accrues directly to the advertiser. In the current revenue model, we replaced the ex ante

advertising budget with a constant sales (or referral) fee. The key insight is that the referral

fee does not influence the marginal incentives of the firm’s pricing decision; hence, provided

the referral fee is not too large and the firm is still willing to participate, the pricing decision

off platform remains unchanged. Thus, there are revenue models that are revenue equivalent

to the managed campaign mechanism.
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7 Conclusion

Many digital platforms such as Google, Meta, Amazon, and TikTok generate revenue through

advertising by placing ads or sponsored slots on their own and partner websites. These

platforms use a combination of manual and automated bidding mechanisms to select valuable

advertisements to display to each user and to set prices for these ads. The platform’s

knowledge about the match value between consumers and products is critical to the success of

both mechanisms. This knowledge helps generate the most competitive bids from advertisers

and supports clicks and other forms of user engagement with the platform.

We have proposed an integrated model that considers how auction mechanisms and data

availability jointly determine match formation and surplus extraction both on and off large

digital platforms. The auction mechanisms employed by the platform have substantial impli-

cations for product prices. On the platform, the data made available to the advertisers allows

for efficient matching, yet most of the surplus accrues to the platform. Off the platform,

advertisers raise prices to gain a competitive edge on the platform.

The cross-channel distortions become more pronounced the more tools the platform has

at its disposal, relative to the traditional (generalized) second price auctions. Indeed, we

have shown that the higher costs of online advertising under a more extractive mechanism

are passed on to consumers by means of higher product prices off rather than on the plat-

form. These results suggest the need for further analysis of how algorithmic bidding impacts

competition and welfare in all markets, particularly off the large digital platforms.
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A Appendix

The proof of Proposition 1 is given in the text.

Proof of Theorem 1 (1.) This part follows directly from Proposition 1.

(2.) Because we are looking for symmetric equilibria, suppose all the other firms post

price p′ and consider the best response problem of a single firm:

max
p

{
1− λ

J
p(1− F (p)) + λΩ(p; p′)

}
, (13)

where

Ω(p; p′) =

∫ v̄

v

∫ v

v

(min(v−max(v′−p′, 0), p)−(min(v′−max(v−p, 0), p′))+)dF
J−1(v′)dF (v).

This term denotes the expected profit from on-platform consumers that a firm would expect

to make by setting a posted price at p when all other firms set a posted price p′. The term

integrates over v′ = maxj ̸=i vj, which is the highest value the consumer has for any other firm

besides i. Since the firm must concede utility max(v′−p′, 0) to the threat of the on-platform

consumer going to the competitor, the firm setting price p will bid min(v−max(v′−p′, 0), p).

The highest competitor bids (min(v′ −max(v − p, 0), p′))+.

With some casework, we can show that the expected on-platform profit satisfies

Ω(p; p′) =

∫ v̄

v

∫ v

v

min(v − v′, p) dF J−1(v′) dF (v), for all p′. (14)

Expression (14) shows that each firm’s profit in the second-price auction cannot exceed the

difference between its own value and the next highest value. Furthermore, this difference is

capped by the firm’s own posted price p due to the showrooming constraint. Additionally,

this expression is independent of p′, so we suppress the dependence on p′ in the notation and

write Ω(p) instead.

To characterize the symmetric equilibria, we compute the derivative of Ω with respect to

p. Straightforward algebra yields the following expression:

Ω′(p) =

∫ v̄

p

F J−1(v − p) dF (v). (15)
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Finally, we can write out the first-order condition for profit maximization using (15):

1− λ

J
(1− F (p)− pf(p)) + λ

(∫ v̄

p

F J−1(v − p)dF (v)

)
= 0.

(3.)-(4.) These results follow from setting p̄j = pB in the buyer’s outside option (1) and

recalling from the proof of Proposition 1 that firm j bids bj(v, p̄) = (vj − u(v, p̄))+.

Proof of Proposition 2 (1.) The equilibrium price maximizes the profit function

1− λ

J
p(1− F (p)) + λΩ(p),

where Ω(p) is given in (14). Equivalently, pB maximizes the rescaled profit function

1

J
p(1− F (p)) +

λ

1− λ

∫ v̄

v

∫ v

v

min(v − v′, p) dF J−1(v′) dF (v).

Because the second term is strictly increasing in p and λ, and it is multiplicatively separable,

this function is supermodular in (p, λ); hence, by Topkis’s theorem (Topkis, 1978), the profit-

maximizing posted price is nondecreasing in λ.

(2.) The expected consumer surplus of an off-platform consumer and the expected welfare

per consumer off-platform are given by

CSoff(p) =

∫ v̄

p

(v − p) dF (v) and Woff(p) =

∫ v̄

p

v dF (v),

respectively. Both quantities are strictly decreasing in p, and hence also in λ.

Proof of Theorem 2 (1.) This follows from the definition of the best-value pricing and

efficient steering policies when all firms post an identical price p̄j ≡ pV .

(2.) To characterize the symmetric equilibrium prices, suppose first the firm sets a price

p < p′. In this case, under the best-value pricing policy, the firm will not poach any on-

platform consumer for which it is not the high-value firm. Thus, the firm collects min(v, p)

on all consumers for which it is the high-value firm. The firm’s profit is given by

Π(p, p′) =
1− λ

J
p(1− F (p)) + λ

(∫ p

v

vF J−1(v) dF (v) +

∫ v̄

p

pF J−1(v) dF (v)

)
. (16)
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The derivative with respect to p is given by

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p)f(p)− pF J−1(p)f(p) +

∫ v̄

p

F J−1(v) dF (v)

)
=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫ v̄

p

F J−1(v) dF (v)

)
. (17)

Now, suppose the firm posts a price p > p′. The firm’s profit function is given by

Π(p, p′) =
1− λ

J
p(1− F (p)) + λ


∫ p′

v
vF J−1(v) dF (v) +

∫ p

p′

∫ p′

v
v dF J−1(v′) dF (v)

+
∫ p

p′

∫ v

p′
(v − (v′ − p′)) dF J−1(v′) dF (v)

+
∫ v̄

p

∫ p′+(v−p)

v
p dF J−1(v′) dF (v)

+
∫ v̄

p

∫ v

p′+(v−p)
(v − (v′ − p′)) dF J−1(v′) dF (v)

 . (18)

With some algebra, one can show that the derivative of this expression with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫ v̄

p

F J−1(p′ + v − p) dF (v)

)
. (19)

Comparing (17) and (19), the derivative matches from the left and right at p = p′, and so

the best-response function is continuously differentiable at p′ with derivative

1− λ

J
(1− F (p)− pf(p)) + λ

∫ v̄

p

F J−1(v) dF (v).

This expression is strictly positive at p = v and strictly negative at p = v̄. Therefore, a

necessary condition for a symmetric equilibrium is given by the first-order condition (7) that

sets this derivative to zero. Furthermore, if a single price satisfies (7), then the symmetric

equilibrium is unique.

Proof of Theorem 3 The vertically integrated platform, which controls all the firms’

prices, sets identical prices p̄j = p to maximize

ΠC(p) ≜

{
(1− λ)p(1− F (p)) + λ

∫ v̄

v

min(v, p) dF J(v)

}
.

Now compare this problem to a firm’s best reply to a common price p′ posted by its competi-

tors: the firm’s profit Π(p, p′) in (16) coincides with ΠC(p)/J on p ∈ [v, p′]; and the firm’s

profit Π(p, p′) in (18) satisfies Π(p, p′) < ΠC(p)/J on [p′, v̄]. Now let p ∈ argmaxpΠC(p)
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denote a solution to the vertically integrated platform’s problem. By construction, we have

that p ∈ argmaxp Π(p, p
∗). Therefore, any p∗ is a symmetric equilibrium of the best-value

pricing managed campaign, and the largest p∗ is also the highest symmetric equilibrium price

of the managed campaign. Finally, any p∗ attains the integrated producer surplus level.

To show the optimality of best-value pricing and efficient steering, consider the platform

revenue, which equals the joint surplus generated by this mechanism, net of the firms’ outside

option value defined in (8). This level of the outside option is a lower bound on the profit

of a firm that refuses to participate in any mechanism. Therefore, the managed campaign

we are considering maximizes the joint surplus of the platform and firms, and it concedes

the smallest possible surplus to the firms. It follows that the best-value pricing campaign

maximizes the platform’s revenue.

Proof of Theorem 4 We can nest the optimal pricing problem across the three problems

(monopoly, auction, campaign) with a parameter γ. Consider the choice of posted price in

each of the three models. Define the auxiliary profit function

Π(p, γ) ≜
1− λ

J
(1− F (p)) p+ λ

(∫ v̄

v

∫ v

v

min(v − γv′, p)dF J−1(v′)dF (v)

)
.

In the data-augmented auctions, each firm’s profit function is given by Π(p, 1). The profit

function of the vertically integrated firm (which yields the equilibrium price in the best-value

pricing managed campaign by Theorem 3) is given by Π(p, 0). It is straightforward to verify

that Π is submodular in (p, γ):

∂2Π(p, γ)

∂γ∂p
= −

∫ v̄

p

(v − p)(J − 1)F J−2(v − p)f(v − p)f(v) dv < 0.

Thus, by Topkis’s theorem, the largest maximizer of maxpΠ(p, γ) is nonincreasing in γ. Since

pV = max{argmaxp Π(p, 0)} and pB = max{argmaxpΠ(p, 1)}, it follows that pV ≥ pB. Note

that this also implies pV ≥ pB ≥ pM by Proposition 2. Finally, note that the matching of

consumers to firms is identical across the two mechanism. Thus, the comparison of total

surplus and consumer surplus is entirely driven by the posted price. Because both surplus

levels are decreasing in p, the welfare comparative statics follow.
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Proof of Proposition 3 Note that the joint profit outcome of the platform and firms in

both bidding and the sophisticated managed campaign takes the form:

ΠJ(p) = (1− λ)p(1− F (p)) + λ

∫ v̄

v

min(v, p)dF J(v),

and the bidding profit outcome is ΠJ(pB) while the sophisticated managed campaign outcome

is ΠJ(pV ). Fixing the bargaining power of the platform, the total transfer charged to all firms

is ΠJ(p)/J − ΠO, and so we can compute η as

pV − pB

(1− λ)/J [pV (1− F (pV ))− pB(1− F (pB))] + λ/J
∫ v̄

pB
(min(v, pV )− pB)F J−1(v)dF (v)

,

=
J

(1− λ)
[
1− pV F (pV )−pBF (pB)

pV −pB

]
+ λ

∫ pV
pB

v−pB
pV −pB

dF J(v) + λ
J

∫ v̄

pV
dF J(v)

.

We claim that the denominator of the above expression is less than 1. To see this, note the

bracketed term is less than 1 because pV > pB, so the first term is at most 1−λ. The second

term is integrated for v ∈ [pB, pV ], so 0 ≤ v − pB ≤ pV − pB. Hence the sum of the last

two terms is bounded above by the integral λ
∫ v̄

pB
dF J(V ) = λ(1 − F J(pB)) < λ. Thus, the

denominator is at most 1, with strict inequality for λ > 0, and so η > J .

Proof of Theorem 5 Suppose, for sake of contradiction, that in the optimal independent

managed campaign, pI > pV , and the platform chose some pricing policy p∗(v). Consider the

best-response problem of a firm in the independent managed campaign. The best-response

profit function for all p < pI is

ΠI(p) =
1− λ

J
p(1− F (p)) + λ

 ∫ v̄
v min(p∗(v), p)F J−1(v) dF (v)

+
∫
p p

[∫ v̄
v 1[vj − p∗(v) < v − p]dF J−1(vj)

]
dF (v)

 .

We can split this into two components. Denote the first component

ΠA(p) ≜
1− λ

J
p(1− F (p)) + λ

∫ v̄

v

min(p∗(v), p)F J−1(v) dF (v),

which is the profit from off-platform sales and on-platform sales in the segment that of

on-platform consumers that prefer firm i, and the second component

ΠB(p) ≜ λ

∫ v̄

p

p

[∫ v̄

v

1[vj − p∗(v) < v − p]dF J−1(vj)

]
dF (v),
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which is the segment of consumers who prefer some other j ̸= i but are poached by i. Note

that by construction, ΠI(p) = ΠA(p) + ΠB(p). By the contradiction supposition, pI > pV

was the outcome of the optimal independent managed campaign. Note that ΠB(pI) = 0,

since no consumers can be poached when i sets the same posted price as all other firms.

Since ΠB ≥ 0 for all p < pI , it follows that ΠB(pV )− ΠB(pI) ≥ 0.

We now claim that ΠA(pV ) − ΠA(pI) > 0. Consider Π′
A. Let ϕ∗ denote the preimage of

p∗: ϕ∗(p) = {v ∈ V |p∗(v) ≥ p, i = argmax vi}. Then

Π′
A(p) =

1− λ

J
(1− F (p)− pf(p)) + λµ(ϕ∗(p)),

where µ is the probability measure over the type space. Note that since it is without loss

for the platform pricing policy to never set a price larger than the consumer’s value, ϕ∗(p) ⊆
{v ∈ V |v ≥ p, i = argmax vi} =: v̄(p). Thus, µ(ϕ∗(p)) ≤ µ(v̄(p)) =

∫ v̄

p
F J−1(v)dF (v).

Substituting this in, we get

Π′
A(p) =

1− λ

J
(1− F (p)− pf(p)) + λµ(ϕ∗(p))

≤ 1− λ

J
(1− F (p)− pf(p)) + λ

∫ v̄

p

F J−1(v)dF (v) = Π′
V (p),

where ΠV was the joint vertical integration profit from the sophisticated managed campaign.

Therefore, we have Π′
A(p) ≤ Π′

V (p), so

ΠA(pV )− ΠA(pI) =

∫ pI

pV

−Π′
A(p)dp ≥

∫ pI

pV

−Π′
V (p)dp = ΠV (pV )− ΠV (pI) > 0,

where the last inequality follows because pV by definition is the largest maximizer of ΠV . But

this implies that ΠA(pV )−ΠA(pI) > 0 and ΠB(pV )−ΠB(pI) ≥ 0, and hence ΠI(pV )−ΠI(pI) >

0, which contradicts our supposition that the individual best response was to set posted price

pI . Thus, it cannot be that pI > pV .

To show that we cannot have equality, suppose for sake of contradiction that pI = pV ,

and consider Π′
I(pV ). By the same argument above, we have that Π′

A(pV ) ≤ Π′
V (pV ). If

Π′
A(pV ) > Π′

V (pV ) strictly, then since ΠB(pV ) = 0 and ΠB(pV ) ≥ 0, there exists an ϵ such

that Π′
I(pV −ϵ) > Π′

I(pV ), a contradiction. If Π
′
A(pV ) = Π′

V (pV ), then it must be that ϕ∗(p) =

v̄(p), so every consumer with value at least p sees a price at least p. But this implies that

poaching can happen; more precisely, the left-derivative (ΠB)
′
−(pv) = −

∫ v̄

p
pdF J−1(v)dF (v).

Since the left derivative of ΠB is strictly negative, and Π′
A(pV ) = Π′

V (pV ), for small enough
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ϵ then we must have ΠI(pV − ϵ) > ΠI(pV ), a contradiction again. Hence we cannot have

pI = pV . Thus pI < pV . Since the welfare and off-platform surplus are decreasing in posted

price for p ≥ pM , the welfare comparative statics follow.

Proof of Proposition 4 First, consider the problem of a vertically integrated platform

facing the cohort-privacy constraint:

ΠP (p) := max
p′≤p

1− λ

J
p(1− F (p)) +

λ

J
p′(1− F J(p′)).

Let pP denote the largest maximizer of ΠP . We can write the Lagrangian:

L(p, µ) :=
1− λ

J
p(1− F (p)) +

λ

J
p′(1− F J(p′)) + µ(p′ − p),

where µ is the multiplier associated with the showrooming constraint. Because F J satisfies

the monotone-likelihood ratio with respect to F , the unconstrained maximum must have

p′ > p; hence, the showrooming constraint binds, p′ = p, and the optimal pP satisfies:

1− λ

J
(1− F (p)− pf(p)) +

λ

J
(1− F J(p)− JpF J−1(p)f(p)) = 0.

Note that ΠP (pP ) can be rewritten as

ΠP (pP ) =
1

J
pP (1− ((1− λ)F (pP ) + λF J(pP )).

The necessary first-order condition for optimality thus requires pP to be equal to the inverse

hazard rate of the distribution (1−λ)F +λF J ; since (1−λ)F +λF J satisfies the monotone

likelihood ratio property with respect to F , it follows that pP ≥ pM . Similarly, since F J

satisfies the monotone likelihood ratio property with respect to (1 − λ)F + λF J , it follows

that the maximizer pJ := argmaxp p(1− F J(p)) is larger than pP .

We now show that the platform can implement an equilibrium where all firms post pP .

Consider the platform pricing policy, which sets the price for cohort i as the minimum posted

price of firms j ̸= i. The best-response profit of firm i when all other firms set price pP is1−λ
J
p(1− F (p)) + λ

J
p(1− F J(p)) p < pP ,

1−λ
J
p(1− F (p)) + λ

J
pP (1− F J(pP )) p ≥ pP .

Suppose, towards a contradiction, that pP was not a maximizer, and some other p∗ was the
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maximizer. If p∗ < p, that implies that ΠP (p
∗) > ΠP (pP ), a contradiction of the definition

of pP . If p
∗ > p, then there exists p′ = pP , p = p∗ such that

1− λ

J
p(1− F (p)) +

λ

J
p′(1− F J(p′)) > ΠP (pP ),

again a contradiction of the optimality of pP . Hence, the best-response of each firm is also to

set price pP . Since this attains the vertical integration profit, it is optimal for the platform

to set such a pricing policy.

It remains to show that pV ≥ pP . Note that pP maximizes

ΠP (p) =
1− λ

J
p(1− F (p)) +

λ

J
p(1− F J(p)),

and pV maximizes

ΠV (p) =
1− λ

J
p(1− F (p)) +

λ

J

(∫ p

v

vdF J(v) +

∫ v̄

p

pdF J(v)

)
.

To complete the argument, define the auxiliary profit function again:

Π(p, γ) =
1− λ

J
p(1− F (p)) +

λ

J

(
γ

∫ p

v

vdF J(v) +

∫ v̄

p

pdF J(v)

)
,

and note that Π(·, 0) = ΠP and Π(·, 1) = ΠV . Finally, note that

∂2Π(p, γ)

∂γ∂p
= p dF J(p) > 0.

By Topkis’s theorem, the maximizer of Π(·, γ) is nondecreasing in γ; hence pP ≤ pV .

Proof of Proposition 5 We consider the benchmark without a platform (denoted by O

for oligopoly), the data-augmented bidding B, and the best-value pricing campaign V . To

compare these three cases, consider an auxiliary game with payoffs

Πoff(p, p̄;λ, γ) =
1

M
p

∫ v̄

p

FN−1(v − (p− p̄))f(v) dv

+
λ

1− λ

∫ v̄

v

∫ v

v

min(v − γv′, p)dF J−1(v′)dF (v). (20)

The game with λ = 0 describes the case without a platform; the game with γ = 1 describes

the data-augmented auctions; and a similar argument as in the proof of Theorem 3 establishes
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that every symmetric equilibrium in the game with γ = 0 is also an equilibrium under best-

value pricing. We can then define the following prices:

pKO ∈ argmax
p

Πoff(p, p
K
O ; 0, 1),

pKB ∈ argmax
p

Πoff(p, p
K
B ;λ, 1),

pKV ∈ argmax
p

Πoff(p, p
K
V ;λ, 0).

To compare pKO and pKB , consider the best reply functions p∗(p̄) in the game with λ = 0

and in the game with λ > 0 and γ = 1. The payoff function Πoff in (20) has increasing

differences in (p, λ) for any p̄ when γ = 1. Indeed, we have

∂2Πoff(p, p̄;λ, 1)

∂p∂λ
=

1

(1− λ)2

∫ v̄

p

F J−1(v − p)dF (v) > 0.

By Topkis’s theorem, a higher λ increases the best reply p∗ to any price p̄. Furthermore, the

best response function satisfies p∗(v̄) < v̄ in all three cases. Therefore, in the highest-price

symmetric equilibrium, the best-reply function crosses the line p∗ = p̄ from above, and an

upward shift in the best replies raises the highest symmetric equilibrium price, i.e., pKB > pKO .

Similarly, the payoff function (20) has decreasing differences in (p, γ) for all p̄ and λ > 0:

∂2Πoff(p, p̄;λ, γ)

∂p∂γ
= − λ

1− λ

∫ v̄

p

(v − p)(J − 1)F J−2(v − p)f(v − p)f(v) dv < 0.

By Topkis’s theorem, the best replies in the game with γ = 0 (i.e., the managed campaign)

are pointwise larger than in the game with γ = 1 (i.e., the data-augmented auctions). Fur-

thermore, the best replies when γ = 1 satisfy p(v̄) < v̄, and hence the largest symmetric

equilibrium price increases as best replies shift up, i.e., pKV > pKB . Finally, because every equi-

librium in the auxiliary game is also an equilibrium under the best-value pricing campaign,

the largest symmetric equilibrium in the original game is strictly larger than pKB .

Proof of Proposition 6 Under best-value pricing, each firm j sells to the 1/J fraction of

consumers who like its product best, since by construction vj − p(v, a, p̄) ≥ vk − p̄k. Thus,

the pricing decisions of the firms are the same as in Theorem 2. The platform could then

charge transaction fees instead of an upfront budget with the same outcome, provided the

transaction fee satisfies the participation constraint of the firms: equivalently λtj/J ≤ Tj,

where Tj is what the platform charged in the original managed campaign model.
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