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Abstract

We consider games of incomplete information in which the players’ payoffs depend both
on a privately observed type and an unknown but common “state of nature”. External
to the game, a data provider knows the state of nature and sells information to the
players, thus solving a joint information and mechanism design problem: deciding which
information to sell while eliciting the player’ types and collecting payments. We restrict
ourselves to a general class of symmetric games with quadratic payoffs that includes games
of both strategic substitutes (e.g. Cournot competition) and strategic complements (e.g.
Bertrand competition, Keynesian beauty contest). By to the Revelation Principle, the
sellers’ problem reduces to designing a mechanism that truthfully elicits the player’ types
and sends action recommendations that constitute a Bayes Correlated Equilibrium of
the game. We fully characterize the class of all such Gaussian mechanisms—where the
joint distribution of actions and private signals is a multivariate normal distribution—as
well as the welfare- and revenue- optimal mechanisms within this class. For games of
strategic complements, the optimal mechanisms maximally correlate the players’ actions,
and conversely maximally anticorrelate them for games of strategic substitutes. In both
cases, for sufficiently large uncertainty over the players’ types, the recommendations are
deterministic (and linear) conditional on the state and the type reports, but they are not
fully revealing.

1 Introduction

How economic agents coordinate their actions in strategic environments is a critical question
with numerous examples both within and across organizations:

1. Competing firms wish to tailor their prices or quantities to the level of market demand,
but they must also respond to each others’ strategies and take their own costs into
account.

2. Division managers within the same company want to choose investment projects that
balance their own division’s profits and the interests of the company as a whole, while
taking cross-division synergies into account.

In all these settings, players have common preferences over an unknown state, idiosyncratic
preferences over actions, and also a motive for coordination or anti-coordination (depending on
the strategic complements vs. substitutes nature of their interaction). As such, all these setting
entail similar challenges. In the case of strategic substitutes (e.g., Cournot competition),
players would like to positively coordinate with a state but not with each other. Differences
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in idiosyncratic preferences (e.g., cost) can help, while the presence of a common state does
not. In the case of strategic complements (e.g., Bertrand competition), players would like
to coordinate both with a state and with each other, but differences in cost can prevent full
action alignment.

In this paper, we study how information can help achieve more efficient outcomes in
setting such as those described above. In particular, we study how to optimally design (and
sell) informative signals to the players so as to induce socially preferable actions. To do
so, we explore the joint study of information and mechanism design problems for symmetric
n-player games with quadratic utility functions and Gaussian information. We characterize
the set of implementable state-type-action distributions when agents are privately informed
about an idiosyncratic preference parameter. We then derive the welfare-maximizing (2nd-
best) information design.

In our model, a designer observes the unknown state and optimally sells informative to
the players. Because the players also have independent private types known only to them, the
role of the seller is thus threefold: (i) to elicit the private types of the players; (ii) to design
signals about the unknown state that induce a “desirable” equilibrium of the game; and (iii)
to collect payments. We leverage our model to answer questions such as the following: (a)
What is the structure of the optimal mechanisms? (b) How is it impacted by the properties of
the downstream game? (c) How do the type-elicitation stage and the action-recommendation
stage interact?

Our main contribution is to provide a complete characterization of implementable joint
distributions of state, types, and actions. Our characterization shows that each player’s
choice of report interacts with their choice of action in the ensuing game. Specifically, there
are mechanisms for which double deviations are profitable for the players, even when the
mechanism is separately truthful and obedient. Furthermore, we characterize the optimal
double deviations, and we provide necessary and sufficient conditions on the joint distribution
of state, types, and actions that make a mechanism (globally) incentive compatible.

As such, our problem does not reduce to simply “selling a Bayes Correlated Equilibrium
(BCE) truthfully.” This problem would roughly correspond to picking a BCE of the game
with commonly known types and associating it to the players’ reports. In such a game, after
misreporting their type, a player will typically want to deviate from the action recommenda-
tion as well. In other words, the type elicitation and the action recommendation problems
cannot be studied separately.

A byproduct of our characterization that is of independent interest is an analysis of the
welfare-maximizing mechanism with transfers.1 In the optimal mechanism, the designer in-
duces different degrees of correlation in the players’ actions depending on the strategic com-
plements vs. substitutes nature of the downstream game: maximum positive correlation for
strategic complements and maximum anticorrelation for strategic substitutes. When the prior
variance of the players’ types is large enough (and for all parameter values if the game has
strategic complements), the recommendations are a linear combination of the fundamentals.
This means that, each player only learns a linear combination of the state and of other player’s
types. This allows for obedient coordination without revealing full information to the players.

The welfare-optimal action distribution differs from the complete information game in a
systematic way. In particular, both in games of strategic complements and strategic sub-
stitutes, the welfare-optimal design places more weight on the players’ types relative to the
common state. This is intuitive, because relying on the private types enables greater co-

1Transfers inside the organization can be interpreted as formal or relational continuation-value transfers

within a relationship. Literal monetary transfers are more intuitive in the case of a data broker selling infor-

mation to an industry.
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ordination with strategic complements, and greater anti-coordination in a game of strategic
substitutes (e.g., in Cournot, it exacerbates the differences in the players’ equilibrium actions).

Related Literature. Our paper is most closely related to the literature on information de-
sign in games, directly building on Bergemann and Morris (2013) and Mathevet et al. (2020).
See also Bergemann and Morris (2019) and Kamenica (2019) for surveys. It also contributes
to the literature on mechanism design with externalities (see Jehiel and Moldovanu (2006) for
an overview).

The presence of private information and the focus on information design are the key differ-
ences between our setting and the literature on the social value of information (Angeletos and Pavan,
2007) and on the tradeoff between adaptation and coordination in multi-division organizations
(Alonso et al., 2008; Rantakari, 2008).

Viewed as a model of selling information, our paper adds competing buyers to the mech-
anism design approach of Babaioff et al. (2012); Bergemann et al. (2018); Liu et al. (2021),
privately known types to the approach of Bimpikis et al. (2019), and a coordination motive
to the setting of Agarwal et al. (2020). Relative to Rodŕıguez Olivera (2021); Bonatti et al.
(2022), the present model extends beyond dominant-strategy games with binary states and
actions, but it restricts attention to linear-quadratic-Gaussian settings. Finally, the value of
(complete and voluntary) information sharing in imperfectly competitive markets is exhaus-
tively studied in Raith (1996). In our setting, beyond introducing private types, information
sharing is partial and mediated by a (benevolent) designer.

Notation. For a vector space V and a subset of vectors S ⊆ V , span(S) denotes the linear
span of S. For n,m ≥ 1, Mn,m(R) denote the vector space of n×m matrices with real entries.
For convenience, we write Mn(R) when m = n and implicitly identify Mn,1(R) with R

n. The
identity and all-ones matrix of Mn(R) are denoted respectively by In and Jn. Finally 1n
denotes the all-ones vector in R

n and we write [n] := {1, . . . , n}. Finally S+
n (R) denotes the

cone of positive semidefinite matrices.
Unless stated otherwise, all random variables in this paper are assumed to be defined on

the same sample space (Ω,F ,P). For random variables X ∈ R and Y ∈ R, Cov(X,Y ) :=
E
[

(X−E[X])(Y −E[Y ])
]

denotes the covariance between X and Y and Var(X) := Cov(X,X)
is the variance of X. We also alternatively write σ2

X for Var(X) and σXY for Cov(X,Y ). By
extension, for random vectors X ∈ R

n and Y ∈ R
m, Cov(X,Y ) := E

[

(X−E[X])(Y −E[Y ])⊤
]

denotes the cross-covariance matrix of X and Y , that is, the matrix in Mn,m(R) whose entry
(i, j) is given by Cov(Xi, Yj). Finally, Var(X) = Cov(X,X) denotes the covariance matrix of
X ∈ R

n.

2 Model

2.1 Basic game

Actions and Payoffs We consider n players who compete in a game of incomplete infor-
mation. In this game, each player i ∈ [n] has a private-value type θi and faces an unknown
(common) payoff-relevant state ω. We write ui(a;ω, θi) for the payoff of player i given action
profile a ∈ R

n, state ω ∈ R and type θi ∈ R.
We restrict ourselves to symmetric games with quadratic payoffs. In line with the literature

on information design in quadratic games (e.g., Bergemann and Morris (2013)), we assume
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that each player i’s best response to a−i given ω and θi is given by the linear function

ai = r
∑

j 6=i

aj + sω + tθi. (1)

A critical parameter for our analysis is the coefficient r, whose sign determines whether actions
are strategic complements or substitutes. For our welfare calculations, we assume that the
best response function (1) for each player i is generated by the following utility function:

ui(a;ω, θi) = −
1

2
a2i + rai

∑

j 6=i

aj + (sω + tθi)ai. (2)

We now provide three classic examples of this framework.

Example 2.1 (Cournot Competition). Firms produce goods that are (partial) substitutes.
Let qi denote the quantity of good i produced by firm i. Assuming a linear demand curve
with symmetric substitution patterns, the inverse demand curve of good i can be written as
Pi(q) = ω + r

∑

j 6=i qj − qi/2, with r < 0. Finally, with a marginal production cost of θi, the
profit of firm i can be written as

ui(q) = qiPi(q)− θiqi ,

yielding the best response qi = ω + r
∑

j 6=i qj − θi, which is of the form (1) with s = 1 and
t = −1.

Example 2.2 (Bertrand competition). Consider a version of the previous example with dif-
ferentiated products Bertrand competition. Let pi the price charged by firm i. The demand
curve of good i can be written as Qi(p) = ω + r

∑

j 6=i pj − pi/2, with r > 0. Finally, with a
marginal production cost of θi, the profit of firm i can be written as

ui(p) = (pi − θi)Qi(p) ,

yielding the best response pi = ω + r
∑

j 6=i pj + θi/2 , which is of the form (1) with s = 1 and
t = 1/2.

Example 2.3 (Beauty Contest). Each player wishes to adapt their action to both the common
state and their idiosyncratic type, and to coordinate with the other players’ average action.
Thus, each player minimizes the following quadratic loss function:

ui(a) = −(ai − ω)2 − (ai − Σj 6=iaj/(n − 1))2 − (ai − θi)
2.

Any quadratic terms not containing ai are irrelevant for player i’s actions. Indeed, the best-
response function of player i is given by

ai = (1/3)(ω + θi +Σj 6=iaj/(n − 1)),

which is of the form (1) with s = t = 1/3 and r = 1/(3(n − 1)).

Complete Information Benchmark. Under complete information about the state and
all types, our game admits a unique Nash equilibrium. Collecting the best responses (1) for
i ∈ [n] yields the linear system

Jn(1,−r)a = sω1n + tθ

4



where θ = (θ1, . . . , θn) ∈ R
n is the vector of types and Jn(1,−r) := (1+r)In−rJn is the n×n

matrix with 1 on the diagonal and −r off the diagonal. This matrix is invertible whenever
r /∈ {−1, 1

n−1} (see Proposition C.7), in which case the solution to the linear system is the
unique Nash equilibrium of the complete information game

ai =
sω + tθi

1− (n − 1)r
+

r · t
∑

j 6=i(θj − θi)

(1 + r)(1− (n− 1)r)
. (3)

An important property of our game is that the linear combination

sω +
rtΣj 6=iθj
1 + r

is a sufficient statistic for each player to choose the complete-information Nash equilibrium ac-
tion. In the welfare-optimal mechanism (Propositions 4.2 and 4.4), we show that the designer
reveals a different linear combination of the state and the other players’ types.

2.2 Information Structure and Mechanism Design

We assume that the vector (θ, ω) is drawn from an independent Gaussian prior distribution.
Each player i observes her type θi, while the designer observes the state of nature ω.

By the revelation principle for dynamic games (Myerson, 1991), it is without loss to as-
sume that the designer recommends action ai to player i given the observed state ω and the
vector of type reports θ as long as the resulting mechanism is incentive compatible. Thus, a
mechanism consists of

• a function τ : Rn × R → ∆(Rn) that maps the type reports θ ∈ R
n and state of nature

ω ∈ R to a distribution τ(ω, θ) over actions profiles.

• for each player i ∈ [n], a function pi : R → R mapping their reported type to the
payment they are being charged in exchange for the recommendation.

Note that the function τ induces the conditional distribution a | θ, ω. So designing τ is equiv-
alent to designing the joint distribution of (a, θ, ω), subject to the constraint that the induced
marginal distribution of (θ, ω) is the one given by the prior.

Gaussian mechanisms. Throughout this paper, we restrict ourselves to the mechanisms
where the conditional distribution is normal, or equivalently, the joint distribution (a, θ, ω) is
multivariate normal. This distribution is characterized by the mean vector µ = E[a, θ, ω] ∈
R
2n+1 and covariance matrix K = Var(a, θ, ω) ∈ M2n+1(R). Note that µ and K have the

following block structure

µ =





µa

µθ

µω



 and K =







Kaa Kaθ Kaω

Kaθ Kθθ 0

K⊤
aω 0 σ2

ω






. (4)

The means µθ := E[θ] = (µθi)i∈[n] and µω := E[ω] ∈ R are given by the prior distribu-
tion and the vector µa := E[a] = (µai)i∈[n] is chosen by the information seller. Similarly,
Kθθ = Var(θ) = diag(σ2

θ1
, . . . , σ2

θn
) and σ2

ω are given by the prior distribution, whereas
Kaa := Var(a) ∈ Mn(R), Kaθ := Cov(a, θ) ∈ Mn(R) and Kaω := Cov(a, ω) ∈ R

n are chosen
by the designer.
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A standard property of multivariate normals is that their conditional expectations are
linear, so we can equivalently write the action recommendations in a Gaussian mechanism
as a linear combination of the fundamentals (θ, ω) with zero-mean (but possibly correlated)
noise added:

ai = αi + βi(ω − µω) +
∑

j∈[n]

γij(θj − µθj) + εi, (5)

for all i ∈ [n] and where ε = (εi)i∈[n] is a zero-mean multivariate normal N (0,Kε) independent
of (θ, ω). Writing α = (αi)i∈[n], β = (βi)i∈[n] and Γ = (γij)(i,j)∈[n]2 , we have

µa = α, Kaω = σ2
ωβ, Kaθ = ΓKθθ, Kaa = σ2

ωββ
⊤ + ΓΓ⊤Kθθ +Kε.

3 Characterizations

3.1 Symmetry and positive semi-definiteness

Because the quadratic game introduced in Section 2.1 is symmetric, we will be able to show in
Section 4.1 that we can restrict ourselves to symmetric mechanisms without loss of generality.

Let Sn be the symmetric group on [n] and for each permutation π ∈ Sn, denote by
Pπ ∈ Mn(R) the permutation matrix whose entry (i, j) ∈ [n]2 is (Pπ)i,j = 1{i = π(j)}. In
particular, for x ∈ R

n, Pπx is the permuted vector whose ith coordinate is (Pπx)i = xπ−1(i)

for i ∈ [n].

Definition 3.1. A mechanism is symmetric if (a, θ, ω) and (Pπa, Pπθ, ω) are identically dis-
tributed for each permutation π ∈ Sn.

The covariance matrix of a symmetric mechanism has a simple structure presented next.

Lemma 3.2. Let µ ∈ R
2n+1 and K ∈ M2n+1(R) be respectively the mean vector and covari-

ance matrix of a Gaussian mechanism, with the block structure indicated in (4). Then the

mechanism is symmetric iff µa, µθ,Ka,ω ∈ R1n and Kaa,Kaθ ∈ RIn + RJn and Kθθ ∈ RIn.

Proof. For a permutation π ∈ Sn, let us denote by µπ and Σπ the mean vector and covariance
matrix of (Pπa, Pπθ, ω)

µπ =





Pπµa

Pπµθ

µω



 and Kπ =







PπKaaP
⊤
π PπKaθP

⊤
π PπKaω

PπKaθP
⊤
π PπKθθP

⊤
π 0

K⊤
aωP

⊤
π 0 σ2

ω






. (6)

Because the mechanism is Gaussian, it is fully determined by its means and covariance matrix,
hence the mechanism is symmetric iff Kπ = K and µπ = µ for all π ∈ Sn. From Proposi-
tion C.7, we immediately obtain that µa, µθ,Kaω ∈ span(1n) and Kaa,Kaθ,Kθθ ∈ span(In, Jn).
Because we assumed that the prior on θ is independent, Kθθ is diagonal, implying that
Kθθ ∈ span(In).

In other words, symmetry reduces the number of parameters required to specify a mech-
anism from 2n(n + 1) to only 6: any of the coordinates of µa and Kaω, and the on- and
off-diagonal entries of Kaa and Kaθ. Crucially, this number is independent of n. In what
follows, we choose an arbitrary i ∈ [n] and j 6= i and write these parameters as µai , σaiω, σ

2
ai ,

σaiaj , σaiθi and σaiθj . Since the covariance matrix K is required to be positive semi-definite,
this implies constraints on the covariance parameters as stated in the next lemma proved in
Appendix A.
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Lemma 3.3. The covariance matrix K of a symmetric mechanism is positive semidefinite iff

1. σaiθi = σaiθj = 0 whenever σ2
θi
= 0, and σaiω = 0 whenever σ2

ω = 0.

2. The following inequality constraints hold with the convention 0/0 = 0.







1
σ2
θi

(σaiθi − σaiθj)
2 ≤ σ2

ai − σaiaj
1
σ2
θi

(σaiθi + (n− 1)σaiθj)
2 + n

σ2
ω
σ2
aiω ≤ σ2

ai + (n− 1)σaiaj
,

Furthermore, there is equality in the first inequality iff Cov(ai, aj | θ, ω) = Var(ai | θ, ω)
and in the second inequality iff Cov(ai, aj | θ, ω) = −Var(ai | θ, ω)/(n− 1).

Remark. The case where equality holds in both inequalities is thus equivalent to

−
Var(ai | θ, ω)

n− 1
= Cov(ai, aj | θ, ω) = Var(ai | θ, ω),

or equivalently, Var(ai | θ, ω) = 0. In this case, ai = E[ai | θ, ω] a.s., (that is, ai is a determin-
istic—and affine—function of θ, ω).

3.2 Obedience

Recall that a mechanism is obedient if following the recommended action is a best response
for each player, conditioned on their type and their recommendation. In other words, the
condition

ai ∈ argmax
a′i∈R

E[ui(a
′
i, a−i; θi, ω) | ai, θi] .

must hold almost surely for each player i ∈ [n].

Lemma 3.4. Assume that (ui)i∈[n] defines a symmetric game. If (a, θ, ω) is an obedient

mechanism, then for all permutation π ∈ Sn, the permuted mechanism (Pπa, Pπθ, ω) is also

obedient.

Proof. Consider a permutation π ∈ Sn, and an obedient mechanism (a, θ, ω): for all i ∈ [n],
and a′ ∈ R

E[ui(ai, a−i; θi, ω) | ai, θi] ≥ E[ui(a
′, a−i; θi, ω) | ai, θi] .

By symmetry of the game, the previous inequality is equivalent to

E[uπ(i)(aj , a−j ; θj, ω) | aj , θj ] ≥ E[uπ(i)(a
′
j , a−j ; θj, ω) | aj , θj ]

where j = π−1(i). This inequality is exactly the obedience constraint of player π(i) for the
permuted mechanism (Pπa, Pπθ, ω). Since this is true for all i, we conclude that the permuted
mechanism is also obedient.

The following proposition gives a characterization of obedience, showing in particular that
the recommendations’ means are determined by obedience.

Proposition 3.5. Assume that r /∈ {−1, 1
n−1}, then the mechanism (µ,K) is obedient iff

1. The mean action µai of each player i ∈ [n] is determined by the prior’s mean:

µai =
sµω + tµθi

1− (n− 1)r
+

r · t
∑

j 6=i(µθj − µθi)

(1 + r)(1− (n − 1)r)
. (7)
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2. The covariance matrix K satisfies the following linear constraints for each i ∈ [n]
{

σ2
ai = r

∑

j 6=i σaiaj + sσaiω + tσaiθi
σaiθi = r

∑

j 6=i σajθi + tσ2
θi

. (8)

Proof. Observe that the conditional expected utility when deviating from ai to a′i,

E[ui(a
′
i, a−i;ω, θi) | ai, θi] = −

1

2
(a′i)

2 + ra′i
∑

j 6=i

E[aj | ai, θi] + (sE[ω | ai, θi] + tθi)a
′
i,

is concave in a′i. Obedience of player i ∈ [n] is thus equivalent to the first-order condition

ai = r
∑

j 6=i

E[aj | ai, θi] + sE[ω | ai, θi] + tθi . (9)

Because the mechanism is Gaussian, the random variable on the right-hand side of (9) is
normal and (ai, θi)-measurable. It is thus fully determined by its mean and its covariances
with ai and θi. Consequently (9) is equivalent to











µai = r
∑

j 6=i µaj + sµω + tµθi

σ2
ai = r

∑

j 6=i σaiaj + sσaiω + tσaiθi
σaiθi = r

∑

j 6=i σajθi + tσ2
θi

, (10)

where the first equation expresses the equality of means in (9), and the second (resp. third)
equation expresses the equality of the covariance with ai (resp. θi) in (9). To compute the
covariances, we used that Cov(E[X|Y ], Z) = Cov(X,Z) for random variables (X,Y,Z) such
that Z is Y -measurable.

Writing the first equation in (10) for each player i ∈ [n] gives the following linear system
in µa

Jn(1,−r)µa = sµω1n + tµθ.

Solving this system using Proposition C.7 yields the first half of the obedience characterization.
The second and third equations in (10) give the second half of the characterization.

Remark 3.6. For symmetric mechanisms, expressions (7) and (8) are the same for each player
i ∈ [n] and simplify to

µai =
sµω + tµθi

1− (n− 1)r
and

{

σ2
ai = (n− 1)rσaiaj + sσaiω + tσaiθi

σaiθi = (n− 1)rσaiθj + tσ2
θi

.

Example 3.7. In (3), we computed the Nash equilibrium of the complete information game:

ai =
sω + tθi

1− (n − 1)r
+

r · t
∑

j 6=i(θj − θi)

(1 + r)(1− (n− 1)r)
.

The mechanism that recommends the actions from the Nash equilibrium for each realization
of (θ, ω) is trivially obedient: an ex-post best-response is a best-response at the interim stage.
We can indeed verify from the expression obtained in (3) that it satisfies Proposition 3.5 as
expected.

Example 3.8. The Bayes-Nash equilibrium of the game where each player only observes their
own type θi corresponds to the specific case of an obedient mechanism for which ai is θi-
measurable. This implies in particular, σaiω = σaiaj = σaiθj = 0. In this case, the second
covariance obedience constraint implies σaiθi = tσ2

θi
and since σ2

ai = tσaiθi by the first co-
variance constraint, this shows that ai is deterministic given θi with mean µai given by (7)
and

ai = µai + t(θi − µθi).

8



3.3 Truthfulness

As a first step towards understanding incentive compatibility, we focus in this section on
characterizing truthful mechanisms among obedient mechanisms. To this end, we introduce

ṽi(θ
′
i; θi) = E[ui(a; θi, ω) | θi, θ

′
i]

the expected interim utility of player i when their true cost is θi, they report cost θ′i and follow
the recommendation ai at the second stage of the game. Truthfulness then requires that for
all θ′i ∈ R,

ṽi(θi; θi)− pi(θi) ≥ ṽi(θ
′
i; θi)− pi(θ

′
i).

Proposition 3.9. An obedient mechanism (µ,K, p) is truthful iff for each player i ∈ [n]:

1. The derivative of the payment function is given by

p′i(θi) =

(

σaiθi
σ2
θi

− t

)

E[ai | θi] =

(

σaiθi
σ2
θi

− t

)(

µai +
σaiθi
σ2
θi

(θi − µθi)

)

.

2. The following covariance constraint holds: tσaiθi ≥ 0.

When σ2
θi
= 0, the previous two conditions reduce to p′i(θi) = −tµai.

Proof. Let us first compute ṽi(θ
′
i; θi) the expected utility of player i when their true cost is θi,

their reported cost is θ′i, and assuming they follow the recommendation at the second stage:

ṽi(θ
′
i; θi) = E[ui(a; θi, ω) | θi, θ

′
i] = E

[

E[ui(a; θi, ω) | ai, θi, θ
′
i] | θi, θ

′
i

]

= E
[

− a2i /2 + taiθi | θi, θ
′
i

]

+ E

[

ai
(

sE[ω | ai, θi, θ
′
i] + r

∑

j 6=i

E[aj | ai, θi, θ
′
i]
)

| θi, θ
′
i

]

= E
[

− a2i /2 + tθiai | θi, θ
′
i

]

+ E

[

ai
(

sE[ω | ai, θ
′
i] + r

∑

j 6=i

E[aj | ai, θ
′
i]
)

| θi, θ
′
i

]

where the last equality uses the conditional independence (ω, aj ⊥ θi) | ai, θ
′
i for j 6= i.

Then, using that sE[ω | ai, θ
′
i] + r

∑

j 6=iE[aj | ai, θ
′
i] = ai − tθ′i by obedience (9), we get

ṽi(θ
′
i; θi) = E

[

a2i /2 + tai(θi − θ′i) | θi, θ
′
i

]

=
1

2
E[a2i | θ

′
i] + t(θi − θ′i)E[ai | θ

′
i]

=
1

2
E
2[ai | θ

′
i] + t(θi − θ′i)E[ai | θ

′
i] +

1

2
Var(ai | θ

′
i),

where the second equality uses the conditional independence ai ⊥ θi | θ
′
i.

Truthfulness is equivalent to θi maximizing θ′i 7→ ṽi(θ
′
i; θi)− pi(θ

′
i) for all θi, that is,

p′i(θi) =
∂ṽi(θ

′
i; θi)

∂θ′i

∣

∣

∣

∣

θ′i=θi

and
∂2ṽi(θ

′
i; θi)

∂θ′2i

∣

∣

∣

∣

θ′i=θi

− p′′i (θi) ≤ 0

Because the mechanism is Gaussian, Var(ai | θ
′
i) does not depend on θ′i. Furthermore, when

σ2
θi
> 0, we have for all θi ∈ R,

E[ai | θ
′
i] = µai +

σaiθi
σ2
θi

(θ′i − µθi).

9



In this case, the first-order condition for optimality gives,

p′i(θi) =

(

σaiθi
σ2
θi

− t

)

E[ai | θi] =

(

σaiθi
σ2
θi

− t

)(

µai +
σaiθi
σ2
θi

(θi − µθi)

)

as desired. And the second-order condition becomes

(

σaiθi
σ2
θi

)2

− 2t
σaiθi
σ2
θi

−

(

σaiθi
σ2
θi

− t

)

σaiθi
σ2
θi

= −t
σaiθi
σ2
θi

≤ 0.

When σ2
θi

= 0, then E[ai | θi] = µai for all θi ∈ R in which case the first-order condition
becomes p′i(ai) = −tµai and the second-order condition is always satisfied.

3.4 Incentive compatibility

We now consider incentive compatibility mechanisms, in which no profitable deviations of the
players exist. This implies in particular truthful reporting of players’ types and obedience as
studied in the previous section, but also prevents double deviations in which a player both
misreport their type in the first stage and then deviate from the action recommendation in
the second stage. In fact, the following proposition reveals that for obedient mechanisms,
whenever player i reports type θ′i instead of their true type θi, then it is always profitable to
deviate from the action recommendation ai in the second stage and play instead

a′i = ai + t(θi − θ′i). (11)

For example, in the Cournot case where t < 0, a firm that overstates their marginal cost
(θ′i > θi) will then deviate upward and produce more than recommended.

Consequently, an incentive compatible mechanism must be robust to such double devi-
ations and the following proposition shows that this is a strictly stronger requirement than
simply requiring obedience and truthfulness separately.

Proposition 3.10. The mechanism (µ,K, p) is incentive compatible if and only if it is obedient

and for each player i ∈ [n]:

1. The derivative of the payment function is given by

p′i(θi) =

(

σaiθi
σ2
θi

− t

)

E[ai | θi] =

(

σaiθi
σ2
θi

− t

)(

µai +
σaiθi
σ2
θi

(θi − µθi)

)

.

2. The covariance satisfies tσaiθi ≥ t2σ2
θi
, or equivalently by obedience, rt

∑

j 6=i σajθi ≥ 0.

When σ2
θi
= 0, the previous two conditions reduce to p′i(θi) = −tµai.

Remark. As Proposition 3.10 reveals, incentive compatibility requires obedience as well as the
constraint tσaiθi ≥ t2σ2

θi
, which is more restrictive than the truthfulness constraint tσaiθi ≥ 0

from Proposition 3.9. In particular, for a mechanism such that t2σ2
θi
> tσaiθi ≥ 0, misreporting

one’s cost is not profitable when following the recommendation at the second stage, but it
might be profitable to misreport one’s cost and deviate at the second stage according to
(11). This result is in sharp contrast with our earlier work (Bonatti et al., 2022), where it was
established that for multiplicatively decomposable utilities of the form ui(a; θi, ω) = θi·π(a;ω),
incentive compatibility is equivalent to requiring truthfulness and obedience separately.
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3.5 Participation

Specifying a player’s outside option amounts to choosing the mechanism that will be used
with the remaining players in case of non-participation. Throughout this section, we assume
that the designer uses an obedient mechanism in the outside option. The next lemma shows
that a player’s reservation utility does not depend on the choice of the “outside” mecha-
nism. Intuitively, this is because the reservation utility of a non-participating player—who
is uninformed about the state by definition—only depends on the outside option mechanism
through the means of the recommendations sent to the participating players. In an obedient
mechanisms, these means are fully determined as was shown in Proposition 3.5.

Lemma 3.11. Assume that the designer uses an obedient mechanism with the remaining

players in case player i chooses not to participate. Then player i’s reservation utility is

independent of the chosen mechanism and is given by

uoi (θi) =
1

2
(µai + t(θi − µθi))

2 ,

where µai is given by (7).

Proof. If player i does not participate, then her action ai must be θi-measurable. Furthermore,
if ai is a best-response to the outside mechanism, then the conditional distribution a | θ, ω is
the one of an obedient mechanism with the restriction that σaiω = σaiaj = σaiθj = 0 due to
ai being θi-measurable. In other words, from player i’s perspective, this is exactly the same
situation as the Bayes-Nash equilibrium studied in Example 3.8, for which we obtained

ai = µai + t(θi − µθi).

We computed in the previous section that the interim expected utility in an obedient mech-
anism is 1

2E[a
2
i | θi], which directly implies the desired expression for player i’s reservation

utility.

Remark 3.12. Note that the previous proof relies on interpreting the strategy of a non-
participating player i ∈ [n] as following an obedient mechanism, with the constraint that their
action only depend on their type θi. Such a mechanism is of course very asymmetric, which
is why it was crucial to establish a characterization of all—possibly asymmetric—obedient
mechanisms in Proposition 3.5.

Moreover, it goes to show that in our linear best-response setting it is not possible to
“threaten” a player with adverse actions by their competitors if a player does not participate
(and pay a transfer to the designer). Thus, the intuition that (in Cournot) other firms will
be called to flood the market does not hold in our case.

In the next proposition, we describe the general form of payments able to implement a
given incentive compatible mechanism. Because incentive compatibility only constrains the
derivative of the payments, these are determined only up to an additive constant. As we show,
the payments properly incentivize participation as long as this constant is upper-bounded by
a quantity depending only on the covariance matrix K of the mechanism.

Proposition 3.13. Let (µ,K, p) be an incentive compatible mechanism, and assume that an

obedient mechanism is used with the remaining players in case of non-participation. Then,

the payment of player i ∈ [n] is given by

pi(θi) = pi(µθi) +
1

2

(

1−
tσ2

θi

σaiθi

)

(

E
2[ai | θi]− µ2

ai

)

,

11



and (µ,K, p) is individually rational iff

pi(µθi) ≤
1

2
Var[ai | θi] :=

1

2

(

σ2
ai −

σ2
aiθi

σ2
θi

)

. (12)

Proof. We already computed the interim expected utility of an incentive compatible mecha-
nism,

ũi(θi) =
1

2

(

E
2[ai | θi] + Var[ai | θi]

)

.

Furthermore, incentive compatibility determines the derivative of the payment as described in
Proposition 3.10. Consequently, the payment function pi is known up to an additive constant.
It will be convenient for us to parametrize this indetermination by the price at µai and we
write

pi(θi) = pi(µθi) +

∫ θi

µθi

p′i(s) ds = pi(µθi) +
1

2

(

1−
tσ2

θi

σaiθi

)

(

E
2[ai | θi]− µ2

ai

)

,

Individual rationality is then equivalent to ũi(θi) − pi(θi) − uoi (θi) ≥ 0 for all θi ∈ R. The
function on the left-hand side of this inequality is quadratic in θi with leading coefficient

σ2
aiθi

2σ4
θi

−
1

2

(

1−
tσ2

θi

σaiθi

)

σ2
aiθi

σ4
θi

−
t2

2
=

tσaiθi
2σ2

θi

−
t2

2

which is non-negative by incentive compatibility (Proposition 3.10). Hence the function is
convex and can easily be seen to be minimized at θi = µθi . Individual rationality is thus
equivalent to requiring that the value at µθi be non-negative, that is

1

2

(

µ2
ai +Var[ai | θi]

)

− pi(µθi)−
1

2
µ2
ai ≥ 0,

which simplifies to (12) as desired.

3.6 Positivity of transfers

Since we would like payments to be non-negative, we can set the integration constant pi(µθi) at
the largest value allowed by individual rationality (12). This implies the following expression
for the payments

pi(θi) =
1

2

(

σ2
ai −

σ2
aiθi

σ2
θi

)

+
1

2

(

1−
tσ2

θi

σaiθi

)

(

E
2[ai | θi]− µ2

ai

)

, (13)

Proposition 3.14. Let (µ,K) be an incentive compatible mechanism, then for the payment

given in (13), we have E[pi(θi)] ≥ 0.

Proof. From (13) we compute, E[pi(θi)] =
1
2

(

σ2
ai − tσaiθi

)

. But then,

σ2
ai − tσaiθi ≥

σ2
aiθi

σ2
θi

− tσaiθi =
tσaiθi
t2σ2

θi

(

tσaiθi − t2σ2
θi

)

≥ 0

where the first inequality is Cauchy–Schwarz inequality, and the last inequality uses tσaicθi ≥
t2σ2

θi
by incentive compatibility.
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4 Welfare maximization

The expected utility of player i in any obedient mechanism can be computed as follows using
the law of total expectation,

E[ui(a; θ, ω)] = E

[

−
1

2
a2i + ai

(

sE[ω | ai, θi] + tθi + r
∑

j 6=i

E[aj | ai, θi]
)]

=
1

2
E[a2i ] =

µ2
ai + σ2

ai

2

(14)

where the penultimate equality uses the first-order characterization of obedience (9).

4.1 Reduction to symmetric mechanisms

The derivation of the expected utility of player i in (14) reveals in particular that the expected
welfare of an obedient mechanism is linear in the design parameters (σ2

ai)i∈[n]—the means µai

are determined by obedience (7). This allows for a symmetrization argument presented in the
next proposition, showing that restricting oneself to symmetric mechanisms is without loss of
generality for the purpose of studying the range of welfare achievable by Gaussian obedient
mechanisms.

Proposition 4.1. Assume that the prior distribution on players’ types θ is symmetric, then

for any Gaussian and obedient mechanism, there exists a symmetric, Gaussian, and obedient

mechanism achieving identical welfare.

The proof of this proposition is presented in Appendix B and follows from Lemma C.6.
Essentially, we symmetrize a given mechanism by averaging its mean vector and covariance
matrix over all possible permutations of the players. Note that the resulting symmetric
mechanism is different from the usual lottery that first draws a permutation of the players
uniformly at random and then applies the original mechanism to this permutation. While a
lottery would certainly preserve obedience (a convex combination of two obedient mechanisms
is still obedient), the resulting mechanism would no longer be Gaussian, because a nontrivial
mixture of normal distributions is not normal. In contrast, our symmetrization argument is
expressed directly on the moments of the mechanism. The fact that obedience is still preserved
is less obvious but follows from the convexity of the obedience constraints on the covariance
matrix K.

4.2 Optimal mechanism

We first determine the welfare-maximizing mechanism subject to the obedience constraint
and then show that it satisfies incentive compatibility. By Proposition 4.1, we can focus on
symmetric mechanisms without loss of generality. For such mechanisms, maximizing welfare
is equivalent to maximizing the expected utility of a single player i ∈ [n], which is in turn
equivalent to maximizing the variance σ2

ai due to the form of player i’s utility Eq. (14) and
the fact that the mean µai is determined by obedience Eq. (7). We thus obtain the following

13



optimization problem

max σ2
ai

s.t.
1

σ2
θi

(σaiθi − σaiθj )
2 ≤ σ2

ai − σaiaj

1

σ2
θi

(σaiθi + (n− 1)σaiθj )
2 +

n

σ2
ω

σ2
aiω ≤ σ2

ai + (n− 1)σaiaj

σ2
ai = (n− 1)rσaiaj + sσaiω + tσaiθi

σaiθi = (n− 1)rσaiθj + tσ2
θi

in the five variables (σ2
ai , σaiθi , σai,θj , σaiω, σaiaj ). The two inequality constraints express the

positive semidefiniteness of the covariance matrix K (Lemma 3.3) and the two equality con-
straints are the obedience constraints in the specific case of symmetric mechanisms (Re-
mark 3.6)2.

The following proposition describes the welfare-optimal mechanism in the case of r < 0
(i.e., strategic substitutes).

Proposition 4.2. For r ∈ (−1, 0), there exists a unique symmetric mechanism maximizing

social welfare subject to obedience. In this mechanism, the recommended actions are maximally

negatively correlated conditioned on (θ, ω), hence

ai =
sµω + tµθi

1− (n− 1)r
+

σaiω
σ2
ω

(ω − µω) +
σaiθi
σ2
θi

(θi − µθi) +
∑

j 6=i

σaiθj
σ2
θj

(θj − µθj) + δ
∑

j 6=i

εi − εj
√

n(n− 1)

for some δ ∈ R and with ε ∼ N (0, In) a standard normal vector. Writing f := 1
n−1 , the action

ai is a deterministic function of (θ, ω), that is δ = 0, iff

−
(1 + r)3

(

1 + (n+ 1)r
)

n2r2(2r + 3)
(

f(2r + 3)− r
) ≤

t2σ2
θi

s2σ2
ω

. (15)

1. If (15) is satisfied, then

σaiω =
sσ2

ω

2n

λnf + 1

λ(f − r)− r
, σaiθi = tσ2

θi

λnf
[

r2 + 2(f − r)(1 + r)
]

− (2 + r)r

2(1 + r)
[

λnf(f − r)− (1 + r)r
] , (16)

σaiθj = frtσ2
θi

λnf + (2r + 3)

2(1 + r)
[

λnf(f − r)− (1 + r)r
] , δ = 0. (17)

where λ is the unique positive root of

(1 + r)3fs2σ2
ω

n2
(

λ(f − r)− r
)2 +

r2(r2 + 2r(1− f)− 3f)2t2σ2
θi

[

λnf(f − r)− (1 + r)r
]2 = fs2σ2

ω(1 + r) + r2t2σ2
θi
. (18)

2. Otherwise,

σaiω = −
sσ2

ω

2nr
, σaiθi = tσ2

θi

(2 + r)

2(1 + r)2
, σaiθj = −ftσ2

θi

(2r + 3)

2(1 + r)2
,

δ2 = −
t2σ2

θi
(2r + 3)

(

f(2r + 3)− r
)

n2r2 + s2ω2
(

1 + (n+ 1)r
)

(1 + r)3

4(1 + r)4n2r2
.

2In what follows, we use the variance σ
2
ai
, and not the standard variation σai

as the optimization variable.

Note that we do not need to add the constraint σ2
ai

≥ 0 to the optimization problem, since it is implied by the

covariance matrix being positive semidefinite. This can be seen, for example, by multiplying the first inequality

constraint by n− 1 and adding it to the second inequality constraint.
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Proof. First, we use the last two (obedience) equality constraints to eliminate the variables
σaiθj and σa2i from the objective function and the remaining constraints, thus reducing the

problem to an optimization in the three variables σaiaj , σaiθi and σaiω. We use f := 1
n−1

throughout for legibility.

max (n− 1)rσaiaj + sσaiω + tσaiθi

s.t.
1

r2σ2
θi

[

(f − r)σaiθi − ftσ2
θi

]2
≤ sσaiω + tσaiθi − (n − 1)(f − r)σaiaj

1

r2σ2
θi

[

(1 + r)σaiθi − tσ2
θi

]2
+

n

σ2
ω

σ2
aiω ≤ sσaiω + tσaiθi + (n− 1)(1 + r)σaiaj

We introduce non-negative Lagrange multipliers λ and ν for the first and second inequality
constraints respectively and look for a solution to the KKT conditions. The stationarity
condition yields the following system of equations,















−r +
(

f − r
)

λ− (r + 1)ν = 0

−s− sλ+ ν
(

2n
σ2
ω
σaiω − s

)

= 0

2λ f−r
r2σ2

θi

[

(f − r)σaiθi − ftσ2
θi

]

+ 2ν 1+r
r2σ2

θi

[

(1 + r)σaiθi − tσ2
θi

]

= t(λ+ ν + 1)

From this, we express ν, σaiω and σaiθi as a function of λ.

ν =
λ(f − r)− r

1 + r
, σaiω =

sσ2
ω

2n

λnf + 1

λ(f − r)− r
,

σaiθi = tσ2
θi

λnf
[

r2 + 2(f − r)(1 + r)
]

− (2 + r)r

2(1 + r)
[

λnf(f − r)− (1 + r)r
] .

(19)

Note that because r is negative, the denominator in the expressions for σaiω and σaiθi cannot
vanish for λ ≥ 0 and the expressions in (19) are well-defined for a dual feasible λ. Furthermore,
since 1+r > 0 by assumption, we get that ν ≥ − r

1+r > 0 and the second inequality constraint
is binding by complementary slackness. We can thus eliminate σaiaj from the first inequality
constraint

f − r

r2σ2
θi

[

σaiθi −
ftσ2

θi

f − r

]2

+
1 + r

r2σ2
θi

[

σaiθi −
tσ2

θi

1 + r

]2

+
nσ2

aiω

σ2
ω(1 + r)

≤
nf(sσaiω + tσaiθi)

(1 + r)(f − r)
,

which we rewrite in canonical form after multiplying by the positive constant 1+r
nf as

1 + r

r2σ2
θi

[

σaiθi − tσ2
θi

(

r2 + 2(f − r)(1 + r)
)

2(f − r)(1 + r)

]2

+
1

fσ2
ω

[

σaiω −
fsσ2

ω

2(f − r)

]2

≤
r2t2σ2

θi

4(1 + r)(f − r)2
+

fs2σ2
ω

4(f − r)2
. (20)

Using the expression for σaiω and σaiθi from (19) and multiplying by the positive constant
4(1 + r)(f − r)2, the previous inequality is equivalent to

(1 + r)3fs2σ2
ω

n2
[

λ(f − r)− r
]2 +

r2(r2 + 2r(1− f)− 3f)2t2σ2
θi

[

λnf(f − r)− (1 + r)r
]2 ≤ fs2σ2

ω(1 + r) + r2t2σ2
θi . (21)

Because r is negative by assumption, we have a fortiori that f − r > 0, which easily implies
that the left-hand side in (21) is a decreasing function of λ when λ ≥ 0. Furthermore, this
function converges to 0 for λ → ∞. We consider two cases.
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1. Either (21) is violated for λ = 0, but since the left-hand side is decreasing and converges
to 0, there exists a unique λ > 0 for which equality holds. Hence, complementary
slackness holds for this λ when σaiω and σaiθi are computed as in (19).

2. Or (21) is satisfied for λ = 0, in which case complementary slackness trivially holds.

Furthermore, in both cases ν is determined by (19), and σaiaj is determined by the fact that
the second inequality constraint is binding. Hence, we identified in both cases a unique primal
feasible triple (σaiω, σaiθi , σaiaj ) and dual feasible pair (λ, ν) satisfying both stationarity and
complementary slackness. Since the problem is convex, strong duality holds and this primal
feasible triple is the unique maximizer. For convenience, inequality (21) at λ = 0 simplifies to

t2σ2
θi

s2σ2
ω

≤ −
(1 + r)3

(

1 + (n + 1)r
)

n2r2(2r + 3)
(

3f − (1− 2f)r
)

as given in the proposition statement.
To finish describing the mechanism, we use the fact that the second inequality constraint

binds iff the recommended actions are maximally negatively correlated conditioned on (θ, ω)
by Lemma 3.3. This lets us write ai as in the proposition statement. We determine σaiθj from
σaiθi using the second obedience constraint,

σaiθj = ftσ2
θi

λnfr+ r(2r + 3)

2(1 + r)
[

λnf(f − r)− (1 + r)r
] ,

and δ2 from the other variables using the first obedience constraint.

Geometric interpretation. Some intuition about the structure of the welfare-optimal
mechanism described in Proposition 4.2 can be gained with the following geometric interpre-
tation of the proof.

1. The two linear obedience equality constraints let us eliminate the variables σaiθj and σ2
ai

from the objective function and the rest of the constraints, resulting in an optimization
problem in the three variables (σai,θi , σaiω, σaiaj ).

2. In this three-dimensional parametrization of the optimization problem. The objective
function is given by

(n− 1)rσaiaj + sσaiω + tσaiθi .

Crucially since r < 0, the objective function is decreasing in σaiaj , so we want to choose
it as small as possible. The only lower bound on σaiaj is the second inequality con-
straint, which is thus necessarily binding at the optimum. As discussed in Lemma 3.3,
this implies in particular that the action recommendations are maximally anticorrelated
conditioned on (θ, ω).

3. The fact that the second inequality constraint binds also lets us eliminate the variable
σaiaj , resulting in a two-dimensional optimization problem in the variables (σaiθi , σaiω).
The first inequality constraint expressed in terms of these two variables describes an
ellipse E , containing the set of all obedient mechanisms for which the action recommen-
dations are maximally anticorrelated (20). The boundary of E parametrizes all obedient
mechanisms in which the action recommendations are deterministic given (θ, ω).
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P (∞)

P (0)
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Figure 1: Representation of mechanisms in the (σaiω, σaiθi) plane with r < 0 and t < 0.
When action recommendations are maximally correlated conditioned on (θ, ω), an obedient
mechanism is uniquely determined by a pair (σaiω, σaiθi) lying inside an elliptic region E
whose boundary E corresponds to mechanisms that are deterministic conditioned on (θ, ω).
Stationarity constrains the welfare-optimal mechanism to be a point P (λ) lying on a portion of
hyperbola (in green) parametrized by the non-negative multiplier λ. Complementary slackness
implies that the welfare-optimal mechanism is either at P (0) if P (0) ∈ E (interior solution) or
at the intersection of the hyperbola with E otherwise (boundary solution). The point labeled
N is the mechanism that recommends the Nash equilibrium of the complete information game
for each realisation of (θ, ω).

4. Stationarity further implies that at the optimum the point (σaiθi , σaiθω) lies on a portion
of hyperbola parametrized by the non-negative multiplier λ associated with the ellipse
constraint E :

H := {
(

σaiθi(λ), σaiω(λ)
)

|λ ≥ 0},

where σaiθi(λ), σaiω(λ) are the functions described in (16). Note that when λ → ∞,
the corresponding point P (λ) :=

(

σaiθi(λ), σaiω(λ)
)

on H converges to the center of the
ellipse E .

Consequently, we recover the two cases described in Proposition 4.2 using complementary
slackness:

• either at λ = 0, the point P (0) :=
(

σaiθi(0), σaiω(0)
)

lies within E , in which case com-
plementary slackness holds and we have an interior solution.

• or P (0) is outside of E , but then by continuity and since P (λ) converges to the center
of E as λ → ∞, there exists a unique λ > 0 for which P (λ) lies on the boundary of E .
For such a λ, complementary slackness holds and we have a boundary solution.

Deterministic vs randomized mechanisms. As discussed in the previous paragraph,
depending on the position of P (0) relative to E , we either have a boundary solution for
which the action recommendations are a deterministic (and linear) function of (θ, ω), or an
interior solution in which the mechanism adds independent maximally anticorrelated noise
to a deterministic function of (θ, ω). Whether or not the solution is on the boundary of the
feasible set is determined by the inequality

f(r) := −
(1 + r)3

(

1 + (n+ 1)r
)

n2r2(2r + 3)
(

f(2r + 3)− r
) ≤

t2σ2
θi

s2σ2
ω

. (22)
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−1 r⋆rl rh

t2σ2
θi

s2σ2
ω

f(r⋆)

Figure 2: Plot of f(r) defined in (22) for n = 2 (and f = 1/(n − 1) = 1). The function is
positive on (−1,− 1

n+1) and unimodal with a maximum at r⋆ ≈ −0.45. When the threshold

value t2σ2
θi
/(s2σ2

ω is less than f(r⋆) ≈ 0.013, then there are two critical values rl and rh at
which f reaches the threshold. In this case, condition (22) is violated on (rl, rh) and the
mechanism is randomized on this interval.

which only depends on parameters of the problem—namely the prior’s variance (σ2
θi
, σ2

ω)
and the parameters (r, s, t). More intuition about this condition can be gained by defining
f(r) to be the function of r on the left-hand side of (22) and studying its variations. It
is easy to see that the only factor in f(r) whose sign changes on the interval (−1, 0) is
1+(n+1)r. Consequently, f is non-negative on [−1,−1/(n+1)] and negative on (−1/(n+1), 0).
Furthermore, it can also be shown that f is unimodal on (−1, 0), reaching a unique positive
maximum at some r⋆ in (−1,−1/(n + 1)). We thus have two cases shown in Fig. 2,

• if t2σ2
θi
/(s2σ2

ω) ≥ f(r⋆), then (22) is always satisfied and the mechanism is deterministic
conditioned on (θ, ω) for all values of r ∈ (−1, 0).

• otherwise there exist two critical values rl and rh with −1 < rl < r⋆ < rh < −1/(n+1),
solutions to f(r) = t2σ2

θi
/(s2σ2

ω). When r ∈ (rl, rh), then (22) is violated and the
mechanism is randomized, otherwise the mechanism is deterministic conditioned on
(θ, ω).

This can be intuitively understood as follows: the mechanism designer wishes to maximally
anticorrelate the players’ actions, which is why σaiθi and σaiθj are always of opposite signs.
However, when σ2

θi
is small, the second obedience constraint prevents these two parameters

from being far enough from each other to achieve maximum anticorrelation for all values of r
and the mechanism therefore adds additional negatively correlated independent noise.

Finally, the description of the welfare-maximizing mechanism in Proposition 4.2 allows
us to compare the covariances of the action recommendation ai with the fundamentals (θ, ω)
in the optimal mechanism and in the Nash equilibrium of the complete information game.
This is stated in the following proposition, where quantities in the Nash equilibrium (resp.
welfare-maximizing mechanism) are denoted with an N (resp. W subscript).

Proposition 4.3. For r ∈ (−1, 0) the welfare-optimal mechanism of Proposition 4.2 satisfies

|σW
aiω| < |σN

aiω|, |σW
aiθi | > |σN

aiθi | and |σW
aiθj | > |σN

aiθi |.

Proof. Using the notation f := 1/(n − 1) we can write the Nash equilibrium as

σN
aiω =

f

f − r
sσ2

ω and σN
aiθi =

f(1 + r)− r

(1 + r)(f − r)
tσ2

θi
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We denote by σaiω(λ) and σaiθi(λ) the functions of λ in (16). Theses functions interpolate
continuously and monotonously between their value at 0 and their value ∞ which is the center
of the ellipse described in (20). We have

σaiω(0) = −
1

2nr
sσ2

ω, σaiω(∞) =
f

2(f − r)
sσ2

ω,

σaiθi(0) =
2 + r

2(1 + r)2
tσ2

θi and σaiθi(∞) =
r2 + 2(f − r)(1 + r)

2(f − r)(1 + r)
tσ2

θi .

From these expressions it is easy to verify the following inequalities when r ∈ (−1, 0):

|σaiθi(∞)| < |σN
aiθi | < |σaiθi(0)| and |σaiω(∞)| < |σaiω(0)| and |σaiω(∞)| < |σN

aiω|.
(23)

We distinguish two cases depending on the relative position of |σaiω(0)| and |σN
aiω|.

1st case: |σaiω(0)| ≤ |σN
aiω|. In this case, either we have an interior solution. But then

|σW
aiω| = |σaiω(0)| < |σN

aiω| by assumption of this case, and |σW
aiθi

| = |σaiθi(0)| > |σN
aiθi

| by (23).

Or we have a boundary solution parametrized by λ with |σaiω(λ)| < |σaiω(0)| < |σN
aiω| by

(23). But for points on the ellipse, as σaiω gets closer to σaiω(∞) then σaiθi gets further from
σaiθi(∞). Consequently, |σaiθi(λ)| > |σN

aiθi
| as desired.

2nd case: |σaiω(0)| > |σN
aiω|. This condition is equivalent to r > −1/(n + 1). In this case

we necessarily have a boundary solution because the assumption of this case as well (23) imply
that

(

σaiω(λ), σaiθi(λ)
)

lies outside of the ellipse. We compute λN solution to σaiω(λ
N) = σN

aiω:

λN =
1 + (n+ 1)r

n(f − r)
.

But for this λN, (15) is violated, implying that
(

σaiω(λ
N), σaiθi(λ

N)
)

lies outside the ellipse.
Consequently, the welfare-optimal mechanism on obtained for some λW > λN and |σW

aiω| <
|σW

aiθi
|. This implies by the same argument used at the end of the first case that |σW

aiθi
| > |σN

aiθi
|.

Finally, the fact that the absolute values of σaiθj are ordered in the same way as for σaiθi
is an immediate consequence of the second obedience constraint.

The case of strategic complements (r > 0) is covered by the next proposition.

Proposition 4.4. For r ∈ (0, 1
n−1), there exists a unique symmetric mechanism maximizing

welfare subject to obedience. In this mechanism, the recommended actions are deterministic

given (θ, ω), hence

ai =
sµω + tµθi

1− (n− 1)r
+

σaiω
σ2
ω

(ω − µω) +
σaiθi
σ2
θi

(θi − µθi) +
∑

j 6=i

σaiθj
σ2
θj

(θj − µθj)

The expressions for (σaiω, σaiθi , σaiθj ) are identical to (16) with λ the solution to (18) in

( r
f−r ,+∞).

The proof of Proposition 4.4 follows closely the one of Proposition 4.2 and is provided in
Appendix B. The key difference is that the objective function

(n− 1)rσaiaj + sσaiω + tσaiθi

is now increasing in σaiaj so we want to choose it as large as possible, and the first inequality
constraint is now binding. This implies that in the optimal mechanism the action recommen-
dations are maximally positively correlated conditioned on (θ, ω). Again, the two remaining
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free parameters (σaiθi , σaiω) are constrained to lie on a portion of a hyperbola due to sta-
tionarity. Unlike the case of strategic substitutes, the endpoint of this portion of hyperbola
always lies outside the feasible ellipse E . The optimal mechanism is thus always obtained at
the intersection of the hyperbola with the boundary of E , and the action recommendation
is thus always deterministic conditioned on (θ, ω). Intuitively, it is easier to correlate the
players’ actions positively than negatively by correlating them all to the state ω, and there is
no need for additional independent randomization.

Corollary 4.5. In the welfare optimal mechanism described in Proposition 4.2 and Propo-

sition 4.4, the signs of σaiω, σaiθi and σaiθj are the same as s, t and rt, respectively. In

particular, the welfare optimal mechanism is always incentive compatible.

Proof. The signs of the covariance coefficients can easily be verified using that λ ≥ 0 and
r ∈ (−1, 0) for the expressions in Proposition 4.2, and that λ > r

f−r and r ∈ (0, f) in
Proposition 4.4. The fact that σaiθj has the same sign at rt implies rt

∑

j 6=i σajθi ≥ 0, which
is one of the equivalent characterizations of incentive compatibility in Proposition 3.10.

Remark 4.6. When r = 0, the mechanisms in Proposition 4.2 and Proposition 4.4 converge to
the same mechanism, with σaiω = sσ2

ω, σaiθj = 0, σaiθi = tσ2
θi

and δ = 0. That is, the action
recommendation ai is independent of θj and deterministic conditioned on (θi, ω):

ai =
sµω + tµθi

1− (n− 1)r
+ s(ω − µω) + t(θi − µθi).

In such a mechanism, the players can learn the realization ω of the state after subtracting
their own type from the action recommendation. In other words, the mechanism could be
equivalently implemented by revealing the state ω to the each player i ∈ [n] and letting them
play the Bayes-Nash equilibrium conditioned on (θi, ω).

As in in Proposition 4.3, we obtain the following comparison—proved in Appendix B—of
the covariance parameters in the optimal mechanism and in the complete information Nash
equilibrium.

Proposition 4.7. For r ∈ (0, 1
n−1), the welfare-optimal mechanism of Proposition 4.4 satisfies

|σW
aiω| < |σN

aiω|, |σW
aiθi | > |σN

aiθi | and |σW
aiθj | > |σN

aiθi |.

5 Discussion

The key takeaway of Proposition 4.2 is that, when the welfare-maximizing mechanism issues
deterministic recommendations, it induces actions that are linear in each player’s type, in the
state, and in the other players’ average type. Therefore, a signal structure that fully reveals
the corresponding linear combination of state and competitors’ types implements the de-
sired Bayes Correlated Equilibrium action distribution as the unique Bayes Nash Equilibrium
(Bergemann and Morris, 2013).

Interestingly, our complete-information benchmark also has a unique BNE which is also
linear. In other words, there exists another signal (3) that is deterministic conditional on
state and types, which yields the complete-information outcome as the unique BNE. Our
comparison results for games with strategic substitutes and complements (Propositions 4.3
and 4.7) show that, relative to the sufficient statistic for the complete information outcome,
the welfare-optimal mechanism over-weights the agents’ own types and under-weights the
common state.

20



A natural next question is whether this qualitative feature is also present in the seller’s
revenue-maximizing mechanism? Intuitively, a monopolist information seller wants to limit
the players’ rents, relative to their welfare-maximizing level. Thus, a monopolist seller will
understate the reliance of the mechanism on the private types, but will still qualitatively
modify the complete-information signal in the same direction. This is especially surprising
in games of strategic complements, where an incomplete intuition would have suggested that
over-weighting the common state enables greater coordination than under complete informa-
tion while also limiting information rents.

Finally, our framework can be tractably used to explore several other extensions. These
include asymmetric games, e.g., settings in which a vertically-integrated designer wishes to
maximize the payoff of a single player; and regulation interventions, where the players’ (firms’)
actions have implications for downstream players (e.g., consumers) and the designer wishes
to limit the firms’ market power.
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A Missing proofs from Section 3

Lemma A.1 (Lemma 3.3 restated). The covariance matrix K of a symmetric mechanism is

positive semidefinite iff

1. σaiθi = σaiθj = 0 whenever σ2
θi
= 0, and σaiω = 0 whenever σ2

ω = 0.

2. The following inequality constraints hold with the convention 0/0 = 0.







1
σ2
θi

(σaiθi − σaiθj)
2 ≤ σ2

ai − σaiaj
1
σ2
θi

(σaiθi + (n− 1)σaiθj)
2 + n

σ2
ω
σ2
aiω ≤ σ2

ai + (n− 1)σaiaj
,

Furthermore, there is equality in the first inequality iff Cov(ai, aj | θ, ω) = Var(ai | θ, ω)
and in the second inequality iff Cov(ai, aj | θ, ω) = −Var(ai | θ, ω)/(n− 1).

Proof. Consider a symmetric mechanism with covariance matrix K. We use the alternative
parametrization of the mechanism provided by (5). From Kaω = σ2

ωβ, we obtain that σ2
ω = 0

implies Kaω = 0. Since Kaω ∈ span(1n) by Lemma 3.2, σ2
ω 6= 0 implies that β ∈ span(1n)

with
βi =

σaiω
σ2
ω

.

Similarly, from Kaθ = ΓKθθ and Kθθ = σ2
θi
In we get that σ2

θi
= 0 implies Kaθ = 0. Since

furthermore, Kaθ ∈ span(In, Jn) by Lemma 3.2, σ2
θi
6= 0 implies that Γ ∈ span(In, Jn) and for

all (i, j) ∈ [n]2

γi,j =
σaiθj
σ2
θi

.
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The only constraint on parametrization (5) is that Kε be positive semidefinite. Using that
Kε = Kaa − σ2

ωββ
⊤ − ΓΓ⊤Kθθ, we see that Kε is also in span(In, Jn) and we compute the on-

and off-diagonal entries of Kε.

(Kε)ii = σ2
ai − σ2

ωβ
2
i −

n
∑

k=1

σ2
θk
γ2ik = σ2

ai −
σ2
aiω

σ2
ω

−
σ2
aiθi

σ2
θi

− (n− 1)
σ2
aiθj

σ2
θi

(Kε)ij = σaiaj − σ2
ωβiβj −

n
∑

k=1

σ2
θk
γikγjk = σaiaj −

σ2
aiω

σ2
ω

− 2
σaiθiσaiθj

σ2
θi

− (n− 2)
σ2
aiθj

σ2
θi

(24)

Note, that the previous expressions remain valid when σ2
ω = 0 (implying Kaω = 0), or σ2

θi
= 0

(implying Kaθ = 0), by adopting the convention 0/0 = 0. Proposition C.7 states that Kε is
positive semidefinite iff (Kε)ii ≥ (Kε)ij , equivalently with (24),

σ2
ai − σaiaj ≥

1

σ2
θi

(σaiθi − σaiθj)
2,

and (Kε)ii ≥ −(n− 1)(Kε)ij , or equivalently,

σ2
ai + (n− 1)σaiaj ≥ n

σ2
aiω

σ2
ω

+
σ2
aiθi

σ2
θi

+ 2(n − 1)
σaiθiσaiθj

σ2
θi

+ (n− 1)2
σ2
aiθj

σ2
θi

= n
σ2
aiω

σ2
ω

+
1

σ2
θi

(

σaiθi + (n− 1)σaiθj
)2
.

Finally, since Kε is the covariance matrix of a | θ, ω, the previous two inequalities are equivalent
to Var(ai | θ, ω) ≥ Cov(ai, aj | θ, ω) and (n− 1)Cov(ai, aj | θ, ω) ≥ −Var(ai | θ, ω) respectively.

Proposition A.2 (Prop. 3.10 restated). The mechanism (µ,K, p) is incentive compatible if

and only if it is obedient and for each player i ∈ [n]:

1. The derivative of the payment function is given by

p′i(θi) =

(

σaiθi
σ2
θi

− t

)

E[ai | θi] =

(

σaiθi
σ2
θi

− t

)(

µai +
σaiθi
σ2
θi

(θi − µθi)

)

.

2. The covariance satisfies tσaiθi ≥ t2σ2
θi
, or equivalently by obedience, rt

∑

j 6=i σajθi ≥ 0.

When σ2
θi
= 0, the previous two conditions reduce to p′i(θi) = −tµai.

Proof. We first compute the action a′i that maximizes a player’s utility at the second stage
conditioned on the received recommendation ai and assuming they reported cost θ′i in the
first stage. This yield the following first-order condition, analogous to (9)

a′i = sE[ω | ai, θi, θ
′
i] + r

∑

j 6=i

E[aj | ai, θi, θ
′
i] + tθi = sE[ω | ai, θ

′
i] + r

∑

j 6=i

E[aj | ai, θ
′
i] + tθi

where the second equality uses that ω, aj ⊥ θi | ai, θ
′
i for j 6= i. But obedience at θ′i implies

sE[ω | ai, θ
′
i] + r

∑

j 6=i

E[aj | ai, θ
′
i] = ai − tθ′i.
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The previous two equations combined yield the following expression for the optimal deviation
at the second stage

a′i = ai + t(θi − θ′i). (25)

Next, we compute ũi(θ
′
i; θi), the expected utility of player i assuming their true cost is θi,

their reported cost is θ′i, and the player deviates optimally (according to (25)) at the second
stage. A derivation analogous to the one in the proof of Proposition 3.9 gives

ũi(θ
′
i; θi) =

1

2
E[a′2i | θ′i, θi]

=
1

2
E
2[ai | θ

′
i] + t(θi − θ′i)E[ai | θ

′
i] +

t2

2
(θi − θ′i)

2 +
1

2
Var(ai | θ

′
i).

As for truthfulness, we want θ′i 7→ ũi(θ
′
i; θi)− pi(θ

′
i) to be maximized at θi. When σ2

θi
> 0, we

recover the same first-order condition

p′i(θi) =

(

σaiθi
σ2
θi

− t

)

E[ai | θi] =

(

σaiθi
σ2
θi

− t

)(

µai +
σaiθi
σ2
θi

(θi − µθi)

)

and the second-order condition now becomes

(

σaiθi
σ2
θi

)2

− 2t
σaiθi
σ2
θi

+ t2 −

(

σaiθi
σ2
θi

− t

)

σaiθi
σ2
θi

= t2 − t
σaiθi
σ2
θi

≤ 0.

as desired. Furthermore, since σaiθi−tσ2
θi
= r

∑

j 6=i σajθi by obedience, the previous condition

is equivalent to rt
∑

j 6=i σajθi ≥ 0. When σ2
θi
= 0, E[ai | θ

′
i] = µai and the first-order condition

reduces to p′i(θi) = −tµai .

B Missing proofs from Section 4

Proposition B.1 (Prop. 4.1 restated). Assume that the prior distribution on players’ types

θ is symmetric, then for any Gaussian and obedient mechanism, there exists a symmetric,
Gaussian, and obedient mechanism achieving identical welfare.

Proof. Gaussian mechanisms are determined by their mean vector and covariance matrix.
Furthermore, the discussion at the beginning of this section shows that the welfare of a
Gaussian and obedient mechanism is given by

W (µ,K) =
1

2

n
∑

i=1

(µ2
ai + σ2

ai)

where µ and K denote respectively the mean and covariance matrix of the mechanism. Denote
by C ⊂ R

2n+1 ×M2n+1(R) the set of pairs (µ,K) for all Gaussian and obedient mechanisms.
This set C is characterized by:

1. the equality constraint (7) on µ due to obedience.

2. the n linear equality constraints (8) on K due to obedience.

3. the positive semidefinite constraint that K ∈ S+
2n+1(R).
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Since the positive semidefinite cone S+
2n+1(R) is convex, we easily get from the above charac-

terization that C is convex. Next, for (µ,K) ∈ R
2n+1×M2n+1(R), define (π ·µ, π ·K) according

to (6). It is easy to see that this defines a linear action of Sn on R
2n+1×M2n+1(R). Further-

more, C is stable under the action of Sn: indeed, if (µ,K) is the mean and covariance matrix
of a Gaussian and obedient mechanism (a, θ, ω), then (π ·µ, π ·K) is the mean and covariance
matrix of the permuted mechanism (π · a, π · θ, ω) which is obedient by Lemma 3.4. Finally,
for (µ,K) ∈ C, µ is constrained to a singleton due to (7), and thus W (µ,K) is affine on C.

In summary, the set C is convex and stable under a linear action of the symmetric group
Sn and W : C → R is affine. Hence by Lemma C.6, we have W (C) = W (CG)

Proposition B.2 (Prop. 4.4 restated). For r ∈ (0, 1
n−1), there exists a unique symmetric

mechanism maximizing social welfare subject to obedience. In this mechanism, the recom-

mended actions are deterministic given (θ, ω), hence

ai =
sµω + tµθi

1− (n− 1)r
+

σaiω
σ2
ω

(ω − µω) +
σaiθi
σ2
θi

(θi − µθi) +
∑

j 6=i

σaiθj
σ2
θj

(θj − µθj)

Writing f := 1
n−1 , we have

σaiω =
sσ2

ω

2n

λnf + 1

λ(f − r)− r
, σaiθi = tσ2

θi

λnf
[

r2 + 2(f − r)(1 + r)
]

− (2 + r)r

2(1 + r)
[

λnf(f − r)− (1 + r)r
] , (26)

σaiθj = frtσ2
θi

λnf + (2r + 3)

2(1 + r)
[

λnf(f − r)− (1 + r)r
] . (27)

where λ is the unique scalar in ( r
f−r ,+∞) solution to

(1 + r)3fs2σ2
ω

n2
(

λ(f − r)− r
)2 +

r2(r2 + 2r(1− f)− 3f)2t2σ2
θi

[

λnf(f − r)− (1 + r)r
]2 = fs2σ2

ω(1 + r) + r2t2σ2
θi .

Proof. We follow the same steps as in the proof of Proposition 4.2 and solve for the KKT
conditions. The stationarity conditions remain identical and imply the same expressions

µ =
λ(f − r)− r

1 + r
, σaiω =

sσ2
ω

2n

λnf + 1

λ(f − r)− r
,

σaiθi = tσ2
θi

λnf
[

r2 + 2(f − r)(1 + r)
]

− (2 + r)r

2(1 + r)
[

λnf(f − r)− (1 + r)r
] ,

(28)

where λ and µ are the non-negative Lagrange multipliers. Note that the denominator could
now vanish in the expression for σaiω. However, the first stationarity condition implies that
µ = 0 iff λ = r

f−r and the second stationarity condition implies that s = 0 whenever µ = 0.
It is easy to see that the choice σaiω = 0 is optimal when s = 0, hence the expression for σaiω
in (28) remains valid even for λ = r

f−r by adopting the convention 0/0 = 0.
Since µ ≥ 0 we obtain that λ ≥ r

f−r > 0 and the first inequality constraint is binding.
In contrast to the case r < 0 in Proposition 4.2, this implies that in order to maximize
social welfare, the mechanism aims at maximally positively correlating the players’ actions.
Using that the first constraint is binding, we can eliminate σaiaj from the second inequality
constraint and obtain the same inequality

(1 + r)3fs2σ2
ω

n2
[

λ(f − r)− r
]2 +

r2(r2 + 2r(1− f)− 3f)2t2σ2
θi

[

λnf(f − r)− (1 + r)r
]2 ≤ fs2σ2

ω(1 + r) + r2t2σ2
θi . (29)
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There again, the inequality is valid when λ = r
f−r (which implies s = 0) with the convention

0/0 = 0. Observe that the quantity on the left-hand side in (29) is a continuous and decreasing
function for λ > r

f−r . Denoting by H this function, we see that limλ→+∞H(λ) = 0 and

• if s 6= 0, then limλ→r/(f−r)+ H(λ) = +∞;

• if s = 0, H(r/(f − r)) is well-defined but inequality (29) is violated.

In both cases, we have that inequality (29) becomes violated when λ is close enough to r
f−r .

Hence there exists a unique λ > r
f−r such that (29) is binding and complementary slackness

thus holds at this λ. The rest of the proof is then identical to the one of Proposition 4.2

Proposition B.3 (Prop. 4.7 restated). For r ∈ (0, 1
n−1), the welfare-optimal mechanism

described in Proposition 4.4 satisfies

|σW
aiω| < |σN

aiω|, |σW
aiθi | > |σN

aiθi | and |σW
aiθj | > |σN

aiθi |.

Proof. We follow steps similar to the proof of Proposition 4.3, but as per Proposition 4.4 the
minimum possible value for λ is now λ0 := r/(f − r). We have:

σaiω(λ0) = +∞ and σaiω(∞) =
f

2(f − r)
sσ2

ω

and

σaiθi(λ0) =
f(2f − r)

2(f − r)2
tσ2

θi and σaiθi(∞) =
r2 + 2(f − r)(1 + r)

2(f − r)(1 + r)
tσ2

θi .

The following inequalities are easy to verify when r ∈ (0, f):

|σaiθi(∞)| < |σN
aiθi

| < |σaiθi(λ0)| and |σaiω(∞)| < |σN
aiω| < |σaiω(λ0)|, (30)

so that in in particular
(

σaiω(λ0), σaiθi(λ0)
)

lies outside the ellipse and the welfare-maximizing
mechanism always lies on the boundary of the ellipse at a point parametrized by some λW >
λ0. As in Proposition 4.3, let λN be such that σaiω(λ

N) = σN
aiω:

λN =
1 + (n+ 1)r

n(f − r)
.

Again, we find that for this λN, condition (15) is violated, implying that (σaiω(λ
N), σaiθi(λ

N))
lies outside the ellipse. Thus, the welfare-optimal λW satisfies λW > λN and as in the proof
of Proposition 4.3 this implies that |σW

aiω| < |σN
aiω| and |σW

aiθi
| > |σN

aiθi
|.

C Linear algebra

The various notions of symmetry considered in this paper (for games, mechanisms, etc.) can
be understood in a unified way as a form of invariance under the action of the symmetric group
Sn on the set of players. We first briefly review the definitions and elementary properties of
group actions and related notions.

Definition C.1 (Group action). For a group G and set S, a group action of G on S is a map
(g, x) 7→ g · x from G× S to S such that

1. e · x for all x ∈ S, where e is the identity element of G.
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2. g · (h · x) = (gh) · x for all (g, h) ∈ G2 and x ∈ S.

It follows from the definition that for all g ∈ G, the map mg : x 7→ g · x is an element of
the symmetric group SS with inverse mg−1 and that g 7→ mg is a group homomorphism from
G to SS .

Definition C.2 (Invariance, stability). Let G be a group acting on a set S. We say that
x ∈ S is G-invariant if g · x = x for all g ∈ G. Similarly, a function f defined on S is
G-invariant if f(g · x) = f(x) for all (x, g) ∈ S × G. Finally, a subset T ⊆ S is G-stable if
g · x for all (x, g) ∈ T ×G.

Remark C.3. It is easy to check that an action of a group G on a set S induces an action of
G on the set of all functions with domain S, by defining g · f : x 7→ f(g−1 · x) for all g ∈ G
and f whose domain is S. Consequently, a function f defined on S is G-invariant under this
induced action iff it is G-invariant in the sense of Definition C.2.

When a group G acts on a vector space V , it is natural to require that the action be
compatible with the linear structure of V , as defined next.

Definition C.4 (Linear action). For a group G acting on a vector space V , we say that the
action is linear if for all g ∈ G, the map mg : v 7→ g ·v is an endomorphism of V . Consequently,
g 7→ mg is a group homomorphism from V to the general linear group GL(V ).

Example C.5. For n ≥ 1, the symmetric group Sn acts linearly on R
n by defining π · x =

(

xπ−1(1), . . . , xπ−1(n)

)

for x ∈ R
n and permutation π ∈ R

n. For a permutation π ∈ Sn, define
the permutation matrix Pπ ∈ Mn(R) whose (i, j) entry is (Pπ)ij = 1{π(j) = i}, then the
group action (π, x) 7→ π · x can equivalently be defined as the (left) multiplication by the
matrix Pπ.

Similarly the symmetric group Sn acts linearly on Mn(R) by defining π ·A = PπAP
⊤
π for

a permutation π ∈ Sn and matrix A ∈ Mn(R).

The following lemma captures the core of the symmetrization argument used in the body
of a paper, showing that restricting our study to symmetric mechanisms is without loss of
generality. Although the lemma is elementary, we were not able to find a suitable formulation
in the literature.

Lemma C.6 (Symmetrization). Let G be a finite group acting linearly on a real vector space

V , and let C be a convex and G-stable subset of V . Consider x ∈ C and define

xG :=
1

|G|

∑

g∈G

g · x.

Then xG is a G-invariant element of C, and f(xG) ≤ f(x) for every convex and G-invariant

function f : C → R. Consequently, for such a function f , inf f(C) = inf f(CG), where CG

denotes the G-invariant elements of C. If f is furthermore affine, we have f(C) = f(CG).

Proof. Because C is G-stable, g · x ∈ C for all g ∈ G, hence xG ∈ C by convexity of C.
Furthermore, xG is G-invariant: indeed, for each h ∈ G

h · xG =
1

|G|

∑

g∈G

(hg) · x =
1

|G|

∑

g∈G

g · x = xG
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where the first equality uses that G acts linearly on V and the second equality uses that
g 7→ hg is a permutation of G. Finally,

f(xG) = f





1

|G|

∑

g∈G

g · x



 ≤
1

|G|

∑

g∈G

f(g · x) = f(x) (31)

where the inequality is by convexity of f and the second equality uses that f is G-invariant.
The claim inf f(C) = inf f(CG) then follows immediately when f is convex and G-invariant,

and when f is affine, (31) becomes an equality, implying that f(C) = f(CG).

Proposition C.7. For n ≥ 2 and (a, b) ∈ R
2, define Jn(a, b) := (a − b)In + bJn, the matrix

in Mn(R) whose diagonal entries are all equal to a and off-diagonal entries equal to b.

1. The determinant of Jn(a, b) is det Jn(a, b) = (a− b)n−1
(

a+ (n− 1)b) and its inverse is

J−1
n (a, b) =

Jn
(

a+ (n− 2)b,−b
)

(a− b)
(

a+ (n− 1)b
)

whenever a 6= b and a 6= −(n− 1)b.

2. For a matrix A ∈ Mn(R), PπA = APπ for each π ∈ Sn iff A = Jn(a, b) for some

(a, b) ∈ R
2. In other words, span(In, Jn) is the commutant of {Pπ |π ∈ Sn}.

3. span(In, Jn) is a commutative algebra.

4. The matrix Jn(a, b) is positive semidefinite iff −a/(n − 1) ≤ b ≤ a.

Proof. The matrix Jn is symmetric, hence we can diagonalize it as Jn = UDU⊤ where U ∈
Mn(R) is orthogonal and D ∈ Mn(R) is diagonal. Furthermore, Jn has rank 1, hence its
kernel has dimension n− 1 and D has n− 1 zeros on its diagonal. Finally, Jn1n = n1n shows
that the remaining eigenvalue of Jn is n, with an associated eigenspace of dimension 1. We
can therefore write D = diag(0, . . . , 0, n). Hence, for each (a, b) ∈ R

2

Jn(a, b) = (a− b)In+ bJn = U
(

(a− b)In+ bD
)

U⊤ = U













a− b 0 · · · 0

0
. . .

. . .
...

...
. . . a− b 0

0 · · · 0 a+ (n− 1)b













U⊤

(32)

1. We directly compute from (32), det Jn(a, b) = (a − b)n−1
(

a + (n − 1)b
)

, showing that
Jn(a, b) is nonsingular iff a 6= b and a 6= −(n − 1)b. For such a pair (a, b), we look for
an inverse of Jn(a, b) of the form cIn + dJn for some (c, d) ∈ R

2. Using the identity
J2
n = nJn, we get

(

(a− b)In + bJn
)

(cIn + dJn) = (a− b)cIn +
(

bc+ d(a+ (n− 1)b)
)

Jn.

Hence, cIn + dJn is an inverse of Jn(a, b) iff

c =
1

a− b
and d = −

b

(a− b)
(

a+ (n− 1)b
)

yielding the stated expression for J−1
n (a, b).

28



2. Let A be a matrix commuting with all permutation matrices. For i ∈ [n] and j ∈ [n]\{i},
let τ be the transposition that swaps i and j, and let ei be the ith standard basis vector.
The condition PτAei = APτei implies aτ(k)i = akj for all k ∈ [n]. Writing this for
k ∈ {i, j} and k ∈ [n] \ {i, j} (when n ≥ 3) yields

aii = ajj, aij = aji, aki = akj. (33)

The first equality shows that all diagonal entries are equal and the last equality shows
that for each row k, all off-diagonal entries in row k are equal. To compare off-diagonal
entries in different rows, consider i′ 6= i and j′ 6= i′, then

aij = aii′ = ai′i = ai′j′

where the first and last equalities used the third equality in (33) and the middle equality
used the second equality in (33).

3. By definition, span(In, Jn) is a subspace of Mn(R). The fact that is a commutative
algebra follows immediately from the fact that In and Jn commute and the identity
J2
n = nJn.

4. The eigenvalues of Jn(a, b) can be read directly from (32). The matrix Jn(a, b) is positive
semidefinite iff all its eigenvalues are nonnegative, that is, a ≥ b and a ≥ −(n− 1)b.
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