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What is SWRL?

• SWRL is an acronym for Semantic Web Rule 
Language. 

• SWRL is based on OWL: all rules are 
expressed in terms of OWL concepts 
(classes, properties, individuals, literals…).

• SWRL includes a high-level abstract syntax 
for Horn-like rules.



Example SWRL Rule: Has uncle

hasParent(?x, ?y) ^ hasBrother(?y, ?z) -> hasUncle(?x, ?z)



Patient(?p) ^ 
hasExtendedEvent(?p, ?eevent1) ^ hasExtendedEvent(?p, ?eevent2) ^ 

temporal:hasValue(?eevent1, ?event1) ^ temporal:hasValidTime(?eevent1, ?event1VT) ^ 
temporal:hasTime(?event1VT, ?event1Time) ^ temporal:hasValue(?eevent2, ?event2) ^

temporal:hasValidTime(?eevent2, ?event2VT) ^ temporal:hasTime(?event2VT, ?event2Time) ^
hasVisit(?event1, ?v1) ^ hasVisit(?event2, ?v2)  ^

hasActivity(?event1, ?a1) ^ hasName(?a1, "Omalizumab")  ^
hasActivity(?event2, ?a2) ^ hasName(?a2, "Immunotherapy")  ^

temporalOp:before(?event2Time, ?event1Time) ^
temporalOp:durationMinutesLessThan(60, ?event2Time, ?event1Time)

-> NonConformingPatient(?p)

On days that both immunotherapy and 
omalzumab are administered, 

omalzumab must be injected 60 minutes 
after immunotherapy.

Example SWRL Rule: Constraints



What is the SWRL Editor?

• The SWRL Editor is an extension to Protégé-
OWL that permits the interactive editing of 
SWRL rules. 

• The editor can be used to create SWRL 
rules, edit existing SWRL rules, and read 
and write SWRL rules. 

• Provides Java APIs to allow interoperation 
with third-party inference engines.



The SWRL Editor

• The SWRL Editor is included as part of 
Protégé-OWL. 

• It is accessible as a tab within Protégé-OWL.

• This tab should be visible for all OWL 
knowledge bases that import the SWRL 
Ontology:

• http://www.daml.org/rules/proposal/swrl.owl









What checking does the SWRL Editor do?

• Only syntactically valid rules can be saved.
• The SWRL editor will only allow saving of 

rules relating to currently loaded OWL 
entities.

• Basic semantic checking, e.g., no variables 
can be used in a rule consequent that were 
not referred to in the antecedent

• However, no elaborate sanity checking is 
performed, e.g., rule could contradict OWL 
constraints



How are SWRL Rules Saved?

• SWRL rules are saved as OWL individuals with their 
associated OWL file.

• Classes that describe this ontology are contained in 
SWRL Ontology:

• http://www.daml.org/rules/proposal/swrl.orl

• These classes include:
• swrl:Imp – represents a single SWRL rule
• swrl:Atom – represents a single rule atom
• swrl:AtomList – represent a list of atoms

• Other rule engines can use these rules, e.g., 
SweetRules.



Interacting with SWRL Rules in 
Protégé-OWL

• Via files – SWRL rules are stored in standard format.

• The SWRL API provides a mechanism to create and 
manipulate SWRL rules in an OWL knowledge base. 

• This API is used by the SWRL Editor. However, it is 
accessible to all OWL Plugin developers. 

• Third party software can use this API to work directly 
with SWRL rules, e.g., new SWRL editor or third-party 
rule engine developers.

• FAQ: http://protege.stanford.edu/plugins/owl/swrl/SWLFactory.html



Adding a Third Party Rule Engine

• SWRL Editor has been available as part of 
Protégé-OWL for a year.

• Is open source (like Protégé-OWL itself).

• Initially had no inference capabilities. 

• We then integrated the Jess rule engine with 
Protégé-OWL to perform inference with 
SWRL rules.



High-level Steps to Integrate Rule Engine 
with Protégé-OWL

• Use SWRL API to get all rules in knowledge 
base.

• Use OWL API to get all relevant OWL knowledge.
• Map OWL knowledge to rule engine knowledge.
• Perform inference!
• Map created rule engine knowledge to OWL.
• Use OWL API to put new information into OWL 

knowledge base.
• Also: GUI real estate is usually required.
• Other issues: integrity checking.



GUI Interaction with SWRL Rules
in Protégé-OWL

• Protégé-OWL plugin mechanism
• SWRL Editor plugin mechanism

Two choices for GUI interaction:



Rule Engine Interaction with SWRL Rules 
in Protégé-OWL

• Before mapping, extracting relevant OWL 
knowledge for inference is an important 
optimization.

• Not all knowledge needs to be extracted.
• Required knowledge can be determined from 

each rule.
• For example, the rule: Man(Fred) ^ Man(?y) ^ 

hasParent(Fred, ?y) ^ hasBrother(?y,?z) -> hasUncle(Fred, ?z)

requires:
• The individual named Fred
• All individuals of class Man and subclasses
• Fred’s hasParent properties and subproperties.
• All individuals with the hasBrother property and 

subproperties.



Protégé-OWL Provides a SWRL Bridge API

• Given an OWL knowledge base it will extract 
SWRL rules and relevant OWL knowledge.

• Also provides an API to assert inferred 
knowledge.

• Knowledge (and rules) are described in non 
Protégé-OWL API-specific way.

• These can then be mapped to a rule-engine 
specific rule and knowledge format.

• This mapping is developers’s responsibility.



We used SWRL Bridge to Integrate Jess 
Rule Engine with Protégé-OWL

• Jess is a Java-based rule engine.
• Jess system consists of a rule base, fact 

base, and an execution engine. 
• Available free to academic users, for a small 

fee to non-academic users
• Has been used in Protégé-based tools, e.g., 

SWRLJessTab, SweetJess, JessTab.













Outstanding Issues

• Only named classes can be used 
in SWRL rules.

• SWRL Bridge does not know about 
all OWL constraints.
• Contradictions with rules possible!
• Consistency must be assured by the 

user.
• Hard problem to solve in general.



Conclusion: Developers Needed!

• SWRL Editor is open source.

• Well documented. Several FAQs:
• http://protege.stanford.edu/plugins/owl/swrl/
• http://protege.stanford.edu/plugins/owl/swrl/SWRLFactory.html

• Support from  Protégé-OWL mailing list.

• Protégé-OWL could be used to implement 
other OWL-based rule languages.


