
Rule System Interoperability
on the Semantic Web

with SWRL
Martin O’Connor1, Holger Knublauch1, Samson Tu1,

Benjamin Grosof2, Mike Dean3, William Grosso4, Mark Musen1

1Stanford Medical Informatics, Stanford CA,
2Sloan School of Management, MIT, Cambridge MA

3BBN Technologies, Ann Arbor MI
4Echopass Corp., San Francisco CA

What is SWRL?

• SWRL is an acronym for Semantic Web Rule
Language.

• SWRL is based on OWL: all rules are
expressed in terms of OWL concepts
(classes, properties, individuals, literals…).

• SWRL includes a high-level abstract syntax
for Horn-like rules.

Example SWRL Rule: Has uncle

hasParent(?x, ?y) ^ hasBrother(?y, ?z) -> hasUncle(?x, ?z)

Patient(?p) ^
hasExtendedEvent(?p, ?eevent1) ^ hasExtendedEvent(?p, ?eevent2) ^

temporal:hasValue(?eevent1, ?event1) ^ temporal:hasValidTime(?eevent1, ?event1VT) ^
temporal:hasTime(?event1VT, ?event1Time) ^ temporal:hasValue(?eevent2, ?event2) ^

temporal:hasValidTime(?eevent2, ?event2VT) ^ temporal:hasTime(?event2VT, ?event2Time) ^
hasVisit(?event1, ?v1) ^ hasVisit(?event2, ?v2) ^

hasActivity(?event1, ?a1) ^ hasName(?a1, "Omalizumab") ^
hasActivity(?event2, ?a2) ^ hasName(?a2, "Immunotherapy") ^

temporalOp:before(?event2Time, ?event1Time) ^
temporalOp:durationMinutesLessThan(60, ?event2Time, ?event1Time)

-> NonConformingPatient(?p)

On days that both immunotherapy and
omalzumab are administered,

omalzumab must be injected 60 minutes
after immunotherapy.

Example SWRL Rule: Constraints

What is the SWRL Editor?

• The SWRL Editor is an extension to Protégé-
OWL that permits the interactive editing of
SWRL rules.

• The editor can be used to create SWRL
rules, edit existing SWRL rules, and read
and write SWRL rules.

• Provides Java APIs to allow interoperation
with third-party inference engines.

The SWRL Editor

• The SWRL Editor is included as part of
Protégé-OWL.

• It is accessible as a tab within Protégé-OWL.

• This tab should be visible for all OWL
knowledge bases that import the SWRL
Ontology:

• http://www.daml.org/rules/proposal/swrl.owl

What checking does the SWRL Editor do?

• Only syntactically valid rules can be saved.
• The SWRL editor will only allow saving of

rules relating to currently loaded OWL
entities.

• Basic semantic checking, e.g., no variables
can be used in a rule consequent that were
not referred to in the antecedent

• However, no elaborate sanity checking is
performed, e.g., rule could contradict OWL
constraints

How are SWRL Rules Saved?

• SWRL rules are saved as OWL individuals with their
associated OWL file.

• Classes that describe this ontology are contained in
SWRL Ontology:

• http://www.daml.org/rules/proposal/swrl.orl

• These classes include:
• swrl:Imp – represents a single SWRL rule
• swrl:Atom – represents a single rule atom
• swrl:AtomList – represent a list of atoms

• Other rule engines can use these rules, e.g.,
SweetRules.

Interacting with SWRL Rules in
Protégé-OWL

• Via files – SWRL rules are stored in standard format.

• The SWRL API provides a mechanism to create and
manipulate SWRL rules in an OWL knowledge base.

• This API is used by the SWRL Editor. However, it is
accessible to all OWL Plugin developers.

• Third party software can use this API to work directly
with SWRL rules, e.g., new SWRL editor or third-party
rule engine developers.

• FAQ: http://protege.stanford.edu/plugins/owl/swrl/SWLFactory.html

Adding a Third Party Rule Engine

• SWRL Editor has been available as part of
Protégé-OWL for a year.

• Is open source (like Protégé-OWL itself).

• Initially had no inference capabilities.

• We then integrated the Jess rule engine with
Protégé-OWL to perform inference with
SWRL rules.

High-level Steps to Integrate Rule Engine
with Protégé-OWL

• Use SWRL API to get all rules in knowledge
base.

• Use OWL API to get all relevant OWL knowledge.
• Map OWL knowledge to rule engine knowledge.
• Perform inference!
• Map created rule engine knowledge to OWL.
• Use OWL API to put new information into OWL

knowledge base.
• Also: GUI real estate is usually required.
• Other issues: integrity checking.

GUI Interaction with SWRL Rules
in Protégé-OWL

• Protégé-OWL plugin mechanism
• SWRL Editor plugin mechanism

Two choices for GUI interaction:

Rule Engine Interaction with SWRL Rules
in Protégé-OWL

• Before mapping, extracting relevant OWL
knowledge for inference is an important
optimization.

• Not all knowledge needs to be extracted.
• Required knowledge can be determined from

each rule.
• For example, the rule: Man(Fred) ^ Man(?y) ^

hasParent(Fred, ?y) ^ hasBrother(?y,?z) -> hasUncle(Fred, ?z)

requires:
• The individual named Fred
• All individuals of class Man and subclasses
• Fred’s hasParent properties and subproperties.
• All individuals with the hasBrother property and

subproperties.

Protégé-OWL Provides a SWRL Bridge API

• Given an OWL knowledge base it will extract
SWRL rules and relevant OWL knowledge.

• Also provides an API to assert inferred
knowledge.

• Knowledge (and rules) are described in non
Protégé-OWL API-specific way.

• These can then be mapped to a rule-engine
specific rule and knowledge format.

• This mapping is developers’s responsibility.

We used SWRL Bridge to Integrate Jess
Rule Engine with Protégé-OWL

• Jess is a Java-based rule engine.
• Jess system consists of a rule base, fact

base, and an execution engine.
• Available free to academic users, for a small

fee to non-academic users
• Has been used in Protégé-based tools, e.g.,

SWRLJessTab, SweetJess, JessTab.

Outstanding Issues

• Only named classes can be used
in SWRL rules.

• SWRL Bridge does not know about
all OWL constraints.
• Contradictions with rules possible!
• Consistency must be assured by the

user.
• Hard problem to solve in general.

Conclusion: Developers Needed!

• SWRL Editor is open source.

• Well documented. Several FAQs:
• http://protege.stanford.edu/plugins/owl/swrl/
• http://protege.stanford.edu/plugins/owl/swrl/SWRLFactory.html

• Support from Protégé-OWL mailing list.

• Protégé-OWL could be used to implement
other OWL-based rule languages.

