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Abstract—Tent map is a discrete-time piecewise-affine

I/O characteristic curve, which is used for chaos-based

applications, such as true random number generation.

However, tent map suffers from the inability to maintain

the output state confined to the input range under noise

and process variations. In this paper, we propose a modi-

fied tent map, which is interchangeable with the tent map

for practical applications. In the proposed modified tent

map, the confinement problem is solved while maintaining

the functionality of the tent map. We also demonstrate

simulation results for the circuit implementation of the

presented modified tent map for true random number

generation.

I. INTRODUCTION

Certain nonlinear dynamical systems can demonstrate

non-periodic, long-term non-predictive behaviors, known

as chaos. Chaotic behavior results from the high sensi-

tivity of the system to the initial state, which is never

exactly known in practice. Any small perturbation can

grow exponentially with time within the system leading

to a non-predictive behavior of chaotic systems [1], [2].

Chaotic waveforms have been extensively used in various

research areas such as the modeling of the behavior

of human organs [3]–[5] as well as the modulation

of signals and chaotic encryption of telecommunication

data [1]. Truly Random Number Generators (TRNG) can

be utilized in cryptographic systems. A TRNG is a num-

ber generator that is capable of producing uncorrelated

and unbiased binary digits through a nondeterministic

and irreproducible process [7]. A TRNG requires a high

entropy source, which can be provided by uncertain

chaotic sources [7].

A discrete-time chaotic map, formed by the iteration

of the output value in a transformation function, can

be used for the generation of random numbers. Simple

piecewise affine input-output (I/O) characteristics have

been extensively used for the generation of random bits,

e.g., the Bernoulli map [7], and the tent map [8]. The

entropy source of a chaotic map is the inherent noise

of the system, which is amplified in the positive gain

feedback loop by the iteration of the output signal in the

map function [7]. High Speed, capability of integration,

and the high quality of the generated bits make the

discrete-time chaotic maps very good candidates for high

speed embeddable random number generation.

The practical application of both the tent map and the

Bernoulli map can be hindered by noise and implemen-

tation errors, where they are unable to maintain the state

of the system confined [7]. In this paper, we present a

modified tent map that can be interchanged with the tent

map in practical applications.

The rest of this paper is organized as follows. In

Section II, the fundamentals of discrete-time chaotic

maps are reviewed, and the practical problems of the

tent map are pointed out. In Section III, we present the

modified tent map and investigate its chaotic charac-

teristics. In Section IV, we demonstrate the feasibility

of implementing the presented modified tent map for

true random number generation. Section V concludes the

paper.

II. TENT MAP: FUNDAMENTALS AND HISTORY

In this section, after a brief introduction to discrete-

time chaotic maps, we review the tent map and the previ-

ously proposed implementations. Discrete-Time Markov

chaotic sources are a subclass of discrete-time chaotic

nonlinear dynamical systems. A discrete-time chaotic

system is formed by the iteration of the output signal

through a transformation function M(x) as given by

xn+1 = M(xn) = Mn(x0). (1)

In this equation, n represents the time step, x0 is the

initial state of the system, and xn is the state of the

system at time step n.
The tent map function M(x) : (0, 1) → (0, 1), shown
in Figure 1 (a), is given by

M(x) =

{

2x 0 < x ≤ 1

2
,

2(1 − x) 1

2
< x < 1.

(2)
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Fig. 1. (a) The tent map. (b) The presented modified tent map.

It can be shown that after several iterations, the density of

states in the tent map asymptotically follows a uniform

distribution, i.e., the state of the system is uniformly dis-

tributed in (0, 1) and the asymptotic density distribution
f(x) for the tent map satisfies f(x) = 1 [9].

The Lyapunov exponent of a discrete-time map can

be calculated from [2]

λ =

∫

ln |M ′(x)|f(x)dx, (3)

where M ′(x) is the derivative of the map function
M(x) and f(x) is the asymptotic density distribution. A
positive Lyapunov exponent implies the chaotic behavior

in the system. The rate of the separation between the

trajectories of very close initial states is given by λ. For
tent map, |M ′(x)| = 2 and f(x) = 1, which result in
λ = ln 2.

Tent map circuit implementation has been proposed

in [8], [10]. These circuit implementations suffer from

the confinement problem in practice, i.e., the output

value of the map can be trapped in a point outside

the map due to noise or implementation errors [7],

[11]. A tailed tent map has been presented in [11] to

solve the problem. The tailed tent map maintains the

uniform asymptotic density distribution of the states,

while not disturbing characteristics of the tent map. For

example, the utilization of the tailed tent map for true

random number generation results in the generation of

correlated output binary sequence. In [12], a hardware

implementation has been proposed for the tent map

based on reducing the slope, which will change the

characteristics of the map and degrade the quality of

the generated binary sequence in terms of the statistical

characteristics.
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Fig. 2. Bifurcation diagram of the modified tent map with bifurcation

parameter m, defined in (5). The generalized modified tent map with

three different values of m (−1, −2, and −3) is shown in the inset.

III. THE PRESENTED MODIFIED TENT MAP

In this section, we present the modified tent map and

investigate its chaotic behavior. The presented modified

tent map function M(x) : (−1, 1) → (−1, 1), shown in
Figure 1 (b), is given by

M(x) =











2x + 1 −1 < x ≤ −1

2
,

−2x −1

2
< x < 1

2
,

2x − 1 1

2
≤ x < 1.

(4)

In the modified tent map, the sign of the output value

alternates in each iteration, i.e, xnxn+1 < 0. Suppose
xa

1, x
a
2, and xa

3 are the abscissa of three successive output

values of the tent map, and xb
1, x

b
2, and xb

3 are the output

values of the modified tent map. If xa
1 = xb

1, we have

xa
2 = −xb

2 and xa
3 = xb

3, as shown in Figure 1 (a,b).

In other words, for an equal initial state, the absolute

value of the output sequence is equal for both the tent

map and the modified tent map while the output of

the modified tent map alternates between positive and

negative values. Since the output values of the tent map

and the modified tent map have equal absolute values,

the Lyapunov exponent of the modified tent map is equal

to that of the tent map, which was shown to be ln 2.

In order to further investigate the presented modified

tent map, we generalize the map function by introducing
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a slope parameter m, where m ∈ (−3, 3), as given by

M(x) =











−m(x + 2

|m|) −1 < x ≤ − 1

|m| ,

mx − 1

|m| < x < 1

|m| ,

−m(x − 2

|m|)
1

|m| ≤ x < 1.

(5)

Here, m = −2 represents the modified tent map, as
given by equation (4). Figure 2 shows the bifurcation

diagram of the generalized map function as a function

of the bifurcation parameter m. A bifurcation diagram
is obtained by following the output trajectory to find the

possible long-term states of the system. Under certain

conditions, the bifurcation diagram can also represent

the density of the states due to the ergodicity [9], [15].

In this diagram, the density of the states is proportional

to the darkness, i.e. darker regions have higher density

of states. This diagram is obtained assuming that the

inherent initial noise is a very small positive value, i.e.,

x0 = 0+.

For |m| > 3, the system could not maintain the
state in the input range, which could not be used for

chaotic applications. For 2 < m < 3, the system is
chaotic and the bifurcation diagram represents the steady

state density distributions. Chaotic behavior can also be

observed for 1 < m ≤ 2. Since the initial state of the
system is assumed to be positive, the output is confined

in positive values. For |m| ≤ 1, the system does not
demonstrate chaotic behavior. Regardless of the initial

state of the system, the output will ultimately settle in

zero. For −2 ≤ m < −1, the system also shows chaotic
behavior. In this mode, the output alternates between

positive and negative values with each iteration. In this

region, the system does not have an asymptotic density

distribution. For −3 < m < −2, the system is chaotic
and the bifurcation diagram represents its asymptotic

density distribution.

Form = 2, equation (5) represents a map that is given
by

M(x) =











−2x − 1 −1 < x ≤ −1

2
,

2x −1

2
< x < 1

2
,

−2x + 1 1

2
≤ x < 1.

(6)

As the equation shows, this is exactly like the tent map

for x > 0. Here, if m is a little bit greater than 2,
the system could still maintain the state confined in the

system since the output could jump to the negative side

of the map, which is the fundamental difference between

this map and the tent map. In the tent map, if the slope

is more than 2, the system could not maintain the state
confined. Therefore, the tent map could not be used for

practical applications under process variations and noise.

Although in the neighborhood of m = −2, the asymp-
totic density distribution does not exist, the modified

tent map could be used in practical applications such as

true random number generation based on the principles

explained earlier.

IV. IMPLEMENTATION AND DISCUSSIONS

In this section, we propose the utilization of a current

mode circuit implementation for the presented modified

tent map. In current mode circuits, the signal is repre-

sented by the branch current instead of the node voltage

in the voltage mode circuits. Current mode circuits

have recently attracted great attention because of their

capability of very low supply voltage operation [13].

While scaling the feature size, the supply voltage is

scaled more rapidly than the threshold voltage, which

in turn decreases the overdrive voltage of the transistors

and limits the voltage swing. In current mode circuits,

high current gains can be achieved while the nodal

voltages are floating [13], [14]. Current mode circuits

will be playing an important role in the future deep sub-

micron technologies, e.g., telecommunications, analog

signal processing, and multiprocessors [13].

The presented modified tent map is a continuous

piecewise affine map, where we implemented it by

the affine interpolation of the value at the breakpoints,

proposed in [15]. In this method, the affine partitions

are implemented using elementary blocks based on the

detection of the breakpoints. Therefore, it is straight-

forward to detect whether the output value is within a

certain affine partition of the map, and generate a binary

output sequence. We performed HSPICE simulations in

TSMC 0.18 µm technology for the modified tent map
circuit. The I/O characteristic curve of the map is shown

in Figure 3(a), where the input and output range are equal

to 6µA. Investigating the transient response of the circuit
with an input current pulse, we demonstrated that at the

worst case the output would settle within 1% of its final
value in less than 25 ns. Therefore, the circuit could be
utilized at operation frequencies as high as 20 MHz.
We demonstrate the feasibility of binary generation

from the presented modified tent map. In Figure 4(a), the

partition |x| < 1/2 is represented by state A, and the par-
titions −1 < x < −1/2 and 1/2 < x < 1 are represented
by the states B1 and B2, respectively. In order to generate

a binary output, the states B1 and B2 are combined in

a macro-state B. The state A corresponds to the bit 1
and the state B corresponds to the bit 0. As discussed
earlier, the binary sequence generated from a modified

tent map is exactly the same as the binary sequence
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Fig. 3. (a) The I/O current characteristics of the modified tent map.

(b) Output bit-generation pattern.

generated from a tent map due to the symmetry of the

bit-generation process around the origin. Therefore, the

bit-generation process can be modeled as a Markov chain

similar to the tent map, as shown in Figure 4(b) [7]. In

this Figure, p is the probability of the generation of 1
when the latest generated bit is 1. q is the probability
of the generation of a 0, when the previous bits is 0.
Since the functionality of the map is similar to the tent

map, we have p = q = 1/2 and the generated bits are
truly random. In Figure 3(b), the simulation result for the

bit-generation circuit is presented, where it demonstrates

very good agreement with the desired bit-generation

pattern.

V. CONCLUSION

The tent map suffers from the inability to maintain

the state confined in the input range of the map under

noise and implementation errors. This fundamental issue

limits the practical application of the tent map. In this

paper, we presented a modified tent map, which can

solve the state confinement problem of the tent map. The

presented modified tent map could be used in all practical

applications instead of the tent map. We demonstrated

that the presented map could be used for true random

number generation.

M(x)

1

1

x

(a)

-1

-1

B2

A

B1

p

1-p

q

1-q

(b)

A

B1

B2

Fig. 4. (a) The modified tent map and the corresponding affine

partitions (b) The Markov chain of states for true random number

generation.
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